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ABSTRACT 

Global solutions for the ion cyclotron resonant frequency ( ICRF)  

wave fields in a straight tokamak with rotational transform and in a 

poloidally symmetric mirror are calculated in the cold plasma limit. The 

component of the wave electric field parallel to B is assumed zero. 

Symmetry in each problem allows Fourier decomposition in one ignorable 

coordinate, and the remaining set of two coupled, two-dimensional partial 

differential equations is solved by finite differencing. Energy 

absorption and antenna impedance are calculated using a simple 

collisional absorption model. When large gradients in IBl along B are 

present in either geometry, ICRF heating at the fundamental ion cyclotron 

resonance is observed. For the mirror, such gradients are always 

present. But for the tokamak, the rotational transform must be large 

enough that B DE > O ( 1 ) .  For smaller transforms more typical of real 

tokamaks, only heating at the two-ion hybrid resonance is observed. This 

suggests that direct resonant absorption at the fundamental ion cyclotron 

resonance may be possible in stellarators where B VB - O(1) naturally. 
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1. INTRODUCTION 
r 

For many laboratory plasmas in which low-frequency, long-wavelength 

ICRF fields are present, the geometrical optics assumptions are not 

valid. In these cases, global solutions for the wave fields are needed 

to calculate energy absorption profiles and antenna loading. Such 

solutions, however, involve inverting the highly singular operator -V x V 

x E and may lead to numerical difficulties. To make this problem more 
-+ 

tractable it has become standard with some authors 11-51 to assume that 

the high conductivity of the plasma along field lines shorts out the 

component of the wave electric field parallel to 3; that is, B E 3 0 on 

the time scale of the wave. For ion cyclotron frequencies this is a good 

approximation. Likewise, further simplification occurs when the geometry 

allows Fourier decomposition in one or more ignorable coordinates, thus 

reducing the dimensionality of the system to only one or two spatial 

dimensions. With these assumptions, full-wave solutions in the cold 

plasma limit have been carried out by several authors [l-71. McVey [ 6 ]  

treats the mirror problem assuming both poloidal and axial symmetry, thus 

reducing the problem to one radial dimension. However, Phillips and Todd 

[7] point out the importance of retaining axial inhomogeneity i n  the 

mirror field and also the possible importance of parallel electric 

fields. Itoh et al. [l] treat a straight tokamak with axial symmetry and 

collisional absorption, but they neglect the poloidal component of the 

magnetic field. As the calculations in this paper show, however, the 

effect of the poloidal field on B - VB in the tokamak is t o  allow energy 

absorption at the fundamental ion cyclotron resonance. Colestock and 

Kashuba [ 2 ]  also treat the straight tokamak without poloidal field, but 

+ + +  

-+ 
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they attempt to model mode conversion to ion Bernstein waves as the 

mechanism f o r  wave dampirig and energy absorption. Work in progress by 

Elet et al. [ 4 ]  and Appert et al. [ 5 ]  attempts t o  include both poloidal 

magnetic field and the full geometrical- effect of toroidal curvature in 

the tokamak 

In this paper we extend the full-wave treatments of McVey [6] and 

I t o h  et al. [l] to include both radial and axial variations in B ~ O K  the 

mirror and to include the poloidal magnetic field Be f o r  the tokamak. 

Energy absorption profiles and antenna impedance are calculated using the 

simple collisional absorption model of Itoh et al. [ l ] .  By including the 

effect of the poloidal. field, we allow energy absorption at the 

fundamental. ion cyclotron resonance in tokamak as well as mirror 

geometry. Such absorption in a tokamak requires a rotational transform 

-+ 

large enough to 

B OB. For the 

the gradient in 

hybrid res onan ce 

-b 

3 
produce a significant gradient in IBI along B, i.e., 

case of zero poloidal field as treated by Itoh et al., 

IB( along B is zero and only heating at the two-ion 

is observed. These results support the contention 17-91 

+ 

-+ 
that large gradients in IB( along B in the stellarator may lead to ICRF 

heating at the fundamental of the ion cyclotron frequency in that more 

complicated geometry. 

In Section 2 we review the assumptions of cold plasma theory leading 

to the cold plasma dielectric tensor, wave equation, and dispersion 

relation. Section 3 explains the decomposition of the dielectric tensor 

into components along unit tensors made up of an orthogonal set of unit 

vectors describing generalized flux coordinates. In Section 4 the 

special case of tokamak geometry, including an arbitrary poloidal 

magnetic field, is considered. The wave equations are shown to reduce 

exactly to those of Itoh et al. [ l ]  in the limit that Be approaches zero. 
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Expressions for the energy deposition rate and antenna impedance 

including the poloidal magnetic field are derived in Section 4.2. 

Section 5 describes numerical results for the tokamak, including an 

explicit example in which energy is absorbed at the fundamental ion 

cyclotron resonance. In Section 6, the special case of mirror geometry 

including both radial and axial variations in B is considered, and 

Section 7 describes numerical results f o r  a model mirror field. Finally, 

Section 8 discusses the implications and possible extensions of these 

calculations. 

