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ABSTRACT 

Finding optimal paths for robot navigation in known terrain has been studied for some time but, in 
many important situations, a robot would be required to navigate in completely new or partially 
explored terrain. We propose a method of robot navigation which requires no pre-learned model, 
makes maximal use of available information, records and synthesizes information from multiple 
journeys, and contains concepts of learning that allow for continuous transition from local to 
global path optimality. The model of the terrain consists of a spatial graph and a Voronoi 
diagram. Using acquired sensor data, polygonal boundaries containing perceived obstacles shrink 
to approximate the actual obstacles' surfaces, free space for transit is correspondingly enlarged, 
and additional nodes and edges are recorded based on path intersections and stop points. 
Navigation planning is gradually accelerated with experience since improved global map 
information minimizes the need for further sensor data acquisition. Our method currently 
assumes obstacle locations are unchanging, navigation can be successfully conducted using two- 
dimensional projections, and sensor information is precise. 

Keywords and phrases: Learning, Spatial Graph Model, Robot Navigation, Local Optimization, 
Path Problems, Voronoi Diagram. 
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1. INTRODUGTION 

Robotics has become an actively pursued research area of computer science and has proven to 
be replete with a variety of issues ranging from abstract mathematical to highly pragmatic 
problems. In many industrial applications which are repetitive and tedious (e.g., normal 
maintenance or inspection), it would be desirable to utilize mobile robots. Other tasks requiring 
rapid response in emergency situations are also appropriate for intelligent machines; this is 
particularly true in hazardous environments. Some of the more active robotics research areas 
today include knowledge representation, task planning, multi-sensor interpretation, dynamics and 
control, advanced computer architectures, algorithms for concurrent computation, and coordinated 
manipulation and navigation. 

A robot may be characterized as an autonomous machine capable of decision making and 
action. To perform complex tasks which cannot be fully programmed a priori, effective sensing 
becomes crucial for monitoring both the robot's environment as well as the status of its own 
internal system. There have been several efforts to design an automated mobile robot. Examples 
are SHAKEY,'y2 the JPL robot,3 HILARE?5 the Stanford Cart,6 the CMU Terregator and 
Neptune  robot^,^ Y amabico,* and HERMIES.9 

Navigation planning is one of the vital aspects of any mobile robot. One approach toward 
navigation, called the find-path problem, addresses itself to determining a collision free path for a 
robot moving through a terrain cluttered with obstacles whose positions are known. This problem 
is well understood and solved in many The techniques for navigation described in these 
papers assume that a complete global model of our obstacle laden environment is known. Most of 
the techniques above model the obstacles and the free space of a robotic environment as 
mathematical and geometric entities. When a robot must navigate in an unexplored environment, 
the algorithms are not directly applicable. 

Navigation in the more general case calls for the collision free movement of a mobile robot in 
entirely or partially unexplored terrain. The problem of planning optimal or near optimal paths 
that avoid collisions with obstacles in such an environment is a challenging task. Contrary to the 
known environment case, there has not been as much work reported in the literature about 
navigation problems in unexplored terrain. This can be attributed to the inherent ambiguity of the 
problem due to the lack of global information about the obstacles. Early attempts to navigate in 
unexplored terrain were based solely on image ~nderstanding.~.~ More recently, Crowley19 and 
Parodi2' have suggested hierarchical approaches with global and local models updated based on 
sensor feedback. Chattergy2' describes some novel heuristic strategies to aid the navigation of a 
robot in an unexplored terrain. This paper builds upon many of these ideas but specifically aims 
toward a method for which no pre-learned model is required, information from multiple journeys 
is explicitly synthesized, all information is used to the maximum extent, and a global path 
optimization is achieved in a continuous transition from local path optimization as more 
information is acquired. 

