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ANAFROBIC DIGESTION OF CELLULOSIC WASTES:
PILOT PLANT STUDIES

D. D, Lee and T. L. Donaldson

ABSTRACT

Anaerobic digestion is a potentially attractive
technology for volume reduction of low—level radioactive
cellulosic wastes. A substantial fraction of the waste is
converted to off-gas, and a relatively smwall volume of bio—
logically stabilized sludge 1s produced. Process development
work has been completed using a 75-L digester to verlfy rvates
and converslons obtained at the bench scale. Start-up and
operating procedures have been developed, and effluent was
generated for characterlzation and disposal studies.

Three runs lasting 36, 90, and 423 d were made using batch
and batch~fed conditions. Solids solubilization rates and gas
production rates were approximately double the target values
of 0.6 g of cellulose per L of reactor volume per d and 0.5 L
of off-gas per L of reactor per d. Greater than 80% destruc-
tion of solids was obtained. Preliminary effluent charac-
terization and disposal studies were completed. A simple
dynamic process medel has been constvucted to aild in process
design and for use in process monitoring and control of a
large—scale digester.

1. INTRODUCTION
Disposal of solid low-level radiocactive waste 1s an increasing
problem for the nuclear industry. The Oak Ridge National Laboratory
(ORNL) generates about 2300 m3 of low-level waste each year, of which
~350 m3 1s cellulosic and readily amenable to biological degradation.
This waste is currently placed in trenches in the burilal grounds after
a portion has been compacted. In the trenches, it 1s subject to matural

biological decomposition, which leads to instability and subsidence



in the burial grounds. One alternative disposal techno..gy 1is incinera-
tion; however, this approach suffers from substantial off-gas cleanup
requirements and poor economics in the case of small incinerators to
handle relatively small volumes of material.

Another alternative 1s the anaerobic digestion of the cellulosic
fraction of the solids. Anaerobic digestion offers the attractive
potential to reduce the volume of wastes by converting a substantial
fraction of the solids to methane (CH,) and carbon dioxide (CO,) and
producing a biologically stabilized sludge that is better suited for
burial than is the original waste. The anaerobic digestion process 1is
similar to that for a residential septic tank and the stabilization of
sludge as practiced in the municipal wastewater treatment industry.

The major biochemical reactions are illustrated in Fig. 1. Feasibility
studies, a preliminary process design, and a cost estimate have been
carried out for implementation of an anaerobic digestion plant to treat
actual wastes at ORI\IL.lm3

The initial feasibility study1 explored the rates and extent of
microbial digestion of blotter paper, cloth, sanitary napkins, and pine
sawdust in shake flasks, batch stirred reactors, and fed-batch stirred
reactors. The stirred reactors had working volumes of 0.6 and 4.0 L;
the shake flasks had 0.l-L working volumes. The stirred reactors were
operated at 1% w/v solids concentration and gave cellulose degradation
rates of 0.1 to 1.2 g of cellulose per L of reactor volume per d (g/Lsd)
and gas rates of 0.3 to 1,1 L/L+.d. From these results, a cellulose
degradation rate of 0.6 g/Led and a gas production rate of 0.5 L/Le+d

were chosen for a preliminary conservative process design.
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CELLULOSE + SUGAR + CO,5 + CELLS
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ACETIC ACID » CO, + CHy + CELLS
METHANOGENS

Fig. 1. Major biochemical conversion steps in the anaerobic
digestion of cellulose.
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The preliminary process design and the cost estimatez were based on
anacerobic digestion of a wet-pulped cellulosic materials mixture that
is batch-fed to the digester. A 94.5-m3 (25,000-gal) digester would be
needed to treat the ORNL waste at a solids concentration of 1 to 2%. The
flowsheet for the process (Fig. 2) includes sepavation of the solids
remaining after digestion from the water, which will be treated in the
ORNL low-level waste evaporator system. The solids can be wixed with a
cement grout for landfill. It appears that a total volume reduction of
~80 to 90% will be possible with this process.