+ 

2. COLD PLASMA THEORY 

Combining Maxwell’s equations with the Lorentz force equations gives 

the equations of cold plasma theory [ lo ] ,  

+ + 
V x E = i & ,  

+ 3 

ext - V X H =  J 

v - (Eo: * Z) = pext , 
-+ 

V * B = O ,  

where time-harmonic dependence for the wave fields has been assumed with 

the form e-iwt. In 

the coordinate system where the applied magnetic field Bo is in the z 

direction, K can be written as [ l o ]  

e 
In (1)-(4) K is the cold plasma dielectric tensor. 

+ 
bp 

Kl -iK, 

9 4+ i c j  
K = I + - - a =  [ 7 , 

WE0 
( 5 )  



4 

* 0 
where I is the identity tensor, Q is the cold plasma conductivity tensor, 

and 

2 

2 3 0 3  
p j  

w 
Kll = 1 - c - .  

2 2 In (6), aPj = nq./(m E );  9 .  = qjBo/mj; and m and q are the mass and 
J j o  J j j -+ 

charge respectively f o r  the jth - species; n is the plasma density; E z 

-# 3 -> 
D/eO and H = B/pO are the wave electric and magnetic field stength 

vectors, respectively, where = 8.85  x F-m-' is the permittivity 

constant and uo = 1.25 x peXt 

-9 
H.rn-' is the permeability constant. 

a 
and JeXt are the external (excluding plasma polarization effects) charge 

density and current density, respectively. 

The approximate effect of collisions can be included in (1)-(6) by 

adding a collisional damping term to the Lorentz force equation 111: 

9 -+ 
x 2) - vjrnjvj , 

j at 

a 
where v is the particle velocity and v is the collision frequency. 

Assuming v 
j j 

0: e-iwt now gives 
j 
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Thus we see that the effect of collisions can be included in the cold 

plasma theory by replacing the mass m with m* = m.(l + iv./w) in 

(1)-(6). Note that for v. positive, the particle motion is damped. 
j j J J 

J 

2.1 WAVE EQUATION 

To write the wave equation for the electric field, take the curl of 
+ 

(1) and use (2) t o  eliminate B. We find 

where c is the speed of light in vacuum, c = Z / J E ~ ~ . I ~  - 3 x 10 a m/s. 

Boundary conditions appropriate to the solution of (7) are that the 

tangential component of E should vanish at the surface of a perfect 

conductor along with the normal component of B. Note that solving (7) 

automatically guarantees a solution to ( 3 )  because the divergence of (7) 

with conservation of change, p = -V * J, gives ( 3 )  exactly. 

3 

+ 

+ 

2.2 LOCAL DISPERSION RELATION 
+ + +  -+ + 

In the local approximation, E(%!) = E eikex so that V -+ ik and (7) 

gives the cold plasma dispersion relation. Assuming without loss of 

generality that k lies i n  the x-z plane, k = klG + kiiZ with 3 = Si, a 

homogeneous solution to (7) exists when [ lo]  

+ -+ 9 
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This is the cold plasma dispersion relation. In the low-frequency limit 

when w << wpj, then (KII I >> l K l l  - IKxI and we need only keep the term 
proportional t o  K,, in ( 8 ) .  Solving €or kl then gives [ll] 

For an axially symmetric, straight cylindrical tokamak, wave propagation 

proceeds a t  approximately constant kll [ll],  and kl adjusts to satisfy t h e  

dispersion relation according t o  (9). Figure l(a) shows the dependence 

of kl on Icf from (9) for a single-species plasma and fixed frequency w. 

Figure l ( b )  shows the dependence of w on kll for fixed kl. In (9), 

resonance (kl -+ O J )  occurs when 

2 

2 

2 2 w 

C 
A = KL - k,, = 0 (resonance) . 

Likewise, cutoff (kl = 0) occurs when 

2 2 0 

C 
B = -(K - Kx) - k,l = 0 (slow-wave cutoff) , 2 1  

2 2 w C = -(K + Kx) - k,, = 0 (fast-wave cutoff) . 
C 2 1  
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w 

Qc i 

kL- CONST 

------------ b>~ 
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Fig. 1. Local dispersion relation for (a) fixed frequency and (b) 

fixed kf . 
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The resonance A = 0 is called the "perpendicular ion cyclotron resonance" 

for a single-ion-species plasma and the "two-ion hybrid resonance" for a 

two-ion-species plasma. For a single ion species, A = 0 is only possible 

for w < Qci. The cutoff C = 0 is called the fast-wave cutoff and occurs 

for all values of u. 

wave is evanescent, that is, ks < 0 .  

2 03 

C 
1 2 Ex), the 2 When kll exceeds the cutoff value -(K 

2 

For a tokamak with toroidal and polaidal symmetry, E a exp i(m9 + 

Defining ,I = (RT/r)(Be/B,) and k,z - ut), where k, = n/RT and ke = m/r. 

b, = B z / E ,  we have 

-9 
B kll = @ * - = b,(k, + rn -) . 
E RT 

3 .  DIELECTRIC TENSOR REPRESENTATION 
8 

Equation (5) 'for the dielectric tensor K is written in the 

coordinate system with the unperturbed magnetic field Bo in the z 

direction. For tokamak, mirror, and stellarator geometries this will not 

+ 

usually be the case. We therefore choose a right-handed, orthogonal 

coordinate system with unit vectors 

t ,  = V$/ 

6 2 = b x  

-+ 
83 = B*/ 

where + is the flux function that defines a flux surface with 6 93; = 0. 

