, V JA f\ e
PROCEEDINGS ,

| TR ||

Wi

3 4456 013257 7 ,

THEORY WORKSHOP on
3-D MHD STUDIES for
TOROIDAL DEVICES
i " ﬁUSION ENERGY DIVISIOS LIB-RAR‘III
OCTOBER 19-21, 1981
. Oak Ridge,' Tennessee
|
/?‘o o I . Fusion ENERGY DIVISION LIBRARY
{ “i’("' - &6 : |
¢ TGS ' , \
zl;'jigzé :“ ‘
T o8N .
SPONSORED B' ~ i
FUS) ON ENE )N .

ORI RIPEE-rer o ABORATORY >

Operated by Union Carbide Corporation
for the Department pf Energy

[y

—

-~—} CONF-8110101




OAK RIDSE MATIGUAL LAB3®MORY
LIBRARY
U.S. PROPERTY

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents thatits use would notinfringe privately owned rights. Reference herein
to any specific commercia! product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.




7 ‘ Qc
7105 M3é
USx

1981

~E

CONF-8110101

PROCEEDINGS OF THE WORKSHOP
- US-JAPAN THEORY wORKSHOP ON 3-D MHD STUDIES FOR TOROIDAL DEVICES
October 19-21, 1981
Qak Ridge, Tennessee

Contract No. W-7405-eng-26

B. A. Carreras
Editor

FUSION ENERGY DIVISION LIBRARY

Date Published: January 1982

v : ' "~ Sponsored by.

OAK RIDGE NATIONAL LABORATORY | PO st Uy 1a81

.. e e oo NI R

Q0ak Ridge, Tennessee 37830
3 445k 0132k57? 7







PREFACE

The US-Japan theory workshop on 3-D MHD studies for toroidal
devices was held at Oak Ridge, Tennessee on October 19-21, 1981.

It was attended by more than 40 participants.

The main purpose of the workshop was to determine what im-
portant problems are ahead of us in 3-D MHD studies. In the meeting
physics problems were addressed, as well as computational ones for
different devices. The first day of the workshop was devoted to
discussion of problems related to stellarators. The MHD properties
of tokamaks were considered during the second day. Finally FRP,
compact torus and EBT were discussed on the last day of the workshop.
The discussions were held in a very informal fashion, which
allowed a frank and open exchange of views between the participants.

These proceedings include the manuscripts that were presented
at the workshop. They cover most of the oral presentations and'are
organized in the way they were delivered. An author index, attendance
list, and the agenda are also included in the proceedings.

The Japanese delegation was led by Professor Ichiro
Kawakami, Nihon University. His cooperation in the organization
of the workshop is gratefully acknowledged. '

The workshop waé sponsored by the Fusion Energy Division, Oak
Ridge National Laboratory and could not have been successful without
the efforts of many dedicated individuals - Session chairmen, authors,
participants, and last but not least, the workshop secretaries.

I would like to acknowledge special appreciation to: Caila Cox
who handled all the problems of organization prior to the workshop in
an efficient and professional manner; Delena Akers and Gladys Warren,
who acted as workshop secretaries during the workshop, taking care of
all the details and problems which normally are associated with such
meetings in an excellent way. I am particularly gratéful to Gladys
Warren for assembling the contributions of the proceedings, and handling

much of the workshop paperwork.

Benjamin A. Carreras
Oak Ridge, Tennessee
November 1981

iii






»

CONTENTS

THREE DIMENSIONAL MHD EQUILIBRIA _
Harold Weitzner......................I;...........;..........

BETA LIMITS FOR TORSATRONS _ »
Octavio Betancourt....;..........;...........................

MHD EQUILIBRIUM AND STABILITY OF HELICAL SYSTEMS
K. Hanatani, S. Hamada, N. Hodoshima M. Wakatani
T. Amano and K. Uo..................................(..;....

THE COMPUTATION OF INVERSE MAGNETIC CASCADES '
David Montgomery...................................,.......

THEORETICAL OPTIMIZATION OF STELLARATORS
R. Chodura, W. Dommaschk, F. Herrnegger, W. Lotz,
J. Niihrenberg, A. Schliiter......eeieeeeeeencrseccssccssansas

RESISTIVE MODES IN TOKAMAK-STELLARATOR CONFIGURATIONS
H. R. Hicks, B. Carreras, L. Garcia, J. A. Holmes, and
V. Eo Lynch. . eeeneeeiivieeeenonennensescncnoesossssscnsonse

STELLARATOR STABILITY AS A TWO—DIMENSIONAL PROBLEM |
D. A. Monticello and H. R. StraussS.:.c..sescececesossossas

VARIATIONAL METHOD FOR THE THREE- DIMENSIONAL INVERSE EQUILI—
BRIUM PROBLEM IN TOROIDS
A. Bhattacharjee... ...... s st eseesasersesearersesanesenanns