Process development work was iInitiated to provide scale-up data and
operating experience for the design and operation of the full-scale
digester at ORNL. The experimental work was carried out in 1-, l4-,
and 75-L digesters using a feed material that simulated the cellulosic
materials found in the OBNL low-level radioactive waste. Goals of this
work included the development of dependable start-up techniques for the
digester, determination of the viabillity of the proposed batch feeding
method, and determination of digester operating conditions. The latter
included consideration of solids concentration, pH, alkalinity, liquid
recycle, supplemental municipal anaerobic sludge, long-term operating
stablility and solids destruction, and the need for supplementation with a
mineral and vitamin solution. The early results were reported in ref. 3.
Twe runs were conducted in the 75-L digestetr to determine the most
reliable start—up methods. These tests resulted in a standard start-up
technique that uses low concentrations of cellulose plus supplemental

methancl to decrease the length of time required for stable operation.
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Fig. 2. Process flowsheet for anaerobic digestion of low-level
cellulosic waste.



This fimal report discusses the third run with the 75-L digester,
which lasted for 423 d., A mathematical model of the digestion process,
which included the batch feeding schedule, was developed for use in
guiding process development work and eventual process control. This
dynamic model is described in ref. 3. Verification of the model with

experimental data is presented in this report.

2. EXPERIMENTAL PROCEDURES

2.1 SUBSTRATES, NUTRIENTS, AND INOCULUM

The digesters were operated on simulated (nonradioactive) low-level
solid waste composed of 907% blotter paper, 7% cotton/pclyester (35/65)
labcoats, and 3% sanitary napkins. The feed which was shipped to
American Delphi, Inc., Westminster, California, for wet-shredding, was
returned to ORNL as a ~10% slurry of ~l-cm particle size, and stored at
4°C. When a digester required feeding, an appropriate amount of feed was
measured and added to the digester. Several samples were analyzed for
solids content, and the average value of 9.72 wt 7 volatile solids was
used to determine the amount of slurry added to the digester. The
nutrients for the digester operation have been described previously.3

The inocula used to seed the digesters, and also added to the
digesters occasionally to increase gas rates during some upset conditions,
were obtained from several sources. The digesters were initially seeded
using sludge from the bottom supernatant sample point of the anaerobic
digester at the Oak Ridge West End Sewage Treatwent Plant (ORWESTP). If
possible, a portion of the sludge was added to the digester the same day
as obtained, while the remainder was stored (for a maximum of 2 weeks) at

4°C for later addition. Other sludge was obtained from the ANFLOW digester



at the Love's Creek treatment plant in Knoxville, Tennessee, and from the

Kuwahee Treatment Plant, also in Knoxville.

2.2 ANALYTICAL PROCEDURES

The samples of digester contents, seed sludge, and feed were analyzed
for total and volatile suspended solids (TSS and VSS), alkalinity, pH,
and filtered and unfiltered chemical oxygen demand (COD} using Hach COD

vials according to Standard Methods.4 Total volatile acids (TVA) and

several individual volatile acids (acetic, propionic, isobutyric, butyric,
isovaleric, and valeric) were analyzed using a Varian 3700 gas chromat-
ograph with a 3.2~mﬁ~diam, 2-m—-long column containing 60/80 Carbopak/0.3%
Carbowax 20 M/0.1%Z H3PO, at 120°C with a helium carrier and a flame ioni-
zation detector. Gas production was measured with a wet-test meter. Gas
compositions were measured on a Sigma Il gas chromatograph with a

Poropak-Q column.

2.3 ANAEROBIC DIGESTER PILOT PLANT

2.3.1 Description of the 75-L Digester

The 75-L digester is a standard industrial fermenter with associated
instrumentation and piping that was purchased from the New Brunswick
Scientific Company as a unit (Fig. 3). Its working volume is ~65 L. The
reaction vessel is made of 316 stainless steel, jacketed for temperature
control, and equipped with pH control and agitation speed adjustment. It
was modified for operation as an anaerobic digester by removing the gas
sparger and the internal baffles. The three turbine impellers on the
agitator shaft were replaced by a single 17.8-cm propeller—type agitator

(Lightnin A310, Mixing Equipment Co.), which provided improved pumping
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Fig. 3. The 75-L pilot plant digester.



action to suspend the larger particulates with less violent mixing action.
An additional sampling system was added to the digester to obtain more
uniform samples of the contents. The sampler consisted of a top-entering
1.27-cm—0D stainless steel tube that could be raised or lowered to any
vertical position to obtain a sample of the digester contents. The
sampler was operated by pressurizing the digester with nitrogen and then
opening the sample valve.