We may then formally decompose the dielectric tensor K into its 
4$ 
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components with the unit tensors ili1, il,i,, .... which are dyadic 

products of the unit vectors. Thus (5) becomes 

K 8 = Kl(V$V$ + 6 x V$ 6 x VG) + i K x F  x V$ V$ - V j  6 x VJI- + KII (&) . (14 )  

The components of K cs in the directions of k1, i2, and t ,  are then 

v5, K 0) = K ~ V $  - is6 x v$ , 

6 x V$ K 8 = K16 x 05, + iK,V$ , 
* d K = K I 1 6  , 

* - +  
so that K E becomes 

-+ * - +  
K E = (KIV$ E - iKx 6 x V i  z ) V G  

+ (K16 x V$ -+ E + iK,V$ 8)6 x 05, + ( K I 1 6  g)d . 

Likewise, from (5) 

.............. -, .................. .-. ................ 
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9 +  
so that a * E can be written as 

4. THE STRAIGHT TOKAMAK WITH POLOIDAL FIELD 

We consider a straight tokamak magnetic field in cylindrical 

coordinates r, 8, z, 

0 0 -+ 
Bo = B8(r)6 -t Bz(r,8)2 9 

wi tk 

-L 

0 
B,(r,@) = r 1 + -cos 0 

RT 

c r2 d r4 
1 + - - + - -  9 r l a  2 .2 3 .4 

where c = -2.0, d = 1.0, a is the plasma radius, RT is the major radius, 

and /lo is the rotational transform at r = 0 normalized to 2rr. The 

rotational transform at radius r is 
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r S a  

r > a  

Note that from -+ J = V x - + o  H, B8(r) in (19) corresponds t o  a current density 

in the z direction, 

For consistency we take the density profile n(r) proportional to (21). 

Kovrizhnykh and Moroz [ 8 ]  suggest that a finite gradient in IBI 

along the magnetic field lines at resonance is important fo r  direct ion 

cyclotron heating at the fundamental resonance. In cylindrical 

coordinates, 

For our assumed tokamak magnetic field in (18) and (19), Br = 0 and B 2 = 

B & r )  + Bz(r,e). 2 Thus, 

B -+ OB = Be --(x 1 Bz $1 aB = j0 
c r2 d r4) , 

R-r 

where y = r sin 8. 
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4.1 WAVE EQUATION FOR THE TOKAMAK 

For straight tokamak geometry in cylindrical ( r , 8 , z )  coordinates the 

Then the three unit vectors i n  flux function JI can be chosen to be r .  

(13) are 

For this case (15) gives 

+ [Kl(b,E, - beEZ) + iK,Er I ( b z 6  - be;) 

+ KII (bgEe + b,E,) (be6 + bzi )  . 

For ICRF frequencies (w .. Qci) we make the assumption that the component 
of the wave electric field parallel to Bo is zero. The reasoning behind 

this assumption can be found in the relative magnitudes of the three 

components of the dielectric tensor. For w Pci, ( 6 )  gives 

-) 

2 2 
Pi 

-w - 
QCi 

Kl 2 2 w - Qci 
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Thus KII is larger than KI and 5 by the ratio mi/me, and, from the 

parallel component of the wave equation, (K  
4 b - 9  

E),, = KIIE,, - O{KIEL) , 

Physically, the high conductivity of the plasma along field lines shorts 

out the parallel electric fields on the time scale of the wave, At - 
2n/QCi. Making the zero electron mass assumption in (26) with 6 = be6 + 

b,z gives 

-be 
bz 

E, =! - Ee , 

and (24) simplifies t o  

In cylindrical coordinates, the curl operator is 

9 
and thus the components of V x 0 x E are 
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We now write (7) in cylindrical coordinates, 

where we have used (27) to eliminate E,. 

direction with 

We now Fourier analyze in the z 

+ 
and ( 2 9 )  becomes (dropping the subscript k, from E for brevity) 
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where we have combined t h e  8 and z components t o  g i v e  t h e  8, = b x VG 

component, p e r p e n d i c u l a r  t o  both 6 and V j  = i. 

D e f i n i n g  u = rEr  and v = rEe and u s i n g  (28)' we can write t h e  

d i f f e r e n t i a l  e q u a t i o n s  i n  (32) are 
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In the limit that = 0, i.e., no poloidal magnetic field, ( 3 3 )  and ( 3 4 )  

reduce to 

which are the equations solved by I t o h  et al. in ref. [l] .  

4.2 LOCAL ENERGY DEPOSITION AND ANTENNA IMPEDANCE I N  THE TOKAMAK 

The local energy deposition rate k(r,e) is the time average over a 

wave period of Re Jplasma Re E. Assuming E and Jplasma are 

proportional to e -ioJt and performing the time average gives 

+ -+ + 3 

3 * +  1 . .  

NOW Jplasma 

= bee I- bZz ,  we have 

CT E and from (17) with V$ = r ,  b x 0; = bz6 - be;;, and 6 

+ uI1 (b& + b,E,) (bg8 + b,;) . 

Noting that 



1.7 

we find 

where 

* * IEL12 = E r r  E + EXEX . 

Finally, substituting into (35) and using (16) gives 

where for Ell = 0 and Kll = the third term is zero. 

