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ABSTRACT 

A residential unitary low-temperature water source heat pump was tested in the labora- 
tory. Tests were performed over a broad range of source water temperatures, 7.2 to 21.1"C 
(45.0 to 7Q.0°F), and water flow rates, 3.2 X 

The heat pump capacity and coefficient of performance (COP) were found to be linearly 
related to the source water temperatures. In the heating mode, both the capacity and COP 
increased with increasing source water temperature and water flow rate. However, when an 
assumed water pumping power for a 46-m total head was taken into account in the COP cal- 
culation, the net COP for both heating and cooling decreased with increasing water flow 
rate. 

For cyclic operation over the tested source water temperature range, the coefficient of 
degradation, C,, ranged from 0.196 to 0.137 for heating and from 0.131 to 0.161 for cooling. 
The effect of inlet air humidity was also studied for cooling mode operation. 

A sample calculation is included to demonstrate the application of the test results in 
calculating the annual performance factor. The test results are used to form a data base on 
the performance of a typical residential unitary low-temperature water source heat pump. 

to 8.2 X m3/s (5 t o  13 gpm). 
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Groundwater temperatures in the continental United States range from about 5.6"C 
(42.Q)"F) in the northernmost regions to about 25.S"C (78.O"F) in the Deep South. This water 
provides an ideal heat source or sink for heating and cooling with water source heat pumps. 
Since the groundwater temperature a t  any location stays almost constant year round, 
regardless of the extremes of the ambient air temperature, a properly designed groundwater 
heat pump system will operate at a higher seasonal performance factor than an air-to-air 
unit in the same climate. However, in the past the expense of drilling wells had limited 
such systems to those areas where abundant, moderate-temperature groundwater was avail- 
able at moderate depths. 

In recent years, escalating energy costs have brought about a search for more energy- 
efficient ways of redent ia l  space heating and air conditioning. It is apparent that ground- 
water heat pumps can provide significant energy savings, and the old idea of using 
groundwater-coupled beat pumps is now becoming a promising prospect for: energy conser- 
vation. Many water source heat pumps are now defligned to operate with relatively cold 
groundwater, as low as 4.4% (40.0°F), whi considerably extends their geographic range of 
applicability. Although low-temperature groundwater heat pumps have became more popu- 
lar, well-instrumented test data are still quantitatively inadequate. The purpose of this 
study is to collect sufficient information to form a data base on the performance of such a 
typical. residential, unitary low-temperature water source best pump. 

The experiment described in this report can be divided into four parts: steady-state and 
cyclic operations for both heating and cooling modes. For steady-state operation, the tests 
were performed with inlet water temperature and flow rate as parameters. In addition, the 
effect of inlet air moisture content on the heat pump performance was tested for steady- 
state cooling operation. 

For cycling tests, the cycling loss, which is caused by refrigerant migration from the 
high- to low-pressure side during the off-cycle, was experimentally determined with water 
inlet temperature and water flow rate as parameters. For eooling mode cycling tests, both 
dry- and wet-coil tests were performed, under certain operating conditions, to confirm that 
cycling loss was independent of inlet air humidity, as concluded by Didion and Kelly.' 

To estimate the annual performance factor (APF), the degradation coefficient, CD, was 
calculated with water inlet temperature and water flow rate as parameters. Finally, an 
example of estimating the APF for a house with known heating and cooling load is 
presented to demonstrate the application of the test data. 
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2. DI[SCUSSION AND CONCLUSIONS 
For both healing and cooling, the capacity and coefficient of performance (COP) of the 

tested heat pump are linear functions of inlet water temperature over the tested range of 7.2 
to 21.1"C (45.0 to 70.Q"F). 

The steady-state heating capacity and COP increased with increasing inlet water tem- 
perature and flow rate if the water circulating pump power was not considered. The steady- 
state cooling capacity and COP decreased with increasing entering water temperature and 
increased with increasing water flow rate, although the effect of the water flow rate on the 
capacity and COP was very small. 

For both heating and cooling steady-state COP calculation, if we added the water pump 
power input, assuming a total head of 46 m (150 ft)  and a pump-motor efficiency of 0.3, to 
the heat pump power input, the COP decreased with increasing water flow rate. 

For cooling mode steady-state operation, the increase of inlet air humidity increased the 
heat pump total capacity but decreased the sensible capacity output. 

Both heating and cooling node cycling tests were performed on a 6-min-on and 2.4;-min- 
off time schedule. For heating mode cyclic operation, the cycling loss decreased from 16.5 to 
11.3% with an increase of entering water temperature from '7.2% (45.0"F) to 21.1"C 
(70.O"F). The degradation coefficient was from 0.196 to 0.137 over the same water tempera- 
ture range. For cooling mode cyclic operation, both dry- and wet-coil tests were performed 
at a constant entering water temperature and flow rate. The results indicate that the 
cycling loss is independent of the humidity of the entering air. The cooling mode cycling 
loss increased from 10.7 to 13.4% with an increase of the entering water temperature from 
'72°C (450°F) to 21.1% (70.0"F). The degradation coefficient varied from 0.132 to 0.161 over 
the same water temperature range. The degradation factors are smaller than air to air heat 
pumps. 

The cycling loss and degradation coefficients, for both heating and cooling mode opera- 
tion, were independent of water flow rate. 

The effect on h a t  pump performance of extra refrigerant added to the system cannot 
he easily checked. For steady-state operation, the test data were compared with the 
manufacturer's published information and were found to be very close. Therefore, i t  is rea- 
sonable to assume that the effect of extra refrigerant charging is negligible. However, such 
a comparison for cyclic operation cannot be made because of the effect of the refrigerant 
migration. The effect of refrigerant charging will be incorporated in future reports when 
further testing is completed. 