A REVIEW OF TIME-DEPENDENT, THREE—DIMENSIONAL RESISTIVE
MAGNETOHYDRODYNAMIC CALCULATIONS
John Killeen.eoeeeoeeoeerseoosoosasessasessssssssancsssesnss

TOKAMAK CURRENT DISRUPTIONS DUE TO IMPURITY RADIATION
COOLING
Tsuneo Amano and Katsuhiro Shimizu....ieeieeneiecensannnans

MAJQR DIRUPTION PROCESS IN TOKAMAK :
T. Takeda, G. Kurita, M. Azumi, T. Tuda, T. Takizuka,
T. Tsunematsu, S. Tokuda, K. Itoh....veeeereeereecanecenens

THREE DIMENSIONAL NONLINEAR RESISTIVE STUDIES OF HIGH-BETA PDX
DISCHARGES ,
W. Park, D. A. Monticello, R. B. White, K. McGuire, and
M. REUSCH.vseenoeosaensosossnoceosasonesonsesannsaossssennse

INTERNAL DISRUPTION IN HIGH B TOKAMAK
T. Takeda, M. Azumi, S. %okuda, G. Kurita, T. Tsunematsu,

T. Takizuka, T. Tuda, K. Itoh, Y. Tanaka......

LR R I I I AT

1

10

21

32
51

59

70
82
%8
104

116

129

140



vi

RESISTIVE MODES IN HIGH BETA TOKAMAK
J. A. Holmes, B. A. Carreras, L. A, Charlton, H. R.
Hicks and V. E. Lynch...sevenriieeerrenans creesesssennaa eseesess 156

PROPERTIES OF THE IDEAL MHD m=1 MODE in TOKAMAKS ,
J. J. Ramos and G. B, Crew..eecevesnse Cecsesestrenanses e eeesien 168

THREE DIMENSIONAL SIMULATION OF SPHEROMAK FORMATION
Tetsuya Sato.....e... seveesrevenentsaaann teeseceratanennrranene 170

MULTIDIMENSIONAL MHD COMPUTATIONS FOR THE FIELD-REVERSED THETA
PINCH AND THE REVERSED-FIELD PINCH
D. D. Schnack.ceeeeas. raseesrasanne Ceeereccscsnans ssesesnneesses 176

A SPECTRAL-FINITE DIFFERENCE ALGORITHM FOR THREE DIMENSIONAL
INCOMPRESSIBLE MHD

A. Aydemir and D. C. Bérnes ................... cetseseiessacesans 187
THREE—DIMENSIONALATENSOR‘PRESSURE EQUILIBRIA FOR EBT

L. W. Owen and C. L. Hedricke.iveeevoeeeoeanane tesseteceestencns 197
FINITE ELEMENT METHOD FOR 3-D MHD SIMULATIONS

Ichiro Kawakami............. S eers e st enecannaeenens Ceeeeenereaas 207
SETTING UP PHASE OF REVERSED FIELD PINCH

H. Matsuda, S. Ido and I. Kawakami.......... e ecaseriascessaanes 217
A 3-D MHD ALGORITHM FOR SIMULATION : . .

Torkil H. Jensen and Ming S. Chu............ ceeereeticiiaaeanes 227
AUTHOR TINDEX .« e s vunvrennennnnoonnoennees e e .. 231
ATTENDANCE LIST....... et teerereanaeeaas Cererarenes P X V.

AGENDA .« v v s enneanen RS ¥ V1



THREE DIMENSIONAL MHD EQUILIBRIA*
Harold Weitzner
New York University
New York, New York 10012
A survey of the current theoretical and computational effort.

A description of the problem of MHD equilibrium and its

complexities.

Basic Models

1. Free boundary profiles.

—

54' Ss3 ,S‘;‘Sa

Let V be volume inside a surface

v

P constant between Si' Si41

*Transcript of the viewgraphs ‘used for the oral presentatioh at the
workshop.



Bi is a vacuum field in domain between Si{ Sis1.

“on Si ni.’Bl = 0
on 5441 Risq+By = 0
2 ‘B2,
5 Ri BiZq

Alternately (and little studied)
¥ x Bj = AiB; between S;, Sj,q

with the same boundary conditions.

2. Smooth pressure profiléé

Yp=d xB
0=Y%Y B
d =Y xB

Be¥lp=0=(-«Vp

Thus, B, J lie in the surface p = const.’

Yv1 =] B +dS= yqi(p)
S )
1
Yp =/ B+ dS = pp(p)
S2

Clebsch Variables

Py



B= Xy, x 18
V=] B +dS= [ dyde
S4 '
=1
[e]c1
‘,pzzjﬂ-ds..vjdq”éde
S, 2
dy,
Y 0 =
T l ]c2 i

If £ = rational all lines on surface close

A = irrational, line is ergodic on surface

By symmetry

d = Y¢ x ¥p

I,(p) = | s P

1\p) = 4 -d = LLlg
81 dp 1

dI(p) .