If we define E+ and E- to be the left- and right-hand circularly 

polarized waves, respectively, 

X '  E, = E, + iE 

E- = E, - iEX ? (39) 

43 3 * +  
then the transformation T can be defined such that E' = T E, where E' 
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Applying t h i s  transformation to the conductivity tensor in (16) gives 

where J' = (J', J-, J , , )  and 

a++ = ul - iux = -iwso(L - 1) 

= a1 + io, = - i w o ( R  - 1) , 

where we have defined [ lo ]  L 3 Kl - K, and R s Kl + K,. 

gives 

Using ( 4 0 ) ,  (35) 

which is equivalent to (38). 

From ( 4 0 )  and (25) we note that 
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If, in addition, the density is high enough that KI >> 1, then 

Thus, fo r  high densities (KL >> 1) with QCi 2 w, one expects the 

right-hand polarized component E- to penetrate the plasma significantly 

more easily than the left-hand polarized component E+. For low densities 

(KL 5 l), one expects both polarizations to penetrate equally well. 

Integrating k(r,0) over r and 0 gives the power absorbed per unit 

length f o r  one toroidal eigenmode corresponding to one kz: 

Pabs(k,,w) = [ r dr f d0 k(r,e) . 

The total power absorbed by the plasma Ptot is found by summing (42) over 

all k, and integrating around the toroidal circumference 2mT. Then 

dividing by 111 / 2  gives the plasma loading resistance k(w) ,  2 

+ 
where I is the antenna current corresponding to Jext in (7). Likewise, 

the power circulating in the antenna per unit length Pc(kz,w) is found 
1 *  + 1 *  * * 
2 2 r r  

from JeXt - E = -(J E + J& + J,E,), so that 

P,(k,,w) = r dr f d0 [J:Er + be - J, E0 . * be *I 1 (44) 
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The antenna impedance Z(w) is found by summing ( 4 4 )  over k,, integrating 

around the toroidal circumference, and dividing by -1112: 1 
2 

The real part of the antenna impedance Re(Z) is the antenna 

resistance and must equal the plasma loading resistance k(w)  for a 

lossless system. i ( w )  corresponds to the real power absorbed by the 

plasma in (42). 

The imaginary part of the antenna impedance Im(Z) is the antenna 

reactance and corresponds to power recirculated between the antenna and 

the plasma because J and E are out of phase. 
+ + 

4 . 3  ANTENNA CURRENT FOR THE TOKAMAK 

We assume a Gaussian current distribution [ l ]  in the toroidal (2 )  

direction with width LT: 

.+ 
Equation ( 4 6 )  has been normalized so that J dr j dz J(r,e,z) = I o f ( 9 ) 6  

when $ << nRT and can be represented by the Fourier sum 
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+ 
where k, = l/%* Thus, Jk (r,@) in (31) is 

z 

In practice we solve (33)  and ( 3 4 )  with Io = 1 A and 1 = 0, so that 

and then include arbitrary and Io when summing the two-dimensional 

(2-D) solutions that make up the Fourier expansion. This allows 

calculations for arbitrary antenna lengths (in z )  and currents with just 

one set of toroidal eigenmodes. The function f (0)  gives the poloidal ( 0 )  

dependence of the antenna current. We take a periodic Gaussian [l] 

where f o  is chosen so that the maximum value of f(6) is unity. For p = 

0, f (0)  is maximum at 6 = 0,2n, correspondihg to low-field excitation. 

For p = 1, f(0) is maximum at 0 = n, corresponding t o  high-field 

excitation. At these poloidal locations the normalization in (46) gives 

The parameter A controls the poloidal (0) 

extent of the current as shown in Fig. 2. Note from the figure that A 2 

2.0 approximates the m = 0 case, i.e., no poloidal dependence of the 

antenna current. 

+ 
dr dz J(r,@,z) = I$. 
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Fig. 2. Polo ida l  variation of the assumed antenna current. 
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5 .  NUMERICAL RESULTS FOR THE TOKAMAK 

In this section we display numerical results for the tokamak with 

arbitrary rotational transform. Figure 3(a) shows schematically the 

geometry treated. A plasma of radius a is contained inside a 

cylindrical, perfectly conducting metal wall of radius %all. In 

general, there may be vacuum present in the region ap < r < %all. The 

dashed line represents a current-carrying antenna of radius aant. The 

current in the antenna can be concentrated on the low-field side (right, 

p = 0 ) ,  on the high-field side (left, p = 1.0), or at an arbitrary 

poloidal location and can have an arbitrary poloidal extent (0 < h < m). 

Figure 3(b) shows the assumed profile (22) for the plasma current JZ(r) 

and density n(r) along with the corresponding poloidal magnetic field BE) 

and rotational transform ,I [see (19)-(21)] .  

P 

5.1 TWO-ION HYBRID RESONANCE 

Equations ( 3 3 )  and ( 3 4 )  are solved in this geometry using a finite 

difference mesh of 36 poloidal and 29 radial mesh points. For Figs. 4-11 

we assume parameters typical of the proposed Tore Supra superconducting 

tokamak experiment. This is a large, high-density, high-magnetic-field 

experiment with 

BO ... 4.0 T , 
RT = 2.25 m , 

= aant - a P .. 0.07 m , a = 0.70 rn 

aant 

P - 0.77 m 
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- 4  0 1 

( 6 )  x’a W d l l  

Fig. 3 .  (a) Tokamak geometry and ( b )  assumed prof i les  for density, 

cur ren t ,  and poloidal magnetic f i e l d .  
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Majority density n 

Minority density n 

I p 1 as ma 

= 1 x d4 cm-3 

= 1 x l d 3  cmW3 
}v = ?c = 10% , 

n D; 

*z' H+ 
6 = 1.7 x 10 A +,.IO ... 1.0 

f = 55 Mnz . 