3 





3. DESCRIPTION OF TEST UNIT 
The heat pump tested is of a commercially available unitary design; an air handling 

compartment is located above another compartment containing the compressor and the 
water-to-refrigerant heat exchanger. The two compartments are separated by an insulated 
panel. The manufacturer’s rated heating and cooling capacities for the unit are 11.1 kW 
(37,800 Btu/h) and 10.0 kW (34,100 Btu/h), respectively, at 12.8”C (55.0”F) inlet water tem- 
perature. 

The compressor has a nominal. rating of 1.9 kW (2.5 hp) using R-22 as the refrigerant. 
The blower of the air handling system, with a three-speed, 0.37-kW (Q.5-hp) motor, is rated 
at  ‘7.1 X 10-1 m3/s (1500 ft3/min) at 24.7 Pa (0.1 in. water) of external. pressure. 

Refrigerant flow in both the heating and cooling modes is controlled by a single ther- 
mostatic expansion valve; the temperature sensing bulb is on the compressor suction line. 
The refrigerant charge recommended by the manufacturer is 1.6 kg (3.5 Ib). However, extra 
copper tubing was added to the system for installation of the instruments to measure refrig- 
erant flow rate and pressure, which increased the total volume of the refrigerant system. 
Therefore, an additional 1.6 kg (3.6 lb) of R-22 was added to the system so that the heat 
pump steady-state heating output was close to that given in the manubaeturer’s published 
data. 

The water-to-refrigerant heat exchanger has a coaxial tube-in-tube design, with a heli- 
cal fluted inner tube to enhance the flow turbulence and heat transfer area. Refrigerant 
flows in the annulus area and water flows in the inner tube. An external water circulation 
pump was installed to circulate the water through the heat exchanger. This pump would 
normally be the well pump in a residential installation. 
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4, DESCRIPTION OF TEST APPARATUS 
The test apparatus measures both air- and refrigerant-side energy changes across the 

air-to-refrigerant heat exchanger, water and refrigerant energy changes across the water- 
tmrefrigerant heat exchanger, and power consumption of the compressor and blower motors. 
Figure 1 shows the refrigerant and water circulating loops and the location of pressure and 
temperature sensors and turbine meters. 

A "bootstrap" air loop was built around the heat pump air handling compartment 
(Fig. 2) to provide control over the inlet air temperature by recirculating part of the air 
leaving the heat pump. 

Air flow rate was determined by a duct air monitor that has a cross section of 0.092 m2 
(1.00 ft2). The device measured the average velocity head of the inlet air. A low-pressure dif- 
ferential transducer converted the velocity head into direct-current voltage as an input sig- 
nal to the data acquisition system (DAS) for air velocity calculation. Average air tempera- 
tures entering and leaving the unit were measured by two sets of nine thermocouples con- 
nected in parallel. Two humidity sensors measured the inlet and outlet air relative humidi- 
ties for heating mode tests; two single thermocouples covered with wetted wicks measured 
wet-bulb temperatures of entering and exiting air for cooling mode tests. 

The refrigerant flow rate was measured by a turbine flowmeter connected in series with 
a rotameter, which also served as a sight glass. The refrigerant pressure drops across the 
air-to-refrigerant and water-to-refrigerant heat exchangers were measured by four pressure 
transducers. The refrigerant temperatures at various locations shown in Fig. 1 were mea- 
sured by single thermocouples clamped on the refrigerant lines and covered with insulation. 
Pressure gages made i t  possible to visually check the pressures on the compressor suction 
and discharge lines as well as the pressures before and after the expansion valve. 

The water flow rate was measured by a turbine flowmeter connected in series with a 
rotameter. The inlet and outlet water temperatures were measured by single thermocouples 
in wells installed at the inlet and outlet of water line fittings. 

Water was taken from a 3.8-m3 (1OOO-gal) insulated tank that was equipped with an ice 
maker and was capable of chilling the water to 0°C (32.0°F). The heat pump compressor 
power and blower power consumption are measured by two thermal-watt converters that  
produced d-c signals proportional to the instantaneous power consumption. 

A steam line was installed near the air intake duct to provide humidification when 
required. A small steam coil, which could raise the inlet air temperature by 1.4% (2.5"F), 
was installed in the intake air ductwork to provide fine adjustment of the intake air temper- 
ature. 

Thermocouples were used for all the temperature measurements. The National 3ureau 
of Standards (NBS) temperature vs millivolt relationship, which was coded into the DAS, 
could easily be approximated to within 0. l l"C ( 0 . 2 0 O F ) ,  with reference junction temperatures 
between 21.1 and 322°C (70.0 and 90.O"F) and thermocouple junction temperatures between 
-12.2 and 65.6"C (10.0 and 150.0°F).2 

The DAS used in this experiment consists of a digital computer with SK-word core 
memory, an integrating digital voltmeter with an ohms converter, a reed relay scanner, and 
a floppy disk drive that could store 27K output data per disk. The programs used by the 
computer were written in a Digital Equipment Corporation (DEC) FOCAL language modi- 
fied locally to facilitate data acquisition. 
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Fig. 2. Air loop arrangc ____ nt. 

The equations used to calculate the thermodynamic properties of the refrigerant, R-22, 
were developed by Ball3 from the R-22 property table4 for a previous heat pump experiment. 
The air thermodynamic properties were calculated from the equations listed in ref. 5. 





