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O-THEORY - A HYBRID UNCERTAINTY THEORY
E. M. OBLOW

ABSTRACT

A hybrid uncertainty theory is developed to bridge the
gap between fuzzy set theory and Bayesian inference theory. Its
basis is the Dempster-Shafer formalism (a probability-like,
set-theoretic approach), which is extended and expanded upon so
as to include a complete set of basic operations for manipula-
ting uncertainties in approximate reasoning. The new theory,
operator-belief theory (0T), retains the probabilistic flavor
of Bayesian inference but includes the potential for defining a
wider range of operators like those found in fuzzy set theory.

The basic operations defined for OT in this paper include
those for: dominance and order, union, intersection, complement
and general mappings. A formal relationship between the member-
ship function in fuzzy set theory and the upper probability
function in the Dewmpster-Shafer formalism is also developed.
Several sample problems in logical inference are worked out to
illustrate the results derived from this new approach as well
as to compare them with the other theories currently being
used. A general method of extending the theory using the
historical development of fuzzy set theory as an example is

suggested.






O-THEORY - A HYBRID UNCERTAINTY THEORY
E. M. OBLOW

1) Introduction

The problem of dealing with uncertainty in inferemce and
reasoning processes is a complex and difficult one. The
information available for reasoning is often uncertain,
imprecise, and even vague. Approximate means of dealing with
the propagation of such data through inference models is
crucial to the success of any machine intelligence program. Al-
though no complete solution to this problem is at hand, several
different approaches have been pursued. The use of classical
Bayesian inference theory (BIT) for instance, is one such
approach to this problem which has yielded some success! 2,
More recently, several attempts derived from set-theoretic
formalisms have provided other insights into its solution. The-
se latter methods are represented by Zadeh's fuzzy set theory3
(FST) and Dempster-Shafer belief theory%~® (DST). An excellent
unified review of all three of these theories is presented by
Prade’. Suitable background material for this paper can be
found in this latter review article and the extensive list of
references cited therein. Preliminary presentations of this
paper also suitable for background material appear in Weisbin®8.

In the present article, a different approach to the
uncertainty preblem will be developed. The motivation behind
attempting to develop another approach in this area can better
be understood by taking a closer look at the strengths and
weaknesses of each of the three uncertainty methodologies just
mentioned. For instance, BIT has a strong, well established
probability basis but is weak in its applicability to problems
which are formulated in set-theoretic language. FST, on the
other hand, has a strong and highly developed set theory
background but its basic membership function and set operators

are less intuitive and physical than those using probability



concepts. In between these two extremes lies DST, which has
both a probability and set theory basis. Its strongest point is
the capability of representing such concepts as noncommital and
vacuous belief. On the other hand, however, it lacks the
extensive mathematical developments necessary for more general
applicability. In addition to these observations, it should be
noted that each of these theories gives gquantitatively
different results in application. Bayes' thecreml 4, Dempsters'
combination rule4 and fuzzy set rules for union and intersect-
ion3, the basic laws of BIT, DST and FST, respectively, all are
quantitatively different ways of combining uncertainty informa-
tion. Only in certain limiting circumstances do their results
all tend to converge4'7.

In practice them, it should be clear that all three
theories {(and possibly some new ones) will probably find
extensive use in solving the inference-uncertainty prob-
lem. Satisfaction with inferential results, computational
efficiency, and ease of representation will be the final
measures of success of any of these methodologies in any given
problem area.

In this paper, an attempt will be made to bridge the gap
between FST and BIT using the set-theoretic strengths of the
former and the probability basis of the latter. The focal point
of this new approach will be the DST, which will be extended so
that additional mathematical operators can be used to propagate
uncertainties in a wider range of problems. This hopefully will
eliminate one of DST's perceived weaknesses compared with
FST. The overall approach taken to achieve this synthesis will
be to use the available mathematical developments in FST as a
model for extending DST while retaining the probabilistic
flavor it has in common with BIT. The resulting theory proposed
is, therefore, a hybrid-uncertainty theory using the strengths

of both FST and BIT on an enhanced DST base.



