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Abstract

Multigroup cross sections (66 neutron groups and 22 photon groups) are described for
neutron energies from thermal to 400 MeV. The elements considered are hydrogen, !°B,
1B carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, sulfur, potassium,
calcium, chromium, iron, nickel, tungsten, and lead. The cross section data presented are
a revision of similar data presented previously. In the case of iron, transport calculations
using the earlier and the revised cross sections are presented and compared, and significant
differences are found. The revised cross sections are available from the Radiation
Shielding Information Center of the Oak Ridge National Laboratory.






I. INTRODUCTION

For a variety of applications, e.g., accelerator shielding design,! neutron radiotherapy,?
radiation damage studies,’ etc., it is necessary to carry out transport calculations involving
medium-energy (=20 MeV) neutrons. In a previous paper* (see also Ref. 5), neutron-
photon multigroup cross sections in the ANISN® format for neutrons from thermal to 400
MeV were presented. In the present paper the cross section data presented previously have
been revised to make them agree with available experimental data.

The elements considered (hydrogen, '°B, !B, carbon, nitrogen, oxygen, sodium,
magnesium, aluminum, silicon, sulfur, potassium, calcium, chromium, iron, nickel,
tungsten, and lead) and the basic approximations used in developing the revised cross
sections are the same as those used in Ref. 4. There are, however, two substantive
differences between the data presented here and those given previously. First, except for
sulfur and lead, the revised cross sections at neutron energies below 19.6 MeV are based
on ENDF/B-V’ and on a Ps Legendre expansion, while those in Ref. 4 below 14.9 MeV
were based on ENDF/B-1V and used a P3 Legendre expansion. Second, the elastic cross
sections used here at neutron energies =19.6 MeV have been chosen so that the total, i.e.,
elastic + nonelastic, cross sections agree with experimental data. The elastic cross
sections used previously were based on optical model calculations with global parameters
and, as pointed out by V. Herrnberger,® this led to total cross sections that were not
always in good agreement with experimental data.

In Section II the procedures used to generate the cross sections are discussed and some
cross section data are presented. In Section III the results of transport calculations for an
iron shield using the data from Ref. 4 and those presented here are compared.

The multigroup cross section data described here are available from the Radiation
Shielding Information Center of the Oak Ridge National Laboratory.

II. CROSS SECTION CALCULATIONS
A. Neutron Energies <19.6 MeV

The multigroup cross sections at neutron energies below 19.6 MeV were, except for the
elements sulfur and lead, obtained by collapsing the 174-neutron, 38-photon VITAMIN-E
data library’ that is based on ENDF/B-V. For the elements sulfur and lead, the cross
sections at neutron energies €19.6 MeV are the same as those in Ref. 4 and are therefore
more approximate than the cross sections for the other elements considered here.

The fine-group library was collapsed with ANISNS using a spherical configuration, a
source characteristic of a fusion reactor specirum as specified by R. T. Santoro et al.,!”
weighting functions as specified by R. T. Santoro et al.,!' a symmetric S,, angular
quadrature, and a Ps Legendre expansion of the cross sections.

The energy group boundaries of the multigroup cross sections are shown in Table 1.
The neutron energy group boundaries below 14.9 MeV are the same as those used in Ref.
4. The photon energy group boundaries are also the same as those in Ref. 4, except that a
group has been added above 14 MeV.



Table 1

Energy Group Structure

Upper Group Energy (MeV)

Neutron Groups

Photon Groups

400
375
350
325
360
275
250
225
200
180
160

140
120
110
100
90
80
70
65
60
55
50

45
40
35
30
27.5
25.0
22.5
19.6
17.5
14.9
13.5

12.2

10.0
8.19
6.70
5.49
4.49
3.68
3.01
2.46
2.02
1.65

1.35

1.11

9.07X107!
7.43X107!
4.98X107!
3.34X107!
2.24X107!
1.50X10 !
8.65X1072
3.18 X102
1.50X 1072

7.10X 1073
3.35X1073
1.58Xx1073
4.54X1074
1.01X107¢
2.26X1073
1.07X 1073
5.04X107°
2.38X10°°¢
1.12X1076
4.14X107 72

20.0
14.0
12.0
10.0
8.00
7.50
7.00
6.50
6.00
5.50
5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00
4.00X107!
2.00X 107}
1.00x1071®

The lower energy of this group is 1.00X 107" MeV.
5The lower energy of this group is 1.00X1072 MeV.



B. Neutron Energies 219.6 MeV

At neutron energies >19.6 MeV, the multigroup cross sections described here are based
on intranuclear cascade and optical model calculations as in Ref. 4, supplemented by
experimental data. As explained below, many of the data used here are the same as those
used in Ref. 4.

In Ref. 4 photon production from ncutron-nucleus nonelastic collisions at neutron
energies 214.9 MeV was neglected and similarly here for all elements considered photon
production from neutron-nucleus collisions at energies >19.6 MeV is neglected. Some
information on the validity of this approximation is given in Ref. 12.