S P 2
B2 .

W= 4 x B =ABYZ Ip

= (BQg = 1

on a rational surface

df

[z] = d,T = F(p)

¢ %; is the same for ‘all closed lines on a rational surface.



An alternate formulation (H. Grad)

YxB=yJd=Y¥ x¥p=Y¥ xczlp

B= Yz +zYp
B-¥%¥p=0
B +Yg=1.

VY +B=0=07¢+ X(z¥p

Vi¢] + [zI1¥p = 0.

[41,, = £4(p)

i

1,2.

[N
"

[gly, = -£1(p)

i

For this problem what data do we give to expect a solution - a unique

solution.

Data:

Elliptic:

Hyperbolic:

We examine it two separate ways.

¢(x,y,2) = k is a characteristic surface
(B+1$)2Y4+% = O

Vée¥6 = O one-elliptic gecond order equation
(B-y¢)2 = 0 one real characteristic counted twice,

a hyperbolic system.

One piece of data on bounding surfaces.
Two characteristics imply two pieces of data on each magnetic
line, BUT: repeated characteristic may reduce data and

require consistency. We contemplate giving w1(p),¢2(p)

Another formulation (H, Grad):



g BedS = yo(p) c=1,2
c o

=

*B= 0 on outer boundary
(B = YpxY{6 and get ¥p = (be)xﬁ as Euler equation)

Equivalently, : o (Basic energy principle)

2 . _P
= Be/2 + 2

Y-B=0
é Bedg = 9o(v)
c

Jodx = M(V)
interior'si :

p = kpY¥

again counts correctly

In cylindrical symmetry, e.g.

Be¥p = Je¥p =0 {B=3-d=0
3B
L Y _ _"7®
By = r 3z Ir = r 3z 3z
1 3y 13y _ 1 3
B, = —~2¥ = - 2X = _ C°(rB
2% ror Iz rar r (rBg)



'p = p(y), x = x(y)

+

3 2
oz et + od = =(r% )+ X' (W)

problems still in nonlinear elliptic equation
a) bifurcation
b) no solutions to nonlinear problem
¢) free boundary problems,
Even with separated hyperbolic and elliptic parts, problems may appear.
What are three dimensional results?
First: KAM theory

Suppose we have area preserving mapping with surfaces

—((@

If £ # 0 -%% £ O, both not too small or large, then in general

perturbations of the mapping which are .area preserving may destroy
surfaces
Measure of surfaces > 0
Measure of ergodic region < A
What do we know?
1. Free boundary.
p=0
Good - Soiutions exists

Bad - Solutions found do not fill out space of data




Good - Hope to construct solutions of form

2. Closed lines.

With reflection symmetry (D. Lortz) solution exists with { = 0.

‘\ '
4
. -—
L~
S
a8

New results (D, Lortz)
perturb away from reflection symmetry solution exist
Plausible: still true if { = m/n, %% =0
Need zero order equilibrium to start

3. Asymptotic expansions.

A) "Stellarator Expansion" Johnson and Greene

Bo + 6By +_62(§T + BB) + e

B =
R = 0(62)
K = 0(62)

b) Mercier Expansion about axis curve x = X(s)
X = X(s) + pcos 6 n+ p sin 6 v
expand about magnetic axis

C) Large aspect ratio



X = % X(es) + p cos 8 n(es) + p sin 8 v(es)
Fills out full profile to p = O.

4., Numerical Calculation

A) Betancourt - Garabedian with above variétional principle equilibria
with or without islands. Né indicatioﬁ reported yet that as Ax =+ O
islands appear

B) Chodura - Schluter

dy
p—+Kku+ o=y xB

dt
gives equilibria
c¢) Barnes - Brackbill
3-D time dependent high beta code. gives equilibria.

D) Strauss - Monticello

Resistive reduced MHD

What is the situation
A) Some exact 3-D equilibria exist
Free boundary.
Lortz
B) K.A.M. says general perturbations destroy surfaces.
Q: Is equilibrium a general perturbation?
C) Resistive theory says islands may form and destroy surfaces‘
D) Many expansions exist
E) Numerical work appears to give good results,
F) Solutions may exist for restricted parameter ranges ({4 = O,

hopefully %% = 0)



[Small domains in ¥4(p), yo(p)]
G) Does it matter? MHD approximatg and also error may produce slow

changes in equilibrium only.
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B Limits for Torsatrons

Octavio Betancourt _ o ’ .
New York University ‘ '

A fully three dimensional computer code based on an
ideal magnetohydrodynamic model has been used to find
stellarator configurations with finite critical values of
the plasma parameter B. Description of the method [1], as
well as results for some configurations like WISTOR-U and
Heliotron E have been reported elsewhere [2,3].

In this abstract we discuss current free torsatron
configurations which correspond to helical coils with a
winding law given by

Qb = 2(8 - & sin 8)
where ¢ and 8 are the toroidal and poloidal angles respec-—
tively, Q the number of helical periods and ¢ a modula-
tion constant.