2) Basis for O-Theory

The basic starting point for the development of operator-
belief theory (0T) is DST. A brief ocutline of the primitive
concepts of this theory needed for OT are given here. The
reader is referred to Shafer4 for more details. To begin, use
is made of the set of possibilities 6, with elements Xxje8, and
its power set 29, with elements xe2®. As in DST, a basic
probability mass, mg(x), is assigned to each xe29, with the

function m:28->[0,1], which is normalized by

Z mg(x) = 1 . (1)

xe29

Here, x is a set which is a subset of 6 (i.e. x(C ©) and is,
therefore, also ankelement of 29 (i.e. xeze).

This normalized mass distribution defined on 29 is the
‘uncertainty' or 'belief' representation of 8, which will be
denoted by 8 and referred to as the ‘belief set of 8'. Any
proper subset of 8 which will have a mass distribution assigned
to it will be denoted by an underlined capital letter (e.g. the
set ACO with mass assignment mp(x) will be denoted by A). The
set 8 will generally be used to represent the largest, finite
possibility set under consideration and, therefore, 9 will
represent the largest belief set.

At this point it should be noted that the normalization
given in Egq.(1) represents a departure from DST, in that the
assignment of zero mass to the null element of 28 (i.e. m(g)=0)
is not taken to be such by definition. Mass can be assigned
directly to 6 or it can be acquired as a result of operations
on the set 8. This modification is proposed to allow for the
possibility that the original set ® might not have been a
complete enumeration of all the possible states of the system
under investigation to which mass could be assigned. It also
allows # to be an element of 29 into which conflicting

information can be gathered to represent incompleteness in ©.
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Note here, that the use of a normalized mass distribution
for assignment of mass to elements of the possibility set 2@ as
given in DST, represents an extension of the concepts of
probability thecory, and 0T, therefore, has this extended
probability basis as well. This normalization can also be
interpreted in a2 set theory context in a fashion which ties it
to FST. That is, the pnormalization represents the maximunm
effective cardinality of the possibility set 8, which is
unity. If masses are treated like membership funmctions, this
means that at most only one member (and possibly none if
mg(d)=1) can be the true possibility set member.

Two other constructs from DST will also be used in OT.
These are the upper and lower probabilities denoted here as P
and B, respectively. Their definitions4, slightly modified, are

given for Vx,x'e29, as follows:

Z mg(x') X#P (2)

B{x) = Xx'C x#d
mg{s) x=4 |,

P(x)

1i

1 - B(x) , (3)

where X is the complement of x in 8 and because of the
normalization condition given in Eq. (1), we see that
B(8)=1-m(#), another departure from DST. In this new form we
also see that, in addition to its original DST interpretations,
B(®) can now be used as a measure of the effective cardinality
of 8.

With these definitions, the basic strengths of DST, in
being able to assign mass to any element of the power set of 29
and the ability to have an amount of belief remain uncommited
to any particular element of 29 (i.e. P(x)-B(x)30), are
therefore retained in OT.

Further developments of this new theory will now be made

by extending this basic framework using analogies derived from



the mathematical operators and structures available in FST. 1In
particular a basic set of algebraic operators like the union,
intersection, and complement will be proposed first, structural
relationships will follow, so that order, dominance and
equality can be defined, and finally, a norm will be introduc-
ed.

3) Structural Relations and Norm

In order to develop the tools necessary for comparing the
uncertainties in various possibility sets, some dominance,
order and size relations must first be established. For the
order and dominance relations, this is not as easy a task to
accomplish as it was for FST. That is, the analogy to set
inclusion can not be used in OT, since the probability masses
represent a distribution over the power set 22 and one
normalized distribution is not easily included in another. In
this case then, the concept of the moment of the distribution
was used instead to define an order.