In this paper, we assume that the robot (HERMIES)9 begins his task in a completely 
unexplored terrain of finite dimensions. HERMIES has to complete a number of different 
traversals (e.g., carrying objects from place to place) and the goal of this paper is to provide the 
method by which he can navigate more efficiently with each successive trip, based upon experience 
acquired to date. The terrain can be randomly populated with obstacles, but the world is assumed 
to be static. The robot, assumed to be a point in a two-dimensional plane, can recognize line-of- 
sight distances to objects and detect their edges without imprecision. 
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O R N L - D W G  8 5 C - 1 4 0 0 6  

S - SOURCE POINT 
D - DESTINATION POINT 
P I ,  P, - THE EDGE POINTS 

Fig. 1. The sensor readings include aI, cq, PI and Pp 

O R  N L -  D W G  8 5 C -  1 4 0 0 5  

( a )  CONVEX POLYGON 

Y 
p2 

( b )  NON-CONVEX POLYGON 

OPTIMALITY CRITERION - m i n ( d , ,  d,) - m i n  ( p l  S I N a ,  p, SIN a,) 

Fig. 2. First case for local optimization. 
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The terrain is modelled using an attribute graph, called a spatial graph, and a Voronoi 
diagram. Initially, both are empty, and they are updated as more and more paths are traversed. 
Each path of navigation is composed of a sequence of stop points, where the robot stops to take 
sensor readings, or to access the terrain model to compute the next stop point. The robot travels 
in straight lines in between two successive stop points. Initially, obstacle avoidance techniques use 
local optimization for the navigation of the robot. By local optimization we mean optimal path 
selection based only on sensor information at the time of the decision. 

Traversal of paths includes sensor exploration of the regions in which the robot navigates. 
Information gained while on new paths is consolidated into the existing graph structures. In 
planning any path, the content of the current graphs is made use of to the maximum possible 
extent, and local optimization occurs in the regions where no model is available. Initially, since no 
graph is available, the paths are only locally optimal. As more and more paths are traversed, the 
graphs become more complete (‘learned’) and gradually improve from local optimality to global 
optimalit y. 

2. OPTIMIZATION OF LOCAL OBJECT AVOIDANCE 

When a robot navigates in new terrain with no a priori information, its path of navigation is 
completely decided by the sensor readings and presumed goal destination. The localized nature of 
the sensors makes a true globally optimal path determination impossible in a terrain with arbitrary 
distribution of obstacles. Thus, a local optimization scheme must be used to determine the path of 
navigation in the immediate proximity of obstacles. 

We consider the obstacle that is nearest to the source point S in the direction of the robot’s 
goal destination. The sensor readings obtained allow for determination of the distance from the 
source to the edges of the obstacle, and also the corresponding edge angles relative to the line 
between the robot center and the goal. In Fig. 1, the angles a1 and a2 and the distances p1 and 
p2 are obtained from sensor readings. Our local optimization approach considers two cases. 
Figure 2 depicts the first case for which no part of the obstacle extends beyond the source point in 
the direction opposite to the direction of the next robot destination. The local optimization 
criterion is to minimize the distance traversed in the direction perpendicular to the line joining the 
source point S to the destination point D. That is, the locally optimal path is given by the 
condition min (dl,dZ) or min (pl sin crl9 p2 sin az). This method may not yield a globally optimal 
path as shown in Fig. 3. The path SP1PZD will be followed according to the local optimality 
criterion, but the path SP3D will be globally optimal. The second case of local optimality involves 
the obstacles that extend beyond the source in the direction opposite to the direction of the 
destination point as shown in Fig. 4. In this case the distance traversed (f,,f2) in the direction 
opposite to that of destination point D also has to be minimized. Referring to Fig. 4, the criterion 
for local optimization is given by min (,/-, d d m ) .  Again, it is to be noted 
that this method may not give rise to globally optimal solution. 

3. TERRAIN MODEL 

Figure 5 shows an illustrative rectangular terrain populated with four obstacles. Four paths 
are traversed using local optimization. The paths start at SI, S2, S3, and S4 and end at D1, D2, 
D3, and Dq, respectively. The terrain in which the robot navigates is represented by both a spatial 
graph and a Voronoi diagram (Figs. 6 and 7, respectively). 