This choice of frequency and density ratio puts the two-ion hybrid 

resonance just on the low-field side of the plasma center. 

Figure 4 compares electric field contours for the 1 = 4 toroidal 

eigenmode and two different antenna geometries, both centered at 9 = 0, 

i.e., the low-field side of the plasma. Only the real parts of the field 

are shown. The contours on the left [Fig. 4(a)] result from a compact 

antenna design with A = 0.1, corresponding to a poloidal half-width at 

e-l of maximum of A 0  - 18' or As - 24 cm, where s is the arc length along 

the antenna. Contours on the right [Fig. 4(b)j are fo r  an approximate 

half-turn antenna with d = 0.4, corresponding to a half-width At3 - 72' or  

A s  - 96 cm. Mote that for both antenna geometries, the fields tend to 

focus toward r = 0 and the contours of E- penetrate the plasma more 

easily than those of E,. 

In Fig. S ,  81 toroidal eigenmode solutions (1 = -40, ..., t40) as 

shown in Fig. 4 have been combined to give the complete three-dimensional 

( 3 4 )  result for the compact antenna case in Fig. 4. For the solution 

shown, an antenna with nRT/% = 30 has been assumed and corresponds to a 

toroidal half-width of about LT = 23.5 cm. Results in Fig. 5 are plot ted  

in a poloidal plane located at the midplane of the antenna in the 

toroidal direction. Results may a l s o  be plotted as in Figs. 6 and 7 in 

the r,z equatorial plane where 0 = 0 , ~ .  The toroidal half-width of the 

antenna is labeled explicitly here ( z  = 092mT corresponds to the 
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TORE SUPRA-COMPACT ANTENNA (-Q=4) 
POLQIDAL WIDTH: AS-24 cm; ABN180 

H A L F  TURN AN-TENNA (.6'=4) 
P O L O I D A L  WIDTH: A S = 9 6  cm; A 8 - 7 2 '  

R E A L  E +  H E A L  E t  
. "k 

. o  

R E A L  E- R E A L  E- 

-4 
1.0 

F i g .  4 .  Electric f i e l d  contours f o r  the 1 = 4 toroidal mode in the 

Tore Supra tokamak with (a) compact and (b) half-turn 

antennas an the l ow- - f i e ld  (right) side. 

-4 
4 I . O  

4 
1.0 
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TORE SUPRA-COMPACT ANTENNA L~z23.5  cm 
Z=O (MIDPLANE OF ANTENNA) 

REAL E +  

-4 
1 

REAL E -  

.G 

Fig. 5. r-9 contours of the 3-D 

IMAG E +  

IMAG E- 
'% 

-4 
1.0 

--2_1_4) -1 .0  2 0  

electric field plotted in the 

midplane of the compact antenna with toroidal half-width 

LT = 23.5 cm. 
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antenna midplane). Note the penetration of the fields, especially E-, on 

the low-field (right) side near the antenna location ( z  = 0,2rrRT) in 

these figures. 

For the case of no rotational transform (j = 0 ) ,  k, enters ( 3 3 ) ,  

( 3 4 )  only quadratically. In this case, E--k,(r,B) = E+k (r,e), so that 

only toroidal modes with k, 2 0 need be calculated explicitly. 

Furthermore, the Fourier sum in ( 3 0 )  gives 

z 

3 
E ( r , B , z )  = f 2E (r,e)cos k,z + EO(r,O) , 

k,=l kZ 

so the solutions are symmetric in z about the antenna midplane ( z  = 

T ) .  However, f o r  J f 0 ,  linear terms in k, arise in ( 3 3 ) , ( 3 4 )  and 

therefore Ek (r,0) 4 E-k (r,€l). Thus, negative kzfs must be calculated 

explicitly. Since sin kzz terms now also contribute to the Fourier sum 

in ( 3 0 ) ,  symmetry in z about the antenna midplane is destroyed. Thus, we 

plot the complete toroidal range 0 < z 
Figures 5-7 assume a uniform background plasma of density n = 

10l1 cme3 in the region between the wall and plasma (a < r < aWall). 
Figures 8-10 show the same case but with an ideal vacuum in the region 

surrounding the plasma. Note the presence of an 1 = 2 cavity mode in 

this vacuum region. Such modes are typically not observed in experiments 

[ 1 2 ] .  Furthermore, they are undesirable because when real wall losses 

are included, the large electric fields near the wall around the entire 

torus lead to excessive absorption of wave energy and reduced efficiency 

[12]. On the other hand, when there is a low-density background plasma 

between the wall and the main plasma as in Figs. 5-7, the undesirable 1 = 

2 vacuum mode is completely suppressed, and large electric fields occur 

only in the immediate vicinity of the antenna structure. 

z z 

2RRT in Figs. 6 and 7. 

