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ABSTRACT 

The poloidal potential is calculated numerically in the 

low-collisionality regime f o r  nonaxisymmetric tori such as stellarators 

and bumpy tori. It is found that even fairly deep into the superbanana 

regime, the poloidak potential retains the simple azimuthal dependence 

of the plateau regime. 

, 

V 





I. INTRODUCTION 

In the pioneering work of Rinton and Rosenbluth,l it was shown 

that the self-consistent poloidal potential in a single-ion plasma in a 

tokamak was insignificant in its effect on transport compared to the 

magnetic-gradient-induced transport. This occurs because the 

self-consistent potential is small both in the inverse aspect ratio and 

in the ratio of the poloidal ion gyroradius to the temperature length 

scale. After this work Hazeltine and Ware2 showed that in an impure 

tokamak plasma the poloidal potential could be substantial. This 

occurs because the plasma parallel flow can be of the same order as the 

impurity thermal velocity, leading to a significant viscosity that 

drives electrostatic variation on the flux surface. Since then several 

authors have explored the effect of a significant poloidal potential on 

neoclassical transport . 3  p 4  Generally, it is found that the 

electrostatic potential can make a factor of two or more enhancement in 

the transport coefficients, when its magnitude is the same order as the 

magnetic field inhomogeneity. 

The poloidal potential has also been calculated in other 

confinement devices such as bumpy tori , 5  tandem mirrors , 6  and 

stellarators .’ In these devices the poloidal potential can 

significantly modify the neoclassical transport rates. It has also 

been shown that in a bumpy torus* island structures can form in the 

poloidal potential that have a large amount of convective loss 

associated with them. 

All of these works in nonaxisymmetric geometries have calculated 

the poloidal potential in the resonant plateau regime or the large 

electric field nonresonant regime. In these regimes the potential can 
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be obtained analytically because the particle o r b i t s  can be expressed 

very simply or  the effect of collisions makes the orbit details 

unimportaire. The regimes that have not been a d d r e s s e d  in the 

literature of the poloidal electric field in noriaxisymmetric devices 

re the resonant banana regime in a tandem mirror and the superbanana 

regime in a stellarator or  bumpy torus. These regimes are not 

acceSsible analytically because the orbits are very complicated and 

collisions are too weak t o  smear out the details of the orbits. 

IA this paper we shall address the question of the polsidal 

electric field in the superbanana regime, in a stellarator or a bumpy 

torus. In Sec. I1 we s h a l l  rev iew the physics behind the calculation 

of the poloidal potential and consider it from two different points of 

view. In Sec. I11 we derive the equation and boundary conditions for 

the kinetic e q u a t i o n ,  describing the distribution function in the 

superbanana regime. We also show the similarity LO the results of 

Binton and Kosenbluth i n  Ref .  1. In See. IV we describe the nunr;~-ical 

method used to solve the equations €OK the distribution function and 

for the potential. In Sec. V we present t h e  numerical results, which 

indicate that for a tokamak the poloidal potential takes on a 

complicated azimuthal dependence fo r  Pow callisionalities, but f o r  a 

stellarator o r  bumpy torus the poloidal potential. takes a very simple 

form. This is true despite the complicated orbit structure in t he  

superbanana regime. Fina!.ly, i n  Sec. VI, we indicate vhere future 

areas of research could Pie i n  this important  question of the structure 

of the poloidal electric fie1.d.  
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11. THE 

In 

POLOIDAL ELECTRIC FIELD: BASIC PRINCIPLES 

this section we shall review the basic ideas behind the 

calculation of the poloidal electric field. First, we consider the 

Eulerian approach adopted in Ref. 1. 