LOCAL OPTIMIZATION ALGORITHM 

ALGORITHM NAVIGATE-LOCAL ( S ,  D); 
S THE SOURCE POINT. D IS THE DESTINATION POINT 

BEGIN 
1. 
2. THEN GO STRAIGHT 

3. ELSE 

IF D I S  DIRECTLY REACHABLE 

BEGIN 

4. 
5. P" +-OPTIMUM (P , ,  P2 ) ;  
6. GO STRAIGHT TO P"  
7. IF P"  # Q 

SCAN THE TERRAIN AROUND T H E  DIRECTION OF Si; 

8. THEN NAVIGATE-LOCAL (P" ,  D); 

END; 

END; 

( a )  BOTH LOCALLY A N D  GLOBALLY O P T I M A L  

D 
S 

p3 

( b )  ONLY LOCALLY O P T I M A L  

Fig. 3. Local o p t ~ ~ ~ ~ ~ ~ y  does not em global optimality. 
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3, 

( a )  C O N V E X  OBSTACLE, f 2  = 0. 

1 ,  

P. r? 

v 
(b) N O N - C O N V E X  OBSTACLE 

Fig. 4. Second case for local optimization. 

O R  N L- D W G .  8 5 C  - 1400 1 

I I I i s2 

FOUR PATHS FROM S, ,  S,, S, AND S, TO D,, D,, D, AND D, RESPECTIVELY 
USING LOCAL OPTIMIZATION. ALL PATHS ARE CONSOLIDATED 
BY FINDING INTERSECTION POINTS SUCH AS 7, 16, 12, AND 17 

Fig. 5. The terrain. 
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A sputial graph G is defined as the ordered triple ( V , E , ~ ) ,  where V is the set of nodes, E is 
the set of edges, and # is an attribute mapping that defines a pair of attributes (e.g., coordinate 
locations) for each vertex. For an edge e = (vi,vj)CE, we say that vi and v, are connected to each 
other. We also have a distance d(e) defined for each ed e e = (vi,vj)CE, +(vi) = (il,i2), +(vj) = 

(j, ,J2), as 

d(e) =: [ (il - jl)2 + (i2 - j2)2 1" . 

Initially a uniform grid is  superimposed on the terrain of navigation. The granularity or grid 
size is chosen to be smaller than the expected size of the smallest obstacle of interest. The grid 
cells are numbered in the usual manner using x and y coordinate systems. Any path of navigation 
on the grid consists of straight lines and stop points. Each stop point corresponds to a node of the 
spatial graph, and each path joining two adjacent stop points corresponds to an edge. The pair of 
attributes of a node corresponds to the coordinates of the cell in which the node lies. The distance 
of an edge, e = (v,,v,)CE, is the euclidian distance between the nodes vi and vj. Figure 6 
illustrates the spatial graph corresponding to the terrain and local optimization path planning of 
Fig. 5. 

We next obtain a Voronoi diagram for the set of vertices, V, of the spatial graph given a set S 
of n points of {pI,p2, ...,pn}. The Voronoi diagram of S ,  Vor(S), partitions the plane into n 
equivalence classes, each of which corresponds to a point. Specifically, the equivalence class 
corresponding to point pi is the Voronoi polygon VP(pi), defined2* such that any point x in VP(pi) 
is closer to pi than to any other point in S. Figure 7 illustrates the Voronoi diagram 
corresponding to the spatial graph of Fig. 6. 

Initially, when I-IERMIES is first placed in a new terrain, the spatial graph is empty or null 
and the Voronoi diagram contains no points. The new paths are integrated into the terrain models 
when they are traversed. The spatial graph i s  updated for every new path as follows: (i) create 
new nodes corresponding to new stop points, (ii) create new edges corresponding to the paths in 
between two adjacent stop points, (iii) create new intersection nodes corresponding to the 
intersection points of new edges with the existing edges. When this process is complete, the 
Voronoi diagram is updated accordingly. 

