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ABSTRACT

A three-dimensional analysis of cavity antennas is presented. The
analysis is based on the finite difference method with a successive
overrelaxation convergence scheme. This method permits the
calculation of resonance frequencies and corresponding electric and
magnetic fields of eigenmodes in a cavity antenna with an arbitrary

shape.






I. INTRODUCTION

Cavity antennas have been used for various purposes, such as communication
systems, for a long time. Recently, the usefulness of cavity antennas has aroused the
interest of researchers in the plasma radio-frequency (rf) heating area, especially in
the ion cyclotron resonance frequency (ICRF) range.1 Ion cyclotron resonance
heating (ICRH) has been successfully used for heating experiments in tokamaks and
has been chosen to demonstrate ignition heating for first-generation tokamaks, such
as the Tokamak Fusion Test Reactor (TFTR), the Joint European Torus (JET), and
Doublet-TII. A carefully designed and fully tested resonant cavity antenna for those
tokamaks is desirable. The Radio-Frequency Test Facility (RFTF) at Oak Ridge
National Laboratory (ORNL) is dedicated to this mission.

To design the cavity antenna, it is necessary to understand the characteristic
properties such as resonant frequency, field components and impedance, etc. For a
simple cavity, we can obtain those parameters by using the equivalent circuit
method? or the variational principle method? or even by solving Maxwell’s equations
with analytical methods. However, these methods are very difficult or even
impossible to apply to a complicated cavity such as those that are of interest for rf
heating. Hence, we need to develop a three-dimensional (3-D) analysis to obtain a
numerical solution of Maxwell’s equations with complicated boundary conditions.

A few 3-D algorithms* have been published for solving the wave equation, but
none has been developed for the purpose of plasma heating. Among the existing
algorithms, Hara et al.* have the most complete and powerful code. However, the
accuracy becomes poor for the very complicated boundary conditions, because the
mesh points are easily limited by the finite element method.

A finite difference analysis 3-D Pcisson equation’? was developed by the
authors for use in designing and conducting neutral beam experiments. We have

extended this analysis to the 3-D wave equation. Our analysis has several basic
1
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merits. First, a finite difference method!? is used with a successive overrelaxation
(SOR) convergence scheme and a method of treating boundaries that allows the
cavity to have an arbitrary shape. Second, due to the SOR scheme used, we do not
need to find the inverse matrix to obtain the eigenvalue, which reduces the
necessary storage requirements, Third, either Dirichlet or Neumann boundary
conditions are easily considered. Hence, more mesh points can be adopted for
complicated boundary data or increased accuracy. However, one of the
disadvantages of SOR is the existence of convergence, and the convergence rates are
strongly dependent on the chosen SOR factor. The third point implies that we can
solve the wave equation in terms of H components as well as E components.
Examining the Helmholtz magnetic field equation is important because it produces
the lowest resonance frequency (see Sec, II), which is of considerable interest in
ICRF plasma heating, where low-frequency launchers of compact dimensions are
desirable,

The purpose of this paper is to demonstrate the analysis and its validity by
calculating the eigenfrequencies and field components of a finite rectangular
waveguide and other waveguides. The applications of this algorithm to rf heating
will be given in a separate paper. The structure of the remainder of this paper is as
follows. In Sec. II, we briefly describe the wave equations, boundary conditions, and
possible constraining conditions. In Sec. III, we describe the subject analyses. The
results for specific waveguides are presented in Sec. IV. We summarize our

conclusions in Sec. V.



I[I. WAVE EQUATIONS IN VACUUM WITH PERFECTLY
CONDUCTING WALLS

Since we consider the wave equations in vacuum, Maxwell’s equations with the

sinusoidal time-dependent e 't fields, E and H, are

VE=0, (1a)
VH=0, (1b)
VXE =igoH , (1c)
VXH = -ig wE , (1d)

where pp and ey are the permeability and dielectric constant in vacuum. By
combining the two curl equations and making use of the vanishing divergences, we

find that both E and H satisfy

(v+ w0’ ) 5] =0 (@)

Boundary conditions on perfectly conducting walls are

nE=0, (3a)

nxH=0, (3b)

where n is a unit vector outward normal to the surface of boundary, namely S.
Equation (3) may be stated as follows: the boundary condition on E is that Ej vanish
at the surface, and the boundary condition on H is that dHy/dn vanish at the surface,

where Ej and H)are the parallel components of E and H, respectively.

