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ABSTRACT

Details are given of a three-dimensional stellarator equilibrium
code NEAR. This code uses a set of vacuum flux coordinates as an
Eulerian basis for the equilibrium calculations. This coordinate
system provides an economic representation of the complex geometry
associated with stellarators. The equilibrium equations are solved by
an energy minimization technique employing a conjugate gradient
iteration scheme. The results of extensive numerical convergence
studies are presented. Also comparisons with existing codes are made

to benchmark the NEAR code.






1. INTRODUCTION

The study of magnetohydrodynamic (MHD) equilibria in stellarator
configurations is greatly complicated by the fully three-dimensional
(3-D) nature of the device. Several approximations may be introduced
that permit analytic or semi-analytic equilibrium solutions. The
method of averaging, in which the vacuum helical magnetic field is
treated as a rapidly fluctuating small scale perturbation to the
dominant toroidal field, reduces the stellarator equilibrium problem to
a two-dimensional (2-D) problem [1]. An alternate analytic approach
has been to make an expansion about the magnetic axis [2].

To study stellarator equilibria without ordering expansions
generally requires the use of numerical methods. Most of the numerical
approaches use a variational technique to solve for the equilibria.
The Chodura-Schliter code [3] solves the equilibrium equations by
minimising the energy on a cylindrical coordinate Eulerian grid. The
Bauer, Betancourt and Garabedian code[4] solves the so—called inverse
equilibrium problem, in which the equilibrium problem is reformulated
into that of solving for the flux coordinates, instead of solving
directly for magnetic fields and pressure.

In this paper, the NEAR code, which solves the 3-D equilibrium
problem directly by an energy minimization technique, will be
described. The NEAR code formulation is similar to that of the
Chodura-Schliter code except that a vacuum flux coordinate system is
employed as the Eulerian frame of reference for the calculation. An
Eulerian formulation is chosen because it allows the study of
equilibria whose flux surface topology changes with pressure. The
vacuum flux coordinates (p,0,$) are obtained numerically from the
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vacuum magnetic fields specified by a given coil configuration. The
metric elements and Jacobian of the flux coordinates are represented by
Fourier series in the generalized poloidal () and toroidal (¢) angles
of the flux coordinates. Details of the vacuum flux coordinates will
be given in Section 2. The dependent variables in the equilibrium
computation are also represented as Fourier series in ©, ¢. In the
radial direction (p), a finite difference representation is used.
Using the vacuum flux coordinates in this manner, as an Eulerian basis,
will be shown to provide a far more efficient description of
geometrically complicated stellarator equilibria than the spatial
coordinate finite difference representation used in Chodura-Schliter
code. This permits a much finer spatial numerical resolution to be
achieved. The equilibrium equations and their solution by the NEAR
code algorithm will be described in Section 3. To illustrate the
numerical properties of NEAR, equilibrium results will be shown in
Section 4, for the Advanced Toroidal Facility (ATF) configuration [5],
and for a 12-field period heliac [6]. For the ATF equilibria,
comparisons will be made with other computations. Finally, in

Section b, conclusions will be given.



2. VACUUM FLUX COORDINATES

The flux coordinate system employed is that described by Boozer
[7]. For a vacuum, the magnetic field may be described in

contravariant form as

- - >

B, = Byp Vp X V(6 - ) (1
or in covariant form as

-+ -+
B, =F, V¢ , (2)

where Z(p) is the rotational transform, F, is a constant, and
Bop2/2 = Y7 is the toroidal flux. The role of a raaial variable is
taken by p. The potential ¢ may be regarded as a toroidal variable and

tor appropriate choice of the constant F,, ¢ changes by 2m in

v
traversing the torus once toroidally. Finally, the role of a poloidal
angle is taken by ©, which changes by 2x in going once around the torus
poloidally.