Defining the cardinality of a set x to be |x| (i.e. the
number of elements in the set), the dominance of any one member
x of a belief set @ over any other member x' can be defined in

terms of a cardinality moment as
x Yy x', if mg(x)|x| > mg(x')|x'| , (4)

where » represents dominance, x,x'e2? and the masses of x and
x' in 29 are mg(x) and mg(x') respectively.

In this same vein, the dominance of one belief set A over
another B where both have the same common power set 29, is
defined by

AX B, if Z ma(X)|x| D mp(x) (x| ., (5)
xe2® xe28

W

where mp(x) and mg(x) are the mass assignments of A and B,



respectively, in 29, Equality can also be defined similarly as
A =B, iff mp(x) = mp(x) for WVxe29. (8)

As defined, these relationships set up a partial order in
€ between various power set mass distributions. The more
diffuse the information content of a power set, the more
dominant it is in the order. In the case of all the mass being
assigned to only a single element of 29, two particularly
useful belief sets: E, with m(8}=1, and N with m(éd)=1 can be
defined. With these two new belief sets, it can be seen that,
in an uncertainty context, this order is bounded by them, in
that, inf(@)=N and sup(9)=E. Also in this case of all mass
being assigned to an individual element of 28, the concept of
set inclusion is a limiting case of this order, im that, if
x'Cx then x¥x'.

Finally, the moment sums appearing in Eq.(5) can be
normalized to unity by dividing by the cardinality of the
possibility set to define the concept of a size or norm, / /,

as

/0/ = }: mg(x)|x|/18] . (7)
xeze

The limits of this norm are seen to be: /9/p5x=/E/=1 and

/8/pmin=N=0.

4) Intersection and Union Operations

The most important operators needed for any uncertainty
algebra are those that allow information from various sources
to effectively be combined. In DST, Dempster's rule of combina-
tion? is the only operator available for pooling uncertainty
information. It has very strong intuitive appeal, in that it is
based on both a probabilistic and set-theoretic approach. The

proportionate distribution of mass between possibilities usiang



mass products, which lies at the heart of this scheme, is a
fundamental rule of combination in probability theory4. Set
theory operations are used, on the other hand, to assign the
resulting mass products to each member of the possibility power
set. These two strong points make this rule the best choice for
the first fundamental operator of 0T, that is, the intersection
operator ® . The definition of the intersection operator for
the case C = A(DB, where A, B, and C have power sets 29 with
elements a,b,ce2® and masses ma{a), mg(b) and mg(c) respective-

ly, is therefore, given as

mg(c) = D mala)mp(b) . (8)
afMb=c

where it is easily shown? that Og¢mg(c)<1 and unit normalization
of masses in C is retained.

In this scheme, the mass in any element of C (i.e. mc(c))
is given by the sum of all the mass products in which the
elements a of A and b of B intersect in ¢. This is the essence
of Dempster's combination rule except for the fact that mass is
allowed to fall into the null set ¢ if allb=d. In DST these
resulting masses are renormalized into all the other elements
of C such that mg(d)=0. The advantage of retaining the masses
in ¢ that result from sets which have no intersection, is to
have a measure of the amount of conflict which exists between
the two belief sets being combined. Renormalization masks the
fact that no common ground can be found to combine such
information. In this context alsc, the mass in ¢ can also be
used as measure of the incompleteness of the original possibi-
lity sets.

The choice of a suitable union operator to go along with
the intersection rule above is a difficult one and involves
many compromises in trying to develop the least restrictive
algebra possible. When operator associativity, commutativity,

unit normalization, and nonnegativity of masses are considered



8

essential features of this theory, the choice becomes somewhat
easier. In this light the mass combination rule most akin to
that used in probability and group theory (i.e. mytmp-my*ma),
must be rejected because it violates either one or the other of
the latter two constraints mentioned above in a power set
implementation. The final choice was, therefore, made using the
MAX and MIN operations in FST as an analogy. That is, an upper
and lower bound to the common ground for the pooling of
information was formed with the union and intersection rules of
set theory. This choice of the union operator QD, for the case
C = A@8, was then

me(c) = > mala)mp(b) . (9)
al)b=c

where again because mass products are used, O¢mc{(c)g1 and the
masses retain uwnit normalization in C.