The equilibrium and stability properties of these con-
figurations are found to depend on the Fourier components
of the separatrix (last closed magnetic surface) which
can be represented by an eguation for its minor radius of
the form v

R=1+14, cos (28 - 0¢) .
2
As B increases in a toroidal configuration, the

magnetic axis drifts out towards the separatrix. This drift
can be minimized by a large rotational transform as in
Heliotron E, or it can be offset by combining £ and 2+1
fields with opposite signs of Ak and A2+1 , which tend to
shift the plasma inwards [4].

These multiple harmonics can be introduced by an
appropriate choice of the modulation ¢ in the winding law.

*
This research was supported by the Department of Energy,
Contract DE—AC02—76ER03077-VII.
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Figures 1 and 2 show the dependence of A on & for £ = 2
and 3 respectively. Here AlO denotes a shift of the
separatrix given by the cos 6 Fourier component, € the
inverse aspect ratio for the plasma, and V the vertical
field. ' -

It can be observed that A, is a slowly varying function
of a, while Az-l is rapidly varying and changes sign with
a. It is also found that A£+l as well as Alo are primarily
controlled by the vertical field V, while A, and A, ;
vary slowly with this parameter [see Figure 4}.

Among these configurations, we are most interested in
the 2 = 2,3 torsatron,'Which is given by o = -0.5 in the
2 = 3 winding law. In this case, A, = 0.15 and A, = -0.15
while A4 can be decreased by increasing the vertical field.
We have studied its properties extensively [3] and found
no stability limitations, with the average critical B of
5% given by the axis shift for the equilibrium.

To attain a relatively high stability limit we find
it is desirable to have adequate positive shear. In the
case of Heliotron E this ‘is'achieved by a tight winding
and a large number Q = 19 of field periods. For a moderate
number of periods, it can be obtained from the 2 = 1 and
2 = 3 components of the field. ' ‘ '

Figure 3 shows the dependence of the M = 2, N =1
mode on A4,. Here -02 > 0 is the stable region. Curve B
corresponds to A2 = 0.2 and A3 = =0.1. It should be
noted that by lowering A3 and increasing Az we have gone
from the stable configuration mentioned above to one with
critical B of 2%. Curves A and C show that a positive Al
stabilizes this mode while a negative Al makee it more
unstable. However, AZ and Al of the same sign result
on an outward shift of the magnetic axis, which in turn
lowers the equilibrium limit. This is the case for curve A,
corresponding to WISTOR U and for which the critical B is

given by an equilibrium 1limit between 3% and 4%.
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Therefore, we find that in order to obtain a high B
limit for both stability and equilibrium we require a large
A3 of opposite sign from A2. This we cannot achieve wifh
an £ = 2 winding law. Since A5 is critical for stability,
we want it to remain nearly constant for a reasonable range
of vertical fields and B. For both of these reasons an
£ = 3 winding law with & = -0.5 seems the best choice for
a high critical 8.

For this case the number of periods Q = 10 has been
chosen so that the transform at the edge of the plasma is
below 1. One may attempt to increase the equilibrium limit

by increasing A2 = 0.2, A, = -0.15, with Q@ = 10, or keeping

A, = 0.15,-_A3 = -0.15 ang increasing Q. In both cases,
the transform at the plasma edge . is larger than one, and
the M = 1, N = 1 mode becomes unstable with critical B
below 2%.

Figures 4 through.7 show results obtained for the
ISX-C torsatron design. Figure 4 shows A as a function of
the vertical field V. Due to the small value of o, 4, is -
negligible and the configuration is mainly % = 2 with a
small & = 3 component. Notice that A2 and A3.are of the ¢
same sign, so at zero B the magnetic axis is shifted
outwards relative to the separatrix. _ _

The basic configuration is A2 = -0.25, Ay = -0.07,
with the separatrix shifted inwards relative to the coils.
If we decrease the vertical field, we obtain a configura-
tion Az = -0.28, A3 = ~-0,14 with the separatrix shifted.
outwards. o :

Figure 5 shows A as a function of B. As we increase
8, the separatrix is slowly shifted outwards, with a corres-
ponding change in A3. This shift can be compensated for by
a small increase in the vertical field. .

Figure 6 shows the magnetic axis shift in units of the
plasma radius. Figure 7 shows a parameter d which at zero

B is proportional to island width, and for finite B also
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measures the Pfirsch-Schluter current. From these we
conclude that configuration A has an equilibrium limit
~around 3% while B is somewhat higher. Although we have

not computed a stability limit, we expect A to have a low
limit since A3 is small. B has a large A3 , but of the same

sign as A2 , and we do not know the critical B in this case.

