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0-THEORY - A HYBRID UNCERTAINTY THEORY 

E. M. OBLOW 

ABSTRACT 

A hybrid uncertainty theory is developed t o  bridge the 

gap between fuzzy set theory and Bayesian inference theory. Its 

basis is the Dempster-Shafer formalism (a probability-like, 

set-theoretic approach), which is extended and expanded upon s o  

a s  to include a complete set of basic operations for manipula- 

ting uncertainties in approximate reasoning. The new theory, 

operator-belief theory (OT), retains the probabilistic flavor 

o f  Bayesian inference but includes the potential for defining a 

wider range of operators like those found in fuzzy set theory. 

The basic aperations defined for OT in this paper include 

those for: dominance and order, union, intersection, complement 

and general mappings. A formal relationship between the member- 

s h i p  function in fuzzy set theory and the upper probability 

function in the Deapster-Shafer formalism is also developed. 

Several sample problems in logical inference are worked out t o  

illustrate the results derived from this new approach as well 

a s  to compare them with the other theories currently being 

used. A general method of extending the theory using the 

historical development o f  fuzzy set theory as an example is 

suggested. 

V 
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0-THEORY - A HYBRID UNCERTAINTY THEORY 

E. M. OBLOW 

1) Introduction 

The problem of dealing with uncertainty in inference and 

reasoning processes is a complex and difficult one. The 

information available for reasoning is often uncertain, 

imprecise, and even vague. Approximate means o f  dealing with 

the propagation of such data through inference models is 

crucial to the success of any machine intelligence program. A l -  

though no complete solution to this problem is at hand, several 

different approaches have been pursued. The use of  classical 

Bayesian inference theory (BIT) f o r  instance, is one such 
approach to this problem which has yielded some s ~ c c e s s l ~ ~ .  

More recently, several attempts derived from set-theoretic 

formalisms have provided other insights into its solution. The- 

se latter methods are represented by Zadeh's fuzzy set theory3 

(FST) and Dewpster-Shafer belief (DST). An excellent 

unified review of all three of these theories is presented by 

Prade7. Suitable background material for this paper can be 

found in this latter review article and the extensive list of 

references cited therein. Preliminary presentations of  this 

paper also suitable for background material appear in Weisbing. 

I n  the present article, a different approach to the 
uncertainty problem will be developed. The motivation behind 

attempting to develop another approach in this area can better 

be understood by taking a closer look at the strengths and 

weaknesses of each of the three uncertainty methodologies just 

mentioned. For instance, BIT has a strong, well established 

probability basis but is weak in its applicability to problems 

which are formulated in set-theoretic language. PST, on the 

other hand, has a strong and highly developed set theory 

background but its basic membership function and set operators 

are less intuitive and physical than those using probability 
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concepts. In between these two extremes lies DST, which has 

both a. probability and set theory basis. Its strongest point is 

the capability of representing such concepts a s  nanconmital and 

vacuous belief. On the other hand, ho  ever, it lacks the 

extensive mathematical developments necessary for ore general 

applicability. In addition to these observations, it should b e  

noted that each sf these theories gives quantitatively 

different results in application. Bayes' thecrem1$4, Dempsters' 

combination rule4 and fuzzy set rules for union and intersect- 

ion3, the basic laws of BIT, DST and F S T ,  respectively, all are 

quantitatively different ways of combining uncertainty informa- 

tion. Only in certain limiting circumstances do their results 

all tend to ~0nverge4J. 

In practice then, it should be clear that all three 

theories (and possibly some new ones) will probably find 

extensive u s e  in solving the inP@rence-uncertainty prob- 

lem. Satisfaction with inferential results, computational 

efficiency, and ease of representation will be the final 

easures of success of any of  these methodologies in any given 

problem area. 