For the elements hydrogen, '°B, !'B, sulfur, potassium, calcium, chromium, and
tungsten the multigroup cross section data presented here are the same as those in Ref. 4.

For all other elements considered here, except lead, the neutron-nucleus nonelastic cross
sections and the energy-angle distributions of neutrons from neutron-nucleus nonelastic
collisions are the same as those used in Ref. 4. Also, for these elements the energy-angle
distributions of neutrons from elastic scattering at energies >19.6 MeV are taken to be the

same as those in Ref. 4.

With these specifications the only quantity that remains to be determined is the elastic
scattering cross section as a function of energy. This cross section has been determined by
adjusting it to make the total cross section agree with experimental data.

In Fig. 1 the total cross sections used in compiling the multigroup cross sections
presented here (solid curve) are compared with experimental data.!>?> References to the
various experimental data are given in the figure caption. It should be noted that in Fig. 1
only experimental data at energies >50 MeV are shown. This is not because of the
absence of data points but rather because of the very large number of available data points
make it impractical to reproduce them here. References and graphs of much of the data
available in the 20 to 50 MeV energy range are given in Ref. 26. The value of the total
cross section at an energy of 19.6 MeV for each of the elements shown in Fig. 1 is taken
from ENDF/B-V.” The purpose of Fig. 1 is to indicate the extent to which the solid curve
is determined by available experimental data at energies =50 MeV. For some elements,
e.g., Fe, the total cross section is rather well defined by the experimental points while in
other cases, e.g., Ni, the total cross section is not at all well defined by the experimental
data.

For lead, elastic scattering at energies >19.6 MeV is neglected. There are, however,
some data available on the nonelastic cross section as a function of energy and these data
have been used. In Fig. 2 the solid curves show the neutron-nucleus nonelastic collision
cross sections used in the compilation and the points indicate the experimental data.?”2® In
this case, experimental data in the 20 to 50 MeV energy range have also been shown.

Finally, in Table 2 the elastic and nonelastic cross sections that have been used in the
compilation are given as a function of energy.
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~Table 2

Flastic and Nonelastic Neutron-Nucleus Cross Sections
in Barns as a Function of Energy

Flement Energy (MeV)

19.6 30 50 160 200 300 450

tog 0.96% 0.88 0.63 0.22 0.16 0.23 0.31
0.43 0.38 0.32 0.24 0.20 0.19 0.20

g 0.86 0.85 0.64 0.22 0.18 0.26 0.32
0.46 0.40 0.34 0.25 0.21 0.20 0.22

Carbon 1.03 0.84 0.59 0.24 0.07 0.06 0.08
0.50 0.45 0.36 0.24 0.22 0.22 0.22

Nitrogen 0.98 0.98 0.70 0.28 0.15 0.27 0.38
0.63 0.46 0.39 0.29 0.25 0.24 0.25

Oxygen 1.05 1.06 0.80 0.32 0.24 0.33 0.41
0.61 0.50 0.42 0.33 0.28 0.27 0.28

Sodivm 0.99 1.19 1.03 0.40 0.32 0.43 0.52
0.86 0.69 0.51 0.41 0.35 0.35 0.35

Magnesium 0.95 1.21 1.08 0.43 0.33 0.44 0.53
0.82 0.64 0.52 0.42 0.36 0.36 0.36

Aluminum 0.82 1.22 1.20 0.57 0.14 0.15 0.18
0.97 0.72 0.52 0.43 0.42 0.41 0.41

Silicon 0.93 1.16 1.18 0.57 0.37 0.49 0.58
0.97 0.78 0.59 0.47 0.40 0.42 0.41

Sulfur 1.00 1.26 1.22 0.54 0.41 0.54 0.64
0.93 0.78 0.63 0.51 0.44 0.45 0.44

Potassium 0.97 1.24 1.31 0.61 0.48 0.62 0.72
0.98 0.78 0.69 0.57 0.50 0.50 0.50

Calcium 0.90 1.32 1.32 0.63 0.49 0.63 0.73
1.18 0.98 0.75 0.58 0.51 0.52 0.51

Chromium 0.78 1.25 1.38 0.73 0.6} 0.76 0.87
1.26 1.10 0.71 0.71 0.64 0.64 0.63

Iron 0.97 1.34 1.58 1.07 0.46 0.34 0.25
1.28 0.96 0.86 0.73 0.66 0.66 0.75

Nickel 1.04 1.25 1.41 0.81 0.57 0.50 0.44
1.35 1.25 0.94 0.74 0.68 0.68 0.68

Tungsten 2.52b 1.95 1.70 1.53 1.45 1.50 1.48
Lead 2.50° 2.48 2.40 1.90 1.90 1.90 1.95

aFor each element the elastic cross section is given on the first line and the nonelastic cross section
is given oa the second line.
PElastic scattering at energies = 19.6 MeV is neglected for tungsten and lcad.