References
[1] "Nonlinear magnetohydrodynamic stability," F. Bauér,
0. Betancourt, and P. Garabedian, Phys. Fluids 24 (1),
Jan. 1981. . :
[2] "Beta limits for torsatrons,” F. Bauer, O. Betancourt,

P. Garabedian, and J. L. Shohet, Proc. Natl. Acad. Sci.
usa, vol. 78, No. 1, pp. 1-3, Jan. 1981
[3] "Finite B Stellarators,"” F. Bauer, O. Betancourt,
P. Garabedian, and J. L. Shohet, to appear;
Trans. on Plasma Sci., Nov. 1981, '
[4] "Numerical Studies of New Stellarator Concepts,"
F. Bauer, 0. Betancourt, and P. Garabedian,
J. Comp. Phys. 5, 341-355, 19 .
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DEPENDENCE OF EIGENVALUE -w® ON g AND A, FOR
M=2 , N=1 MODE WITH €=0.1 , Q=12 , A,=0.2 , A=-0.1

A.
B.
C.

A= 0.2
A= 0.0
A1=—O.2

( WISTOR U )

Figure 3



17

04 0.00 -.04 -.08
.1 /
5r o Do
7/
7/
/
_ 7/
& /
-~ /
\\\ /
I: _______ ::&a /
Mols it M i N A—
-~ ~-—~-._.~:~B' A1
1 s T~< ¥
- -~ /7 \\\\
-~\ / -~
\B. —
T~/ = Dy
2 P
/ Tee .
/ §§§~\ )
-9 s = A
/
7
/
/
- /
-4 o
/ TTTTe -l
. TT=e A,
-.3d , 2
—.48

A AS A FUNCTION OF V

ISX—C DESIGN
a=-2,=00,Q=10, ¢ = .143

Figure 4

V



18

0,000 .025 .050

RE!
0.00= e \Eﬁﬁ?
Ay
As
-5
B— —_— 8 A2
-.30
A AS A FUNCTION OF g
ISX—C DESIGN
a«=-2,Q=10,¢c=.143, FIXED V

Figure 5



19

— : | B

0.0 \
o1 02 .03
AXIS SHIFT AS A FUNCTION OF 8
ISX—C DESIGN , o = —.2 , ¢ = .143 , Q = 10

A. . A1°= '_.17, A1= '—-25 . A3= _'.07
B. A= +.14, A= —28 , A= —-.14

Figure 6



20

.10

.08

.06 _

.04 _

00 - | — — — 8
02 .04 06 08 - .10

CONFINEMENT COEFFICIENT d ( 8 )

ISX—C DESIGN , o = —.2 , ¢ = .143 , Q = 10
A Ae= —.17, A= ~.25 , A= —.07
B. Ap= +.14, A= —.28 , A= —.14

Figure 7



"21

US-JAPAN THEORY WORKSHOP ON 3-D MHD STUDIES FOR TOROIDAL DEVICES
Oak Ridge, Tennessee : Oct. 19 - 21, 1981

MHD Equilibrium and Stability

of Helical Systems

’ * *
K. Hanatani, §S. Hamada, N. Hodoshima,

) . %k .
M. Wakatani, T. Amano and K. Uo

'Plasma physics Laboratory, Kyoto University

B - *
College of Science and Technology, Nihon University

* %
Institute of Plasma Physics, Nagoya University



22

[1] INTRODUCTION

This paper surveys recent computational studies concerning
magnetohydrodynamic equilibrium and stability of a helical
magnetic trap called 'heliotron', which was porposed and which
has been extensively investigated experimentally at Kyoto univer-
sity. This paper also describes 3D MHD code for multi-helicity
tearing mode in current carrying stellarator.

Coil system of heliotron is much simpler than that of
stellarator. All helical windings in heliotron carry uni-direc-
tional current. The helical windings, therefore, produce both
poloidal and longitudinal field components by themselves.

In heliotron, if one choose helical windings of relatively short
pitch length L, one can obtain large closed magnetic surfaces
without the aid of external solenoid which is, however,
indispensable tofs#ellarators. The elimination of solenoid
yields several important magnetic surface properties that do

not show'up in conventional stellarators. For example, the
Heliotron E device /l1/ has large rotational transform, high
magnetic shear and deep helical field ripple. On the other hand,
Wendelstein VII-A stellarator has small transform, low shear and
shallow helical ripple. In short, helical effects are dominant
in heliotron while they are weak in stellarator.

. [2] EQUILIBRIUM AND STABILITY OF STRAIGHT HELIOTRON
Equilibrium Code

Helically symmetric equilibria have usually been étudied,
both analytically and numerically, by assuming the normalized
radius p = 27r/L (Fig. 1) is to be a Sm311‘expahsion parameter.
This ordering, which may be appropriate to conventional stell-
arator, is questionable to the heliotron equilibria because the
heliotron device has short pitch helical windings Pe = 2nrc/L > 1.