Here, as in Eg.(8), mass products are used to distribute
mass between the possibility sets to be combined, but the
resulting mass, in this case, is assigned to the union of the

subset of the elements being considered and not the intersec-

tion.

Use of the two basic operators @9and GD, together with the
identity belief set E and the null belief set N gives rise to

the following relationships for any belief set @:

s QE =
e QE =

T

(10a)
(10b)

e

for E defined previously as: mg(x)=0 for Vx#0 and mg(8)=1,
and

e
-4
it
|2

(11a)
(11b)

®
on -

@

{



for N defined previously as: mg(x)=0 for Vx#¢ and mg(d)=1.

In summarizing this section, it should be emphasized, that
both the union and intersection operators were defined to use
the same product rule to combine masses so as to preserve
commutativity and unit normalization. It is the use of the set
rules M and U for final placement of these masses in the
resulting power set that distinguished them. In this context,
the use of @ and @ produces upper and lower bounds to the
common ground between the two belief sets being combined. This
role is similar to that played by the MAX and MIN rules in
FST. The OT rules, however, are not distributive in mixed
operations and idempotency is also lost. This yields a somewhat
less general structural base for future developments but one
that appears to be necessary, given the normalization condition

which ties this theory to its probability base.

5) Definition of Complementation

The last basic operation needed to complete OT is
complementation. This concept can be defined by noting that
this theory deals with the power set 29 for mass assignments
and not just the possibility set €. In a conventional power set
context, every element of the power set has a complement which
is also a member of the power set. To preserve mass normaliza-
tion to unity, then, the complement of a belief set 9 is
defined to simply.shift mass between an element in 29 and its

complement in 29 so that
mF(x) = mg(x) , for Vx,xe29 . (12)
That is, for the belief set 8, with mass assignments mg(x) for

vxe29, the complement set representation E, has mass assign-

ments my(x), where md(x) = mg(x) for Vxe29,
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This definition gives results similar to those derived
from FST in the limit of crisp sets, but

in its most general
form it, like FST,

does not preserve the normal set-like rules
for a complement. That is,

e Q8§ # N , (18)

RYX]

-]
W

E (14)

In practical application, however, the normal set results are

closely approximated, as one would want. In addition, De

Morgan's laws and involution, given as follows:

e

AOB = AQ@EB , (15)

e ® ~ ~

A@B = AQB , (16)
F O (17)

are obeyed in all cases.

The pfoof of De Morgan's laws can easily be demonstrated
using either the QD(H?GD operators. In the QD case, for example,
Eq.(8) can be used to define the operation AQB

= C as
meg(c) = Z ma(a)mg(b) , (18)
afb=c
~ Lo
so that using Eq.(12), C = @qyg is then given by
nY(c) = mgl(e) = > mata)mp(p) . (19)

aNb=¢

Noting that the sets a and b are dummy variables in this
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equation, we can switch to a complement notation to get

nEc) = D ma(a)mp(h). (20)
anb=c

Applying De Morgan's rule to the summation index equation and

Eq.{(12) to the masses in the summation, yields

af(c) = D mA(a)mF(b) , (21)
aUb=c

which is identical to C = ZﬁDE, Thus De Morgan's law in the
form &a§é,= zﬁbﬁ, is proven. Similar manipulations prove
Eq.(16).

In summary, a basic set of rules for union, intersection,
and complement which can be used to manipulate power sets with
mass assignments has been proposed. These rules allow operat-
ions to be performed that are not available in DST and should
make further developments possible using FST as a model. Des-
pite some similarities to FST, however, the actual results
obtained with this approach will be different than those
obtained by FST even in very simple cases, as is illustrated

below.