In this paper, an attempt will be made to bridge the gap 

between P S T  and B I T  using the set-theoretic strengths of the 

former a n d  the probability basis of  the latter. The focal point 

of this new approach will be the DST, which will be extended s o  

t h a t  additional mathematical operators can be used to propagate 

uncertainties in a wider range of problems. This hopefully will 

eliminate one of DST's perceived weaknesses compared 

FST. The overall approach taken to achieve this synthesis will 

be to u s e  the available nathe atical developments in FST as a 
model f o r  extending D S T  while retaining the  probabilistic 

flavor it has in c o m m o n  with BIT. The resulting theory proposed 

is, therefore, a hybrid-uncertainty theory using the strengths 

o f  both FST and BIT on an enhanced DST base. 
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2 )  Basis f o r  0-Theory 

The basic starting point for the development of operator- 

belief theory (OT) is DST. A brief outline of the primitive 

concepts of this theory needed f o r  OT are given here. The 
reader is referred to Shaferl for more details. To begin, use 

is made of the set of possibilities 8, with elements xie8, and 

its power set 2°, with elements ~ € 2 ~ .  As in DST, a basic 

probability mass, me(x), is assigned to each x e 2 O ,  with the 

function m:28-+[0,1], which is normalized by 

me(x) = 1 . 
xe2Q 

Here, x is a set which is a subset of 0 (i.e. x C e )  and is, 

therefore, also an element of 28 (i.e. ~ € 2 0 ) .  

This normalized mass distribution defined on 2 8  is the 

'uncertainty' or 'belief' representation of 8, which will be 

denoted by and referred to as the 'belief set of 0 ' .  Any 

proper subset of  0 which will have a mass distribution assigned 

to it will be denoted by an underlined capital letter ( e . g .  the 

set A C B  with mass assignment mA(x) will be denoted by A _ ) .  The 

set 9 will generally be used to represent the largest, finite 

possibility set under consideration and, therefore, will 

represent the largest belief set. 

At this point it should be noted that the normalization 

given in Eq.(l) represents a departure from DST, in that the 

assignment of  zero mass to the null element o f  Z 8  (i.e. m(b)=O) 

is not taken to be such by definition. Mass can be assigned 

directly to B or it can be acquired as a result of operations 

on the set 0 .  This modification is proposed t o  allow for the 
possibility that the original set 8 might not have been a 

complete enumeration of all the possible states of the system 

under investigation to which mass could be assigned. It also 

allows b to be an element of 2* into which conflicting 

information can be gathered to represent incompleteness in 8 .  
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Note here, that the use of a normalized a s s  distribution 

f o r  assignment of mass t o  elements of the possibility set 2 O  as 

given in DST, represents a n  extension o f  the concepts of 

probability theory, and O‘P, therefore, has this extended 

probability basis a s  well. This normalization can a l s o  be 

interpreted in a. set theory context in a fashion which ties it 

t o  FST. That is, the normalization represents the maxi 

effective cardinality o f  the possibility set $ ,  which is 

unity. I f  masses are treated like membership functions, this 

e a n s  that at most only one member ( a n d  possibly none if 

0 ( 8 ) = 1 )  can be the t r u e  possibility s e t  member. 

Two other constructs from DST will also be used in OT. 

These a r e  the upper and lower probabilities denoted here as P 

a n d  8 ,  respectively. Their definitions4, slightly modified, are 

given for V X , X ‘ E ~ * ,  a s  follows: 

xZd 

x=8 , 

where is the complement o f  x in % and because o f  the 

normalization condition given in Eq.(l), we see that 

B(e)-l-m(d), ariothes departure from DST. In this new form we 

also s e e  that, in addition to its original DST interpretations, 

B ( 0 )  can now be used as a measure of the effective cardinality 

of e. 
With these definitions, the basic strengths of DST in 

being able to assign mass to any element of  the power set of 28 

and the ability to have an amount o f  belief remain uncommited 

to any particular element o f  28 (i,e. P ( X ) - B ( X ) > O ) ,  are 

therefore retained in OT. 

Further developments of this new theory will now b e  made 

by extending this basic framework using analogies derived f r o m  
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the mathematical operators and structures available in FST. In 

particular a basic set of algebraic operators like the union, 

intersection, and complement will be proposed first, structural 

relationships will follow, s o  that order, dominance and 

equality can be defined, and finally, a norm will be introduc- 

ed. 