To investigate the stability of the Heliotron E (pc = 1.3)
plasma, we previously wrote a free-boundary helical equilibrium
code /2/. This code, uses Correa-Lortz solutions for

Grad-Shafranov type equation for magnetic flux function Y

-
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L) 4h%(a + n) - 4(a + n)n' - 28'/h% - F , ()

]
1

v*(h%v ), h? = 1/(1 + p?),

F ; external helical windings,

was applicable to only restricted class of equilibria. Namely,
plasma pressure B and current flux function n were assumed to be
linear functions of ¥, which implies quasi-parabolic pressure
and quasi-uniform current distributions. To investigate more
general classes of equilibria, we recently developed a new '
version of helical equilibrium code /4/, which enables us to
calculate free-boundary equilibria with arbitrary pressure and
"“current profiles. We now consider_B'and n appear.-in the RHS of
Eq. (1) are not necessarily linear functions of w'{Fig. 2).°

In order to apply Green's function technique, we introduce”
a new function $ by following relation . ' .

b=yt a-14n)p? 4 ~ @y

Here, wv is vacuum (8 = n = 0) solution of Eq.(l). Anunknown
constant o is the magnetic field strength on the axis devided by
vacuum field strength on the axis. Substituting (2) into (1),
we have ' -

C(R2OMY = A =
VS (h%V9) = 0 = Q, + a0, - (3)

A

In the outside of the plasma (y > wb), Q is equal to zero.- ¥y can

be written using Green's function ¢ of Eq. (3) ‘as follows

0=I17' Qa,9) = J 3 Q ds. - . O (4)

~

Boundary conditions on ¥ at the origin (p = 0) ‘and at the infinity‘
(p + » ) are ¢ = 0 and &i@ v/p2 =1-a - Ny respectively.’
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From these conditions, one can derive expression for a
a=2() = {1l -n - 1/4n-S Q; ds}/{1 + 1/4n-f Q; ds} (5)

2wo kinds of nonlinearities are involved in (3), (4) and
(5); one from the free-boundary nature of the problem and the
other from the nonlinear source terms. We use a simple
iteration scheme to solve these coupled equations

(n) (n-1)

o™ =7t g p -1y, (6-1)

a) gy L e

(™ - ¢v.+..(a(n)‘ -1+ 0%+ ), S e
Asaninitiél guess, wé take vaéuuﬁ soiﬁtion; w(O) =9y , $(0) =‘0
and g(o) =1 - ny,- To avoid time-cogsumiﬁg, reﬁiticigus

integration (4), we first calculate ¢ value on a circle of radius
oy ( > pc), which encircles both plasma and helical windings.
Then, we solve finite-difference form of (6-1) inside this

circle by SOR method
requiring the Yy value on p = P, as boundary condition.

Figure 3 show the example of Heliotron E equilibrium calculated
by the above scheme.

High m localized Mode

Straight helical equilibria are physically trivial, since
no toroidal effects are includéd. We think, however, this kindl
of 2D equilibrium code has wide applicationito stability compu-
tation. First application of the equilibrium code is to estimate
B limit of the straight heliotron plasma against localized mode
using Mercier's criterion. This is done by introdﬁcing additional

iteration loop exterior to the iteration scheme (6). At the end
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of each inner iteration step, we calculate maXimum possible B
profile; which is marginallylstable against Mercier's ériterion.

We repéat the outer iteration until all physical quantities can

be regarded as converged. In the course of iteration, longitudi-
nal current is adjusted so as to obtain net current free equilibrium.

Low m internal Mode

Second application of the equilibrium code is the stability
of ideal low m internal mode. Although large rotational transform
and high shear are favorable to attain large equilibrium critical 8,
they allow many rational surfaces inside the plasﬁé»column.
It is, therefore, of interest to examine low m internal,mode_df
heliotron plasma. Somewhat time-consuming but straightforward
way to calculatem =1, 2, 3 *-- mode is to solve lihearlized
. MHD eguations |

32¢

vo o7 = - VP1 + 30x§1 + 3lx§o
> <
Jl = VxBl
(8)
N ,
B1 = Vx(gxﬁo)
Pl = - E-VPO - v ?0- V.E

as an ihitial—boundary value problem /5,6/; An exPlicit finite-
difference scheme /7/ is applied to a non-orthogonal curvilinear
coordinate system (f, u, ), which is convenient to treat
fhélically syﬁmetric geometry. -Coordinétes £, u and ¢ are defined
by the following transformation

x* = kr cos® = p(f, u) cos(u + )

y* = kr sin® = p(f, u) sin(u + ) (9
z* = Kz =17 _ '

£ = (0 /v, )1/2, Kk = 2n/L,
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where wb is the value of ¢ at the plasma boundary. Components
of metric tensor of this coordinate system are then given by

9p  3p

= 2 ' = . 9P =
Yee T mE) . g T w . I T O
. 20
,gcc=1+°' ,g=paf..