5. TEST PROCEDURE 
Tests were conducted to study the response of performance parameters to changes in 

water temperature and flow rate while the heat pump was in operation. The tests were run 
at  water temperatures ranging from 7.2 to 21.1"C (45.0 to 7O.O"F) and flow rates ranging 
from 3,2 X 10 -4 to 8.3 X lou4 m3/s (5 to 13 gpm). 

Because most heat pumps are rated without concern for their water pumping power 
consumption, we elect to add an assumed pumping power to estimate the system perfor- 
mance. A 4.6-m (150.0-ft) total water head and a pump efficiency of 0.3 were assumed (refer 
to Fig. 34 for the effect of total head). The pumping power can then be calculated by 

Ppumppower = 0.415 * kw , (1) 

where mw is the water mass flow rate in kilograms per hour and the pump power is in 
watts. 

For refrigerant-side capacity output, the refrigerant enthalpy changes across both heat 
exchangers are calculated using measured refrigerant pressures and temperatures. 

For air-side output, the air enthalpy changes across the heat exchanger are calculated 
using measured air dry-bulb temperatures and air relative humidities for the heating mode 
or air wet-bulb temperatures for the cooling mode. 

5.1 Heating Mode Steady-State Tests 
The water in the storage tank was first heated to about 27°C (80"F), and the heat pump 

was then operated a t  a selected water flow rate using water from the storage tank. The 
water went through the heat exchanger and was recirculated back to the tank. The water 
temperature in the tank thus decreased slowly, a t  a rate of about 1°C per 12.5 to 18 min 
(1°F per 7.0 to 10.0 rnin). Data collection began when the inlet water temperature reached 
21.1"C (70.O"F) and continued until the water inlet temperature dropped below 7.2"C 
(45.0"F). Since the heat pump had run for at least 1 h before data collection began and since 
the supply water temperature changed slowly, it is reasonable to assume that the heat pump 
was tested under quasi-steady-state conditions. 

In the comparison of the refrigerant- and air-side energy ehanges for the air-to-refrig- 
erant heat exchanger, the fan power consumption was added to the refrigerant-side 
heating capacity. 

5.2 Heating Mode Cycling Tests 
The cycling tests were performed on a 6-min-on and 24-min-off time schedule for the 

same water flow rates and temperature range as that specified in Sect. 4.1. The water in the 
storage tank was first heated to about 44°C (8.0"F) above the desired water temperature for 
the test. The water was allowed to recirculate back to the tank while the heat pump was in 
operation. By the time the water temperature in the tank dropped to the desired level for 
the test, the heat pump would already be running in a quasi-steady-state condition. The heat 
pump system would then be shut off for a period of 24 min and started for a cycling test. 

11 



12 

During the 6 min of ''onn time, the water that went through the heat exchanger was drained 
to a sink so that a constant supply water temperature could be mainbind .  A minim 
four "on" and four "OW cycles were run for each test, 

e operation, the inlet air moisture esul 
e of the dehrxmidificstion effect, It was 

y affect, the heat pump 
at the: humidity sensors 

were not accurate enough to collect the data required for the air humidity ratio calculation. 
Consequently, the wet-bulk, temperatures of the inlet and discharge air were measured, 
together with the dry-bulb temperatures, to calculate the amount of inoistlare condensed 
during the operation. 

To start  the test, the water in the storage tank was first chilled to about 3.3"@ (38.0OF). 
The water that went through the heat exchanger was alllowed to r ~ ~ i r ~ u ~ a t ~  back to the 
tank. Data collection began when the inlet water temperature reached '72°C (45.O"F) an 
terminated when the inlet water temperature reached 21.1"C ('i'0.O"P). The inlet air dry- an 
wet-bulb temperatures were maintained a t  26.7 -t- 0.3"C: (80.0 I 0.5"F) and 17.2 
(63,O k 0.5"F) respectively. When the refrigerant- and air-side en 
pared, the blower power consumption was subtracted from the 
capacity. Refrigerant- and water-side ener 
exchanger were also calculated. 

0.3"C 

changes aclio9s the 

5.4 @o de Cycling Te 
The procedure. used was similar to that for the heating mode cycling tests, describe 

Sect. 4.2> except that the water in the storage tank was first chilled to 4.4"C (8.O"F) below 
the desired test water temperature. However, ~ e c ~ ~ ~ ~  of the heat pump cycling, the response 
of the air inlet wet-bulb temperature measurement was too slow a t  the 
"on" cycle. It was assumed that the inlet air humidity ratio was constant. Given the air 
dry-bulb temperature and air humidity ratio, the air thermodynamic properties could be cal- 
culated. Tests were performed for water flow rates of 3.2 X and 8.2 X m3/a (5.43 
and 13.0 gpm) only and for water temperatures ranging from 7.2 to 2P.lo@ (45.0 to 70.O"F). 
The inlet air was maintained a t  26.7 -t 0.3"C (80.0 rf: 0.5"F) dry bulb. Didion and Kelly' 
reported that the following relationship exists for cooling m d e  cycling testa: 

where (COP),,, w, (COP),, D, (@OF),, w9 and (COP),, D represent the heat pump cyclic 
and steady-state COP of wet and dry coils respectively. 

A few cyclic tests were performed, with inlet air humidity ratio as the parameter, at 3.2 
X m3/s (5.0 gpm) water flow rate and 122°C (54.O"F) water temperature to confirm 
the above relationship. 