4. PATH PLANNING AND LEARNING 
In this section we develop an algorithm that plans safe paths to navigate from a new arbitrary 

source point to a new arbitrary destination point. At each stop point on the path, either sensor 
readings are taken or graph computation is performed based on the existing terrain models to 
compute the next stop point. The terrain model i s  appropriately updated at each stop point, 

Consider the navigation of the robot from the source point S to the destination point D. We 
compute virtual source S' and virtual destination point D', such that ScVP (S') and DcVP (D'). 
In other words, S' and D' are the nodes of the spatial graph that are nearest to S and D, 
respectively. The paths from S to S' and D' to D are traversed according to the local optimization 
described in Section 2. The path S'D' is planned using the spatial graph model. and sensor 
readings, as will be described below. 
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Fig. 6. The spatial graph. 

Fig. 7. The Voronoi diagram. 
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‘The paths from S to S‘ and D‘ to D can be navigated directly or constructed using the 
minimal distance to the spatial graph and following the graph to reach S’ (and D’) from the 
intersection point. The latter approach involves the creation of new nodes for the stop points and 
the appropriate edges, Also, the Voronoi diagram should be updated by creating new Voronoi 
regions for the new nodes. But the process of finding the virtual points should be carried out only 
after the graph is reasonably complete. That is to say, initially, until a considerable number of 
nodes are inserted into the spatial graph, all the navigation should be determined using sensor 
based algorithms. The basic algorithm is as follows: 

COMPLETE NAVIGATION ALGORITHM 

ALGORITHM NAVIGATE (S,D); 
S IS THE SOURCE POINT, D IS THE DESTINATlON POINT. 
BEGIN 
1. FIND S’ AND D’ SUCH THAT ScVP(S’), 

AND DcVP(D’); 
2, NAVIGATE-LOCAL (S,S‘); 
3. NAVIGATE-GLOBAL (S’?D’); 
4. NAVIGATE-LOCAL (D‘,D); 

END. 

The algorithm NAVIGATE (S’,D’) plans the path S’D‘. This algorithm tests the polygon P, in 
which the source end of S‘D’ lies. A polygon is said to be an obstacle polygon with respect to S’ 
if the obstacle or obstacles contained in P entirely fill the sensor range from S’, as shown in Fig. 8. 

A polygon is a free polygon if it does not contain any obstacles. If the polygon P is unexplored 
with respect to S‘, then the algorithm EXPLORE (P,S‘) is involved. Sensor readings from S‘ 
distinguish two types of regions - visible and invisible ----- as shown in Fig. 9. The invisible 
regions are the regions of the polygon that are not reachable by the sensor when the obstacles 
contained in the region are absent. The regions that are not invisible are called the visible 
regions. Based on the sensor readings, the polygon P can be partitioned into regions as shown in 
Fig. 10. 

A region could be an unexplored polygon, a free-polygon, or an obstacle-polygon. The invisible 
regions are declared as unexplored with respect to the vertices on the line that limits the range of 
sensor from S‘. The visible region is partitioned into obstacle polygons and free polygons. In Fig. 
10 the region R1 is unexplored with respect to the vertices PI and Pz. The regions Rz and R4 are 
free polygons, and the region R3 is an obstacle polygon with respect to S‘. It is to be noted that, 
in general, a polygon can be an obstacle polygon with respect to the other vertices. But, a polygon 
is a free polygon with respect to all the vertices of the polygon. 
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O R  N L .  D W G  85C. 13997 

S 

[ a )  S I N G L E  O B S T A C L E  

(b)  T W O  O B S T A C L E S  

Fig. 8. Polygon P is an obstacle Polygon with respect to S'. 

O R N L - D W G  85C-l4cPOO 

I N V l S  I B LE 
REGION 

VISIBLE REGION: THE R E G I O N  REACHABLE B Y  A SWEEPING 
SENSOR, WHEN ALL OBSTACLES ARE R E M O V E D  

INVISIBLE REGION:  THE R E G I O N  NOT REACHABLE BY SWEEPING 
S E N S O R ,  WHEN ALL OBSTACLES ARE R E M O V E D  

Fig. 9. Visible and invisible regions with respect to S'. 
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Fig. 10. Partitioning a Polygon based on sensor readings. 