The lowest order distribution function in the expansion parameter 

Ar/rn (where Ar is the orbit deviation from a flux surface and r, is a 

typical macroscopic length scale in the plasma) is taken to be a 

Maxwellian, 

f g = N -  (2;T] 3’2e-E/T , 

where the subscript on f indicates order in Ar/rn and N is a 

normalization factor. The energy E is defined by 

where @(a,@) is the potential, which is a function of the radial flux 

variable a and the poloidal variable (3. We define the flux surface 

average <...> of any function G by 

J J 

and define the 

,u 

@ = @ - < a > .  

poloidal potential 5 by 



The lowest order i i ~ i m b e ~  density no is 

-Ze<#>/T - Z e i / T  
no = 1 d3vfo = Ne e 9 

while the flux surface average density is 

hence, from E q .  (5) no can be written in terms of its f lux  surface 

average by 

From E q .  ( 6 )  we see that the lowest order number density and the flux 

surface average density do not coincide, precisely because of the 

existence of a poloidal potential. If we have Zei/T << 1, then 

Physically the plasma behaves as a fluid and tends to form constant 

density contours on the constant potential contours, which in the 

presence of a poloidal potential are offset from the  flux surfaces. 

The first--order density perturbation arises from the motion of 

guiding centers off  the flux surface and is 
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The plasma must remain quasi neutral so that through first order in 

Ar/rn we have 

To lowest order E 2 <n > = 0; hence, we have a relationship for ip 
a a 'a 

In general, this is a nonlinear differential system because the 

first-order distribution function can depend in a complex fashion on @. 
From this expression it is clear that the guiding center drifts off the 

flux surface are responsible for forming the poloidal potential. 

An alternative way of looking at the poloidal potential is the 

Lagrangian formulation in the space of the constants of the m~tion.~ 

We take three constants of the motion J = (J1,J2,J3), where J1 and J2 

describe velocity space while J 3  describes the radial direction in 

configuration space. In these variables the lowest order distribution 

function f o  (in AJ3/J3) is given by 

where 

J3 = 2reZea + AJ3 , 
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and n3 is defined by 

where the angles - 8 are t h e  conjugate angles to the constants of the 

otion J. - From Ref.  9 we obtain 

The f i r s t  term in E q .  (14) is the flux surface average density, so once 

again we see that the lowest order density is the flux surface average 

density p l u s  an explicit contribution, which arises frons the fact t h a t  

the distribution function tries to be constant on contours o€ constant 

J3- Here, however, we can clearly see that this correction t o  no i s  

driven by the orbit deviation AJ3. The first-order quasi-neutrality 

relationship can be written 

If we define the orbit average <do by J3 = 2rc%e<~?a~, then u s i n  

Eq. (12) we obtain AJ3 = -2lcZeQsre - <do). The quasi-neutrality 

relationship in E q .  (15) can then be transformed t o  



7 

If to lowest order in collisionality fl can be written as f1 P -(a 

- <a30)3fO/3a, as is true in a bumpy torus,5 then Eq. (16) becomes 

- <a$) 21 = 0 . 
a 

Now we can see clearly that if a - <a$ is independent of velocity 

space variables (which is true if the orbit deviation is caused only by 

E - -  x ]El drifts), then we have 

Hence, quasi neutrality is automatically satisfied through first order 

i f  we have only - E x - B drifts off  the flux surface. This then implies 

that in order for a poloidal potential to exist, we must have drifts 

that have velocity space structure like OB drifts. 

111. DERIVATION OF EQUATIONS FOR THE POLOIDAL ELECTRIC FIELD 

In Eq. (10) we have the equation for (B in terms of f1 . 
a 

To 

complete this equation we need to determine f in terms of 0 .  We will 

work in the low-collisionality superbanana regime in a stellarator and 

a bumpy torus. 

- 
'a 

The model for the magnetic field is taken to be 

B - = 1 - EtCOS e - 
BO 

Eh(r)cos(le - 
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where the? radial variable t3r10 is defined by a = -r 1 2  Bo, the azimuthal 
2 

angle 8 is 8 8, et is the inverse aspect ratio r/RO, Ch is the 

helical. modulation of the field, Q, is the toroidal angle, and 1 and m 

are the poloidal and toroidal v i n d i n g  numbers. Note that f a r  a bumpy 

torus we have 1 = 0. 