3) Structural Relations and Norm 

In order t o  develop the tools necessary for comparing the 

uncertainties in various possibility sets, some dominance, 

order and size relations must first be established. For the 

order and dominance relations, this is not as easy a task to 

accomplish as it was for FST. That is, the analogy to set 

inclusion can not be used in OT, since the probability masses 

represent a distribution over the power set 26 and one 

normalized distribution is not easily included in another. In 

this case then, the concept o f  the moment o f  the distribution 

was used instead to define an order. 

Defining the cardinality of a set x to be 1x1 (i.e. the 

number of elements i n  the set), the dominance of  any one member 

x of a belief set g over any other member x' can be defined in 
terms of a cardinality moment a s  

where ) represents dominance, x,x'82* and the masses o f  x and 

x' in 2* are me(x) and me(x') respectively. 

In this same vein, the dominance of one belief set A_ over 

another B_ where both have t h e  same common power set 2 O ,  is 

defined by 

where m A ( x )  and ~ B ( x )  are the mass assignments o f  A_ and 5, 



respectively, in 2 8 .  Equality can also b e  defined similarly as 

As defined, these relationships set up a partial order in 

€l- between various power set mass distributions. The more 

diffuse t h e  information content of a power set, the 

dominant it is in t h e  order. I n  the case of all the mass being 

assigned t o  only 3 single element of 2 9 ,  two particularly 

useful belief sets: E ,  with m ( O ) = l .  and N- ith m ( f 5 ) = 1  can be 

defined. With these two new belief sets, it can be seen that, 

in an uncertainty context, this order is bounded by them, in 

that, inf(e)=N_ and sup(B_)=E_ .  A l s o  in this case of  all mass 

being assigned t o  a n  individual element of 2@, the concept o f  

set inclusion is a limiting case o f  this order, in that, if 

x ’ c x  then x b x ’ .  

Finally, the moment s u m s  appearing in Eq.(5) can b e  

normalized to unity by dividing by the cardinality o f  the 

possibility set to define the concept o f  a size o r  norm, / / ,  

a s  

The limits o f  this norm are seen to be: /g/max=/E/=l and 

/B_./*in=E=0. 

4 )  Intersection and IJnion Operations 

The most important operators needed for any uncertainty 

algebra are those that allow information from various sources  

to effectively be combined. In DST, Dem s t e r ‘ s  rule of combina- 

tion4 is the only operator available f o r  pooling uncertainty 

information. It has very strong intuitive appeal, in that it is 

based o n  both a probabilistic and set-theoretic approach. The 

proportionate distribution o f  mass between possibilities using 
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mass products, which lies at the heart of this scheme, is a 

fundamental rule of combination in probability theory4. Set 

theory operations are used, on the other hand, to assign the 

resulting mass products to each member o f  the possibility power 
set. These two strong points make this rule the best choice for 

the first fundamental operator o f  OT, that is, the intersection 

operator a .  The definition o f  the intersection operator for 

the case C_ = &OB_, where A,, E, and C_ have power sets 2 9  with 

elements a,b,ce2* and masses mA(a), mB(b) and mc(c) respective- 

ly, is therefore/ given as 

a f l  b=c 

where it is easily shown4 that 06mC(c),(l and unit normalization 

of  masses in C_ is retained. 

In this scheme, the mass in any element of (i.e. mc(c)) 

is given by the sum of all. the mass products in which the 

elements a of A_ and b of  B_ intersect in c .  This is the essence 

of Dempster's combination rule except for the fact that mass is 

allowed to fall into the null set b if a n b = d .  In DST these 
resulting masses are renormalized into all the other elements 

of  C I such that m C ( d ) = O .  The advantage of retaining the masses 

in al that result from sets which have no intersection, is to 

have a measure o f  the amount of conflict which exists between 

the two belief sets.  being combined. Renormalization masks the 

fact that no common ground can be found to combine such 

information. In this context also, the mass in el can also be 

used as measure of the incompleteness o f  the original. possibi- 
lity sets. 