These coordinates are generated numerically in a manner described
by Kuo—Petravic et al., using the method and code described in
Ref. [8]. This code generates the Fourier series representation of the
cylindrical coordinates (R,Z,8) in the vacuum flux coordinates © and ¢
by following vacuum magnetic field lines. The particular coil
configurations, whose equilibria have been studied, are composed of a
series of identical field periods or modules. Also, within each field
period 2 symmetry exists; at equal toroidal angle distances from either

end of the field period, the R coordinates of the coils will be the

same, while the Z coordinates will be equal and opposite. This



symmetry means that for an appropriate choice of flux coordinate
origin, the Fourier representation of R contains only cosine terms and

those of Z and (§ - ¢), only sine terms. Thus, for example

R(G.0,6) = L Ry olp) cos(nd + nd) , (3)

m,n
where n is restricted to multiples of the number of field pericds
(including n=0). In practice, of course, only a finite number of
terms may be retained in these Fourier series descriptions. Figure 1
shows how error in representing the vacuum quantities R, Z, and |§]
depends on the number of terms in the Fourier series. Here the error

is defined as

| L An,n cos(md + nd) - A(6,9) ]
Max / m,n _ ) :
-m<0, KT \ [A(6,4)

that is, the maximum difference between the true value and the value
from the Fourier series with a given number of terms, normalized to the
true value. The particular case illustrated in Fig. 1 is for the
planar axis ATF device. The order in which the Ay , are included in
the Fourier series is chosen to optimize its convergence. At 7
harmonics the modes retained are (n=0-+2, n=0) and (m=-3 + 0,
n=12), and at 17 harmonics the modes are (m=0-+4, a=0),
(m=-5+2, n=12) and (m=-3+ -1, n=24). It can be seen that
the Fourier representation provides an economic and rapidly convergent
description of the vacuum fields. Typically between 10 and 20
harmonics are used to describe the vacuum quantities in the equilibrium

calculation. Helical axis configurations, however, generally have a



broader Fourier spectra and may require more harmonics to adequately
represent the vacuum fields.

Using the Fourier representations of R, Z, and &, the metric
elements may be  computed. In  practice, to obtain 2
quasi-cylindrical-like set of coordinates with the normal axis
behavior, the coordinates used are (p,(p6),4). Thus, for example, the

Jacobian is

2
D =*p><3(p9)'3¢=—!?1'—. (4)
Y BoFy

and

2

R

For simplicity, the super and subscript © is used for the )
component. Various interrelationships show that the only independent
metric elements which must be computed are 900’ 900" and ggg-

Having solved the equilibrium problem in these flux coordinates,
it is desirable to be able to view the solutions in real space. This
may easily be achieved using the R, Z, and & transformations
le.g, Eq. (3)]. In particular, the magnetic surfaces are computed by
following magnetic field lines in the vacuum flux coordinates and
recording the points at which they puncture given constant toroidal
angle (&) planes. The coordinates of these punctures are then
transformed to real space coordinates and the magnetic surfaces are
plotted. This procedure is more accurate than transforming to real

space and then following magnetic fie!d lines; particularly since( as
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explained in the next section) V e8=0is maintained to the accuracy
of the finite difference approximations throughout the equilibrium

calculation in the vacuum flux coordinates.
3. EQUILIBRIUM EQUATIONS AND NUMERICS
(a) Equilibrium Equations

The approach to solving the equilibrium problem is the same as
that of the Chodura-Schliiter code [3]. A fictitious force Fois

introduced
F=(UxB) xB-". (8)

This force is related to a velocity using a conjugate gradient

iteration scheme

-,

el el o DM G ™
P2y

where superscripts denote iteration level, angled brackets denote a2

volume average, and a is a constant. For optimal convergence « is

chosen just less than unity [3]. Using this velocity, the magnetic

-5
field B, is advanced in a flux conserving manner,

a-é - -» -+
—a—t,-:VX(VXB), (8)



The pressure P, which is related to the density by the adiabatic

pressure law, is advanced in a mass conserving manner,

oP _

NeW-nPVeV 9
Bt R , (9)

where o is the ratio of specific heats. From Egs. (8), (8), and (9),

the rate of change of potential energy is

-J‘is f(P/('T 1) + B2/2)dr = -fV «Fdr. (10)