The linearized bounce-averaged drift kinetic equation for f is 
la 

where T~ = f dl /v l l  i s  the bounce time in a helical well and the 

bounce-avesaged drift is 

The prime ( ' )  means a l a r ,  and K and E are t he  compl.ete elliptic 

integrals of the f i r s t  and second kind with argument k, which is given 

by k2 IZ Particles are 

helically trapped for 0 5 k < 1 and untrapped f o r  k > I. The 

E - Ze<@> - pBO(l - et - ~~)]/(2pB~&~). [ 

bounce-averaged radial driFt <r>b is 

The poloidal potential makes a contribution t o  < K > ~  through the radial 

- E x B drift associated w i t h  it. 
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In the superbanana regime the dominant contribution to the 

distribution function comes from resonant particles with <8>b = 0 

somewhere along their orbits. For these particles the collision 

operator can be approximated by 

where vc(w) is the collision frequency evaluated along the resonance 

curve The 

frequency ath is the - OB drift evaluated at the thermal velocity, Qth = 

(T/ZerBg)EL. If ro is the flux surface on which <0>,, = 0, then we can 

transform the kinetic equation [ E q .  (19)J, using Eq. (21), to the form 

P 0 in the ( w , ~ )  space with w being the kinetic energy. 

The details of this transformation can be found in Ref. 10. In 

E q .  (22) z is a boundary layer variable defined by z = [Qth/vc(w)]1'3 

<O>b/QthF 96 = 3/ar(<0>b)r- and evaluated along the resonance curve 
- rO 

<8>b = 0. 

We can simplify Eq. (22) by taking ".'BO z w in <r>b9 defining a 

dimensionless poloidal potential by 

e " 1  o r - o - ,  
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and defining a parameter y(v) by 

then the kinetic equation becomes 

E n  Eq.  (25) i is defined by 

We note t h a t  when t h e  dimensionless poloidal potential @ = 0(1), it 

e m s  that t h e  contribution of  the poloidal electric field to <r> is of 

the same order as the magnetic drift contribution. Also, note that in 

Eq. (25) the kinetic energy w is a parameter, and the velocity space 

structure of € is described through the dependence on z ,  which measures 

across t h e  boundary layer around <e> = 0. Finally, we s p l i t  Eq. ( 2 5 )  

into its even and odd parts with respect eo z ,  f - :  4- 
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These must be solved over the range z E [ 0 9 - ) ,  8 E [-n,n]. The 

boundary conditions at z = 0 are af+/az(z  = 0 , e )  = 0, f-(z = Ope) = 0, 

and in the angle 9 we impose periodicity f - ( z , 9  = -a) = f - ( z , 8  = R). 

To determine the boundary conditions as z -$ =) we return to Eq. (25) 

and observe that a particular solution is -z/y. Hence, if we write f = 

-z/y c f then f satisfies 

+ + 

- L 

where x = w/T. If we now define 

then Eq. (29) in the ( @ , e )  space is 

Az z + - ( w  + =) we expect that because all the velocity space 

structure occurs around z = 0, the second derivative term in Eq. (31) 

should be insignificant. If we expand Eq. (31) for large z in the 

smallness of the second derivative, we have, t o  lowest order, f = f o  = 

gcw) .  The function g(w) can be determined from the next order, 

L m a  
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.-. 
by requiring that f1 be single-valued in 8. This gives 

dg - constant 
I- 

dw 

The constant can be determined by requiring that af/az -+ 0 as z .+ 

(that is, f can be peaked around z = Q), and this gives the c o n s t a n t  as 

n/y. Since a/ao = (1/22) W a z ,  we obtain, as z -+ OD, afo /az  - e 

- - N 

(2z)(n/y)(l/$ z $8). We note that afo/3z is even in z ;  hence f0 = f - ,  

the odd part of f .  When the particular solution i s  added back i n ,  we 
c 

o b t a i n  far f'*' 