2.3.2 Operating Procedures

The third run of the digester was initiated by adding a seed culture
to the feed mixture of 0.1%Z cellulose, methanol, and nutrients. The seed
sludge, which was obtained from the ORWESTP, was added in order to obtain
a 3 vol % sludge concentration in the digester. The start-up period and
the operation of the digester through the first six months are described
in ref. 3.

The digester contents were sampled daily during the week, and the
quantity of gas produced was recorded daily. The sampling procedure
for the digester included taking two 200-mL samples, which were analyzed
separately for TSS and VSS, and averaging the results. The remaining
analyses (COD on filtered and unfiltered samples, individual volatile
acids and TVA, and pH and alkalinity) were performed on a pooled sample.
The volume of sample removed, the volume and content of the material fed
to the digester (if any), and the time of sampling and feeding were
recorded.

The digester was operated in the batch-fed mode; that is, the vélume
of feed to be added was calculated, and then the same volume of material

was withdrawn from the digester and replaced by fresh feed. The fresh
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feed often included nutrient solutions and, in the early part of the run,
additional sludge. The usual feed mixture contained about 200 g (dry wt)
of cellulose material in a total volume of 4.0 L (see ref. 3). The
feeding schedule varied according to the type of experiment and ranged
from no feedings for a period of <2 weeks to feeding daily for several
weeks. Usually, the digester was fed twice weekly. In addition, the
cellulose content was varied from less than 200 g to 500 g per feeding,
with one feeding of 1500 g of cellulose. For several months, when simu-
lated waste was not available, Solka-Floc (a commercial powdered cellu-
lose formulation) was used as the cellulose feed material.

During much of the operation with Solka-Floc, the digester was
operated to simulate recycle of supernatant from a settling step in a
large system. All of the extra digester effluent withdrawn daily was
saved and allowed to settle. New feed for each day was prepared using

the effluent as the liquid to suspend the cellulose.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Operational details of the first 200 d of run 3 have been described
in detail in an earlier report;3 therefore, they are simply summarized
here. Normal operation with simulated cellulose feed was carried out for
the first 215 d. Operation with effluent supernatant recycle began on
day 216 and ended on day 341. Solka-Floc was used as the feed cellulose
starting on day 238 and continued through day 359. During the final
phaée of operation, a starvation test (day 385 through day 401) and a
large batch-fed test (day 414 through day 423) were completed. An exten-
sive compilation of the operating data from these tests is given in the

Appendix.
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A summary of the overall results of run 3 is shown in Table 1,
Average values for the parameters listed were calculated by dividing the
total for each by the total number of samples for each. The hydraulic
retention time (HRT) was calculated for each day based on the amount of
sample withdrawn and fed. Average values were calculated from the daily
values; the maximum and minimum values for the parameters were obtained

from data after the start—up phase of operation had been completed.

Table 1. Digester performance over 423-d batch-fed run

Parameter Average Maximum Minimum
TSS, g/L 9.40 37.36 1.66
VsS, g/L 8.23 ' 34.54 1.44
CcoD, g/L 10.38 33.34 1.50
TVA, g/L 0.41 2.56 0.001
Alkalinity, g/L 2.74 5.10 1.13
TVA/alkalinity 0.16 1.26 0.0004
HRT, d 52.90 120.70 5.60
Digester volume, L 61.80 74.20 47.50
pH 6.79 7.55 5.80
VSS rate, g/Led 1.83 6.63 0.01

Gas rate, L/Led 1.18 5.83 0,01
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Table 2 describes the carbon balance on the digester for the dura-
tion of run 3. The total amount of carbon fed was calculated based on
the known amount of synthetic feed and its carbon content. The gas pro-
duced is the amount of gas measured by the wet—test meter, corrected to
standard conditions and no water vapor, and divided by 22.4 to obtain the
mol of carbon. The mol of solid carbon removed were calculated based on
the volume of the sample removed and the experimental VSS determination
for that day. The soluble carbon removed was calculated based on the
volume removed and the soluble COD that was experimentally measured.

The carbon balance was then found by dividing the total carbon out by
the total carbon in. For run 3, 937 of the carbon fed was accounted for
by the carbon out as gas, solids, and soluble carbon. The remaining 7%
can be allocated in part to loss of material during several equipment

failures (described later).