Thus, if Vo F is positive definite, the potential energy will always
decrease and the final steady state will be an equilibrium
[39 =Jx §]. The obvious choice for the iteration scheme is the
friction model V = F; however, the conjugate gradient method [Eq. (7)]

gives a Tar more rapid convergence.
(b) Numerical Algorithm and Differencing

In the numerical implementation of the above equations [Egs. (6)
through (9)] the dependent variables are VP, Ve, vd, (Be/DV), (B¢/DVL
and P. The main reason for time advancing (§/Dv) instead of B is that

- -+
in the flux coordinates Ve B =0 is

18 ( 8° 3 8%\ o (B¢
TG R R R

Thus (8P/D,) may be computed from Eq. (11), once (Be/Dv) and (B¢/Dv)

have been time advanced. This procedure maintains the important



8

physical property that VeB=0, throughout the calculation, and is
also more efficient than time advancing (B°/D,) directly.

The numerical algorithm used in the NEAR code is summarized in the
flow diagram shown in Fig. 2. The dependent variables are represented
in finite difference form in the radial direction (p). The variables
VP and (B°/D,) are discretized on a uniformly spaced p-mesh, whose
first point is the coordinate axis (p = 0) and whose last point is at
the wall. The remaining variables [Ve, v, (Be/Dv), (B¢/Dv), and P)
are on an intermediate mesh whose points lie halfway between those of
the VP, (BP/D,) mesh. Centered finite differences are used to
approximate the p derivatives. In an earlier version of the NEAR code,
all the dependent variables were represented on the same radial mesh.
This, however, led to grid separation problems arising from the
hyperbolic nature of the equations — the highest derivatives that are
present are first order, which only effectively couple every other grid
point and thus permit grid separation. By using the two distinct grids
as previously described, these grid separation problems are overcome.

Since the metric elements are represented as Fourier series in ©
and ¢ it is natural to also represent the dependent variables in this
manner. The symmetry arising from the coils which was discussed in
Section 2 means that (Bp/Dv), v0, v can be represented by sine series
and (BS/DV), (B¢/Dv), VP and P can be represented by cosine series.

Thus, for example,

VP(p,0,,t) = L VR n(j.t) cos(m® + nd) . (12)

m,n

This Fourier representation requires that the convolutions of Fourier

series be calculated numerically. These convolutions are performed



numerically using the simple trigonometric formulae for the products of
sines and cosines. Fast Fourier transforms are not used to compute
these convolutions. The choice of the (m,n) spectrum used in the
calculations will be discussed in the next section. Simple first order
explicit differencing is used in time. The finite difference form of

the equations solved is given in the appendix.
(c) Boundary and Initial Conditions

The magnetic field is initialized to its numerically obtained

vacuum value:

BP
-0,
DV
g®
B¢
—D—--: Bo .

Y

The velocity is initialized to zero, and the initial pressure (PI) is

assumed to be of the form

PI = a(l - p2)m » (14)

where a and m are constants [for all the results presented in this
paper, m = 2]. In the code, analytic forms are used for the radial

derivatives of the initial pressure (PI) occurring in Egs. (8) and (9).
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The boundary conditions are those of an infinitely conducting wall
at the last closed vacuum flux surface. The boundary conditions on the

radial velocity and magnetic field are

vplwall = (g_:')lwall =0. (15)

The remaining dependent variables are on the intermediate mesh and
their values are never required at the wall. At the coordinate axis
(p = 0) regularity imposes certain constraints on the behavior of the
dependent variables. In particular, the (m,n) component of VP, vé,
(B8°/0,), (Be/Dv) must go to zero at least as fast as pl Inl - 1] 4nq ve,
(B¢/Dv), P must go to zero at least as fast as plml. The additional
constraints that

and (16)

?), )
(D" m,n Oy m,n

must also be satisfied by the m =1 components at p = 0. For the
dependent variables (Be/Dv), (B¢/DV), V8, P an additional mesh point is
included at p = 0. The variables VP, VO, (Be/Dv), (B¢/Dv), ané P are
advanced in time at the origin, using one-sided approximations to the
radial derivatives, and values of the m =1 components of V@ and

(BP/D,) are determined using Egs. (18).
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4. COMPUTATIONAL RESULTS

In this section, the numerical properties of the NEAR code will be
investigated by studying equilibria for the planar axis ATF and for a
12-field period heliac. For each new configuration studied the
convergence properties must be examined. The results given here for
the heliac and ATF are fairly representative of machines of their
class. The ATF device, in its standard mode of operation, is a 12-
field period £ = 2 torsatron with a rotational transform () varying
between ~0.3 at the magnetic axis and ~1.0 at the plasma edge.