C. Multigroup Cross Sections

With the specifications given in Sections I1.A and ILB, multigroup cross sections in the
form nec;(ged for use in the discrete ordinates codes ANISN® and DOT?® and in the
MORSE™ Monte Carlo code may be calculated in a straightforward manner. A

weighting function of "I/E" has somewhat arbitrarily been used for neutron energies =
19.6 MeV.

III. TRANSPORT CALCULATIONS

In Ref. 8 V. Herrnberger proposed a "benchmark" configuration that may be used for
the intercomparison of cross section libraries and computational methods. Here this
configuration has been used to compare transport results obtained with the original iron
cross sections of Ref. 4 and the revised iron cross sections presented here. The original
iron cross sections will hereinafter be referred to as HILO, while the revised iron cross
sections will be referred to as HILO(R1).

Briefly, the benchmark configuration is that of an iron sphere of radius 5 m with a
spherical volumetric isotropic neutron source at its center. The neutron source has a
radius of 5 cm and the neutron energy spectrum is uniform over the energy interval 300 to
400 MeV. The density of iron was taken to be 7.84 g/cm?>.

Calculations for this configuration were carried out using the discrete ordinates code
ANISN® and an S;, angular quadrature. In the HILO(R1) calculations a Ps Legendre
expansion was used at all energies while in the HILO calculations a Ps expansion was used
at energies >14.9 MeV and a P; expansion was used below this energy. In the HILO
library only a P; expansion is available below 14.9 MeV.

In Figs. 3 and 4 the neutron flux per unit energy and the photon flux per unit energy
are shown at various radii in the iron sphere. In Figs. 3 and 4 and in the remainder of this
section all of the transport results are normalized to 1 source neutron per second entering
the system. In both Fig. 3 and Fig. 4 there are noticeable differences in the fluxes
obtained with the original (HILO) and the revised (HILO(R1)) cross sections.

The total scalar neutron and photon flux, i.c., the result of integrating over energy the
fluxes per unit energy in Figs. 3 and 4, are shown as a function of radius in Fig. 5. At the
larger radii the neutron and photon scalar fluxes from the HILO(R1) cross sections are
significantly larger than the fluxes from the original HILO cross sections. The sharp
decreases in the scalar fluxes just before the radius of 500 cm are due to the fact that the
shield thickness is 500 cm and thus the albedo contributions to the fluxes are absent.

The two cross section sets were also used to calculate, as a function of radius, the
absorbed dose and dose equivalent for neutrons and photons. The neutron fluxes were
converted to absorbed doses and dose equivalents with the conversion factors recommended
by the International Commission on Radiological Protection.! The photon fluxes were
converted to doses with the conversion factors recommended by the American Nuclear
Standards Institute.
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The results of the dose calculations are given in Table 3. For both neutrons and

photons the absorbed doses and dose eqmvalcnts from HILO(R1) are larger than those
from HILO at the larger radii.

Iv. SUMMARY

The HILO neutron-photon cross section library has been revised by modifying the
elastic cross section so the total cross section is in agreement with experimental data. The
revised cross sections HILO(R1) should be more accurate and are therefore recommended.
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Table 3

Comparison of Calculated Absorbed Dose and Dose Equivalent Results
in Iren Obtained Using the HILO(R1) and HILO Cross Section Libraries
(The first line in the table for each radius is from HILO(R1) and the second line is from HILO.)

Radius
(cm)

Absorbed Dose
Due to Neutrons

Absorbed Dose
Due to Photons

Dose Equivalent
Due to Neutrons

Dose Equivalent
Due to Photons

mrad/hr mrad/hr mrem /hr mrem/hr
(source newn. /sec.) ‘ (source neu./sec.) (source neu./sec.) (source meu./sec.)

20 5.0X107°3 1.4><1A()‘6 3.7X107* 1.4X107¢
46X107° 1.5X 1076 3.3X107* 1.5X10°¢
60 4.8%X107° 1.5X1077 3.3X1075 1.5X1077
3.2X107°6 1.5X1077 2.2X1073 1.5X1077
100 5.5%X1077 2.1X1078 33.4X107¢ 2.1X1078
2.8X1077 14X10°8 1.8X107¢ 1.4X1078
200 2.1X107° 9.8x10 ! 1.2X1078 9.8x10™H
7.5X10710 4.1x107 1 4.8X107° 4.1x107 1
300 7.0X10712 3.5%10713 3.7X107 1 3.5X10713
2.1X107°12 12xio™13 1.4X107 1 1.2X10713
400 22X10714 1.1X10713 1.1X10713 1.IX10715
5.8X1071 3.3X10716 3.7X10714 3.3X10716
450 1.2X10™1 6.1X10717 6.2X10°15 6.1X10~Y
3.0X 10716 1.7X10717 1.9X10713 1.7X107YV
500 1.2x107 17 6.3X1071° 8.3x107Y7 6.3X1071°
3.8X10718 1.8X107°17 2.8X107Y 1.8X1071
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