The choice of a suitable union operator to g o  along with 

the intersection rule above is a difficult one and involves 

many compromises in trying to develop the least restrictive 

algebra possible. Whey operator associativity, commutativity, 

unit normalization, and nonnegativity of  masses are considered 
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essential features o f  this theory, t h e  choice becomes somewhat 

easier. In this light the mass combination rule m o s t  akin to 

that used in probability and group theory (i.e. l + m Z - " 1 * m 2 ) ,  

must h e  rejected because it violates either one or the other of 

t h e  latter two constraints mentioned above in a power set 

implementation. The final choice was, therefore, made using the 

MAX and M I N  operations in PST as a n  analogy. That i s ,  a n  upper 

and lower bound t o  the common ground for the pooling o f  

information was formed with t h e  union and intersection rules of 

set theory. This choice o f  the union operator , for the case 

C- = A@N_, was then 

a U b-a: 

where again because mass products are used, O ( m ~ ( c ) < l  and the 

masses retain unit normalization in c.a 
Here, a s  in Eq.(8), m a s s  p r o d u c t s  are used to distribute 

mass between the possibility sets t o  be combined, but the 

resulting mass, in this case, is assigned to the union of the 

subset of the elements being considered and not the intersee-. 

tion. 

Use of the two basic operators @ and 0 ,  t.ogether with the 
identity belief set E- and the null belief set N gives rise to 

the following relationships for any belief set E: 

% @ E .  = & . ,  

for defined previously as: m0(x)=o for v x f e  and 1 y l ~ ( e ) = 1 ,  

and 



for N, defined previously as: me(x)=O for Vx+B and m6(6)=1. 

In summarizing this section, it should be emphasized, that 

both the union and intersection operators were defined to use 

the same product rule to combine masses s o  as to preserve 

commutativity and unit normalization. I t  is the use of  the set 

rules n and U for final placement o f  these masses in the 

resulting power set that distinguished them. In this context, 

the use of 0 a n d 0  produces upper and lower bounds to the 

common ground between t h e  two belief sets being combined. This 

role is similar to that played by the MAX and M I N  rules in 

PST. The OT rules, however, are not distributive in mixed 

operations and idempotency is also lost. This yields a somewhat 

less general structural base for future developments but one 

that appears to be necessary, given the normalization condition 

which ties this theory to its probability base. 

5 )  Definition of Complementation 

The last basic operation needed to complete OT is 

complementation. This concept can be defined by noting that 

this theory deals with the power set 26 for mass assignments 

and not just the possibility set 6. In a conventional power set 

context, every element o f  the power set has a complement which 

is also a member of the power set. To preserve mass noraaliza- 

tion to unity, then, the complement of a belief set is 

defined to simply shift m a s s  between an element i n  2* and its 
complement in 2e s o  that 

That is, for the belief set with mass assignments me(x) f o r  
V x e 2 9 .  the complement set representation g, has mass assign- 

ments m s . ( x ) ,  where in9(x)  = me(;() f o r  VxaZe. 
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This definition gives results similar to those derived 

from F S T  in the limit of crisp sets, but in its ost general 

fora it, like FST, does not preserve the normal set-like rules 

f o r  a complement. That is, 

In practical application, however, the normal set results are 

closely approximated, as one would want. In addition, De 

Morgan's laws and involution, given as follows: 

are obeyed in all cases. 

The proof of De Morgan's laws can easily be demonstrated 
using either the O o r  0 operators. In the case, f o r  example, 

Eq.(8) can be u s e d  to define the operation = C_ a s  

. r -  

s o  that using E q . ( l P ) ,  C_ = A_Oa i s  then given by 

Noting that the sets a and b are du my variables in this 
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equation, we can switch to a complement notation to get 

Applying De Morgan's rule to the summation index equation and 

Eq.(12) to the masses in the summation, yields 

which is identical to 

form A ~ E  = ~ Q E ,  is proven. Similar manipulations prove 

Eq. ( 1 6 ) .  