There are several parameters for which numerical convergence
studies must be made. First the selection of (m,n) mode pairs to be
included in the equilibrium calculations will be considered. As a
general rule, the importance of a mode in the vacuum representation
gives a good guide to the importance of that mode in the equilibrium
calculation. This is because a large harmonic in the metric elements
and Jacobian leads to good couplings to that particular harmonic during
the evolution to an equilibrium. Figure 3 shows the dominant harmonics
of |B|2 as function of p for the ATF vacuum. The (1,0) harmonic is
associated with the toroidicity, while the (-2,12) harmonic is due to
the helical coils. The (-1,12) and (-3,12) harmonics are the toroidal
side-bands of the (-2,12) harmonic. Figure 4 shows the spectrum of

energies Ep . for the planar axis ATF at fy = 5%, where

2 P
Em,n _ f;all P(Bmez’n . qm_.n1> do . (17)

The solid curves in Fig. 4 are the spectrum for a simulation in which

40 modes are retained with 34 radial grid points. The broken curves in
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Fig. 4 are the differences of the Ej , between a 16-and 40-mode
simulation. Good convergence with number of modes is evident with 16
modes. The dominant modes in the finite-B spectrum can be seen to be
precisely the dominant vacuum modes (c.f. Fig. 3). A logarithmic fall
off inm and n about the dominant Ej . occurs. This relatively rapid
fall off means that the gross equilibrium propertiesb such as
equilibrium shift converge very rapidly. Figure 5 shows how the
equilibrium shift converges as the number of modes retained in the
equilibrium calculation increases, for the same case as Fig. 4. A very
rapid convergence of the equilibrium shift is evident. The first two
modes retained in Fig. 5 are the (0,0) and (1,0). The largest mode set
represented in Fig. 5 corresponds to the 16-mode set, whose spectrum is
shown in Fig. 4. For a flux conserving calculation, the rotaticnal
transform (Z) profile as a function of toroidal flux should be a
conserved quantity. Figure € shows how the ¥ profile depends on the
number of modes retained in the calculation at By = 5%. In Fig. 7 the
flux surfaces are shown for the ﬁo = 5% ATF equilibrium with 2, 7, and
16 modes retained in the calculation. All of these mode convergence
results show very rapid convergence. At higher betas the spectrum
broadens somewhat, but 20 modes are still sufficient to give converged
results at By = 15%.

For ATF the equilibrium shift is toroidally dominated, which means
that the equilibrium can be well reproduced with only two modes [the
(0,0) and (1,0)]. For other devices, such as heliacs, the vacuum mode
spectrum is much broader, and the torcidal and helical shifts may be
comparable. The net result is that heliacs require many more harmonics
(typically 225), for a well converged equilibrium. Figure 8 shows the
Ep,n Spectrum (Bp = 15%) for a 12-field pericd heliac which has an ¢
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profile varying between 4.556 at the magnetic axis and 5.33 at the
plasma edge, and a coil aspect ratio of 12. Seventy modes and 30
radial grid points were used in the calculation associated with this
spectrum. The broader character of this spectrum compared to the
planar axis ATF spectrum (Fig. 4) is evident. Figure 9 shows the
vacuum and equilibrium flux surfaces for this case. Even though
several resonant and nearly resonant harmonics are present in the
calculation, no breaking or significant distortions to the flux
surfaces are evident.