Equations (2) and (3) constitute the well-known eigenvalue problem. For the

perfectly conducting cavity, all components of E and H are real. Equation (3) can be



solved independently for three components. Since the boundary conditions on Ejand
Hj are different, the corresponding eigenvalues will, in general, be different. There
are two distinct categories of waves: transverse magnetic (TM) wave if the boundary
condition is Ej = 0, and transverse electric (TE) wave if the boundary condition is
oHpon = 0. The lowest nontrivial eigenfrequency of the TE mode is lower than that
of the TM mode. For rf heating, the low-frequency, compact, high-power antenna is
needed because of the typical port sizes and magnetic fields on tokamaks. From
plasma diagnostic techniques, the magnetic field can be directly measured by probe,
but the absolute value of the electric field cannot be. Hence, solving Eq. (2) in terms

of H is more practical, though it is sometimes more difficult.

For most higher eigenfrequency modes, the eigenfunctions (E or H) are
degenerate. When the eigenfunctions are degenerate, we impose conditions of
constraint to remove the degeneracy. Those constraint conditions could simply use

Eq. (1a) or Eq. (1b).

ITI. DESCRIPTION OF ANALYSIS

A. Convergence
For simplicity, we discuss our numerical method in Cartesian coordinates.
Thus, Eq. (2) can be rewritten in three scalar equations for Hy, Hy, and Hy:

2 2
H fﬂ; H (43)

S+ —=+ — +k’H =0
o s

ax az

2 2 2
¢°H d°H a°’H (4b)




SH,  FH o'H_ (40)
+ + +K’H =0 , c

8y2 o’

8X2

where k? =pgeg @2 Similar equations can be obtained for E if we replace Hby E in

Eq. (4).

Equation (4) is similar to the Poisson equation with a linearized source term.
We have modified the validated analysis described in Ref. 6, which describes some of
the details of the present analysis. In the subject analysis, we expand the fields (E or

H) and their particle derivatives in Eq. (4) at node 0 (see Fig. 1) in terms of the fields

ORNL-DWG 85-3474  FED
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FIG.1. The setup ofnodal points and their finite difference expansion coefficients.
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at its neighbor grid points (1-6) by using the first-order finite difference

approximation. We have, for example,

Hy=CH +CH,+CH+CH +CH, +CH,

6 (6)
=Y CH_,
i=1

where H; is the value of H; at the ith node and C; is the expansion coefficient in that

direction.

Then, we iterate the calculation by SOR until the difference between the two
sides of Eq. (5) vanishes. That is, Res = H,9 - £; CiH;; = 0. We define this as a
minor iteration. During the minor iteration, k® is kept constant. Once Hj (or E;) is
found, after a completed minor iteration, a new value of k? can be gotten from

2 2
Hj (”em)

Ej (pfm)

where pe¢m is an arbitrarily chosen grid point and Hj = Hj/Hj max. Hj max is the
maximum value of all H;. This new k? is input into a minor iteration. A major
iteration is then finished. The iteration process is completed and the eigenfrequency
is found when the previous k? and the latest k® are sufficiently close. An alternative
way to find the new k2 needs to be mentioned here, because it converges rapidly in
most cases. We can obtain the new k? by dividing k2 by Hj max (or Ej max).
Convergence is achieved when Hj nay is unity. Mathematically, this corresponds to
choosing the Hj(un¢y) equal to Hj max in Eq. (6). However, this method fails if the
maximum value of Hj is assigned as a constant boundary value where the nodes are

excluded from the iteration. The algorithm is shown in Fig. 2.
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FIG.2. Algorithm for Maxwell’s equations.