To have a constant-temperature water supply, tap water was used for this test. The 
heat pump was operated for at least 1. h before the data collection be 
injected into the inlet air while the dry-bulb temperature was maintained a t  26.7 k 0.3"C 
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(W.0 +- 0.5"F). The heat pump sensible and latent capacities were calculated. The tests were 
conducted at 3.2 X lo-* and 5.8 X lo-* m3/s (5.0 and 9.0 gpm) water flow rate, with inlet 
air wet-bulb temperature varying from 12.8 to 21.l"C (55 to 70°F) and water inlet tempera- 
ture at 12.2"C (54.O"F). 





6. HEATING MODE STEADY-STATE AND 
CYCLIC OPERATION TEST RESULTS 

6.1 Heating Mode Steady-State Test Results 
6.1.1 Heating Capacity and COP 

The heating capacity is defined as the sum of the heat rejected by the coil and the 
power input to the indoor fan. The COP is defined as the ratio of heating capacity to total 
power input. 

Figure 3 shows the capacity and power input (no pump power) as functions of entering 
water temperature at 5.7 X m3/s (9.0 g-pm) water flow rate. The capacity increased 
with increasing water temperature from 9.4 kW a t  7.2"C (45.O"F) to 12.89 kW at 21.1"C 
(70.Q"F) (from 32,108 to 44,000 Btu/h). The power consumption also increased with increas- 
ing water temperature, from 3.1 to 3.7 kW. Figure 4 is the same as Fig. 3 except that the 
water flow rate is an additional parameter. It shows that the capacity increases with water 
flow rate. At 12.8% (55.0°F), the capacity increases from 10.3 kW (3!5,oOa Btu/h) at 3.2 X 
lop4 m3/s (5.0 gpm) to 11.2 kW (38,200 Btu/h) a t  8.2 X mS/s (13.4) gpm). The ART 
rated COP of the unit is very close to our test result a t  21.P"C (70.O"F). 
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Fig. 3. Heating mode capacity as a function of inlet water temperature a t  5.7 X 
m3/s (9 gpn) water flow rate. 
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Fig. 4. Heating mode capacity as a function of inlet water temperature and water flow 
rate. 

Figure 5 shows typical test results for COP as a function of entering water temperature 
a t  5.7 X m3/s (9.8 gpna) water flow rate. The COP increased with increasing water tem- 
perature from 2.96 to 3,5 (refrigerant side) over the te peratwe range. Figwe 6 shows the 
COP as a function of entering water temperature with water flow as a parameter. It indi- 
cates that the COP increases with increasing water flow rate. For example, the COP at 
123°C (55.O"F) increases from 3.11 to 3.26 when the flaw rate is increased from 3.2 X lo-' 
to 8.2 X m3/s (5.0 to 13.0 gpm). Figure 7 is the same as Fig. 6 except that the water 
pump power input is included in calculating the COP. It shows that the COP decreases with 
increasing water flow rate. The COP decreases from 2.7% to 2,4 a,t 123°C (S5.0°F7) entering 
water temperature when the flow rate is increased from 3.2 X lop4 to 8.2 X m3/s (5.0 
to 13.0 gprn). Figure 7 indicates that, if we wanted to operate the heat punip at  a higher 
COP, we would have to operate it a t  a lower water flow rate with a slightly reduced heating 
capacity output if the total water head were 46.0 rn (150 ft). 

6.1.2 CompPessor 0 

The compressor performance parameters for a range of water inlet temperatures a t  
0.57 m3/s (9.0 gpm) water floav rate are shown in Table 1. The refrigerant flow sate went 
up with increasing inlet water temperatures because of the increase of the suction pressure, 
which increases the density of the refrigerant vapor reaching the cornpressor. Higher suc- 
tion pressure causes higher refrigerant flow rate and discharge pressure, which results in 
better refrigerant condensing because of the higher temperature differential between the 
inlet room air and discharge gas. The pressure ratio, therefore, decreased with the increase 
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Table 1. Heating mode ~~~~~e~~~ operating characteristics 
Tests performed a t  5.7 x io-* m3/s (9.0 gpm) water Plow rate 

Degree of 
suprheat @fficiencgrs _ -. 

"C ( O F )  kW (Btu/h) kg/h (Ib/h) efficiency" "e (QP) 

Combined Volumetric Water inlet Power input Refrigerant 
temperature Pressure 

ratio to motor mass flow rate motor-comp. ............................. - 

7.2 (45.0) 2.70 (9,205) 155 (342) 3.42 0.508 0.723 6.2 (11.2) 
10.0 (50.0) 2.80 (9,567) 170 (374) 3.m 0.519 0.740 6.7 (12.1) 
12.8 (55.0) 2.90 (9,877) 186 (409) 3.18 0.535 0.759 7.2 (12.9) 
15.6 (60.0) 3.00 (10,239j 196 (433) 3.08 0.531 0.757 7.8 (14.1) 
18.3 (65.0) 3.12 (10,642) 211 (465) 2.98 0.534 0.762 8.4 (15.1) 
21.1 (70.0) 3.15 (10,741) 226 (498) 2XO 0.538 0.780 9.6 (17.2) 

'This efficiency is the ratio of ideal isentropic work (between actual shell inlet conditions of the refrig- 

bVoluinetric efficiency is defined as 
erant and the discharge pressure) to the electrical. power input to the compressor. 

where 
V L  - volumetric efficiency, 
mTef 7 measured refrigerani mass flow rate, 
PS 

D = compressor displacement (swept volume), 
N - cornpressor speed. 