6) Examples and Cbmparison to FST and BIT

To give some idea how the operators defined in the
previous sections might be applied in an approximate reasoning
problem, a simple example in logic will be worked out. This
example was chosen primarily for its simplicity, but it does
illustrate clearly some of the differences between OT, DST, BIT
and FST. In particular, DST cannot be applied to this problem
at all, for reasons to be explained, and FST produces quantita-

tively different results. It also has some potential applicab-
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ility in expert systems, where a strict logical interpretation
of implication rules with uncertainty might prove useful.

Starting with a simple, single element set 8={a} and its
power set 29=(g,0}, the definition of the complement can be
used to reinterpret this set in terms of the logical constants,
T and F (i.e. true and false) if we let 6=T and @g=F. In DST, we
could go no further than this, since the consequent mass
assignments would reqguire mg{p)=0 and therefore mg(9)=1. Any
further operations with such single element sets would leave
these assignments unchanged. An approach to this logic problem
in DST would, for example4, have to start with a minimum of the
two element set 6={T,F}. The relaxation of the normalization
condition in OT, however, allows mass in § resulting in
workable rules for dealing with single element sets. These
rules will be illustrated below using the logical interpretat-
ions of: Q§ as AND, GD as OR, - as NOT, and for the two
belief sets A and B, the operation E@bg as the implication
rule.

Assigning the following masses to the belief sets of A and

B (noting the normalization condition in Eq.(1)):

1>
H
pr g
rrj
]
-
&
jod
A
[1=°]
i
-
w=
-

' (22)

we can look at the consequences of operating on these sets with
the logical constructs, AND, OR, NOT and implication. Note
here, that only a single mass assignment is needed to complete-
ly characterize the belief sets of A or B because of the
definition of the complement and the normalization condi-

tion. The results to follow will, therefore, only deal with the
values of m(T) (i.e. the mass of the T power set element). The

value of m(F) will always be 1-m(T).

A) AND - Equivalent to @®
In Boolean logic, the result C in the operation A AND B=(C
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is represented by the following truth table:

B
F T
F F F
A
T F T

Table 1. Boolean truth table for AND operator.

This table represents the limiting behavior of both OT, BIT and
FST in this simple case as will be seen below.

For the OT case, using the intersection rule given in
Eq.(8) and noting that the masses for T and F add up to unity,
we find that the logical AND result, represented by AQB=C, is
given by

l-mamp mpamp
B = C = { F , T 1} . (23)

1>
Q

That is,

mc(T) mamg . (24)

This is the same result that would be obtained using
BIT when multiplying probabilities pp for A={T} and ppg for
B={T} to get A*B=C. That is,

Pc = DPaPB - (25)

The equivalent result in FST is QF\§=£ for the single
element fuzzy sets éz{T} and g={T}, with membership functions

Ma and up, respectively. That is, the MIN operator in FST is
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used and
e = MIN(ua.pg) . (286)
Both the OT results for mc(T), which are also the BIT
results for pg, and the FST results for Mc(T) are represented
graphically in the form of continuous truth tables in Fig.(1).

As can be seen from this figure, the OT, BIT and FST
results are functions representing the Boolean truth table
given in Table 1. They all have precisely the same limits as
the Boolean results (i.e. as &, p or m approach 0 or 1), and
have qualitatively similar behavior, although the OT and BIT
results are smooth functions, in general, and the FST results
are only piecewise continuons.

Also evident from this example, is the fact that in OT,
with continued application of the D operator in a sequence of
AND operations, the masses in the result will approach a limit
in which mg(é)=1 and mg{(8)=0. This result is typical of OT
results after application of many D operations and reflects
its probability basis. In BIT (i.e. probability theory), the
repeated compounding of probabilities results in monotonically
decreasing results and this is precisely what the OT results
are duplicating. FST, on the other hand, will always be limited
in this compounding effect by the smallest value of the
membership function in the series; it acts like a set operator,
as opposed to a probability operator. Also evident in this
simple example is the almost identical quantitative and
gualitative roles played by the mass and membership func-
tions. This gives an indication that these two concepts can be

related more rigorously.