The algorithm CONSOLIDATE checks for any adjacent free.regions from a convex region. If 
The they form a convex region then it combines them and forms a single free polygon. 

consolidation algorithm is described as follows: 

CONSOLIDATION ALGOR lTHM 

ALGORITHM CONSOLIDATE (P, SI; 
P IS AN EXPLORED POLYGON WITH RESPECT TO VERTEX S 

BEGIN 
9. FOR EACH FREE POLYGON P,, BELONGING TO THE 

PARTITION OF P DO 

BEGIN 
2. 
3. 

FIND ALL ADJACENT FREE POLYGONS OF P , ;  

FIND THE MAXIMAL SUBSET OF THEM THAT FORMS A 
CONVEX POLYGON AND COMBINE THEM INTO A SINGLE 
POLYGON; 

END; 
END; 
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The complete navigation algorithm for S'D' is described in the Pascal-like syntax. The overall 
effect of this navigation algorithm is summarized as follows: 

1. 
proceeds. 

In general, all free polygons are convex and these polygon increase in size as learning 

2. Initially, all the obstacles are bounded by larger polygons, and as learning proceeds the 
bounding polygons are reduced in size to enclose the obstacles more closely. 

3. If the path of navigation runs through all free polygons, then the complete path from S' to 
D' can be directly computed. 

4. If the path contains unexplored polygons, then the robot halts at the appropriate stop point 
to explore the regions, and then the next stop point is computed only after the information about 
the currently explored region is incorporated into the terrain model. 

5 .  Learning is incorporated along with path planning. 

6. The paths are locally optimal initially, and they gradually become globally optimal as 
learning proceeds. 

ALGORITHM N A V I G A T E  GLOBAL IS' D ' ) ,  

S' A N D  0' ARE THE SOURCE A N D  DESTINATION POINTS, RESPECTIVELY 
ON THE SPATIAL  GRAPH 

S'D'STANDS FOR THE STRAIGHT LINE JOINING S 'AND D'  

BEGIN 
1. 
2. 

3. 

4. 
5 .  

6. 
7. 

a. 
9. 

10. 
I t .  

12. 

13. 
14. 

15. 
16. 
17. 

F INO THE POLYGON P T H A T  CONTAINS SOURCE END OF S ? ' .  
IF (P IS A N  OBSTACLE POLYGON) 

THEN 
BEGIN 

F I N D  THE NEAREST INTERSECTION POINT s OF S.0 '  AND P, 

F INDS ' ,  SUCH THAT s E VPIS'). 

MOVE YO S' ALONG EDGES OF P, 

NAVIGATE GLOBAL IS'. D'), 
END 
ELSE IF (P IS A FREE POLYGON) 

THEN 
BEGIN 

F I N D  THE INTERSECTION POlNT I OF S?6' AND P 

GO DIRECTLY TO s, 

NAVIGATE-GLOBAL (2. D'), 
E N D  
ELSE IF (P I S  UNEXPLORED WITH RESPECT TO S'l 

THEN 
BEGIN 

EXPLORE (P, S ' ) ,  

CONSOLIDATE (P, S'l; 

NAVIGATE (S', 0'1; 
END; 

END; 
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In the above algorithm we assumed the robot to be a point. However, the same can be applied 
to any finite sized robot by allowing suitable leeway in computing a l ,  a2, PI and Pz from the 
sensor readings as shown in Fig. 11. However, a more generalized problem would be to consider 
the exact shape of the robot and plan the motion that involves both translation and rotation. 
Other natural extensions of the problem include the use of more than one sensor., and also 
taking into account the errors in distance measurement. 

Fig. 11. Modification for a finite-sized robot: 
dimensions. 

and a2 account for the finite robot 

5. ILLUSTRATIVE EXAMPLE 

In this section we illustrate our technique by tracing the algorithm of the previous section 
using a sample terrain. Figure 12 shows an unexplored terrain that contains four obstacles 01, 
02,  03, and 04. Initially, four paths are traversed using local optimization from the source points 
SI, S2, S3, and S4 to D,, D2, D3 and D4, respectively. These paths are shown in Fig. 5 ,  and the 
corresponding spatial graph and Voronoi diagram are shown in Fig. 6 and Fig. 7, respectively. 
Now consider applying the method of this paper to determining a path from Ss to DS. First, the 
virtual-source S’ and virtual-destination D’: are found as the nearest graph vertices corresponding 
to S5 and D5, respectively, as in Fig. 13. 