- 
The boundary condition for f' is obtained by n o t i n g  that, for z .-9 m, El 

must be even and hence fl = f' (since z/y is odd). The solution for fl 

can be obtained from the constraint equation and gives 

- 

n 
H 

d e  means 1 $8. We n o t e  that the boundary conditions involve 

the (as yet) unknown function a. If one species (typically the ions) 

is in the  low-collisionality superbanana regime, then in a single 

ion-elestron plasma, where we can neglect the g u i d i n g  center drif  is of 

t h e  electrons o f f  the f lux  surface, the equation €or is, from 
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where n = <n >, and fl is given by Eqs. (27) and (28) subject 

to the boundary conditions in Eqs. (32) and (33). In Eq. ( 3 4 )  we have 

averaged over a field line since the distribution function fl arises 

from the helically trapped particles, which are bouncing in the helical 

> = <n 
oi oe 

wells much faster than they are drifting off the flux surfaces. 

This equation for dj is a nonlinear differential equation since fl 

depends on M / W  and 0 through the differential equation (25). We note 

that this arises from keeping the electrostatic contribution to <r>b in 

Eq. (25). In Ref. 1 this contribution was neglected in the kinetic 

equation, and this approximation was shown to be consistent because 

then Qi = pi is the poloidal ion gyroradius. 

If this approximation is made, Eq. ( 3 4 )  is a simple algebraic equation 

for Qi. This approximation cannot be made for a stellarator o r  a bumpy 

torus since d! a J c h / ~ h  a In Ti/ar = O(1). For these nonaxisymmetric 

devices in the low-collisionali ty regime, the large orbit width1' 

( l /ch)  as compared to the tokamak (pi ) makes Q! at least O(1). We note 

that we can recover the functional form of the tokamak results of 

8 In Ti/ar << 1, where pi 
P P 

.. 

P 

Ref. 1 by solving Eq. (25) with all the @ terms dropped. This provides 

a useful means to validate the numerical code and illustrate the 

important differences between the tokamak and stellarator/bumpy torus 

cases. The velocity space integral in Eq. ( 3 4 )  is 
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We use the niagnetic field in Eq. (18) t o  obtain -cb/S d l / B  = 

( 2BO/~) (mi/w&h)1/2K(k). We approximate I I in the limit where 

<< QtR, where PExB is the I -  E x B azimuthal drift. Details can he QExB 

found i n  Ref .  1 2 .  Then E q .  ( 3 4 )  becomes 

~n E q .  ( 3 6 )  J&h is the fraction of helically trapped particles, I/EL is 

r e l a t e d  to the orbit width, AI = 3 In m/ar d- a In Ti/k + 

(3e<@>/3r)/Ti, A2 = 2 In Ti /3 r .  The Ai are generalized forces arising 

from the spatial derivative of the Haxwellian. In the z integral, only 

the ff is kept since f -  will integrate to zero. 

I n  order t o  complete the specification o f  @, we need to write y(x) 

explicitly in terms o f  zt and & h e  Along the resonance we can write 
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This causes the function y(x) to be 

where we have used Eq. ( 3 7 )  to obtain Eq. (38) and x P w/T. The 

collision frequency evaluated along the resonance (€0 = 0 is 

where vD(x) is the pitch-angle deflection frequency, vII(x) is the 

parallel velocity diffusion frequency, and J = dlvII is the second s 
2 2  adiabatic invariant. We use the madels &h = E r /a et = & 

ho P' 
This gives 

-2/3 E 

'h0 'thChO 
Y(X) =[>I [XI x2 I3  {(1.04)[1 + erf(x1l2) - G(x1j2)] 