Fourier anélysislalong the cyclic coordinate { reduces the
problem to 2D. The growth rate of the dominant mode and its
associated~eigenfunction are obtained by the time evolution of
initial perturbation.‘ ' o -

Results for the Heliotron E equilibria, using Correa*Lort;
solution, show that m = n = 1 internal kink mode is unstable
(B = 10%), when the sum of rotational transféfm’due to vacuum
helical field and plasma current becomes ﬁnity inside the
plasma column (Fig. 4). The growth rate tends to reduce when
the m = n = 1 resonant surface is located near the peripheral
region of the plasma, where the magnetic shear of heliotron is

very high.

{3} 3D MHD CODE FOR MULTI-HELICITY TEARING MODES

- It is recognized that disruptive instability is crucial for
developing a tokamak reaétor, since stored energy in plasmas is
lost to a first wall instantaneously and thisvwill give serious
damage on it. Therefore, supression or control of“the disrﬁptivef
instability becomes an‘important subject in tokamak research.

Experiments in the Pulsator tokamak showed that the feed-back

control by use of the resonant helical magnetic field was effec-
tive to control the disruption. On the other hand;'stellarator
experimint, especially in the W VII-A stéllarator, showed that
disruption can be supressed , when rotational transform exceed
about 0.14.
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The mechanism of the disruptivé instability is given by
Waddell,, Carreras, Hicks and Holmes /8/. They demonstrated that
behavior of magnetic field lines becomes ergodic and magnetic
surfaces are destroyed in the whole plasma column, after the
3/n = 2
tearing modes are overlapped. This might bring about rapid plasma

magnetic islands produced by the m= 2/n = 1 and m

losses and current termination or major disruption.

Our concern is to study the same phenomena in current carry-
ing stellarators. By applying the ordering known as stellarator
expansion, nonlinear reduced MHD equations can be obtained in
stellarators /9/,

d o2 oo %, L 203P e
9A _ .. ol
B - BeU + n(a,A) S an
aP = - - 3
3€ (Voxzg) - VP

where U denotes a stream fuction, A denotes a flux function -and

P is pressure. § means curvature due to stellarator fields.

To study the disruptive instability, the pressure terms are not
essential and a low beta approximation-'is used. Then the reduced
equations become similar to tokamak case./10/. _

First we solve these equations for cylindrical plasmas with
fixed boundary. As a test q profile, we choose that studied in
Ref /8/. We used 16 modes and 100 radial mesh pointS‘which might
be minimum number to study nonlinear tearing mode of multi-
helicity /11/. We have obtained the results showing the disrup-
tive instability. Figure 5 show the ovérlapping of magnetic
islands due to the m = 3/n = 2 and m = 2/n = 1 tearing mode.
Figure 6 shows evolution of plasma current profile. After T ~
220, the current profile deforms and spikes develop. After the
overlapping between magnetic islands begin (T > 230), behavior
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of the magnetic field lines becomes stochastic near the separatrix
of magnetic islands. At T =. 260, the magnetic field lines become
ergodic. except the central region as shown in Fig.7. We can
check the degree of ergodic behavior by calculating K-S entropy.
Figure 8 shows K-S entropy at r = 0.5. The lower curve corres-
ponds to T = 20 and K-S entropy decreases exponentially as the
magnetic field line goes around the torus. But at T = 250,
K-S entropy Predicts ergodic behavior.

We consider our numerical code works well for tokamaks and
we have started to apply it to stellarator cases. First we
study the difference the case assumingvthe averaging or stell-
arator expansion and the case including additional mode couplings
due to the stellarator field.
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Fig. 1 : Helical Windiné of L = 2 Straight Heliotron.

n(¢)
B(v) '

0 Wy

Fig. 2 : Beta and Current Flux Function Profile.
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THE COMPUTATION OF INVERSE MAGNETIC CASCADES
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ABSTRACT

Inverse cascades of magnetic quéntities for turbulenﬁ incdmpressible
magnetohydrodynamics are reviewed, for two and three dimensions. The theory is -
extended to the Strauss equations, a. description intermediate between two and
three dimensions appropriate to tokamak_ﬁagnetofluids. Consideration of the ' >
absolute equilibrium Gibbs ensemble for the system leads to a prediction of an
inverse cascade of magnetic helicity, which may manifest itself as a major

disruption. An agenda for computationai'investigation of this conjecture is
proposed. ’

* .
Presented at the US-Japan Workshop on 3D MHD Studies for Toroidal Devices,
Oak Ridge National Laboratory, October 19, 1981.
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‘I, INTRODUCTION

A. Background

Over the last fifteen years, the term "inverse cascade" has been ap-
plied to a class of tgrbulént processes in which the small spatial scales
(high wavenumbers) feed some quantity, by nonlinear processes, to the large
spatial scales (low wavenumbers). A variety of quantities can be inversely.
cascaded, depending upon the medium and upon the geometry: the process can look
quite different in different cases. Inverse cascades have been most intensively
studied in Navier-Stokes fluids and incompressible magnetofluids. Most progress
has been numerical, and the accurate‘computation of an inverse cascade is a
strenuous numerical chailenge because of the high spatial resolution required.
This needed high spatial resolution considerably restricts the range of allowable
Reynolds numbers, and the 1mpllcat10ns of these restrictions have yet to be
felt 1n the plasma simulation communlty, though the hydrodynam1c1sts are pain-
fully aware of them.
' The idea of an inverse cascade first appeared in connectlon with flows

1,2,3,4,5.