Table 2. Carbon balance for 423-d run

Carbon (mol)

Source In Out
Feed 1602
Off-gas 1144
Sol1ds? 173
Soluble” 173
Total 1602 1490

a
Includes periodic effluent and contents of digester at termination
of run.
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The third batch experiment was started using concentrations of 0.1%
cellulose and 300 mg/L methanol, along with ORWESTP anaercbic digester
sludge at 3% v/v concentration. The concentration of cellulose was
gradually increased, and the TVA concentration was closely monitored to
prevent the rapid buildup that had inhibited earlier batches.3 The gas
production averaged 0.02 to 0.05 L/Led as the solids concentration was
increased to 3000 mg/L (0.3%). After 70 d, stability was attained at a
solids concentration of 0.65%, a gas production rate of 1,2 L/Led, and a
solids degradation rate of 1.45 g/Led. These rates exceeded the design
rates of 0.6 g cellulose/Led and 0.5 L gas/Led at an HRT of 35 d.

During the next 30 d, the feeding interval was decreased and the
amount of cellulose in the feed was increased. As a result, the sclids
concentration in the digester increased to more than 1.5%Z. During ocne
5-d period, the digester was fed daily at an HRT of 16 d. The gas pro-
duction was greater than 0.5 L/Led during this time, but the propilonic
and butyric acid cowmponents of the TVA began to slowly increase, causing
an increase in the ratio of TVA to alkalinity, as shown in Figs. 4 and 5
near day 100. Impending problems in the digester are indicated when the
ratio of TVA to alkalinity is >0.5. A healthy digester has a ratio <0.3.

Several methods were employed to lower the TVA concentration and
the ratio of TVA to alkalinity. These included (1) reducing the feed
rate, (2) increasing the HRT to 50 d, and (3) decreasing the HRT at a
low feed concentration to dilute the TVA by washing it out. The best
results were obtained with the third method; after 14 d, the TVA was
reduced by 60%, while the feed concentration and the HRT had increased

sufficiently to give a digester solids concentration of >1% and an HRT
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of 25 d. At this point, the digester developed the abli..ty to degrade
proplonic and butyric acids, resulting in TVA/alkalinity (ALK) ratios
of <0.1.

Figures 4-12 give an overall plcture of the results of the 423-d
experimental run. Figure 4, as previously discussed, is a plot of the
TVA and shows peaks at days 50 to 150, again near day 300, and also at
day 360, The latter two peaks occurred during changes in the feeding
rates and colncide with peaks on the TVA/ALK graph in Fig. 5. When the
peakes occurred in the TVA/ALK ratio, the pH was raised to increase the
alkalinity. The large peaks were usually caused by a loss of dissolved
CO, due to plugging of the wet-test meter with foam, pressurization of
the digester, rupture of the digester rupture disk, and subsequent loss
of pressure (and dissolved CO,). Figure 6 is a plot of the digester pH;
the deep dips around 300 d correspond to the high TVA/ALK discussed
above. Very little pH control was required over the course of the run,
and the pH was fairly stable between 6.5 and 6.9, depending on the time
gince feeding.

The liquid volume in the digester during the course of the run (see
Fig. 7) was held at 65 L during the first 100 d and then varied from 61
to 62 L up to day 200. At that polnt, the volume was reduced to ~58 to
60 L, where it was maintained until the upsets near day 300. These
upsets, shown by a sudden decrease and slow increase in volume, occurred
whea the digester foamed and plugged the wet-test meter, causing the
digester rupture disk to rupture and several liters of digester contents
to be lost. The volume was gradually restored to its original level by
withdrawing only enough material from the digester for sample analysis

and feeding the usual amount.
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Figure 8 shows the experimental results for the digester solids
determinations for V5SS, TSS, and inert suspended solids (ISS). The ISS
value is the difference between the TSS and VSS values. The data show
conslderable scatter, primarily because of the difficulty in obtaining a
representative sample of the contents after the digester had been fed.
This problem 1s caused by large clumps of solids. The large peaks that
occur gradually result from increased feed rate or feed concentration and
are the expected behavior. The digester becomes acclimated to the higher
feed rates, and then the VSS and TSS values decrease and tend to stabi-
lize. The ISS wvalues increased during feeding of the simulated waste but
decreased when Solka-Floc was fed instead. The ISS values were also used
to determine whether representative samples had been obtained because the
1SS should be relatively constant from day to day.

