
3 4 4 5 6  0 0 0 4 7 5 6  2 

Ts right 



~~ 

- . . . . . . . . . . . . . . . . . . . . . . 

unt of wQrk sponsored by an agc7,q of the 
ininent nor any agoncy 
s x p r e s  cr implied, nr 

ibiiity for the accuracy. coir,p!e?eness. or 
:2i?.r., pioduct. or process disclcsed, 3r 

represe:?!ts that its usewculd not InfringeFrivatelyownc:! rights Rcfciencchorein 
to any specific corn-ercial product, PiGCZSS or s m x e  by tradr. name, trademark. 
iiiafiufec!urer, or othc::vise, does not aeierszr!ly constiiuic cr 
endoisemcn!, :erc:niiieidation, or fauoi-ing by ikte Llnited SiZtes Go?c 
any agency thercc!. Tr.2 VIB"F and opinions of authors expiasser! hers!!? do not 
nzcessa;ily state or ref!cct thcse Q! :he I.:fiited Statcs Goveiali,~;: ;;any a g v c y  
therenf 

......... ~ 
__ .......... -. ...x.._I.._ . . . . . . . . . . . . . . . . . . . . 



ORNL/TM-9864 

Engineering Physics and Mathematics Division 

Mathematical Sciences Section 

ON A CENTRAL LIlLriT THEOREM FOR VARIABLE SiZE SIMPLE 

RANDOM SAMPLING FROM A FINITE POPULATION 

Tommy Wright 

Date Publ ished - February 1986 

Research supported by 
Applied Mathematics Sciences Research Program, 

U.S. Department of Energy 
Office of Energy Research 

Prepred by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
operated by 

Martin Marietta Energy Systems, Inc, 
for the 

US. Department of Energy 
under Co ntraer; DE-AC05-8 48R2  1400 

3 4 q S b  0 0 0 4 7 5 6  2 





iii 

CONTENTS 

Abstract ............................................................................................................................... 
1 . Introduction ................................................................................................................... 

2 . Variable Size Simple Random Sampling ....................................................................... 

3 . Estimation of the Population Mean p y  Under 
Variable Size Simple Random Sam.pling ...................................................................... 

4 . A Central Limit Theorem Under VSSRS ..................................................................... 

Acknowledgments .............................................................................................................. 

References ............................................................................................................................ 

1 

2 

3 

5 

12 

18 

19 

. 





-1- 

ON A CENTRAL LIMIT THEOREM FOR VARIABLE SIZE SIMPLE 

RANDOM SAMPLING FROM A FINITE POPULArION 

Tornmy Wright 

ABSTRACT 

This paper introduces a sampling plan for  finite populations herein called "variable size 

simple random sampling" and compares properties of estimators based on it with results 

from the usual fixed size simple random sampling without replacement. Necessary and 

sufficient conditions (in the spirit of Nhjek (1960)) for the limiting distribution of the 

sample total (or sample mean) to be normal are given. 

KEY WORDS AND PIIRASES: Finite population; Limiting distribution, Lindeberg-IIhjek 
condition; Poisson sampling: Simple random sampling without replacement: Truncated 
binomial; Variable sample size. 
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By design. the vase majority of statistical theory. methods. and practice assumes that 

an investigator is going to make inferences based on data derived from @xed size sampling 

procedures. A fixed size sampling pt ocedure is a sampling procedure in which the size of the 

sample n i s  fixed before any selection begins. and in theory n is not permitted to vary. 

For example, this i s  indeed the usual case when sampling from a fiizite population of N 

units for  estimation purposes. (See Cochran (1977)); Hansera. Hurwitz. and Madow (1953); 

Kish (1965); Sukhattne and Sukhatme (1970); I-Ihjek (1981); and Brewer and Hanif 

(19831.) Even though the intent may be to have a fixed size sampling procedure by design, 

the actual application may yield a sample whose size is different from that planned; this 

occurs. for  example, in survey sampling when there is unit nonresponse (Madow, Nissel- 

son, Olkin. and Rubiti (1983)). Removing outliers from an observed sample without 

replacement also leads to a saniple size that is different from that plarined (Barnett, 1983). 