B) OR - Equivalent to GD
The results for the logical OR can be worked out in a
similar fashion to those presented above. In Boolean logic the
OR operation is represented again by a truth table, which in

this case is



FO

A Ha

= MIN (g, pg)

FST
F B T
0 F8 4
\I T {
:*/_LC:O

pe=0.25
- fg =0.50
=0.75
/LLC l ] =1
Hc

ORNL-DWG 85-16199

Fig. 1. Truth tables for the AND operator in OT and FST example.

Gl
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B
F T
F F T
A
T T T

Table 2. Boolean truth table for the OR operator.

In OT, using Eq.(9) for the nnion rule gives three mass
products for mg(T). This result, rewritten using only the

complement of the single mass product result for mp(F) is
(1-mp)(1-mg) 1-(1-my)(1-mp)
Aa@QB = Cc = F : T } . (27)
That is, the three mass products give
mc(T) = mAmB+mA(1me)+mB(1—mA) = 1—(1-*mA)(1—mB) . (28)
In BIT, the equivalent of the logical OR case depends on
the addition law for probabilities p, and pg. This law

preserves normalization to unity, and for this case is A+B=C.

The BIT result is then

Pc = PA * PB - DAPB » (29)

which can also be seen to be egqual to

Pc = 1 - (1-pp)(1-pg) . (30)

The equivalence of the OT and BIT results in this case is

rather interesting, in that the OT union combination rule uses
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only mass products to obtain its result. OT could not accommo-
date the use of a probability addition rule like Eq.(29) in its
general formulation because of normalization constraints (see
the discussion in Section 4). The same result, however, is
generated by using the set union operation to store three mass
products in the power set element T, which then add up to the
probability rule result.

By way of comparison again, the equivalent FST results are

derived from QLJ§=£, using the MAX operator. That is,

He = MAX(up.pup) (31)

There is no need to graph the results in this case (or for
that matter those for the implication rule which follow), since
they are simply rotations or inversions of the same general
shapes given in Fig.(1). They all have the same limiting
behavior as the Boolean truth tables and the OT (and BIT)
results are the smooth analogs of the piecewise continuous FST
results.

Again, a typical result of OT in general, is obtained in
this case with repeated application of the Q@ operator. When
this is done, the limits are seen to be the reverse of those
seen in the intersection case, in that now we get mg(g)=0 and
mg(6})=1. This is the same limit expected from probability
theory for the addition of probabilities, as is evident from
the equivalence of BIT and OT in this case. FST produces no

such limit due to the nature of the MAX operation.

C) Implication - Equivalent to AQB
As the last part of this example, the strict logical
interpretation of implication as KGDQ, will be used to
highlight the three theories. Although this is a rather
simplistic interpretation of implication (compared to what
might be done otherwise in OT and what has already been

proposed in FST7), it is rather instructive and computationally
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efficient. Current use of certainty factors in expert systemsl
is certainly on a par with this interpretation as far as
computational ease is concerned, although the evidential basis
of certainty factors is far more theoretically developed.

As in the last subsection, a Boolean truth table repre-

senting the limits of the continuous theories for XLJB:C is

given by
B
F T
F T T
A
T F T
Table 3. Boolean truth table for the implication operator

Application of Egs.(9) and (12) in OT to the implica-

tion rule definition gives the following results:

ma(l-mg) 1-mpa(l-mg)
®B - ¢ = | F . T Y - (32)

15>

The value of mg(T) is a result again, in this example,of three

mass products, which when simplified give
mc(T) = 1 ~ mag(1l-mpg) . (33)
Noting that the complement of pp in BIT for this case is
1-pa, the BIT results, using the Eq.(29) as the rule for

addition of probabilities, are again seen to be equivalent to

the OT results. That is, for X+B=C,

pc = 1-pa+tpp-(1-ppA)Pp = 1-PA(1-pp) . (34)
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In FST, the equivalent result is obtained by taking
ELJ§=£, where the complement uses a membership function of 1-pp

for T. This result is simply
Mo = MAX(1-pp,pug) - (35)

A graphical representation of these results are again a
rotation of the behavior shown in Fig.(1). All the comments
made for the union case apply here as well.