The path from S5 to S’5 is traversed according to the local optimization method. The polygon 
P2 contains the source end of the line S’SD’S. The polygon P2 is unexplored and hence algorithm 
EXPLORE (P2, S‘,) is invoked. The region P2 is scanned using the sensor, and the polygon P2 is 
partitioned into the regions Pj, P{ and P i  as in Fig. 14. 
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Fig. 12. I Unexplored terrain. 

CONSIDER NAVIGATION F R O M  S ,  TO D, 
S i  IS THE VIRTUAL SOURCE S, E VPC (Si) 
0: I S  THE VIRTUAL DESTINATION D, E VPC (DA) 
PATH FROM S,TO S i  IS A C C O R D I N G  TO LOCAL OPTIMIZATION 

Fig. 13. S5 source point, D5 destination point. 



1 4  

SOURCE E N D  O F  S i  0: LIES I N  POLYGON P p  
POLYGON P 2  IS  EXPLORED 
Pp I S  PARTITIONED INTO POLYGONS P i .  P:, P,” 
P:. P,” - FREE POLYGONS 
P:-IS A N  OBSTACLE POLYGON WITH RESPECT TO $4: 

THE POLYGON Pg I S  PROCESSED,  S I N C E  SOURCE E N D  O F  SA 0 ;  LIES I N  P: 
THE INTERSECTION POINT I, I S  COMPUTED, A N D  S ’ :  I S  

PATH S i  TO S ’ :  I S  TRAVERSED ALONG THE M I N I M A L  LENGTH 
F O U N D ,  SUCH THAT I, c VPC(S’:) 

PATH ALONG THE EDGES OF P; 

Fig. 14. Exploration of ]Polygon P2. 

Fig. 15. ~ x ~ l ~ ~ ~ t i o n  
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The regions Pi and P; are free-polygons, and the region P: is an obstacle-polygon with respect 
to the vertex S'. At this point, the source end of S5DI5 is contained in the polygon Pj. The 
intersection point 1, of Sf5D'5 with the farther edge of P: is computed, and its nearest vertex Stt5 
of the spatial graph is found. Then, the nearest path to SIP5 via the edges of the polygon P i  is 
computed by finding the corresponding euclidian distance. The robot navigates along the edges of 
the polygon Pz to reach S"5. Next the path is planned from P5Dr5. The polygon P3 contains the 
source end of St',D5 and is unexplored. Based on sensor readings, the polygon P3 is partitioned 
into the regions Pj, P: and P;. Pj  and P; are free polygons and P$ is an obstacle polygon. At 
this stage, Pi contains the source end of S"5Df5. The intersection point of S",Df5 with Pi  is Df9 
The path of S"5D'5 is directly traversed as in Fig. 15. No update of the model is carried out since 
Srf5DT5 is entirely contained in a free polygon. The navigation from D'SD5 is based on local 
optimization. The final spatial graph of the terrain is given in Fig. 16. Note that the obstacles O2 
and 0 4  are bounded by smaller polygons than those shown in Fig. 5. Also, the polygons 
Pi ,  P;, Pj  and Pi  are declared to be free polygons. Regions P i  and P: are combined to form 
a single free polygon. Clearly, the information about the obstacles and free space of Fig. 16 is 
more consolidated and available for utilization than that of Fig. 5 .  Consider another navigation 
path from s6 to D6. The result of this traversal is shown in Fig. 17. Now the regions P4, P6 and 
P9 are declared to be free polygons. The objects 03 and 0 4  are bounded by much smaller 
polygons than the ones in Fig. 16. Thus, the example illustrates the shrinking of the bounding 
polygons of the obstacles and widening of the free-polygons as learning proceeds. Again, as more 
paths are traversed, more and more polygons are explored and the spatial graph becomes 
consolidated. 