1'2+-2/3 , 
+ 3 . 1 3  G ( x  

where 

2pe-P21 G ( P )  = --$[erfW 1 - .JR * 

The dimensionless csllisionality is .j = [vii/(ch Pth)], where vii is 

the ion-ion collision frequency evaluated at the thermal velocity. In 
0 
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order for the particles to cornplste even the ~ ~ ~ r e ~ ~ n a n t  orbits, we 

require v < 1. I n  E q .  (25) the plasma i s  in the superbanana plateau 

regime when y << 1 [i.e., vll *./(Qthc:/2)Jch >> 11 and in the 

law-csllisionality superbanana regime when y >> 1 [i.e., 

Vii/(Q th E3/2)JEh t << 11. 
In the superbanana plateau regime, Qi can be obtained explicitly 

from Eqs .  (25) and (36). This is because E q .  (25) with y = 0 can be 

so lved  exactly and the integral o f  f ’  over z performed analytically.12 

The result is 

where b is defined by 

In Eq. ( 4 3 )  the first term on the left-hand side C Q ~ C S  from the 

adiabatic contribution [see Eq. (711 and the second term arises from 

the electrostatic contribution to the radial drift <r>b, while the 

right-hand s i d e  arises from the magnetic drift contribution to <r>b. 

Hence, we can clearly see in E q .  ( 4 3 )  that the self-consistent polaidal 

potential is driven by the magnetic drifts, a fact that came easily out 

0% the Lagrangian approach i n  See. T I .  We cain also recover the 
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functional form of fb in the tokamak plateau regime.' If in Eq. ( 4 3 )  we 

neglect the electrostatic term on the left-hand side, we obtain 

cb * 1  = -(A1 - A2)sin 8 , 
% 

( 4 4 )  

whereas the tokamak plateau regime result is Q, a pi A2sin 0. We see 

that in this limit the stellarator result is the same as the tokamak 

result with the replacement of the orbit width pi (the poloidal ion 

gyroradius) with (E&)- . This type of poloidal potential will cause an 

up-down asymmetry in the potential contours. By contrast, if we 

include the self-consistent electrostatic contribution to the radial 

drift, and if it is larger than the adiabatic contribution (which it 

typically is because &h << I), then we obtain 

P 

P 
1 

We note that the parity in Eq. ( 4 5 )  is completely different from the 

expression in Eq. (46 ) .  This poloidal potential will give in-out 

asymmetry, not up-down asymmetry. In addition, we note that the 

potential is a rational function of the generalized forces (hence 

gradients). This will make the first-order distribution function a 

nonlinear function of the generalized forces and, therefore, make the 

fluxes nonlinear functions of the generalized forces. This interesting 

aspect of the poloidal potential was noted in Ref. 2. Its full 

consequences remain to be explored. 
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The simple form in Eq. ( 4 4 )  for the poloidal potential as a sine 

and cosine term is only obviously true in the superbanana plateau 

regime. For y 2 1, it is easy to see from Eqs .  (25) and ( 3 4 )  that i f  

is expanded 

the higher 

result in 

expressible 

in Fourier harmonics, there is no obvious 

harmonics. This is  also clear from the 

Ref. 1, where they found Q = tan(B/2), 

as a sine and cosine term* 

reason to drop 

tokamak banana 

which is not  

IV. DESCRIPTION OF THE 

we have solved the 

range 2 E EO,..), 8 E 

Eqs. (32) and ( 3 3 )  and 

 his has been done 

NUMERICAL METHOD 

kinetic equations [ E q s .  (27)  and (2831 over the  

[ - n , n ] ,  subject to the boundary conditions in 

using Eq. ( 4 0 )  f o r  y(x) and Eq. ( 3 6 )  for i(@). 
a range s f  collisionalitles v. 

The coupled equations [ E q s .  (27) and (28)l were solved by finite 

differencing of the derivative terms and then by solving the coupled 

linear finite difference equations. Typically, 21 grid points were 

taken in the Q direction and 2 1  i n  the z direction. The outer value of 

z ,  zmax, was typically chosen t o  be zmax 3 20. The code was designed 

to solve the equations with and without t h e  terms. If the a i / M  

terms were to be turned o f f ,  the results should be the same functional 

form as obtained f o r  a tokamak. Because the dimensionless energy, x, 

was a parameter in the equations, the equations were solved f o r  a fixed 

value of x. This value of x was chosen to be x = 1 because this is 

where the energy integrand in Eq. ( 3 6 )  was peaked. I n  Fig. 1, we show 

a typical form fo r  f' f o r  y << 1, while in Fig. 2 we show a typical 

form for f f  fo r  y >> I. ~e can clearly see from these tws figures that 

for y >> 1, f' is much more highly peaked than for y << 1. As y 
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Fig. 1. Distribution function f +  for y << 1. 