Convergence is critically dependent on the relaxation parameters!! for the SOR
method. In the major iteration, we use underrelaxation to get the new k? of the mth

iteration; that is,

k2 =ak? + 1-a)k? ) (7
m m m-1

where kfn is evaluated from Eq. (6). The underrelaxation parameter, a, isin the

range of 0 < a = 1. Similarly, we use overrelaxation with the relaxation parameter,

1 = B < 2,in the minor iteration; thatis,

H' = BH} + (1-p) HJ“1 , (8)
where HJ_" is the result from Eq. (5). Whether or not the iteration process converges

at all and whether the convergence is fast or slow depends on the chosen values of a
and . We give a more detailed discussion in Sec. IV. Theorems on the choice of a

and P are being developed.

B. Implementation of Boundary Conditions

Two types of boundary conditions, either the Dirichlet boundary condition (E;
= 0 or Hj = 0) or the Neumann boundary condition (8Ej/dxx = 0 or dHy/dxx = 0), are
required to solve Eq. (4). For example, to solve Eq. (4¢), we let H; = 0 on boundary
surfaces xy, dH/0x = 0 on boundary surfaces yz, and dH,/dy = 0 on boundary
surfaces zx, as illustrated in Fig. 3. Setting up the Dirichlet boundary condition is
rather simple. We let the fields equal zero only at the nodes and keep them constant
on each iteration. To treat the Neumann boundary condition, we need to redefine
the coefficients Ci. For a point that lies on the boundary line, C; is set at zero for the

direction that points outside the boundary, and the opposite C; is doubled. For
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FIG.3. Schematic representation of the cavity resonator and the boundary

conditions of H,.

example, for point A, we let C3 = 0 and double Cy; for point B, we let C, = 0 and
double C; for point C, we let C; = 0 and double C3, and for point D,. weletCy =0
and double Co. For points that lie on the corners, we double the two nonzero Cji’s that
lie interior to the boundary. For example for point a, we let C3 = C4 = 0 and double

Ci and C9. The Cy’s for points b, ¢, and d need similar treatment.

We cannot expect all the boundaries to be fitted in the nodal lines. A typical
case is shown in Fig. 4, a circle. This problem causes slight complications in the
Neumann boundary conditions. However, here we have developed a new scheme!? to

deal with these oblique Neumann boundary conditions.

C. Imposed Conditions for Higher Eigenmodes

The procedure described above (Sec. I1I.A) can only produce the lowest mode,

because Eq. (6) provides a bound only for the lowest eigenfrequency. To get the
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FIG.4. Atypicalirregularboundary.

higher modes, we must implement the Gram-Schmidt orthogonalization. It is worth
pointing out here that the lowest eigenfrequency of the TE mode is zero, and the
corresponding eigenfunction is an arbitrary constant. For this particular case, we
can simply obtain the first nontrivial eigenfrequency by subtracting a constant from
H; (or Ej). This constant could be the averaged value of Hj (or E;j) at each iteration. If
the higher modes have degeneracy, the constraint condition V.-H = 0 (or V-E=0)

is also required in order to exclude the undesired mode.

IV. EXAMPLES

We use a rectangular cavity, a ridged waveguide, and a complicated cavity to
examine the validity of our analysis. It is well known that if a, b, and ¢ are the
dimensions of the rectangular cavity (Fig. 5a) and ¢ = a > b, then the magnetic field

and electric field of the TEg1 mode (the lowest nontrivial mode) are

ax I1Z
H = Asin— cos—, 9)
X a c
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FIG.5. Sample results for a resonant cavity: (a) the dimensions of the cavity, (b) H,

of TEo1 wave, (¢) Hx of TEg; wave, and (d) Ey of TEg; wave. The chained

lines represent the negative fields, and the vector of field points to the inside

of the paper.
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H = BoosEsinE, (10)
z a c

E = Csinn—x- sinEI-Z" , (11)
¥ a c

H = =E =0 , (12)
v X z

where A, B, and C are constants.

The corresponding eigenfunction is

[

NS a

a Cc

Figure 5 gives the results of our calculation witha = ¢ = 2mandb = 1m. In
this paper, the contours of the field are plotted for all examples. The difference
between the value of k? from the subject analysis (= 4.89 m?) and that from Eq. (13)
(= n%2 m™) is less than 1%. Since the analysis of Sec. Il considers arbitrary
boundary data, and since the analysis cannot determine that the example of a
shoebox cavity is solvable exactly, the agreement in the lowest eigenvalue
constitutes a nontrivial validation of the subject analysis.