While unit nonresponse and removal of outliers lead to examples of unintentional variable 

size samples, some variable size samples are the result of careful planning that intention- 

ally leads to variable size sampling procedures such as (1) sequential sampling procedures 

(Wald 1947) and (2) Poisson sampling (sometimes called Bernoulli sampling) as discussed 

by Hhjek (198'1) and Strand (1979). A variable size sanipling procedure is a sampling pro- 

cedure in which the size of the sample n is by design and with intent permitted to vary 

during the selection process. While Cassel, Sarndal. and Wretrnan (1977) do not use this 

exact expression. they do consider such designs. Also. domain estimation (Cochran, 1977, 

pp. 34-39) in sampling from a finite: population is based on samples where the size of the 

observed sample from a domain of interest is a random variable. 

Although it is true in practice that with variable size sampling proceduscs there is the 

fear that the r e a l k d  sample si7e might be too large to manage or too small to support 

needed analysis. it is important that properties of these procedures and estimators be 



-3 - 

examined for theoretical interest and as a first step toward variable sample size procedures 

where the size of the sample is permitted to vary over a specified subset of { I ,  2,..., N } 

containing preferred values for n . In an earlier paper. we considered variable size simple 

random sampling (VSSRS)  from a finite population (Wright, 1985). and in Section 2 of this 

paper, we define and summarize some of the properties of VSSRS. Section 3 compares sam- 

pling variances under VSSRS with the sampling variance under the usual (fixed size) sim- 

ple random sampling (FSSRS). In Section 4. a central limit theorem under VSSKS is given 

which yields results similar to those of Hhjek (1960). 

2. VARIABLE SIZE SIl"LE RAMX)M SAMPLING 

Let U = 11. 2. 3. ..., N) denote a finite population of N units and assume that the ith 

unit has associated with it  the real number Yi  for i = l...., N . The value of the parameter 

of interest, py = Yi / N ,  is assumed to be unknown. We assume that a sample will be 

selected to yield an estimate for p y .  Perhaps the most basic sampling plan, which is 

the basis for numerous other sampling designs. i s  simple random sampling without 

replacement. Under simple random sampling without replacement, the size of the sample n 

N 

i =1 

is assumed to be fixed and is determined before any sampling begins: sampling is per- 

formed so that each of the [ f ]  samples has probability [ frl of being selecled. For the 

remainder of this gaper we will refer t o  this sampling plan as fixed size siniple random 

sampling (ESSRS). 

In the following definition, we introduce a variable size sampling plan for a finite popu- 

lation where the size n of the observed sample is not fixed before sampling begins, but is  a 

random variable that takes on integer values between I and N inclusively with maximum 

probability of n being at n = N / 2  and ( N  -I- 2)/2 if N is even and at n = ( N  4- 1)/2 if N 

is odd. 
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Dejnition. If the sampling plan is such that each of the 2N - 1 nonernpty subsets of U 

has an equal probability of selection, then the sampling plan is called variable size simple 

random sampling (VSSRS). and the observed sample is called a vwiable size simple random 

sample. 

Under VSSRS. n is a random variable whose distribution is given in Lemma 1. 

Lemnia 1. If n is the size of the observed sample under VSSKS. then the probability func- 

tion of n is 

P ( n  = j )  = [ y/ (P - 1) for j = 1 , 2  ...., N .  (1) 

A-mf. The proof is immediate because the probability of each possible sample is  

1 / ( 2 ~  - I )  and there are [:I ways of selecting j units from N different units when 

order is unimportant. 

Note that P ( n  = j )  = P ( n  = N - j )  for j = 1, 2,.... N - 1 and hence the distribution 

of n is symmetric except for n = M. It is easy to see from J,emma 1 that n is a truncated 

binomial random variable a t  zero with parameters N and l /2  (Johnson and Kotz. 1969. 

pp. 73-74). The following properties of r t  and the sampling plan all follow from Lemma 

1. 

Property 1. The characteristic function of n i s  

E(exp( i tn  1) = [ (exp( i t )  + 1 ) ~  - I]/  ( 2 , ~  - 1) for t E IR . 