= XQH. Thus De Morgan's law in the 

In summary, a basic set o f  rules f o r  union, intersection, 
and complement which can be used to manipulate power sets with 

mass assignments has been proposed. These rules allow operat- 

ions to be performed that are not available in DST and should 

make further developments possible using FST as a model. Des- 

pite some similarities to FST, however, the actual results 

obtained with this approach will be different than those 

obtained by FST even in very simple cases, as is illustrated 

below. 

6 )  Examples and Comparison to FST and BIT 

To give some idea how the operators defined in the 

previous sections wight be applied in an approximate reasoning 

problem, a simple example in logic will be worked out. This 

example was chosen primarily for its simplicity, but it does 

illustrate clearly some of the differences between OT, DST, BIT 

and FST. In particular, DST cannot be applied to this problem 

at all, f o r  reasons to be explained, and FST produces quantita- 
tively different results. It also has some potential applicab- 
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ility in expert systems, where a strict logical interpretation 

o f  implication rules with uncertainty might prove useful. 

Starting with a simple, single element set @ = ( a )  and its 

power set 2 ° = { $ , Q } ,  the definition of the complement can be 

used to reinterpret this set in ter s o f  the logical constants, 

T and F (i.e. true and false) if we let 8--T and d - F .  I n  DST, we 

could go no further than this, since the consequent mass 

assignments would r e q u i r e  a e ( b ) = O  and therefore w g ( 8 ) = 1 .  Any 

Curther operations with such single element sets would leave 

these assignments unchanged. An approach to this logic proble 

Id, for example4, have to start with a m i n i m u  

two element set Q={T,P). The relaxation o f  the normalization 
condition in OT, however, allows mass in PI resulting i n  

workable rules for dealing with single element sets. These 

rules will be illustrated below using the logical interpretat- 

ions of: a as A N D ,  &3 as O R ,  * as N O T ,  and f o r  the two 
belief sets A_ and B_, the operation as the implication 

rule. 

Assigning the following masses to the belief sets o f  A_ a n d  

3- (noting the normalization condition in Eq.(l)): 

we can look at the consequences of operating o n  these sets with 
the logical constructs, AND, OR, NOT and implication. Note 

here, that only a single mass assignment is needed to complete- 

ly characterize the belief sets o f  & or B_l because of the 

definition o f  the complement and the normalization condi- 

tion. The results to follow will, therefore, only deal with the 

IT) (i.e. the mass of  the T power set element). T h e  

value o f  m ( F )  will always b e  1-m(T). 

A )  A N D  - ~quivalent to 0 
In Boolean logic, the result C in the operation A A N D  B = G  
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is represented by the following truth table: 

B 

P T 

F 

T 

Table 1. Boolean truth table € o r  AND operator. 

This table represents the limiting behavior of both OT, BIT and 

FST in this simple case as will be seen below. 

For the OT case, using the intersection rule given in 

Eq.(8) and noting that the masses f o r  T and F add up to unity, 
we find that the logical AND result, represented by A,@B_=C_, is 

given by 

That is, 

This is the same result that would be obtained using 

BIT when multiplying probabilities PA f o r  A={T} and p s  f o r  
B=(T} to get A*B=C. That is, 

The equivalent result in FST is L$E=s f o r  the single 

element fuzzy sets &={T) and g={T}, with membership functions 

&LA and p ~ ,  respectively. That is, the MIN operator in F S T  is 
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used and 

PC Z= MIN(PAtFBI (26) 

Both the OT results for e@(T), which a r e  also the 

results for pc, and the FST results for pc(T) are represented 

graphically in the f o r  of continuous truth tables in Fig.(l). 

A s  can be seen Trow this figure, the OT, BIT and FST 

results are functions representing the Boolean truth table 

given i n  Table 1 .  They all have precisely the same limits a s  
the Boolean results (i.e. a s  g ,  p or m approach 0 o r  l ) ,  and 

have qualitatively similar behavior, although the OT and BIT 

results are smooth functions, i n  general, and the PST results 

are only piecewise continuous. 