= density of refrigerant vapor a t  hermetic unit shell inlet, 
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of water temperature due to higher suction pressure and better condensing of the discharged 
vapor. The combined motor-compressor and volumetric efficiencies also increased with water 
inlet temperature, even though they were only weak functions of water inlet temperature 
and seemed independent of water flow rate, as indicated in Fig. 8. 

6.13 Water-to-Refrigerant Heat Exchanger Performance 
For the water source heat pump test, the water-to-refrigerant heat exchanger was prob- 

ably the most important component that influenced the heat pump performance since the 
only test parameters were water inlet temperature and water flow rate. 

The heat exchanger is a tube-in-tube coaxial coil with a steel outer shell and a cupro- 
nickel inner tube spiraled to enhance the heat transfer surface area and to stimulate the 
flow turbulence. The refrigerant is on the shell side and water is on the tube side. The 
refrigerant is counterflow to the water for heating operation and flows concurrently with 
the water for cooling operation. 

ORNL- DWG 8 2 -  15435R2 

INLET WATER TEMPERATURE, OF: 

40 45 5 0  55 60 65 70 
0 9  

0.8 

0.7 

0.6 
F 
w' 

f 
0 z 

0.5 

0.4 
w 
L 

0.3 

0.2 

0.1 

0.0 

I I I I I I 

6 8 10 12 14 16 18 20 22 
INLET WATER TEMPERATURE, "C 

Fig. 8. Heating mode cornpressor volumetric efficiency (vu) and combined motor- 
compressor ( q c )  efficiencies as functions of inlet water temperature. 
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It i s  difficult to calculate the heat transfer film coefficients on the water and refrig- 
erant sides because of the irregular surface shape and because the refrigerant does not stay 
in one phase, making calculation of the overall heat transfer coe€fi.cient impossible unless 
the heat exchanger area for each refrigerant region, superheated vaporp two-phase, and sub- 
cooled liquid is known. The heat exchanger is not instrumented for detailed analysis in this 
experiment, However, the parametric studies of the overall heat transfer rate and refrig- 
erant pressure drops were analyzed through the test results. 

re 9 shows the water-side pressure drop across the exchanger as a function of water 
flow rate. It shows that, if we double the flow rate from 3.2 X m3/s (5.0 
to 10.0 gprn), the pressure drop quadruples. Sinm the water pump power consumption is an 
important factor in determining the heat pump COP (Sect. 6.1=1)3 the water-side pressure 
drop can seriously decrease the system performance a t  a high water flow rate. Fi 
shows the water-side overall heat transfer rate as a function of inlet water temperat 
flow rate. The figure reveals that the heat transfer rate increases p r ~ ~ o K ~ i ~ n a l l y  with the 
increase of the water temperature. It also shows that the flow rate has a. relatively small 
influence on the heat transfer rate. At 15.6"C (60.0°F), the heat transfer rate improves only 
9% when the flow rate increases from 3.2 X 

t6, 6.4 X 

to 8.2 X m3/s (5.0 to 13.0 

0 

0 

I I 
_11- 

Fig. 9. Effect of water flow rate on .;Yater-to-refriger.ant heat exchanger pressure drop. 
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Fig. 10. Water-to-refrigerant heat exchanger heating mode capacity as a function of 
inlet water temperature and water flow rate. 

other words, the heat transfer is more efficient at a lower water flow rate. Figure 11 shows 
the refrigerant-side pressure drop across the exchanger vs inlet water temperature. It shows 
that the pressure drop increases with the water temperature and water flow rate because, at 
higher water temperature and flow rates, the refrigerant flow rate increases. 

6.1.4 Fan Performance 

The fan was driven by a three-speed motor. The speeds observed in the laboratory were 
1130,1060, and 1020 rpm. 

All the tests were performed at a high speed with an external air-side resietance of 
39 Pa (0.155 in. water). Figure 12 shows the results of the fan evaluation at high speed; no 
Characteristic curves were obtained for the medium- and low-speed settings. The fan effi- 
ciency shown was defined as the ratio of the delivered air power to the electrical power 
input to the fan motor. It represents the combined efficiency of fan and motor. The effi- 
ciency peaked at about 0.43 m3/s ( 920.0 e€m) with a value of about 23%. The flow rates 
used in the heat pump tests ranged from 0.59 to 0.61 m3/s (1250 to 1300 cfm). 
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Fig. 11. Refrigerant-side pressure drop of the water-to-refrigerant heat exchanger, in 
the heati11g mode. 

Figure 13 shows a typical cycling test at 4,5 x lop4 m3/s (7.0 m> f h v  rate and 10.o°C 
(50.0"P) water termperature. It can be seen that the p w e r  input peaked at the start of the 
cycle. The output increased sharply for the first 60 8 axad then ~~~~~~c~~~ asymptotically 
toward the steady-state capacity. A great portion of the cycling loss ~~~~~~~~ during the 
first minute of operation, whew tSe capacity output was ?ow and power consumption was 
high. 

Figure 14 shows the eyeling loss as a function of inlet water temperatnre with the flow 
rate a5 the parameter. Cycling loss is defined as 

where (COP),, i s  defined as the t ~ t d  capacity output divided by the total power inplrt (no 
pumping power) for the sntim ''nnPs cycle. Figure 14 clearly indicates that the cgclin 
a linear function of inlet water temperature only and is independent of the water 
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Fig. 14. Heating mode cycling loss as a function of inlet water temperature. 