Property 2. If w = 2N'-1/(2N - 11, then 

For large N , E (n ) N / 2  and \'a?- (n ) * N 14. Heiicc VSSRS is of limited practical use 

because the average size of the sample is approximately one half the size of the population, 

which would be large in many cases. But as was noted earlier. our interest in this paper is 

theory; and we vicw VSSKS as a first step towards finding MOie practical variable size 

sampling plans 
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Fkoperty 3. Let i and j be two different but arbitrary fixed units in U .  Then 

wi = P ( i  is included in the sample) = T II and 

qrij zz P ( i  and j are included in the sample) = V/  2 . 
(4) 

Property 3 implies that each unit has an equal probability of sample inclusion and so does 

each pair. This comment is also true for PSSRS; however in that case, 7ri = n / N  and 

7rij = n(n - l ) / N ( N  - 1). 

It is immediately clear that a variable size simple random sample can be realized by 

applying one of the following three sampling methods. One method, sometimes referred to 

as the "mass draw" technique. calls for listing all possible 2N - 1 subsets of the popula- 

tion of size N and picking one of t h e r  with probability 1/ (2N - 1). This method is 

directly from the definition and seems practical for relatively small values of N .  An 

alternative method i s  to select the sample in two stages. On the first stage, select the size 

of the sample n = with probability P ( n  = j )  = [ r ] / ( 2 N  - 1) for j = 1. 2,...> N .  On 

the second stage given IL  = j .  select froin among the [ 71 subsets of j units, one with 

probability 11 . That is, on the second stage one selects a fixed size simple random 

sample of j units. A third method. which gives what is called a sampling scheme in 

which we select the units for the satnple one-by-one. can be obtained via the method 

presented by Kao (6962). 

Irl 

3. ESTIMATION 

PLE R M SAMPLING 

In this section. we consider some results about the statistic 7. the sample mean, under 

VSSRS and make some comparisons with t i e  statistic 7 under PSSRS. 

Lenznle 2. Under VSSKS, 7 is an unbiased estimator of pY . 

Proof. Let A = {all nonempty samples of Uj and Aj --- {all samples of size n = j .  where 

1 d j B N )  and note that (ri == 2'" - 1 .  Also for @€.A or rwEA,, let ra be the 
j =I 
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sample mean of the units in a. Then 

as was to be shown. 

Lemim 3. Under VSSKS. Var (7) I- u;(.NE (X/a - 1)/(N - 11, where 

N 

i =1 
*y" I (Yi - py I 2 / N .  

I [? I /  j -- ( a N  - 1) / (N - 1)(2N - 1) 

Lemma. 4.  Let Vur (ye) be the variance of 7 u n d ~  VSSRS and Val- (71 j ) = 

( N  - n 1.i." /(N - l)n be the usual varimce of 7 under FSSKS for fixed sample size 

n = j .  Then 

Prmf. The result follows immediately from Lemma 3. ?% 
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It is clear that in general Var(yln) is a nondegenerate random variable in tt for 

n = 1. 2?..-, N From Lemma 4, the expected value of Var (Yln under FSSRS is the same 

as Vur (7) under VSSRS. Thus there are values of n for which Var (F) 6 Var (71 n ) and 

other values of n for which Var (71 3 Var (71 n ). In the remainder of this section, we 

generalize the direction of the inequality for the various values of n in Theorem 1. Gen- 

erally, for values of n > N / 2 ,  Var(y) > Var(7ln); and the direction is reversed €or 

values of n < N / 2 .  The next two lemmas will be used in the proof of Theorem 1. 

Lemma 5. Let n be any discrete random variable with probability function defined for 

n = 1. 2, ..., N ,  where N .9 a. Then 

E(TL&’(I/ n) 3 I .  ( 5 )  

Proof. By the Cauchy-Schwarz Inequality, for every a 1, . . . , .aN. b 1, . . . , bN E IK, we 

have 1 ril a, b, 1 < b: . If we take a, = ?Km and 5, = d P ( n  >/ n ~ then 
2 N 1v 

n = l  n = 1  

we observe 

Because P ( n  ) and n are nonnegative b’n we have 

which i s  the desired result. S 

expressed as a series of inverse factorials by  

where Rt (n 1 = t !(n --l)O/bn I- t > I  is  the remainder after the first t terms. For t = 3, we 
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have 

For n > 1. it is easy to see that 

8 
(n 1- l ) (n  -t. 2)(n -6.3) 

- + 1 1 ........ - -  
IZ f 1 -I- (n $. l ) ( n  1- 2 )  

’ 

Next, we show that 

E ( 1 /  a )  6 (12N22N C 8 4 N 2 N  C 528%lN .--^ 17N3 

(10) 
- 638N2 - 421N -̂  528)/ S ( N +  1 ) ( N +  2 X N - t -  3 ) (2N - 1) . 