P 
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Fig. 8. The case of Fig. 5 with ideal vacuum surrounding the plasma. 
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Once the electric fields have been calculated, the energy absorption 

can be found from either ( 3 8 )  or ( 4 1 )  and the antenna impedance from 

(45). Figure 11 shows the local energy absorption f o r  both the compact 

[Figure ll(a)] and half-turn [Pig. l l ( b ) ]  antenna geometries o f  Fig. 4 .  

These are again 3-D results plotted in the toroidal midplane of the 

antenna with LT L 23.5 cm and the same current (300 A in the equatorial 

plane) in each case. Note that the energy absorption is localized 

between the two-ion hybrid resonance surface (1 = 4 )  and the fundamental 

ion cyclotron resonance surface, which are labeled by the dashed lines in 

Pig. 11. The energy deposition profile for the half-turn antenna is 

somewhat broader along the resonant surface than that f o r  the compact 

geometry. Also, the peak power absorbed for the half-turn geometry is 

about 4 times that for the compact geometry with the same current. This 

suggests that the power deposited per unit arc length of antenna is 

approximately constant, since the ratio of arc lengths for the two cases 

is about 4 .  The contours of power deposition are also shown in Fig. 12, 

plotted in the equatorial plane, where most of the absorption occurs near 

the two-ion hybrid resonance surface and in the toroidal region nearest 

the antenna. 

The complex antenna impedance 2 is found from ( 4 4 ) , ( 4 5 )  and i s  

plotted in Fig. 13 €or both the compact and half-turn antenna geometries. 

As the toroidal extent of the antenna LT becomes less (%/LT increases), 

more toroidal modes are excited and the impedance 2 increases. The real 

part of Z corresponds to the real power absorbed by the plasma and tends 

to saturate more quickly at higher mode numbers than does the imaginary 

part of Z, which corresponds to the antenna reactance. This is because 

the fast-wave cutoff C = 0 moves toward the plasma center for higher 

toroidal mode numbers, and it becomes more difficult f o r  the waves to 
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Z = 0 (M IDPLANE OF ANTENNA) 
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0 0 

Fig. 11. Local energy absorption contours in the antenna midplane for 

(a) compact and (b) half-turn antennas. Antenna current in 

the equatorial plane is 300 A for both cases. Toroidal 

half-width % = 23.5 cm. 
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penetrate the outer evanescent region. Thus, there is an upper limit in 

the toroidal mode number, above which little o r  no power is absorbed. 

The dependence on LT is much the same for both compact and half-turn 

antenna geometries. The magnitude of  Z, however, for the half-turn case 

i s  3-4 times that for the compact antenna. Since the ratio of effective 

poloidal lengths for the two cases is about 4 ,  we conclude that the 

impedance per w i t  length remains about constant. 

Figure 1 4  shows the sensitivity of these results to the assumed 

collision frequency v/w. The total power absorbed Pabs(k,,w) is shown 

versus V/OJ for the fourth toroidal eigenrnode, 1 = 4 .  Note that the power 

absorbed is practically independent of the collision frequency assumed as 

v is varied over almost an order of  magnitude. However, the half-width 

at half-maximum (HWHM) of the two-ion hybrid resonance region (HWJHM/Ar) 

varies roughly linearly with v ,  and the maximum energy deposition rate at 

resonance W,,, varies inversely with v. Thus, results that depend on 

total. power absorbed, such as antenna impedance, are relatively 

insensitive to our absorption model. However, results depending on 

detailed knowledge of the geometry of the resonant region will depend on 

the exact absorption machanism. 

5.2 FUNDAMENTAL ION CYCLOTRON RESONANCE I N  TOKAMAKS 

Next we let the fraction of  the minority species (H') approach zero 

and consider a pure D$ plasma vith f = 27.5 MHz. Figure 15 compares the 

A .= 0 ,  B = 0 ,  and C = 0 contours for this case (b) with those for the = 

= 0.1 case (a) of Figs. 4-11. Note that the fundamental ion 

cyclotron resonance f o r  D; in Fig.  15(b) is near the plasma center, and 

the hybrid layer ( A  = 0) or "perpendicular ion cyclotron resonance" is at 

the outermost edge of the plasma. Since the density is very low at the 

"H +/"a; 
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Fig. 14. Sensitivity of results to assumed collision frequency f o r  the 

1 = 4 toroidal mode in Tore Supra with compact antenna. 
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plasma edge, the A = 0 surface leads t o  only a very small heating rate in 

this region. However, since the fundamental resonance for D; is still 

near the plasma center, heating at  this resonance layer i s  of interest. 

The energy deposition profiles for this case are shown in F i g .  16 

for ,a = 1, density n = lOI3 cm- 3 , and the half-turn antenna on the 

high-field side. Note that except for two spikes in the absorption at 

the plasma edge, there is essentially no resonant interaction or 

absorption along the fundamental resonance surfaces. The reason for this 

is clear from ( 3 3 ) , ( 3 4 ) .  At this density and at w = QCi the terms 

proportional to KI and K, dominate and ( 3 3 ) ,  for example, gives 

w 2 w2 Kx -K u - i r;rl v = 0 .  2 1  C 

Noting that K, = -K 1 at w = QCi, this is 

Ee 
bz 

E+ = E, + i - E 0 ,  

and similarly for ( 3 4 ) .  Thus the wave at resonance is all E- and 

therefore right-hand polarized. Since the ions rotate in the left-hand 

sense, there is no resonant interaction. For the ,I 2 2  /RT terms in 

( 3 3 ) , ( 3 4 )  to be comparable to the ( w  2 2  / c  )Kl term requires n 5 (>/RT)*c2 x 

2 (mieO/e ), where e is the electron charge, or n 

n 5 10l2 cm3 at ,A = 6 .  