Another convergence property which must be studied is that of the
radial mesh. Figure 10 shows how the z profile and magnetic well
profile converge with increasing radial mesh at 5% central beta for ATF
(18 modes). The convergence studies shown in Fig. 10 show surprisingly
good results with only seven radial mesh points; these results are,
however, consistent with similar convergence studies for the
Chodura-Schiiter code [9]. The 25 mesh point calculation shown in
Fig. 10 required about 20 minutes of CPU time on a Cray-I computer.
For rapid parameter scans of devices with toroidally dominated shifts
only two modes and about 10 mesh points are required. Such
calculations require only a couple of minutes of Cray-I CPU time.
Convergence studies of the Ey , spectrum with radial mesh show that 25
radial mesh points are sufficient to resolve the dominant harmonics
(those shown in Fig. 3) to an accuracy of 0.1% at § = 5% for the planar
axis ATF. Also, 25 mesh points yield an equilibrium shift converged to
0.3% accuracy. Thus, it can be concluded that at By = 5%, the planar
axis ATF requires between 20 and 30 radial mesh points for converged
equilibrium solutions. At higher beta somewhat finer meshes are

required - for example, at f = 15% the errors in the Ep . become
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approximately a factor of 1.5 worse than the equivalent errors for the
By = 5% case. Figure 11 shows how the By = 5% ATF equilibrium flux
surfaces converge for increasingly fine meshes.

The convergence of the solutions with the time-step size used in
time advancing B and P has also been studied. Typically, a timestep 2
or 3 times smaller than that permitted by numerical stability
considerations is used. The convergence of the solution with timestep
size is regularly checked by reducing the timestep and repeating the
calculation.

The most important convergence is the convergence toward a
solution of the equilibrium equations. The equilibrium iteration
scheme makes use of a volume average of the force [<?2>] which provides
a sensitive measure of the equilibrium convergence. Figure 12 shows
how <F2> decreases as a function of iteration during a By = 5%, ATF
equilibrium calculation. Also shown in Fig. 12 is the history of
equilibrium shift during the calculation. The conjugate gradient
iteration scheme gives a rapid logarithmic reduction of F2  and
convergence of the shift. No attempt has been made to examine
alternate convergence schemes. The fact that the F2> saturates at
some final value is due to the numerical resistivity arising from
radial differencing errors. The final value of ¢y scales
approximately as (Ap)~2, where Ap is the radial mesh size.

he

cr

Another measure of the equilibrium convergence is given by
requirement that for an exact equilibrium BeW =0. To measure how
well the NEAR equilibria satisfy this relation the variance of the
pressure on a magnetic surface is calculated as a diagnostic. Here the

variance is defined as
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P [(del)"’ﬁ: jPle’]m (18)
d

where the path of the integral is along a magnetic field line and the
asymptotic value of P is obtained by following the field {ine for many
turns. Figure 13 shows P as function of radius for a By = 5%, 16-mode,
34 radial mesh point equilibrium. The error (P) is almost entirely due
to radial differencing errors arising during the equilibrium
calculation and also during the evaluation of P. This error scales as
(A0)~2 but is relatively insensitive to the number of modes retained in
the equilibrium calculation. Although this diagnostic provides a
further validation of the code, the gross equilibrium properties, such
as shift, magnetic well, and Z profile provide much better measures of
the necessary resolution for convergence.

The results of calculations with the NEAR code have been
benchmarked against various other codes. Some of these comparisons are
given in Ref. [10]. Here the NEAR equilibrium calculations for ATF
will be compared with results from the Chodura-Schliiter code.
Figure 14 shows a comparison of the equilibrium flux surfaces (8; = 5%)
between the two equilibrium codes. To make this comparison more
quantitative, the equilibrium shift and magnetic well profile computed
with the Chodura-Schliter code and NEAR are compared in Figs. 15 and
18, respectively. The good agreement between the NEAR code and the
other codes provides a valuable validation of the NEAR code. Finally
in Fig. 17, the magnetic well depth as a function of By computed with
the NEAR code and Chodura-Schliiter code are compared. At low beta
($7%) the codes agree weil. At higher betas, where the resolution of

the Chodura-Schliiter code is less adequate, the agreement deteriorates.



16

5. CONCLUSIONS

Details of a 3-D stellarator equilibrium code (NEAR) have been
given. This code employs the vacuum flux coordinates described by
Boozer, as an Eulerian frame of reference. These coordinates have been
shown to provide an efficient representation of the complex stellarator
geometry. The NEAR code solves the equilibrium equations in these
coordinates, subject to the constraints of flux and mass conservation.
The code relaxes the equations to an equilibrium by an energy
minimization technique. A Fourier series representation is used in the
poloidal (8) and toroidal (¢) directions, and a finite difference
representation is used in the radial direction (p). A first order
explicit scheme is used to time advance the magnetic field and
pressure.