O R  N L -  D W G .  8 5 C  - 1 3 9 9 4  

Fig. 16. Terrain model after the path from S5 to D5 is consolidated. 
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O R N L - D W G .  8 5 0 - 1 3 9 9 3  

1 I 
I I 

TRAVERSAL OF YET ANOTHER PATH FROM S6 TO D6 
1. THE OBSTACLES 0 ,  AND 0 ,  ARE B O U N D E D  B Y  SMALLER POLYGONS 
2 .  POLYGONS P,, P,, P, A R E  D E C L A R E D  FREE POLYGONS 
3 .  POLYGONS P, A N D  P, ARE D E C L A R E D  OSSTACLE POLYGONS 

4 .  PATH IS GLORALLY OPTIMAL. FROM SA TO DA 
WITH RESPECT TO I ,  AND I, RESPECTIVELY 

Fig. 117. Terrain model after the path from S,  ta Ds i s  consolidated. 

6. CONCLUSIONS 

In this paper, we describe a method that enables a mobile robot to navigate in an unexplored 
terrain and learn more about the terrain as it navigates paths. Our method requires no pre- 
learned model, makes maximal use of available information, records and synthesizes information 
from multiple journeys, and contains concepts of learning that allow for continuous transition from 
local to global optimality. The model of the terrain consists of a spatial graph and a Voronoi 
diagram. As more information is consolidated into the terrain model, the bounding polygons of 
the obstacles fit more closely and the polygons representing free space grow larger. In this way, 
the robot learns and applies the results of dynamically acquired sensor information to improve 
performance and relax navigational ambiguity on a continual basis up to the point where the 
environment is fully described; is . ,  all obstacle-polygons are tightly bounded. 
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This paper has introduced the concept of learning in the domain of robot navigation and 
movement, namely path traversal and planning through a two-dimensional Cartesian environment. 
The utilization of concepts of spatial graphs has much broader implications however. For 
example, the rates at which sensor data updates are applied to the spatial graph directly affect the 
potential of the robot to navigate in a changing environment. Voronoi regions under a learning 
navigation paradigm can expand or shrink as a result of changing environmental conditions. The 
present spatial graph reflects only decisions arrived at from analysis of sensor data, but the 
method also permits the fusion of multiple sensor sources such as simultaneous use of line-of-sight 
(visual) and sonar to compose a simple graph space. 

Similarly, there is no reason to confine the dimensionality of the graph to an N of two. For 
example, by extending the two-dimensional polygons to three-dimensional volumes, traversal in 
three dimensions and the learning of three-dimensional spaces become possible. A typical 
extension could be three-dimensional path planning of a robot end effector during grasping 
behavior scenarios. Further, the spatial graph nodes do not have to represent a single value. They 
can, for example, be pointers to complex data structures which contain a variety of relational data 
about a robot environment. In this way during path planning a spatial graph can serve as a 
context sensitive procedure for data base search by limiting the potential set of world data to local 
Voronoi regions and their associated data sets. In this manner, decisionmaking can be aided 
through "context focusing" which makes use of the spatial localization of the robot. Details of 
data structure and complexity analysis of the proposed algorithms are covered in a different paper. 

7. FUTURE DIWCTIONS 

Research is currently underway to extend the completeness of learning concepts to HERMIES 
navigation. In reality, true learning involves the utilization of more extensive sets of information 
such as those contained in complex data structures. Typical data include time tags, inter-object 
relations, tentative object classifications or labels. At present, we are extending learning to 
demonstrate performance on the HERMIES-I1 robot at CESAR by incorporating consolidation, 
abstraction, and forgetting processes. The latter deserves some comment. Forgetting or selective 
removal of information becomes more important for dynamic navigation if environments change to 
prevent the accumulation of useless data such as graph locations of moving objects in the 
environment. We propose to explicitly consider "forgetting" of spatial graph information by 
attaching a reinforcement or extinguishing time-based value to polygons. Values are decremented 
(i.e, extinguished by a fixed amount) unless a polygon is reinforced (confirmed) by additional 
sensor contacts. Such additions represent a more complete implementation of learning 
mechanisms traditionally associated with human psychological research. 
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