Summarizing the results obtained in this simple example,
it should be clear that OT and BIT are strongly connected in a
probability context but differ in the way they obtain similar
results. In this sense, OT uses both arithmetic and set theory
operations while BIT uses arithmetic laws only. The qualitative
similarities between OT and FST are also apparent, in that the

former is a smooth analog of the latter.
7) General Extensions to OT

A) Connection to FST

In order to make it easier to develop additional operators
and concepts in 0T, it is useful to make some formal connection
between the mass, m, and the membership function, wx. The
examples in the last section indicate how these functions are
related in a simple case and lead to the belief that a more
general relationship can be found. Noting the role played by P,
the upper probability in DST (defined in Eq.(3)) and the
membership function & in FST, it was felt that a formal
connection could be made between these two concepts.

In DST, the function P(x) can be interpreted as the
maximum possible belief in the member x of the power set
28 1ts range for any element x is always, O0¢Pgl1, even though
the masses themselves must always sum to unity. The membership
function, likewise, represents a possibility (i.e. for

membership) and also has the same range of values. The
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difference between the two, in this regard, is only that u is
defined on © and P is defined on its power set 2. This

suggests that a formal connection can be made between M4 and P
by restricting P, for this discussion, to the elemental members

of @; the defining relationship is then

1 - E: mg(x') Xij#6
m(xi) = P(xj) = 1-B(Xj) = X'C Xi#6 (36)
1 - mgf{d) Xi=

for Vx;,Xxi690 and vx'e29,
Using the definition of B(x) given in Eq.(2), the same
restriction (i.e. x;€8) can be made, giving a relationship

between ﬁ(xi) and B(%i) which is similarly seen to be
H(xi) = 1 -p(x3) = B(xy) . (37)

Although no unique inverse relationship can be postulated
between masses m(x) and membership functions HM(x) using
Eq.(36), the above relationships do provide a useful way of
comparing theoretical developments and results between OT (and

for that matter DST) and FST.

B) Extension to mappings

As an example of the process of extending the range of
applicability of OT, the definition of a general mapping rule
with uncertainty will be proposed here. As with most of the
developments which will be derived from this theory, an
analogous path to the extension of FST will be taken. That is,
set theory rules will be expanded with the role of membership
functions being played by masses.

Looking first at the definition of a general set mapping
rule f:a—>b, with a,bC 8. We note that, if ajea and bjeb, then
the mapping f gives bjef{ai}. In general then, f{aj} is a set

with cardinality greater than unity and the mapping is
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characteristically an element-to-set mapping. If we now define
b, to be the union of the elements in the set f{aj} (the union
of f being denoted by Uf), we see that bye2B. One generaliza-
tion of this mapping for OT power sets with mass assignments is
now suggested (although this choice is certainly not unigue).
Thus, define the general belief set mapping F:A-->B, with
A and B having elements ae2A, be2B and masses mp(a) and mp(b),
respectively, such that, for each a mapped into b, if ae2Af and
be2B, then beF{a). Now, letting the union of the elements of
F{a} be by, as before, we see that baezB and this particular
function can be used to obtain the mass assignments for this
mapping. That is, in assigning mass for F:A-»B, use the
function {bz}= UF{a} so that. the mass mpg(b) in 2B can be

defined as

Z ma(a) V¥bye2bB
ba= (38)

0 otherwise |,

B

w
—
o
—

i

with the following mapping and function definitions:
F : 2A->2B,  (b,} = UF{a} and ae2”, b,b,e2B . (39)