By (9) and the fact that n is a truncated binomial random variable at zero, we have 

The first sum in the brackets is P ( X  k 21, where X is a binomial random variable with 

parameters N + 1 and 1 /2 .  Similarly. the second amd third sums in the brackets are respec- 

tiveljj P(Y k 3) and P ( W  k 4 ) ,  wE9ere Y and W are binomial random variables with 

respective parameters N -I- 2, l i 2  and N + 3 .  1 0 ,  Thus 
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Thus substituting 

+ 528*2N - 17N3 

establishes (1Q). 

2 

Y =o 
= 1 - P ( Y )  L= 1 - (N2 -t 5N f S > /  2N+3, an4 

2 

= 1 - P(W) = 1 - ( N 3  -4 9 N 2  f 32N f 48)/ 3 * 2 N + 4 ,  
W =o 2 

these three equalities into ( 1 1 )  yields E - < (12N22N + 8 4 ~ V 2 ~  
11; I 

- 138N' - 421N I- 528) /6 (N + 1)(N f 2 ) ( N  4- 3)(2N -1). which 

By Property 2 and ( IO>.  

if 

if and only if 

114N22" 4- N221N -t 343N2" + 1128*2N d 6N222N f - - - J V ~ ~ ~  17 4- 40N32N 
2 2 

C42LN + 5 2 8  for all N . 

Now the left-hand side of (126 is strictly less than the right-hand side for N > 19 

because 

114M22N .f f5N222N if AT > 18 ~ 

23 ----iV22" < .40M322N if M > 1. 
2 

........... I 



and 1128*2N < .564*22N if N > 1 . 

Table 1 gives the values for the left-hand and right-hand sides for N = 1, 2,.... 20. Hence. 

Lemma 6 follows. 

TABLE 1. Values of (12) for  1 6 N 6 10. 
~ 

Right-hand side I_ .. . . -. . - Left-hand side 
l.l_.____.......... ~ 

N 

1 3.481 

2 11,328 

3 40.692 

4 151,600 

5 688.655 

6 3,043,58 4 
7 13 .625.152 

8 6 1,009,920 

9 2 7 1.7 32.99 2 

10 1,201,528,83 2 

11 5,273,220,096 

12 22,980,968.448 

13 99,520,221,184 

14 428 563,955,712 

15 1.836,403.60.5,504 

16 7,83.4.678,329.344 

1 7 33,295.001,073.152 

18 141.015.398.744.064 

13 595,3?2,030.043.256 

20 2,5Oe,9n0,379,9~?,S~8 

3,481 

13,290 

57,192 

250.244 

1,069,341 

4.464558 

18,441,988 

76,305,336 

318,762,480 

1,M8,5Y8.U02 

5 7 74,602,692 

24,%2.979,372 

108,606..526,576 

4 74,226,04 7.22,2 

2,073,666,106,404 

9,065,676 .O 74.080 
39,5?8,649,533,712 

172,643510,800,794 

75 1,14 1,298,547,556 

3,260.7 14,872,608,212 

Theorem 1. (1) For p2 2 E Cn 1, Var- Cy > Vm- !?I 72 1 . 
(2)  For n < E (n 1. var 6 Var (yl n 1 . 

Lemma 3 ,  
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By Lemma 5. E ( n  1 3 1/ E(1/ n if and only if 

N E -  - 1 2 b - p - q  1 i l ! 
or equivalently 

- I>/ ( N  - 1) 3 &(I - I/ 2N-1)/ ( N  - 1) , 

which is the same as 

The rest of part (1) follows because Vur (yln 1 = 1 f - 1 1 is a strictly decreas- 

ing function in 1 1 .  