ORNL-DWG 8 5 - 2 6 5 5  FED 

[ 2 0  

‘ll 

Fig. 2. Distribution function f +  for y >> 1. 
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becomes larger and larger (v .-+ 0), numerical difficulties result 

because the finite difference grid cannot resolve the peak. 

Unfortunately, we can only increase the number of grid points up to a 

point due to memory limitations on the computer. This effectively puts 

a lower limit on the value a€ v that can be considered. In practice, 

this turns out to be about v = 10- . 3 

ecause the set  of Eqs. (27) ,  (28), and (36)  is a coupled, 

nonlinear differential set for dp,  we have solved fo r  8 by iteration. 

Unhappily, the straightforward iteration scheme suggested by Eq. (36 )  

[that is, to evaluate 0 on the left-hand side as the (n+l)th iteration 

if P a t  t h e  nth iteration is used inside f'] is numerically unstable 

and so cannot be used at any v to find a. To circumvent this, Eq. ( 3 6 )  

was coded as a s e t  of nonlinear, coupled algebraic equations, and a 

root finder was called t o  solve t h e  coupled algebraic equations. 

Finally, once @ ( e )  was obtained, i t  was Fourier-analyzed and the 

Fourier coefficients were plotted as functions of collisionality v. 

V. NUMERICAL RESULTS 

The numerical code was exercised in two ways. First, results were 

obtained with the 34/30 terms in the kinetic equations (27) and (28) 

arbitrarily set  to  zero. This case corresponds t o  that of t he  tokamak, 

although only the functional form of $(e) will be the same as the 

tokannak results, not the magnitude. We call these the i'tokamak 

resultsav having the caveat just mentioned, Second, results were 

obtained for the stellarator/bumpy torus case with the 30/30 terms 

fully included. For this case both the functional farm and magnitude 

will be correct. We have called these results the "stellarator 

resul t s . ' 1  
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In Fig. 3 we plot @ ( e )  for the tokamak case fo r  w I: 1. This 

corresponds to y << 1 and is in the plateau regime. As we expect, ib = 

sin 0. This 

Corresponds to y >> 1 and is deep in the banana regime. The result of 

Ref. 1 for this case is i cot(9/2). [They have tan(0/2), but our 

In Fig. 4 we plot ;(e) for the tokamak case for b = IO-*. 

angle variable 8 is shifted by R from theirs.] As was pointed out in 

Ref. 1, the result 9 = cot(W2) has a spurious singularity in it 
1 

because the analytic treatment allows particles to spend an infinite 

amount of time at the banana tips. The numerical solution of the 

kinetic equations has no such problem and correctly includes the fact 

that particles near the banana tips are very likely to collide there 

and hence remove the singularity. We see this in Fig. 4 ,  where the 

ORNL-DWG 85-2656 FED 
20  

10 

3 0  

-10 

- 20 
-77- 0 

8 
7r 

3 .  Poloidal potential @ ( e )  for v = 1. Tokamak case. 
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Pig. 4. 

plotted i 

8 

Poloidal potential #(e) for v = 10- 2 . Tokamak case. 

s the analytic result = eot(8/2). 

Also 

cot(W2) has a singularity at 8 = 0, but the numerical Q! matches 

cot (W2)  away from 8 = 0 but remains finite at 8 = 8. 

In Fig.  5 we Fourier decompose @ as 

(r( 

ancos mQ -I- bnsin 118 

n= 1 

and plot a,/v and bn/v against v for n -. 1, Because i n  the 

plateau regime the distribution function is independent of v and i n  the 

banana regime it varies linearly with v, we expect to find 0 v in the 

banana regime and @ independent of v in the plateau regime., This fact 

i s  borne out by the analytic results of Ref. In the banana regime, 

..., 5.  