Also evident f r o m  this example, is the fact that in O T ,  

with continued application of  the 0 operator in a sequence of 
A N D  operations, the masses in the result will approach a limit 

in which m~(d)=l and me(8)=0. This result is typical of OT 

results after application o f  many a operations and reflects 
its probability basis. In B I T  (i.e. probability theory), the 

repeated compounding of probabilities results in monotonically 

decreasing r e s u l t s  and this is precisely what the 0'1' results 

are duplicating. PST, on the other hand, will always be limited 

in this compounding effect by the smallest value o f  the 

membership function in the series; it acts like a set operator, 

a s  opposed to a probability operator. Also evident in this 

simple example is the almost identical quantitative and 

qualitative roles played by t h e  mass and embership func- 

tions. This gives an indication that these ~ W Q  concepts can be 

related more rigorously. 

B )  OR - Equivalent to 6) 
The results f o r  the logical OR c a n  be worked out in a 

similar fashion to those presented above. In Boolean logic t h e  

OR operation is represented again by a truth table, which in 

this case is 
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A 

*r 

B 

F T 

F F T  
T T 

Table 2. Boolean truth table for the OR operator. 

In OT, using Eq.(9) f o r  the union rule gives three mass 

products f o r  mc(T). This result, rewritten using only the 

complement of the single mass product result for 

T h a t  is, the three m a s s  products give 

In BIT, the equivalent of the logical OR c a s e  depends on 

t h e  addition law for probabilities p~ and p g .  This law 

preserves normalization t o  unity, and for this case is A + B = C .  

The BIT result is then 

which can also be seen to be equal to 

T h e  equivalence of the OT and BIT results in this c a s e  is 

rather interesting, in that the OT union combination rule u s e s  
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only mass products to obtain its result. OT could not accommo- 

date the use of a probability addition rule like Eq.(29) in its 

general formulation because of normalization constraints (see 

the discussion in Section 4 ) .  The same result, however, is 

generated by using the set union operation to store three mass 

products in the power set element T, which then add up to the 

probability rule result. 

By way of comparison again, the equivalent FST results are 

derived from hUE=$, using the MAX operator. That is, 

There is no need to graph the results in this case ( o r  for 
that matter those for the implication rule which follow), since 

they are simply rotations o r  inversions o f  the same general 

shapes given in Fig.(l). They all have the same limiting 

behavior as the Boolean truth tables and the OT (and BIT) 

results are the smooth analogs o f  the piecewise continuous FST 

results. 

Again, a typical result o f  OT in general, is obtained in 

this case with repeated application of  the &3 operator. When 

this is done, the limits are seen to be the reverse of those 

seen in the intersection case, in that now we get me(d)=O and 

m e ( 8 ) = 1 .  This is the same limit expected from probability 

theory for the addition o f  probabilities, as is evident from 
the equivalence of BIT and OT in this case. FST produces no 

such limit due to the nature of the M A X  operation. 

C) Implication - Equivalent to g@B_ 
As the last part o f  this example, the strict logical 

interpretation o f  implication as goB_, will be used t o  

highlight the three theories. Although this is a rather 

simplistic interpretation of implication (compared to what 

might be done otherwise in OT and what has already been 

proposed in F S T Y ) ,  it is rather instructive and computationally 
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efficient. Current use of certainty factors in expert systemsl 

is certainly on a par with this interpretation as  far as 

computational ease is concerned, although the evidential basis 

of certainty factors is far more theoretically developed. 