The cycling loss decreases with the increase of water temperature, ranging from 11.3% at 
21.1"C (70.O"F) to 16.5% a t  7.2% (45.O"F). The scattering of the test points occurred because 
the cycling loss was very sensitive to the (COP),, and (COP),. A +1% deviation of the 
(COP),, for example, would m e m  * 1% change in the cycling loss. 

In order to estimate the seasonal performance. factor (SPF). the load factor ( L f l  and 
the degradation coefficient (CD)  weie ealcuAated (see Eq. 6, p. 41, for definition of CD).' The 
load factor is defined as 

Figure 15 show; the L! as a f~nc t ion  of inlet water temperature. It can be seen that the 
LF increases with the increase of water temperzture because of the increase of the ratio of 
thc cycle capacity over the steady-state capacity. Figure 16 shows the sstio of the power 
consumption for the cyclic and steady-state operation, which remained fair1 y constant at 
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Fig. 15. Heating mode load factor as a function of inlet water temperature. 

about 0.97. Figure 17 shows the degradation coefficient, CD, as a function of inlet water tern- 
perature, with water flow rate as the parameter. The results indicate that the degradation 
coefficient is independent of the water flow rate. The value of CD varies linearly from 0.2 to 
0.19 over the tested water temperature range. 
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7. COQLING MODE STEADY-STATE ANI) 
CYCLIC OPERATION TEST RESULTS 

7.1 Cooling Mode Steady-State Operation 
7.1.1 Effect of Inlet Air Wet-Bulb Temperature 

Figures 18, 19, and 20 show the heat pump total and sensible cooling capacities as func- 
tions of inlet air wet-bulb temperature a t  inlet water temperatures of 12.2"C (54.0"F) and 
172°C (63.0"F) and water flow rates of 3.2 X m3/s 45.0 and 9.0 gpm). 
The irregular air-side capacity curve in Fig. 19 was caused by the small error in measuring 
air-side inlet and outlet wet-bulb temperatures. For the same reason, the air-side capacity 
curve is not shown in Fig. 2%. The test results indicate that, as the inlet air wet-bulb tem- 
perature is increased, the heat pump total capacity output also increases but the sensible 
capacity decreases. If we consider the total capacity a t  19.4% (67.O"F) wet bulb as the base 
point, the ratio of total capacity at specific wet-bulb temperatures to that a t  19.4"C (67.8"F) 
is almost identical for all three tests, even though the tests were performed a t  different 
inlet water temperatures and flow rates. The same is also true for sensible capacity, heat 
rejection, and power output. The average ratios at different wet-bulb temperatures are 
shown in Table 2. Although the heat pump total and sensible cooling capacities vary consid- 
erably with the webbulb temperature, the heat rejection varied less than 10% and had 
almost no effect on the heat pump power input; thus COP also increases with humidity. The 
data shown in Table 2 enable us to perform the heat pump cooling mode steady-state test at 
one inlet air wet-bulb temperature and to predict the heat pump performance at different 
inlet air wet-bulb conditions. 

and 5.8 X 

7.1.2 Cooling Capacity and COP 

The cooling capacity is defined as the heat absorbed by the coil minus the gower input 
to the indoor fan. The COP is defined as the ratio of cooling capacity to total power input. 
In this test, the COPs were calculated both with and without the power input to the water 
pump (Sect. 6.1.1). 

Figure 21 shows a typical test result of total capacity output and power input as func- 
tions of entering water temperature. It shows that the capacity decreased from 10.7 to 9.5 
kW (36,680 to 32,500 Btu/h) and that the power input increased from 2.8 to 3.3 kW, with 
increasing entering water temperature. Figure 22 shows the total and sensible capacities as 
functions of entering water temperature with water flow rate as the parameter. The flow 
rate had little effect on both capacities. At a 12.8"C (55.O"F) entering water temperature, for 
example, the total capacity increased from 9.7 to 10.2 kW (33,ooO to 34,800 Btu/h) as the 
water flow rate increased from 3.2 X to 8.2 X 

Figure 23 shows a typical case of COP as a function of entering water temperature at 
5.8 X m3/s (9.8 gpm) water flow rate without including the power input to the 
pump. The air- and refrigerant-side COPs match very well over the test range of entering 
water temperature. The COP was correlated as a linear function of entering water tempera- 
ture. The COP of the refrigerant side varied from 3.8 to 2.9. Figure 24 is the same as 

m3/s (5.0 to 13.0 gpm). 
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Table 2. Cooling mode performance correction factors for 
inlet air wet-bulb temperature 

Tests performed a t  26.7"C (SO.O°F) dry-bulb inlet air temperature 

Inlet air wet bulb Sensible capacity Total capacity Heat rejected Power input 
"C ( O F )  ratio ratio" ratiob ratio' 

21.1 (70.0) 0.852 1.069 1.055 
20.6 (69.0) 0.905 1.045 1.036 
20.0 (68.0) 0.949 1.024 1.019 
19.4 (67.0) 1.00 1 .Ooo 1.00 
18.9 (66.0) 1.046 0.979 0.983 
18.3 (65.0) 1.087 0.959 0.968 
17.8 (64.0) 1.123 0.943 0.954 

16.7 (62.0) 1.180 0.914 0.933 
16.1 (61.0) 1.201 0.904 0.924 

15.0 (59.0) 1.228 0.888 0,912 

17.2 (63.0) 1.155 0.927 0.943 

15.6 (60.0) 1.217 0.895 0.911 

"Total capacity taken from R-22 side minus the blower power input. 
bR-22-side heat rejection. 
CWater pump power consumption not included. 