Prwf of (2). To prove part (21. let n = E ( n  ) - 1 or equivalently E ( n  -11. Then 

VUT (y, < vap- (TI E (n -1)) 

which is so by Lemma 6. Because Var (7'. 1 is a strictly decreasing function in t i  it fol- 

lows that Vur(7)  6 Var(yln) when n 9 E ( n  ). This completes the proof of Tlieorern 

1. I 

From Theorem 1, if n 3 E ( n  ). then I?SRS makes 7 as precise an estimator of ,ay as 

VS9;RS. and VSSRS makes y* as precise an estimator of 

Remark. Note that the inequality in Lem:na 5 is a general result, while the inequality in 

Lemma 6 is  not. At first glance, one might think that the inequality in Lemma 6 should 

8s FSSRS when n < E(ti  >. 



-12- 

be true for any random variable defined over the first N positive integers because it makes 

one think about the inequality (n-l)! ti 6 1.  which is always true for any value of 

n k 1. The following example illustrates that the inequality in Leinnia 6 does not hold in 

general. 

l%~mph.  Let the probability functiun of the Tandom variable n be defined by 

I/ 2 for n = 1, N 

0 otherwise . 
P(iL ) .z. 

'Then it i s  easy to show that E ( n  I)& - = ( N  .... l ) ( N  f 1)/ 4N > 1 if N 5. I:I 

In this section, we justify necessary and sufficient conditions for the limiting distribu- 

tion of 5 = nr irnder VSSRS to be normally distributd.  'The approach and result. are 

quite similar to that taken initially by Hgjek (1960) and wed by others, including Scott 

and Wu (1981). Thc main theorem follows from Lemma 7 atirP thc proof of i1('he5rem 3.1 

of Hijek (1960). 

Recall the definition of VSSKS and the probability function of n given in (1).  Another 

example of  variable size sampling from a finitis popialatiori that is a special case of what 

IIAjek (1981) refers to as Poissoii sampling of mean sizc n is given by 

where sk is a subset of u consisting of k unitq a n d  P j s ,  I P L  ) is the piobability of sk given 

n .  It is important to note that we think of Poisson sampling here as being conditional on 

n. 

If 5 = 117 = 2 Y, , where { Y1, . . . , Y, 1 is the set of observed values of the variable 
i =1 

size simple random sample s, , t h m  it follows that. given n , has finite conditional mean 
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value 

and conditional variance 

Next consider an infinite sequence of VSSRS experiments { (Yul ,  Y,,, . . . , YVN, ) .  nu, 

k,, N , } ,  where N ,  is the size of the vth population with population values 

Y,1, Y,2, . . . , Y,N,:  n, is the size of the variable size simple random sample from the vth 

population; and k ,  is the size of the conditional Poisson sample sky from the u"' popula- 

tion for v = 1. 2,... In what follows, we consider the vt" experiment and for simplicity 

will omit the subscripts v until needed again. 

Recall that under VSSRS. n is a truncated binomial random variable at zero with 

parameters N and 1/2. It is easy to see that under Poisson sampling (conditional on n 1, k 

is a binomial random variable with parameters N and n / N  . Hence 

Next we define an experiment that is an extension o f  the one proposed by Mhjek (1960) 

and yields simultaneously a variable size simple random sample s, and a Poisson sample 

sk, where s, c s k  if n 6 k and sk c s, if k d n .  The experiment consists of the fo1- 

lowing three steps: 

1. First realize a value n according to 

2. Next realize a value k given n according to 
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3. There are three cases t o  consider for step 3. 

(a) When k = n ,  select a fixed size simple random sample 5, = Ak that is a 

simultaneous realimtion of VSSRS and Poisson sampling. 

when k > r i  , select a fixed size simple random sample sk and (given sk 1 

select a fixed size simple random sample. s, from sk . The observed sk is 

our realization o€ Poisson sattspling. and s, is our realization of VSSRS. 

When k < n , select a fixed size simple random sample s, and (given s, 

select a fixed sire simple randow. sample st from s, . The observed sk is 

our realization nf Poisson safl1plhg. and s, iP OUT realization of VSSRS. 