As in the last subsection, a Boolean truth table repre- 
% 

senting the limits of the continuous theories for A U B = C  is 

given by 

B 

F T 

Table 3 .  Boolean truth table for the implication operator 

Application of Eqs.(9) and (12) in OT to the implica-- 

tion rule definition gives the fallowing results: 

The value of mc(T) is a result again, in this example,of three 

mass products, which when simplified give 

Noting that the complement o f  PA in B I T  for this case is 

l - p A ,  the BIT results, using the Eq.(29) a s  the rule for 

addition of probabilities, are again seen t o  be equivalent to 

the OT results. That i s ,  for A + R = C ,  
4r 
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In PST, the equivalent result is obtained by taking 
& AUg=g, where the complement uses a membership function of 1-PA 

for T. This result is simply 
Lc 

A graphical representation of these results are again a 

rotation of the behavior shown in Fig.(l). All the comments 

made f o r  the union case apply here as well. 
Summarizing the results obtained in this simple example, 

it should be clear that OT and BIT are strongly connected in a 

probability context but differ in the way they obtain similar 

results. In this sense, OT uses both arithmetic and set theory 

operations while BIT u s e s  arithmetic laws only. The qualitative 

similarities between OT and FST are also apparent, in that the 

former is a smooth analog of the latter. 

7) General Extensions to OT 

A )  Connection to FST 

In order to make it easier to develop additional operators 

and concepts in OT, it is useful to make same formal connection 

between the mass, m ,  and the membership function, F .  The 

examples in the last section indicate how these functions are 

related in a simple case and lead to the belief that a more 

general relationship can be found. Noting the role played by P ,  

the upper probability in DST (defined in Eq.(3)) and the 

membership function f i  in FST, it was felt that a formal 

connection could be made between these two concepts. 

In DST, the function P(x) can be interpreted a s  the 

maximum possible belief in the member x o f  the power set 

z8. Its range for any element x is always, OgPCl, even though 
the masses themselves must always sum to unity. The membership 

function, likewise, represents a passibility (i.e. f o r  

membership) and also has the same range of values. The 
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difference between the two, in this regard, is only that p is 

defined on e and P is defined on its power set 2e. This 

suggests that a formal connection can be made between p and P 

by restricting P ,  for this discussion, to the elemental members 

of 8 ;  the defining relationship is then 

1p* f o r  Vxi,xice and Y ~ ' e 2 ~ .  

Using the definition o f  B(x) given in Eq.(2), the same 

restriction (i.e. xice) can be made, giving- a relationship 

between c(xi) and B(ii) which is similarly seen to be 

Although no unique inverse relationship can be postulated 

between masses w(x) and membership functions p(x) using 

Eq.(36), the above relationships do provide a useful way of 

comparing theoretical developments and results between OT (and 

for that matter DST) and F S T .  

R )  Extension io mappings 

A s  an example o f  the process of extending the range of 

applicability of D T ,  the definition of a general mapping rule 

with uncertainty will be proposed here. A s  with most of the 

developments which will be derived from this theory, an 

analogous path to the extension of F S T  will b e  taken. T h a t  is, 

set theory rules will be expanded with the role of  membership 

functions being played by m a s s e s .  

Looking first at the definition o f  a general set mapping 

rule f:a-+b, with a , b C B .  We note that, if aiea and b j e b ,  then 

the mapping f gives bjef{ai}. In general then, f{ai} is a set 

with cardinality greater than unity and the mapping is 
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characteristically an element-to-set mapping. I f  we now define 

ba to be the union of the elements in the set f{ai) (the union 

of f being denoted by Uf), we see that bae2B. One generaliza- 
tion o f  this mapping f o r  OT power sets with mass assignments is 

now suggested (although this choice is certainly not unique). 

Thus, define the general belief set mapping ??:&--+E, with 
A_ and S_ having elements aarZA, b e 2 B  and masses UIA(~) and m g ( b ) ,  

respectively, such that, for each a mapped into b ,  i f  as2A and 

b a 2 8 ,  then baF{a}. Now, letting the union o f  the elements of 

F{a} be ba, as before, we see that ba€2B and this particular 

function can be  used to obtain the mass assignments f o r  this 
mapping. That is, in assigning mass f o r  F:A_-+B_, use the 

function {ba}=UF{a} s o  that the mass m g ( b )  in 2 B  can be 

defined a s  

Yb,e2B 

( 3 8 )  
otherwise , 

with the following mapping and function definitions: 

F : 2 A - + 2 B 1  (ba} = U F { a }  and ai3aA, b,baeZB . ( 3 9 )  

Since ba is represented by the relationship in Eq.(39), it 

is also clear that 

b ~ 2 ~  b e 2 B  b , = b  

and the final mass distribution in 2B is normalized to unity as 

it was in 2 * .  