1. 
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the dependence of 4 on v arises because the collisions break the 

symmetry of the orbits. The collisionless orbits cannot directly make 

a contribution to ch because the orbit deviation is symmetric about the 

flux surface and hence gives zero net effect. i for i << 1, 
then QB/v should be a constant for small v, and for v = 1 we expect ib/v 

If i 
A P  . I *  

= l / v .  In Fig. 5 we see that at v = 1 there is only a bl term 

corresponding to the sin 8 component of 4 previously mentioned. As v 

decreases, b2/v, b34v, and b5/v start to appear and go to constants, 

indicating that for j << 1, a! 0: b. We note that none of the an's ever 

appear in significant proportions, indicating that the poloidal 

potential maintains its up-down asymmetry over this range of 

callisionality but has no in-out asymmetry. We can also clearly see 

the point made in Sec. I11 that, for v + 0, more and more Fourier 

Pig. 

10 - 3  10-2 10- ' 100 
A 
U 

. . A  

5 .  Fourier components of @/v against v. Tokamak case. 
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harmonics are excited. This arises from the banana shape of the 

orbits. 

In Fig. 6 we plot @(a) for v = 1 for the stellarator case. We see 

the cosine dependence as we would expect since y << 1. We! note that @ 

= O(l), which indicates that the electrostatic effect in <r>b is just 

as important as the magnetic effect. In Fig. 7 we plot a($) for v = 

10- f o r  the stellarator case. In contrast to the tokamak case, i(@) 
looks just like the result for v = 1. This is confirmed in Fig. 8 ,  

where we plot the Fourier components of @ ( e )  against v f o r  the 

stellarator case. We see that all the bn's  remain very small, and the 

only an component that appears is al, which is almost a constant. 

Hence, we find the remarkable result that, at least over the range of 

2 

collisionalities shown here, for a stellarator or bumpy torus the 

poloidal potential retains the simple form of the plateau regime well 

ORNL-BWG 85-2659 FED 

0 
9 

TT 

F i g .  6 .  Poloidal potential i ( e )  for = 1. Stellarator case. 
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into the banana regime. We note also that the poloidal potential is 

only very weakly dependent on the collisionality, in strong contrast to 

the tokamak case. The reason f o r  this remarkable behavior can be 

understood by noting that if 4 (8: cos 0 in Eq. (301, then this 

corresponds to a simple shift in the parameter y so as to reduce it. 

Hence, when the a@/W term is retained in the kinetie equations, the 

particles in the plateau regime continue to make most of the 

contribution to the integrals in Eq. ( 3 6 ) .  Therefore, the poloidal 

potential retains the plateau functional form and magnitude deep into 

the superbanana regime. This interesting result means that the 

potential contours, even deep into the banana regime in the 

stellarator, w i l l  be circular with an in-out asymmetry. In contrast, 

in the tokamak case, the potential contours will be up-down asymmetric 

and possess significant amounts of ellipticity, triangularity, and 

D-shaping. 

VI. CONCLUSIONS 

We have defined the problem of calculating the poloidal potential 

for a stellarator o r  bumpy torus in the low-eollisionality superbanana 

regime. The potential is coupled to the kinetic equation for the 

first-order distribution function, which gives the potential. This 

nonlinear differential set of equations was solved numerically. For 

the tokamak case, the numerical results confirmed the analytic work and 

indicated significant structure to the poloidal potential in the banana 

regime. For the stellarator/bumpy torus case, the numerical results 

indicated that the polaidal potential continues to look like the 

plateau result even into the banana regime. Hence for the stellarator, 
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the structure of the potential remains very simple even into the banana 

regime. 

Future research should include the consideration of the poloidal 

potential in a stellarator having impurities and other physical effects 

that have been found in tokamaks to affect the potential. This 

numerical work indicates that, for the purpose of calculation, the 

electrostatic contribution t o  <r>b has the same magnitude and form as 

the magnetic contribution. This greatly simplifies numerical transport 

simulations. 
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