The soluble COD (see Fig. 9) measured on centrifuged, filtered
samples, was a measure of the amount of cellulose that was solublized but
not yet converted to CHy or COp. The TVA, although a part of the COD,
was not a large fraction after the first 200 d. After recycle operation
commenced, the COD increased but was not associated with a concurrent
rise in the amount of measured TVA present,

Figure 10 is a graph of the gas production rate. A peak of almost 6
L/Led was reached, but typically the rates varled from 0.5 to ~4.0 L/L-d.
The high values amounted to >250 L of gas from the digester in a day.

The associated solids degradation rates, shown in Fig. 11, are more
erratic than the gas rates because they are calculated from the experi-
mentally measured values of VSS., The rates varied from ~0.8 to 2.0

g/Led during the first 300 d of the rum, and from 2.0 to 6.5 g/Led from
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~300 to 400 d. Figures 8, 10, and 11 show the cyclical nature of the
batch~fed operation as the fine structure on the plots. The gas and
solids rates and the VSS concentration initially increase after feeding
and then gradually decrease until the next feeding.

Figure 12 shows the conversion of the solids to gas and the total
conversion of solids to gas and soluble carbon during the progress of the
run., The first 100 4 are the start-up period, after which the digester
conversion steadily increases up to the end of the run. The conversion
to gas reaches almost 807, while the total solids destruction ends at a
point where almost 90% of the total cellulose has been converted to a
soluble carbon or gaseous product.

Several short- and long-term experiments were conducted during the
extended run. Awmong these was an experiment designed to simulate the
operation of the digester with recycle of the supernatant from an
effluent settling step to provide the liquid to slurry the entering
feed. The experiment was performed by saving all of the extra effluent
from the digester inm a cold room at 4°C in a 50~L barrel, where it was
allowed to settle. The scum was skimmed off the top with a 4-wmesh
screen, and the supernatant was used to suspend Solka-Floec for feeding
the digester. The scum (undigested cloth fragments, string, etc.) and
the solids from the bottom of the barrel were reserved for grout for—
mulation studies. The recycle experiment was run during days 216 through
341 (125 d). During this time, a total of 23.8 kg of cellulose solids
was fed, Including 1.7 kg of prepared simulated feed and 22.1 kg of
Solka~Floc after the supply of simulated waste was exhausted. An inter-

esting representation of total liquid recycle operation can be obtained
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via comparison with a batch reactor which is fed an equivalent amount
of cellulose., In this case, the batch digester would initially require
23.8 kg of feed in 58.7 L (a solids concentration of 40.58% w/v). The
batch-fed, liquid-recycle digester required 125 d to process this much
feed.

During the recycle operation, the soluble organic fraction (soluble
COD) of the digester conteunts increased after daily feedings were begun
at day 269; however, the increase was apparently not caused by an
increase in the volatile acids that were measured (see Fig. 13). The
peaks in the TVA graph coincide withvthe beginning of daily feeding (day
269) and the aftermath of the incident described earlier in which a rup-
ture disk was blown. Some oxygen contamination of the digester then
occurred, and a general upset followed. A period of several days was
required to recover the rates and concentrations that were present before
the incident.

Another test involved the deliberate starvation of the digester for
a period of 17 d near the end of the 423-d run. When samples were with-
drawn, an equal volume of water was added; on two days, a mineral-nutrient
solution was added. The digester was fed twice during the 2 weeks that
followed; then it was fed 1500 g of Solka-Floc at one time. The gas and
solids degradation rates were monitored over the next several days until
the digester was shut down. The results, shown in Figs. 14—17, show that
the digester was responsive to the feedings and produced high gas rates
after the 1500-g feeding. The solid line in Fig. 17 is the model simula-

tion (described later).
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4, EFFLUENT DISPOSAL STUDIES

Two options for disposing of the liquid and sludge effluents have
been proposed for the ORNL facility (Fig. 2). The first is hydrofrac-
ture, using the existing faclility at ORNL. This option is believed to be
technically feasible, although there are questions concerning pumpability
aud potential plugging of the injection slot by the undigested solids. A
suitable grout recipe could probably be developed. Such questions would
need to be resolved through further experimental studies. However, hydro-
fracture is not being actively consldered at this time because of the
uncertalnty concerning continued operation of the hydrofracture facility.

The second option for effluent disposal is fixation of the sludge in
concrete for burial and treatment of the liquid effluent in the low—level
waste evaporator system. A solids-liquid separation would be carried out
to give a sludge with satisfactory water content for cement formation and
2 liquid with satisfactory properties for the evaporator system. Initial
studies to characterize the liquid fraction were made.