The second example considered is that of a ridged waveguide. This waveguide
has a lower cutoff frequency and a wider band of useful frequencies than a
rectangular waveguide with equivalent outside dimensions. Figure 6 shows a
typical ridged waveguide and its lowest mode (TEq;) H, field. Figure 6(b) shows the
result for an infinitely long waveguide. Infinite length is a necessary assumption for
the equivalent circuit approximation.? To compare our results with the equivalent
circuit approximation, the lowest eigenfrequencies of three ridged waveguides with
different aspect ratios are computed by both methods. The results are plotted in Fig.

7 with apparent agreement. In order to illustrate our 3-D analysis of the finite
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FIG.6. Sample results for a ridged waveguide: (a) the dimensions of waveguide
(a:b:d:e = 4:2:1:1), (b) H, of TEg; wave for ¢ = ~ with both ends open, and (c)
H, of TEg; wave for ¢/b = 1 with closed back end. For comparison we also
show (d) H; of TEg) wave for a rectangular waveguide with closed back end.
The dashed lines represent the negative fields and the vector of field points
to the outside of the paper.
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FI1G.7. Comparison of the eigenmode resonance frequencies computed with our
method and with the equivalent circuit approximation by Pyle.2 f/f' is the
ratio of resonance frequency with the rectangular waveguide to that with

the ridge.

waveguide, Fig. 6(c) shows the results for a finite ridged waveguide (¢ = b), and
Fig. 6(d) shows the results for a rectangular waveguide without the ridge. Both
waveguides are closed by a metallic wall at the back end. The resonance frequency
for the finite-length waveguide is reduced by only 13% dué to the ridged effect. From
Fig. 7, we find that the resonance frequency reduction is 28% for the corresponding
infinitely long waveguides.

We also use this example to discuss the correlation of convergence and the
relaxation parameters, a and f. For this purpose, two ridged waveguides with

different aspect ratios (one infinitely long and the other with a finite length) have
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been used to study the convergence. The parameters for convergence are illustrated
in Table I. For the infinitely long ridged waveguide, the result shows that -
convergence is speeded up with the larger a and B, if we keep the other parameters
constant. In the case of the finite-length waveguide, closed only at one end with a
Neumann boundary condition at the other end, the result shows that the code
converges only at a particular parameter range. If the finite-length ridged
waveguide is closed on both ends, then convergence is readily achieved for 0.05 < 8
< 1.7,005<a< 1.

The last example of the analysis considered here is the cavity illustrated in
Fig. 8. This cavity is similar to the cavity antenna that has been proposed for the
ICRH experiment in Doublet INI-D. Experiments on it are proceeding at the RFTF.
We have used this example to examine the consistency of our results for two different

orientations. The eigenfrequencies of both cases are identical to within 3%. The

Table 1. The parameters for convergence for a ridged waveguidea

. Minor Major
Aspect ratio iteration 8 ' @ iteration

a=2,b=1,¢c =0 45 1.0 1.0 64
0.9 63

0.8 72

0.5 >100

15 1.0 0.8 >100

1.2 >100

1.5 69

1.7 34

a=2,b=1, c=1 15 1.0 1.0 120
(one end closed) 0.7 80
0.5 >120

aThe number of nodes used here is 20 x 18 x 10.
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FIG. 8. Sample results for a complicated cavity: (a) structure of the cavity, (b) top

view of |E| field, and (c) side view of |E| field.

corresponding electric fields, which are consistent in both cases, are shown in Fig. 8.
This result proves that the subject analysis is independent of boundary data

orientation.

V. SUMMARY

We have developed a 3-D analysis that can deduce the resonance frequencies
and the wave fields for a cavity antenna of arbitrary shape by using the finite

difference method with an SOR convergent scheme. This analysis has been very



17

carefully tested for various cavities. The results shown are in good agreement with

other theoretical analyses.
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