I n  essence, the OT mapping rule replaces the element-to- 

set nature o f  the general set mapping rule in 9 with an 

element-to-element function in 2*. This route was taken s o  that 
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a normal set mapping rule could be used directly in O T  without 

mndification o f  its definition to distribute set 

appropriately. The rule-of-thumb used here was: collect 

into a set common to all the elements mapped into if no further 

information was available from the mapping definition t o  do 

otherwise. This decision converts mappings to functions, 

preserves normalization to unity and gives rise t o  a larger 

class of mappings in OT which will have unique inverses. The 

generalized rule should also provide another means o f  attacking 

the problem of uncertainty propagation in expert systems, in 

that the implication rule can alternatively be though o f  a s  a 

general mapping (i.e element-to-set). Future development 

i n  O T  will be required, however, to bear this conjecture out. 

Before concluding, a simple example o f  an OT mapping will 

be given t o  make the concept easier to understand in prac- 

tice. For the case o f  e={x1,x2), the particular mapping 

example: F:A->B - -  with A- and B_ having elements in 2 O  and 

respective mass assignments M A ( ~ )  and m g ( x ) ,  will be represent- 
ed in 2@ by the following figure: 

Figure 2 .  OT representation of the mapping F:2A->2*. 

and the element mapping rule 

Using the 01' mapping rule given in Eqs.(38) and ( 3 9 ) ,  this 

mapping gives rise to the particular function b,, in which the 
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following relationships hold: 

I f  ba is used now to distribute masses, the following figure 

can be used to represent this function and its final results: 

Figure 3 .  Final OT results for the mapping F:2*-*2B 

Note here that the final form of the mapping is a simple 

function and the mass distribution in 2 3  is normalized to 

unity. Also, a s  alluded to previously, this simple case might 

be useful in expert systems if the set 8 were chosen to be 

8={T,F} and the implication rule translated using such a 

general mapping. 

8) Conclusions 

A hybrid uncertainty theory has been developed to bridge 

the gap between fuzzy set theory a n d  Bayesian inference 
theory. Its basis is the Dempster-Shafer formalism (a probabi- 

lity-like, set-theoretic approach), which has been extended a n d  

expanded upon s o  as to include additional basic operations for 

manipulating uncertainties in approximate reasoning. The new 

theory, operator-belief theory (OT), retains the probabilistic 

flavor of Bayesian inference but includes the potential for 

defining a wider range o f  operators like those found in fuzzy 

set theory. 
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The basic operations defined for OT in this paper include 

those f o r :  dominance and order, union, intersection, complement 

and general mappings. A formal relationship between the BP 

ship function in fuzzy set theory and the upper probability 

function in the Dempster-Shafer formalism was also developed. 

Several sample problems in logical inference were worked out to 

illustrate the results derived from this new approach as well 

as to compare them with the other theories currently being 

used. A general method of extending t h e  theory u s i n g  the 

historical development of  fuzzy set theory as an example was 

suggested. 

Future development of OT will concentrate on devising 

efficient computational algarithms f o r  its implementation in 

expert or rule-based system applications. The OT union and 

intersection r u l e s  seem to have a natural basis in matrix 

algebra and are highly suitable for i plementation in concur- 

rent algorithmic form on a hypercube computer. Additional work 

is also needed in defining suitable projection operators for 

making decisions on the basis of power set mass assignment 

results. Definitions f o r  suitable direct addition and subtrac- 

tion operators are a l s o  needed s o  that evideiace and belief can 

be gathered and combined to form a n  initial power set mass 
assignment. 

The theory will be extensively tested in its current form 

a s  part of the Oak Ridge National Laboratory C E S A R  program in 

robolics and machine intelligence9. It has applicability in 

this program's planning, sensor fusion, vision and expert 

system efforts. 
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