1.009 
1.009 
1 .m 
1.00 
0.998 
0.995 
0.993 
0.992 
0.990 
0.989 
0,988 
0.988 
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Fig. 23, except with water flow rate as the additional parameter. The COP decreases with 
deereashg water flow rate. At 12.8"C (55.0°F), the COP drops €~QIII 3.54 aat 8.2 X IO-' m3/s 
(13 gpm) to 3.15 a t  3.2 X low4 m3/s (5.0 gpm), Figure 25 i s  the same as Fig. 2% except khat 
the pump power input for 46 1-n (150.0 f t )  total head (Sect. 4) is incladad in the COP 
calculation. With pumping power included, the COP decreases with increasing water flow 
rate. ,4t 128°C (55.0°F), the COP drops from 2.74 hi 2.48 when the flow mte is increaeed 
from 3.2 X to 8.2 X 10 -4  m3/s (5.0 to 13.0 mm). Once again (as in Seek $.I.l), the 
water pump power input made IQWW water flow rate operation desirable. 

7.1.3 Compress 

The compressor performance parameters are shown in Table 3 a t  the water flow rate of 
5.5 X m3/s (9.0 a m )  and inlet air temperatures of 26.7 k 0.3"C (SO -b 0.5"F) dry bulb 
and 17.2 + 0 3 ° C  (63.0 + 0.5"F) wet bulb for a range of inlet water temperatures. 

The refrigerant flow rate went down with the increase of water temperature bemuse of 
the decrease in condensing efkct by the entering water in the refrigerant water heat 
exchanger. The pressure ratio increased as the water temperstare increased bemuse the dis- 
charge p~essure was higher when the water temperature was. higher, The volumetric! effi- 
ciency decreased, and yet the combined ~ ~ ~ ~ ~ - ~ ~ ~ ~ r ~ s ~ ~ ~  efficiency ~ K E P B ~ S ~ ~ ,  with the 
increase of entering water temperature.. 

Figure 26 shows the combined motor-compressor efficiency, ~ ~ c s  atid vssliamet~ic effi- 
ciency, q,, as functions of inlet water temperature, Unlike heating anode test results, which 
showed that the efficiencies were independent of water flow rate, the mssling rno 
volumetric and combined motor-compressor eff'ieiencies depend on the water flow rate, 
although the effect is very small. 
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Table 3. Cooling mode eompresiwr operating characteristics 
Heat pump was operated at 5.7 x m3/s (9.0 gpm) water flow rate. 

~ 

Water inlet Power input Refrigerant mass Combined Volumetric 
temperature I- to motor _I flow rate motor-compressor efficiency" 
"C (OF) (kW k g h  (lb/h) ratio efficiency (qc) (%) 

7.2 (45.0) 2.325 208.0 (458.5) 2.00 0.439 0.865 

12.8 (55.0) 2.472 208.7 (459.9) 2.10 0.443 0.851 
15.6 (60.0) 2.569 207.6 (457.5) 2.34 0.489 0.840 
18.3 (65.0) 2.690 202.5 (446.4) 2.49 0.491 0.804 
21.1 (70.0) 2.784 203.1 (447.7) 2.68 0.517 0.810 

10.0 (50.0) 2.370 206.6 (455.3) 2.06 0.442 0.851 

-___ 
"See Table 1 for definitions. 
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e Exchanger Per 

The heat exchanger, acting ais a condenser for the ccoslinag mode operation, was more 
complicated to analyze than whca used as an evaporator because it has superheated gas, 
two-phase, and subcooled liquid regisnu. Only the overall heat transfer rate and discharge 
pressure as fuctions of inlet water temperature and water € 1 0 ~ 5 9  rate were analyzed. 

The maxinium refrigerant pressure across the exchanger was about 55 kPa (8 psi) and 
war fairly constant. 

Figure 27 shows the water-side heat transfer rate as B fumetion of water entering tern- 
twre and water flow rate. The overall heat transfer rate was not yery sensitive to the 

water flow rate. One reason was that a t  low water flow rate, the refrigerant discliarye pres-. 
sure from the ~o~~ ipressor  went up, which increased the refrigerant discharge temperature, 
and, as a consequence, the teinperaturr differential lostween water and refrigerant also 
increased, which increased the heat transfer between water mad refrigerant (Fig. 28). 

The above: test results suggest that the heat exehanges should bb: operated at  a low 
water flow rate. 

There exists a minimum of the level of liquid rehigerant subcooling at high water flow 
rates (Fig. 28). This is causzd by the change of the refrigerant saturation temperature. 
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Fig. 27. Cooling mode water-to-refrigerant heat exchanger capacity as a fiinction of inlet 
water temperature. 
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7.2 Cooling Mode Cycling Test Results 
7.2.1 Effect of Inlet Air Humidity on Cycling Lorn 

Figure 29 shows the result of a typical cycling loss test. A great portion of the cycling 
loss happens during the first 2 min of the "on" cycle when the power input is high and 
capacity output is low. Figure 30 shows the cycling loss of four tests with inlet air relative 
humidity as the only variable. Tests results indicate that, below 29% relative humidity, no 
moisture was condensed. It became a wet coil test when the relative humidity was increased 
to 37%. Figure 30 confirms Eq. (2); the cycling loss is independent of the inlet air humidity! 

7.2.2 Cycling Loss and Degradation Coefficient 

Figure 31 shows the cycling loss as a function of inlet water temperature and flow rate. 
The figure shows that the loss is independent of the water flow rate. The loss increases 
linearly with the water temperature, ranging from 10.8% at 7.2"C (45.0"F) to 13.5% at 
21.1"C (70.O"F). 