10l1 

10l1 at /1. = 2 and 

Figure 17 shows the energy deposition for n = 

and ,x = 1. Now a resonant interaction is clearly evident all 

along the fundamental resonant surface except near the equatorial plane 

(y = 0) where, from ( 2 3 ) ,  B OB approaches zero. Figure 18 compares 
-+ 
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half-turn antenna is on the high-field (left) side. 
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profiles of ( E + I 2  versus 8 at r/a - 0.5 for the cases of Figs. 16 and 
P -  

17. 

higher-density case (solid line). 

Note the strong cusps in IE+12 at the resonance crossings in the 

(dashed line) E+ is For n = 10l1 

clearly nonzero at resonance, and we therefore expect a resonant 

interaction, as shown in Fig. 17. Furthermore, the total power absorbed 
+ 

in this case is approximately proportional to p 0  or B 0 OB, as shown in 

Fig. 19. Thus, we conclude that for moderate to low densities and high 
-9 

rotational transform (so that B * BIB - 0 [I]), fundamental ion cyclotron 

resonance is possible in tokamak geometry. While this may not be of any 

practical importance in tokamaks, it suggests that in alternate 

geometries such as stellarators, where B VB is naturally of order 
+ 

unity, direct heating at the fundamental may be possible [ 8 , 9 ] .  

6 .  THE POLOIDALLY SYMMETRIC MAGNETIC MIRROR 

Next we consider a mirror magnetic field, 

where q(r,z) is the flux function 

and +B = 2m4 is the magnetic flux enclosed by a surface of constant 

pressure. 

. .. 
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6.1 WAVE EQUATIONS FOR THE MIRROR 

From (51) we have r B O  = lVql, and the three unit vec to r s  in (13) are 

i, = 0 s  = b,r - brz , 
L 

62 = b x V $ =  6 ,  

i 3 = L  brr  + b,z . 
(53) 

e - +  
With (53) K E in (15) becomes 

+ F1Ee t i s b z E r  - brEz)] 0 + KII FrEr + bzEz] kri + bzi) . ( 5 4 )  

-+ 
Assuming 6 E = 0, we have 

and ( 5 4 )  simplifies to 

Now we write (7) in r , 9 , z  and use (55) to eliminate E,, 
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Fourier analyzing in the 8 direction with 

E(r ,$ , z )  = E,(r,z)eime 
m 

J(r,B,z) = J,(r,z)eimO 
rn 

and combining the r and z equations to give the Si = V$ component: 
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+ 
where we have dropped the subscript m from E for brevity. Defining 

u = rEr and v = rEe and using (561, the final set of two differential 

equations for the axisymmetric mirror is 

where we have defined 

and R is the radius of the metal wall. We take the tangential component 

of E t o  vanish at r = R and z = O,L, where L is the distance between 
-+ 

mirrors. This gives u = v = 0 at z = 0,L and v = 0 at r = R. From ( 5 5 ) ,  

u = 0 at r = R also, since E, = 0 there. By definition, u and v vanish 

at r = 0. 

6.2 MODEL MIRROR MAGNETIC FIELD 

To solve (60),(61) we choose the mirror flux function in (52) to be 

1L(r,z) = BO[? 1 r2 - I; E rIl(kr)cos k(z - 4 ) ]  , 
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where I1 is the modified Bessel function of the first kind of order one, 

k = 2n/L, and L is the distance between mirrors. With (51) and 

[xIl(x)]' = xIO(x), we have 

1 - &Io(kr)cos k 

Thus the coefficient E is related to the mirror ratio M by 

The coefficient or that occurs in ( G O ) ,  (61) is 

Figure  20 shows (a) contours of constant 9 (field lines) and (b) mod-B 

from ( 6 3 ) , ( 6 4 )  for M = 1 .4  and E: = 1/6. 
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+ + 
From ( 6 4 )  we find 9 - B = 0, U x I3 = 0, and 

where 

aB: - = Ro~kIo(kr)sin k 
az 

as; 
- ar = -kB@Il(kr)cos k(z - k) , 

6 . 3  ANTENNA CURRENT FOR THE POLOIDALLY SYMMETRIC MIRROR 

We assume a current distribution 

where f ( 0 )  is given by (50) with p = 0 and f,(z) is taken t o  be a 

Gaussian centered at z = zo with width L,: 

2 ( z  - " 0 )  

L , 2  1 
f , ( z )  I- - 

2 
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L/2 
Equation ( 6 7 )  is normalized so that J 

J' dr J dz J(r,0,z) = Xof(0)6. We Fourier expand (50) with p = 0 t o  give 

f(z)dz = L,. Thus, from ( 6 6 ) ,  
-# 0 

where fo  is chosen to make the maximum value of f(0) unity. 

gives 

Thus (58) 

In practice we solve (60) and (61) with Io = 1 and m = 0 so from (68), 

fOJrrA/2 = 1 and 

6 . 4  LOCAL ENERGY DEPOSITION AND ANTENNA IMPEDANCE IN THE MIRROR 

From (17) with V& bz; - brz, 6 x V$, = 6, and 6 = b,; + b,;, we have 
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and 

where 

+ 
E * = V $ * E = b E  - b E  = - - ,  z r  r z  

bz 

* * IEl12 = E E + E#e.  + @  

Substituting (71) into (35) and using (16) gives 

Now define E+ and E- t o  be  the left- and right-hand polarized waves, 

respectively, for the mirror: 

E+ = E + i E e  (LHP) , 

E- = E - iEe (RHP) . 
JI 

4J 

Then using ( 4 0 ) ,  (72) can be written equivalently as in (41). 