Since by is represented by the relationship in Eq.(39), it

is also clear that

> mp(v) = Y. > mata) = o1, (40)

be2B be2B b,-b

and the final mass distribution in 2B is normalized to unity as
it was in 24,

In essence, the OT mapping rule replaces the element-to-
set nature of the general set mapping rule in 0 with an

element-to-element function in 29, This route was taken so that
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a normal set mapping rule could be used directly in 0T without
modification of its definition to distribute set masses
appropriately. The rule-of-thumb used here was: collect mass
into a set common to all the elements mapped into if no further
information was available from the mapping definition to do
otherwise. This decision converts mappings to functions,
preserves normalization to unity and gives rise to a larger
class of mappings in OT which will have unique inverses. The
generalized rule should also provide another means of attacking
the problem of uncertainty propagation in expert systems, in
that the implication rule can altermatively be though of as a
general mapping (i.e element-to-set). Future development
in OT will be required, however, to bear this conjecture out.
Before concluding, a simple example of an OT mapping will
be given to make the concept easier to understand in prac-
tice. For the case of ©={(xq1,X2}, the particular mapping
example: F:A->B with A and B having elements in 20 and
respective mass assignments ma(x) and mg(x), will be represent-

ed in 29 by the following figure:

A B
(8) . mp(8) s {#},mp(6)
{x1}.mp{xq) {x1}.mp(xq)
{x0} ,mpy(x2) {x2},mg(x2)
{6} .mp(0) {e}y.mg(0)

Figure 2. OT representation of the mapping F:2A->2B,

and the element mapping rule

F{d}={8}), F{xy1}={x1,x2.,8}, F{xo}={x1}, F{0}={xg,8} . (41)

Using the OT mapping rule given in Egs.(38) and (39), this

mapping gives rise to the particular function by, in which the



23

following relationships hold:

bg={B8}= UF{8}, by={08}= UF{x1} ,
bo={x1}= UF{xg}, bg{8}= UF{8)} . (42)

If by is used now to distribute masses, the following figure

can be used to represent this function and its final results:

A B
{8} ,mp(8) >~ {d}.mp(B)=mp(d)
{x1},ma(x1) {x1},mg(x1)=mpa(x2)
{x2)},mp(x2) » {x2},mg(x2)=0
{8} ,ma(0) {0}, mg(8)=mpa(x1)+my(9)

Figure 3. Final OT results for the mapping F:2A-»>28,

Note here that the final form of the mapping is a simple
function and the mass distribution in 2B is normalized to
unity. Also, as alluded to previously, this simple case might
be useful in expert systems if the set 0 were chosen to be
8={T,F} and the implication rule translated using such a

general mapping.

8) Conclusions

A hybrid uncertainty theory has been developed to bridge
the gap between fuzzy set theory and Bayesian inference
theory. Its basis is the Dempster-Shafer formalism (a probabi-
lity-like, set-theoretic approach), which has been extended and
expanded upon so as to include additional basic operations for
manipulating uncertainties in approximate reasoning. The new
theory, operator-belief theory (0T), retains the probabilistic
flavor of Bavesian inference but includes the potential for
defining a wider range of operators like those found in fuzzy

set theory.
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The basic operations defined for OT in this paper include
those for: dominance and order, union, intersection, complement
and general mappings. A formal relationship between the member-
ship function in fuzzy set theory and the upper probability
function in the Dempster-Shafer formalism was also developed.
Several sample problems in logical inference were worked out to
illustrate the results derived from this new approach as well
as to compare them with the other theories currently being
used. A general method of extending the theory using the
historical development of fuzzy set theory as an example was
suggested.

Future development of OT will concentrate on devising
efficient computational algorithms for its implementation in
expert or rule-based system applications. The OT union and
intersection rules seem to have a natural basis in matrix
algebra and are highly suitable for implementation in concur-
rent algorithmic form on a hypercube computer. Additional work
is also needed in defining suitable projection operators for
making decisions on the basis of power set mass assignment
results. Definitions for suitable direct addition and subtrac-
tion operators are also needed so that evidence and belief can
be gathered and combined to form an initial power set mass
assignment.

The theory will be extensively tested inm its current form
as part of the Oak Ridge National Laboratory CESAR program in
robotics and machine intelligenceg. It has applicability in
this program's planning, sensor fusion, vision and expert

system efforts.
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