Issues to be addressed for treatment of the liquid by evaporation
include the physical behavior during evaporation (e.g., foaming), carry-
over of organics to the condensate, and the nature of the residual con-
centrate, Studies have shown that the pH of the digester effluent is
~7 and that the concentration of weak organic acids ranges up to 0.15 N.
The acid concentration can be reduced through improved operation of the
digester. After neutralization to pH 10, the liquid foams excessively at
the bolling point, but the foaming can be controlled with antifoam. 1In
the waste evaporator system, the digester effluent would be diluted with

other wastes, which should minimize foaming.
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Measurements of pH, COD, total and inorganic carbon, and TVA in the
digester effluent, the concentrate, and several condensate fractions arve
shown in Table 3 for two separate liquld samples. The first sample was
taken before the digester began to actively convert the higher acids to
CH, and CO,; the second was taken some time after the conversion began.
It can be seen that most of the COD and acids remain 1n the concentrate
residue, although some lighter acids may be carried into the condensate.
Based on these studies, it has been predicted that the addition of
digester effluent to the evaporator system will have no adverse effects
on the water quality of White Oak Creek,5

Studies on fixation of the solids in concrete have not been completed,
but personnel experlenced in that area have indicated that no unusual

problems are to be expected.

5. PROCESS SIMULATION

5.1 DESCRIPTION OF MODEL

A dynanic three—culture simulation model, corresponding to the three
major bloconversion steps shown in Fig. 1, has been developed to ald in
process development work. In the model, the cellulose hydrolyzers con-
vert cellulose to sugars, the acetogens convert sugars to acetic acid and
a small amount of other products, and the methanogens convert acetic scid
to CH, and CO». In addition, each culture generates cell mass from its
own substrate and produces C0O, as a metabolic by-product. Note that the
Hy + COy route to methane is not included. We have found it unnecessary
to include the latter process iIn order to simulate our data in a satis~
factory manner. An extended discussion of the model structure and para-

meters can be found in ref. 3.
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Table 3. Characterization of effluent fractions rollowing
evaporation and concentration

Chemical
oxygen  Total Inorganic Volatile acids
Sample pH demand carbon  carbon as acetic acid
(mg /L)  (mg/L) (mg/L) (mg /L)
Sample 1, September 1983
Original effluent 6.43 13,2007 9,470 1,060
Concentrate 10.21 16,500 4,735
First condensate 2.95 460 4,090 4,000 24
fraction (20 nlL)
Second condensate 9.05 140 420 400 18
fraction (250 mlL)
Third condensate 8.10 90 120 100 14
fraction (250 mlL)
Sample 2, September 1984
Original effluent 6.70 5,400 550
Concentrate 73,200 175
First condensate 175 205 100 30
Second condensate 163 110 50 26
Third condensate 78 35 ’10 16
Fourth condensate 75 32 0 38
Fifth condensate® 750 340 70 50
Composite (1—4) 120 170 120 27

aThe first and second condensate samples in Sample 1 contained some
lower;-boilling organics, such as formic acid, that were not resolved.
This sample contalned solids that were included in the chemical
oxygen demand. The others were clear liquids. Similar samples with no
solids contained 7000 to 8000 mg/L of COD.

“This sample contalned some of the bottoms that "burped over” during
avaporation.
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5.2 SIMULATION RESULTS

Experimental data and simulation results are compared in Figs. 17-20.
Figure 17 shows the gas production rate data for the experiment and
simulation for a 70-d period during which the digester was starved and
then fed a single large concentration of cellﬁlose. The simulatioa
follows the experimental data semlquantitativily, although the peaks and
valleys are more exaggerated. The gas rate in the simulation falls to
zero about a week after the starvation period begins, while the experi~-
mental rate never does fall all the way to zero. The simulation also
predicts a higher peak for the gas rate after feediong the large concen-—
tration of cellulose. In general, the simulation predicts a faster
response to perturbations than is produced in the digester.

Figure 18 shows the long—term behavior of wvolatile sclids in the
digester for the duration of the 423-d run. In the simulation, the actual
feed input to the experimental digester was used as the simulation batch
feed and the corresponding effluent was calculated from simulated con-
ditions in the digester just prior to feeding. Thus, varlations in the
experimental and simulated feed curves are due to differences in the
effluent concentrations observed experimentally and calculated in the simu-
lation.