Equilibrium convergence studies are presented for the planar axis
ATF. The vacuum mode spectrum is shown to provide a good guide of the
relative importance of a given mode in the equilibrium calculations.
Convergence studies in the number of radial mesh points show that
between 20 and 30 points are sufficient. Also the equilibrium
properties of a 12-field period heliac have been briefly examined. It
is found that heliacs have broader spectra and require mcre modes for
converged results than the planar axis ATF.

The NEAR code has been benchmarked against existing stellarator
equilibrium codes. Comparisons of flux surfaces, equilibrium shift and
magnetic well profiles with the Chodura-Schiiter code show good

agreement — thus further validating the code.
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Appendix: Finite Difference Form of the NEAR Equations

The following notation will be used in this Appendix - a bracket
around a variable denotes the (m,n) Fourier component of that variable
([A] = Am,n)' superscripts denote iteration level, and subscripts
indicate radial mesh position.

With this notation the components of the current (j) in finite

difference form are

n n
=-n + nlB ,
[Jp].+1/2 Fi [B¢]i+l/2 " e]i+1/2

n n

(B - [B
gl = nl8g] - i

i-1/2
i bo '

and

n
n Pi+1/2(B0] L~ Pi- 1/2[39] .

_ i+1/2 i-1/2  m

where Ap is the radial mesh step and the subscript i+1/2 denotes a
point of the intermediate mesh halfway between p; and p; 3 [many of the
variables are stored on this mesh as explained in Section 3(b)].

In finite difference form, the components of the equilibrium

equation [Eq. (6)] are

n+1

r i+ [] -
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n+1 B4 " + [BR, 1P P
[FG]. _ (8% ?1 g 1+1 |+1] _ [B 1/2J +1/2] m| ]l+lz '

i+1/2 Pi
and
n+1 (800911 + [B9, B.qn
Rl = B/l - =g Pl

In finite difference form the flux conservation equation [Eq. (8)] is

n+l n
mez-@myu
i1/ X3 i21/2 "[v?+1/2(8¢/0v)i+1/2 - v?+1/2(Be/Dv)i+l/2]n
[V|+1(B /Dv)i+1 B v?+1(Bp/Dv)i+l - V?(Be/ov)i + V?(Bp/Dv)i]n
Bo
and
o] -
- 84p,]
B0, i+1/2 [ |+1[2 —m n

X {V?+1/2 (B¢/Dv)i+1/2 - V?+1/2 (BQ/DV)1+1/2]
P|+1/2

. Pi+1 [v?+1(8p/0v) i+1 ~ V?+I(B¢/Dv) i+l:| n V¢(Bp/Dv/ i~ V?(Bd’/Dv) i] .
Pi+1/2 Bo

where At is the timestep. From V -« B=0an equation for (B°/D,) is given:

51 = (51D - 0 50y - 0 P B L) o™

This equation, together with the wall boundary condition [BP/DV] =0,
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is sufficient to iteratively determine (B°/D,). Finally, the pressure

equation [Eq. (9)] becomes,in finite difference form,

OPi41 Q]n

[PITH /0 - [Py (e o Fitd - P," 1 1,10 20

X i+1/2 o 1~ Pi+1/2

n

8P~+ n e
- [v?+1/2—g¢1124 - WPia1o * Vil

where V * V, in finite difference form, is

[0)) 1/2807" (P11 (VP/0,) 141 - £; (VP/D,) i)]n

[V d .V’ =
i+1/2  Pi+l/2

n

n
¥ Pi31/2 [(Dv) i+1/2 _aa_é(ve/DV)i"'lﬁ] * [(Dv)i+1/2 % (V¢/Dv) i+1/2]

Many of the above equations implicitly involve Fourier convolutions.

For example, the last term of the last equation requires the

convolution of V® and 1/D,.
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Flow diagram of the NEAR algorithm.
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Fig. 4.

Ep,n spectrum for By = 5% planar axis ATF. Solid curve is

for a 40-mode case and the broken curve is the difference

between the Em,n for 40 and 16 modes.
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