Integrating W(r,z) over r and z gives the power absorbed for one 

poloidal mode, i.e., one m: 
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The total power absorbed is found by summing over all m and integrating 

around the poloidal circumference 2n. Dividing by (II2/2 gives the 

loading resistance i ( o ) ,  

7. NUMERICAL RESULTS FOR THE MAGNETIC MIRROR 

In this section, we display numerical results for the mirror 

magnetic field of ( 6 3 ) , ( 6 4 ) .  Figure 21 shows schematically the geometry 

treated. The plasma with density constant along field lines is contained 

within a perfectly conducting metal cylinder with metal end plates. 

Again, there may be a vacuum or a low-density plasma between the mirror 

plasma and the wall. A poloidal current JRF models the antenna and can 

have arbitrary axial (2) and poloidal ( e )  extent. L, is the axial 

half-width. Figure 21(b) shows the assumed axial profile f o r  the antenna 

current. Equations (60), (61) are solved in this geometry by finite 

-+ 

differencing on a mesh of 36 axial and 30 radial points. For Figs. 22 

and 23 we take parameters corresponding to the local mirror in one-half 

the field period of the L-2 stellarator [8,  9, 133, i.e., 

L = 0.20 m , 

awall = 17.5 cm , 

BO = 1.2 T , 

M = 1.4 (E = 1/6) , 

3 n = 5 x IO1' crn- , 
H+ 

f - 18 MRz . 
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The plasma radius in the midplane is assumed to be p - 10 cm. For this 

choice of frequency, the fundamental ion cyclotron resonance surfaces for 

Hf are at the locations shown in Fig. 20(a). Figure 22 shows contours of 

E+ and E- for the m = -1 poloidal mode with the antenna in the mirror 

midplane and located about 2 em from the plasma surface. Again, E- tends 

t o  penetrate the plasma more easily than does E+. The deposition 

profiles in Fig. 23 show absorption at both fundamental resonance layers 

for H+. The value of B * VB/B6 at resonance and r/awall - 0.31 is -13.2. 
Although Fig. 23 shows a great deal of energy deposited at the 

fundamental, this result cannot be taken too seriously for the L-2 

stellarator, because the boundary condition that Etangential = 0 at 

z = 0,L is not realistic for the stellarator. A more correct result must 

-P 

await solution of the wave equation for the helically symmetric 

s tellarator. 

8 .  DISCUSSION 

The calculations reported here extend the full-wave treatment of 

ICRF wave propagation in tokamak and mirror geometries to include more 

realistic magnetic field models than have previously been used [I, 2 ,  3 ,  

61. For the tokamak we find that including the effects of large poloidal 

magnetic fields leads to asymmetry in the toroidal direction as well as 

energy absorption at the fundamental ion cyclotron resonance. This 

absorption is approximately proportional to the gradient in IBI along B 

and thus to the rotational transform. However, for high plasma 

+ 

densities, the left-hand polarized component E+ is shielded out of the 

plasma, while E- penetrates. In this case, absorption at the fundamental 

occurs only near the plasma surface. For densities low enough o r  

rotational transforms great enough that p > (RT/c)wpi, the absorption 
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extends into the plasma and heating occurs all along the fundamental 

resonant surface. For minority heating of tokamaks at the two-ion hybrid 

frequency, we find that compact antenna designs may be as effective in 

heating as half-turn loops;  that is, power deposited per unit length of 

antenna in the poloidal direction is approximately constant. 

Furthermore, when there i s  a low-density background plasma between the 

wall and the main plasma, undesirable vacuum cavity modes are completely 

suppressed and large electric fields near the wall do not occur except 

near the antenna. For the mirror magnetic field, both radial and axial 

variations in IS1 lead to gradients in IS1 along B and thus to resonant 
-+ 

absorption at the fundamental. For parameters corresponding to the local 

mirror in one-half the field period of the L-2 stellarator, the m = -1 

poloidal mode exhibits large values of IE+I near plasma center and thus 

strong absorption at  the fundamental resonance there. 

Both the mirror and tokamak calculations described in this paper may 

be considered preliminary evidence of possible direct fundamental 

resonant absorption in stellarators. In fact, the stellarator magnetic 

field contains elements of both the mirror and tokamak geometries. But 

boundary conditions and the exact magnitude of the local mirror ratio and 

rotational transform are sufficiently different in the stellarator case 

that a complete solution for the stellarator geometry is still required. 

For the helically symmetric stellarator field, the helical. symmetry 

allows Fourier expansion in one ignorable coordinate, and a direct 

extension of the work in this paper is possible. Such a calculation i s  

currently in progress. 
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