Figure 32 shows the load factor as a function of water inlet temperature. The load fac- 
tor decreases with the increase of water temperature, which is due to the decrease of the 
ratio of cyclic capacity output over the steady-state capacity. Figure 33 shows the degrada- 
tion coefficient, C,, as a function of inlet water temperature; C, increases with water tem- 
perature. This value varies from 0.13 to 0.16 over the range of water temperatures tested. 
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8. A SAMPLE CALCULATION F WATER SOURCE 
HEAT PUNUP ANNUAL PERFORMANCE FACTORS 

The sample calculation is based on an assumed lS7-rn2 (18Qo-ft2) house located in Nash- 
viile, Tennessee, with 12 X IO3 kWh (40.9 X IS6 Btu) annual heating load and 
9.2 X BO3 kWh (31.4 X lo6 Btu) cooling load respectively. The groundwater tempera- 
ture is assumed to be 13.9% (5'7.O"F). Since the tested heat pump capacity was too high far 
the house, the capacity and power input were scaled down to 2.5 tons of designed cooling 
capacity, which was about 10% we . To calculate the power input tcu the water pump, 
the water head, which includes the to water level, the water pressure drop acrcms the 
water refrigerant heat exchanger, and the frictional losg, was assumed to be 30.5, 45.6, and 
61.9 m (100, 1.50, and ft), along with an assumed pump-motor efficiency of 0.3. 

The following s were taken to calculate the heat pump annual performance factor 
(APP). 

1. The house load, Qw, was calculated by the monthly temperature bin method with 
the "MAD"7 computer program. 

2. From the heat pump steady-state test results, the steady-state capacity, 
(COP), were found. 

3. The load factor was calculated by dividing the house load, 
steady-state load: 

, by heat pump 

4. With the known degradation coefficient, C,, the (COP),, was calculated with the 
following equation: 

5. The power input to the beat pump was estimaled by dividing 

6. The heat pump APFs were calculated by summing the house load, both heating 
and cooling, and then dividing i t  by the total power input into the system, which 
included the power input to the compressor motor, fan motor, and water pump 
motor. 

The degradation coefficient, CD, used was 0.16% for the heating mode and 0.147 for the 
cooling mode as determined by the test for a source water temperature of 13.9"C (55.0OF). 

Table 4 shows the heat pump heating and ml iny  capacities and COP as functions of 
water flow rate but without water pumping power. Capacity and COP scaling-down factors 
nsed are also shown in the table. Table 5 shows the water pump power consumption as a 
function of water flow rate and pump head. Table 6 shows the AFT as a function of water 
flow rate per ton of cooling and total pump head with cycling loss. The data listed in Table 

are shown graphically in Fig. 34. It is clear that the APF is strongly dfeckd by the total 
head. 
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Heat pump entering water temperature was 139°C (57.O"F). 
C, (degradation coefficient) = 0.168 for heating and 0.147 for cooling 

....... ~ ......... 

8.79-kW 
(2.5-toon) 

Heating mode h o l i n g  mode 
l_l ._II ... Water flow rate 

Capacity ...... cop" EER" scaling factor Capacity 
(mm' kW (B tdh)  kW (Btu/h) m3/s 

1.9 X 10 -4b (3.0) 10.2 (34,780) 3.12 8.9 (30,500) 9.39 0.987 

5.8 x 10-4 (9.0) 11.1 (37,800) 3.22 0.872 
8.2 X lo-' (13.0) 11.5 (39,200) 3.30 10.2 (34,700) 11.88 0.867 

3.2 X 10K4 (5.0) 10.5 (35,900) 3.15 9.5 (32,500) 10.51 0,926 

"COP and energy efficiency ratio (EER) were calculated without including water p~~~ power 

q h e  data on this water flow rate were extrapolated. 
input. 

Table 5. .4srrnmed water pnrn 
Pump power input calculation was under the assumption of 

pump efficiency equal to 0.3 (see Sect. 4 for detailed 
pump power input calculation). 

.................. 

Water flow rate 
.. Water pump power input 

-____I 

m3/s (W 

1.9 x 10-4 (3.0) 18Sa 282p 376' 

5.8 x 10-4 (9.0) 565 848 1130 
8.2 X (13.0) 817 12% 1634 

3.2 X (5.0) 314 471 6% 

"Values in this column are for an assnmed total. head of 

bValues in this column are for an assunied total head of 

Yalues in this column are for an assrimed total. head of 

30.5 rn (100 ft). 

45.7 m (150 ft). 

61 m (200 ft). 

Table 6. Water source heat 
With cycling loss 

...... ................... .- 

Water flow ratelunit cooling - ~ capacity Annual performance Cn 
m3/s . kW ( ~ ~ ~ ~ o ~ ~  factor Heating Cooling 

0.21 x 10-4 (1.18) 2.54" 2 M b  2.40' 0.168 0.147 
0.3 x 10-4 (1.85) 2.59 2.46 2.3'7 
0.57 x 10-4 (3.13) 2.54 2.36 2.21 

2.44 2.22 2.03 
- ................... 

0.85 x 10-4 (4.500) 

"Total pump head values for this column: 30.5 m (100.0 It). 
bTotal pump head values for this column: 45.7 m (150.0 ft). 
'Total. pump head values for this column: 61.0 rn (200.0 ft). 
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C,$, = 0.168, C,,, = 0.1 47 (MEASURED WATER-SOURCE 
CYCLING LOSS) 
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