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DITHER-FREE STABILIZATION OF CO, LASERS FOR FAR INFRARED PUMPING:
A PHOTOACOUSTIC APPROACH

C. A. Bennett, Jrs,* and D. P. Hutchinson

ABSTRACT

A method based on the photoacoustic technique is described for
dither-free frequency stabilization of the optical pump in a CH30H laser
operating at 119 um. Heterodyne measurements on two independently locked
FIR lasers indicate excellent long term freguency and power stability.
This stabilization scheme should be applicable to all optically pumped
FIR lasants.

INTRODUCTION

Although several methods exist for frequency stabilizing the optical
pump of a far infrared (FIR) laser,!~6 most employ an internal frequency
dither of the pump which results in a frequency modulation of the FIR
output. A stabilization scheme which avoids this effect was reported on
recently by Lachambre et al.® in which the optical transmission through
an absorbing cell provided an error signal necessary to stabilize the
214 pm line of CHoF,. When we attempted to apply this technique to the
119 pm line of CH30H, however, we found that at pressures high enough to
produce appreciable attenuation, collisional broadening of nearby non-
lasing absorption lines tended to eliminate the discriminator output.
The use of a photoacoustic cell in place of the transmission cell allowed
us to reduce this effect by utilizing lower pressures in the absorbing
path. The resulting stabilization loop was effective at maintaining
stable FIR power for long periods of time.

*Department of Physics, University of North Carolina at Asheville,
Asheville, NC 28814



The stabilization setup is shown in Fig. 1. Invar rods supported
the 2 m long CO, laser cavity and the cavity length was controiled by a
piezoelectric transducer (PZT) driven by a high voltage amplifier. The
9P(36) pump beam entered the 2.1 meter waveguide FIR cavity, also mounted
on invar, through a 4 nm hole and the FIR output beam was coupled from
the other end through a 13 mm hole. A fraction of the pump beam was
split and amplitude modulated at 880 Hz prior to entering the photo-
acoustic cell filled with CH30H. A pyroelectric detector was used to
measure the intensity transmitted through the cell. Lock—in amplifiers,
referenced by the chopper, analyzed the signals from the microphone and
the pyroelectric detector. The outputs of the lock—in amplifiers were
connected in opposite polarity to a variable gain operational amplifier
which provided a difference signal used as the discriminator output. A
potentiometer on the output of one of the lock—in amplifiers accurately
determined the zero of the discriminator crossing and hence determined
the lock point of the servo loop.
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Fig. 1. CO, stabilization loop



Figure 2 shows some typical results. The lock point is determined
by adjusting the FIR laser for maximum output at the desired operating
frequency and then adjusting the potentiometer for a discriminator zero
before closing the loop. A pressure of 600 millitorr in the photo~
acoustic cell was found to provide good stability along with good
discriminator output. A change in the (02 laser cavity length produces
a correction voltage which, for sufficient discriminator slope, leaves
only a small residual frequency shift. Excessive discriminator gains
amplified extraneous noise {primarily photoacoustic) resulting in an
increase in the pump frequency jitter; however, the intrinsic stability
of the CO, laser made the use of such high gains unnecessary. The FIR
output was found to stay constant for many hours under locked operation
when only moderate gains were used.

To determine the amounts of frequency jitter introduced in the sub-
millimeter output by the stabilization loop, the outputs of two indepen-
dently locked FIR lasers were mixed on a Schottky diode detector as shown
in Fig. 3. By modulating beams from the two pump lasers at different
chopping frequencies and appropriately referencing the lock—in amplifiers,
two discriminators could be obtained from a single photoacoustic cell and
pyroelectric detector. The two FIR lasers were locked to different fre-
quencies and the beat note was recorded by a spectrum analyzer, After
thermal stabilization of the FIR cavities, the frequency of this beat note
(typically 1 MHz) was observed to stay constant for long periods of time
while the short term (5 sec) jitter was not noticeably increased over
uniocked operation (~200 kHz). Random fluctuations in the discriminator
voltage, primarily from the photoacoustic signal, resulted in voltage
fluctuations at the PZT on the order of 10 V corresponding to pump fre-
quency excursions of about 1 MHz. The design of our photoacoustic cell
was by no means optimized and much improvement in signal to noise is
possible; however, FIR cavity pulling effects tend to diminish the effect
of these fluctuations and the output beam remains stable in both frequency
and power.
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Fig. 3. Two laser stabilization loop

In conclusion, a dither-free stabilization scheme has been described
which is effective at compensating for thermal drift of the pump cavity
in an optically pumped FIR laser. The technique is applicable to all FIR
lasants, particularly those for which the method of reference 6 is unten-
nable due to lack of sufficient contrast in active absorption features
over the free spectral range of the pump. Heterodyne measurements on two
locked lasers indicate that this technique adds no significant levels of
frequency jitter to the FIR output beam.
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