The volatile solids parameter shown in Fig. 18 is a combination of
microorganisms, undigestibles, and cellulose. This parameter is dif-
ficult to measure accurately in the digester because of the difficulty in
obtaining a representative sample of the larger suspended particulate
solids, as discussed earlier. For this reason, more variation is present

in the experimental data than is seen in the simulation.
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The simulation data were printed out using the same basis as that
used for the experimental data. For example, the gas production was
totaled for a period and then divided by the length of the period to give
an average rate for the interval, analogous to the experimental data.

The rates are therefore integrated averages and not instantaneous values
for a given time. This method causes considerable smoothing of the simu-
lation data.

No particular effort was made to adjust parameters in the model to
fit the experimental data, with the exception of the fractions of sugar
converted to acetic acid and "other™ soluble carbon. The parameter53
ugsed in the simulation were obtalned primarily from published reports.
They were held counstant throughout the 423-d period of the simulation.

Figure 19 shows the long—term behavior of the gas production rate
for the duration of the run. The first 40 d constituted a start-up
period with negligible gas production. The gas production rate was
calculated by dividing the total gas produced for a period by the length
of the period and then dividing by the current digester volume. The
simulation gas rate was calculated by adding the CHy and CO; produced for
a given.period and dividing by the length of that period and the volume
of the digester. The agreement between the experimental data and the
simulation 1s semiquantitative in both frequency and amplitude.

Figure 20 shows a comparison of the experimental and simulated
solids degradation rates. The rates were computed for the experimental
data by subtracting the VSS value for the current day from the VSS of the
previous day (after adding the feed and subtracting the sawple from the

previous day) and then dividing by the elapsed time. This method resulted
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in some scatter because of the problems mentioned previously in obtaining
a representative sample of the VSS each day. The VSS for the simulation
was calculated by adding the blomass for the cellulose, inerts, and
organisms provided by the simulation for each day and then proceeding
as for the experimental data at the same time intervals, with the same
volumes of feed and effluent and the same feed cellulose content.

6. SUMMARY I T Y

ot it

T

The process development work on this project has led to the following

B s
accomplishments, observations, and conclusions: ro 0 ﬂ*m“\?“

g ‘J\()\
1. Rates and ylelds obtained in earlier scouting studies have beeﬁy
verified at a nominal 75-L scale. The solids degradation rate,

the gas production rate, and the extent of solids degradation ...

have substantially exceeded the original design values used in iAfDX

the preliminary design of the ORNL facility.2 A reduction in g
equipment size or an increase in throughput capacity by a factor"
of ~2 is indicated.

2. Start-up procedures have been developed and tested for the case
of sewage sludge inocula. A relatively low concentration of
cellulosics (~0.1%) and supplementation with methanol are
desirable to avoid inhibition by reaction intermediates and
to promote establishment of the proper organisms. The time
required for start-up, 1 to 2 months, appears to be satisfactory

from a practical standpoint.
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The digester was operated for an extended period of time with

varied feed composition and feed rate under conditions of almost
total recycle of the digester effluent supernatant. The digester
was able to tolerate and recover from process upsets with little
loss of efficiency under all tested conditions.

A simple dynamic process model has been developed that satisfactorily
simulates the experimental dynamic behavior under stable operating
conditions, as well as some process upset conditions. The value of
this model lies in its utility for process control and operational
guldance for a full-scale digester.

The digester was operated for more than 4 months using a recycle
condition in which the liquid fraction of the effluent was recycled
to slurry the feed, thereby reducing the quantity of liquid effluent
for disposal. That procedure resulted in somewhat higher concentra-
tions of the soluble carbon species, but the solids digestion rates
were not noticeably inhibited by thelr presence.

The digester was stressed by starvation (no cellulose feed for up to
2 weeks) and feeding a high cellulose concentration (five times the
normal daily feed amount) with no apparent 111 effects. Another
stress involved the lack of microuutrients (usually supplied once or
twice each week with a feeding), and that procedure resulted in a
slowing of the rates of gas production and VSS degradation. The
digester recovered rapldly when the nutrients were reintroduced.

The digester was operated periodically at 1.5 to 2.5% volatile
solids with no apparent problems except for a foaming problem that

occurred at the high gas rates and occasionally carried foam and
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solids into the off-gas system and plugged the wet-test meter. The
foaming could be controlled by the addition of a suitable antifoam

agent.
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