(b) 

( c )  

Now for  the overlapping samples s, and sk just described, let 

$ = (Y ,  - p y )  = c$ . 'Lpy (1'7) 
I E S ,  

and 

Note that 

+* ::: (y i  - pr) 
i C s k  

if k = n  
if k < n  

if k > n. 

(19) 

Lemma 7.. If N ,  -* nn as Y -+ 03, then Q1 - Q1 converges in probability to  zero as v --p m .  

Proof. First we will show that 

If I& and k are fixed. then 5, - s k  (or s k  .~ s, 1 iCplXSc"tS a fixed size sinnpk random 

sample from U of size I k ...̂ Y L I  by Results 0 and 1 of Wright and 'l'sao (1985). Thus from 

(15) we have 
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Ik -n l  N - l k  -n l  CWi - PYl2 
- 
I -- 

N N - 1 irl 

Thus from (21). an application of the Cauchy-Schwarz Inequality. and (16). we have 

E ( ( $  - (p* 12 112 1 = E(E((#l - $* I21n. k In ) 

< 0-3 E(Ik - nl In) 

= u $ E ( J - ( k  -n>2ln)  

= oic" Jek - n ) 2 P ( k I n )  
k 

k 

= <Ty2 -J n.(1 - -1 N n * 

Also by (22) and another application of the Cauchy-Schwarz Inequality, 

E ( ( +  - (p' 12) = E (E(((p - $* I2 In )> 

12 E ( n ( 1  - -)) N . 

(22) 

Thus (20) has been shown. Next we show that 

(24) 

To show (24). first note that Poisson sampling as described in (13) can be achieved as fol- 

tl. - -11 f 
Var (#I* l = cr?E(n (I N 
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lows: “For each unit of the populatiun of size N ,  perform one Bernoulli trial. If a success 

occurs, the trial unit i s  accepted as part of the (Poisson) sample: otherwise the unit is 

n 
passed up. The probability of succcss is assumed t o  be the same for  all trials. and the 

N 

trials are mutually independent“ (Strand, 1949). This implies that @* based on s k  can be 

presented as a sum of N independent random variables, 

N 

i =I 
+* 1. CCi’ (25)  

where 

because from Properties 1 and 2 one can show that E(n2)  1: ( N  4- l ) E ( n  >/ 2. Using a 

generalization of Chehjshev’s Imeyuality given 011 pp. 54-55 of Hogg and Craig (1372) 
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with the random variable (4 - $* l2 and constant c = k2Var(#* >, where k > 0, it fol- 

lows that 

or equivalently 

P [ l @  - # * I  z k Jv-] ar(@ ) < E ( ( $  - $*I2)/ k 2 V a r ( + * > .  (29)  

Thus Y e  > 0  we can have P(I#-$* I  >6)=P[ ld , -d , * l  >IC-]. where 

k =E/-. 

and 4; be the random variables given in (17) and (18) corresponding to the vfh experi- 

ment. Thus V e  > 0 

Hence the proof of Lemma 7 is  complete. W 

From Lemma 7. it is clear that the limiting distributions of q5u and 6; are the same pro- 

vided that limiting distributions exist. Hence in talking about the limiting distribution of 

r&(or &,I, it is enough to consider the limiting distribution of 4;. 
Lemma 8 .  Let U, = {l ,  2,.. . ,Nu1 and let U,, = {ili E U, and IY,i - p y y l  

> 7d-j 1 where 7 > 0. Let N, 4 M as 8, --+ M . Then the random variable q5; is 

asymptotically normal with mean 0 and variance Vnr(&) if and only if 
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Prmf. The proof is essentially equivalent to that of Theorem 3.1 in IPhjek (1360). 

A CENTRAL LIMfT THEOREM UNDER VSSRS. Let N u  -+m as u do. Then under 

VSSRS, 

if and only if (30) holds for { ( Y v ~ ,  . . . , Y,,N). n,. N u } .  

Proof. Follows from Lemmas 7 anti 8. 

The condition (30) has been referred to as the Lindeberg - Hgjek Condition (see, e.g.. Scott 

and Wu, 1981) because i t  occiirs in Hijck’s Theorem for finite populations. Hijek’s 

Theorem is proved using the Lindeberg Condition of the Central Limit Theorem for  

independently distributed random variables. 
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