"in two-dlmen51onal Navier-Stokes fluids, then in magnetofluids, first

6,7,8,9 and then in two.lo’ll’12 Most of the work has assumed

in three dimensions
the simplest and most highly idealized bqundary conditions: rectangular periodic
ones. But now, possible relevance to the "magnetic dynamo" -and to magnetic
fusion confinement is exerting pressure for computations with fewer idealiza-
tions and more realism. Computations are crucial fof demonstrating most of the
théoretical consequences, Analytical indicators can be used to anticipate the
existence of inverse cascades,; but accurate prediction of any of their details
seems inherently to require sophisticated numerics. No one has had much success
proceeding solely with pencil and paper. iThe‘intention here is to clarify the
implications of certain classes of possible computations.

The mechanism underlying an inverse cascade is essentially simple.‘3’13
Two things seem to be hecessary: (1) a dissipation which only becomes effective
at small spatial scales, such as viscoﬁs or Ohmic dissipation; and (2) two or
more non-dissipative integral invariants of the motion which are representable

as sums which emphasize differently the large and small scales.
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Take an example: two-dimensional Navier-Stokes flow at high Reynblds
numbers (the same mathematics does as well for electrostatic guiding center
plasmas). The two non-dissipative invariants, expressgd in terms of the Fourier
coefficients of the veloéity field y(k,t), are the energy per unit mass E and
the mean-square vorticity or "enstrophy" Q:

E=1Z lvik,t) |, Q= Zk kelz(lf,t)le .

~

The non-dissipative terms in the equations of motion are the nonlinear ones,

and if they transfer excitations to the high [5] part of the spectrum (as they
surely must), the only way the simultaneous constancy of both E and Q can-be
preserved is forthere to be an accompanying transfer to low IE[- The additional
constant of the non-dissipative motion © (which is not conserved in three di-:
mensions) demands that the non-dissipative (i.e., non-linear) terms in the
Navier-Stokes equation must transfer excitations in both direcéions in wavenumber
spacé, if there is any transfer at all. The paths in 5 space by which the transfer
occurs are a secondary issue, but there is nothing’simple about them,

Subtleties arise when one begins to ask sharper questions, such as
which quantity gets transferred in which direction and how fast. These questions
have been earnestly addressed in the literature and do not lead to short, graphic
answers, only to long, contingent ones. - Relatively simple and persuasive answers
can be given for the quasi-steady state, when a source of excitations, band-
limited in wavenumber space, is regarded as injecting the excitations at a sta-
tistically steady rate and attention is directed toward  ‘the spectra and the
- transfer rates of the cascaded quantities.’ The word "source" can mean lots of
things, from an externally-applied forcing field (such as an electric field or
current field, in magneto-hydrodynamics) to some microscopic instability which
might be present.: '

Computationally, one often works initial value problems starting from
smooth initial conditions, and in that case, it may be useful to identify a
particular unstable normal mode as associated with the onset of the turbulent
fluctuations. In the laboratory one usually does not work an initial value
problem starting from smooth initial conditions; rather, unstable systems are
often created only with some level of excitations already in place. It may then

be a less interesting question as to which "mode" is the "most unstable" one,
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because the fully developed and observed state may bear little relation to the
kind of smooth profiles on which any kind of stability calculations can be done.
A hydrodynamic'analogy is pipe flow far above the eritical Reynolds number:

there is hardly even an academic relation between the details of the flow and
any stability calculation that can be done. Particularly in plasma confinement
experiments, there may be many simultaneous sources of excitation: a gradient
in virtually any mean field variabler(pressure, magnetic field, electric current,
flow velocity, density, tempefature) is potentially a source of excitations.
‘Many sources may act simultaneoﬁsly. They may.intérfere with or reinforce each
other.

What happens to the excitations once they are launched on their Journey
thréugh k-space may be the more interesting and the more physically significant
question. There is a clear difference between turbulent processes that transfer
their disturbances to small rather than large scales from the point of view of
thermonuclear confinement. In the former case, thg worst phat can happen is an
enhanced transbort, a disadvantage which may well Be-offset by an enhanced heating.
(A tokamak.which had no "directly cascaded" turbulence of this kind might not heat

-at all!) Transfer toward large scales can clearly be more serious: macfoscopic‘
bulk deformations can redistribute and disrupt the plasma variables. and perhaps
terminate the confinement. Disruptions in tokamaks have some of the flavor of
what one might expect from an inverse cascade, though experiments with highly
resolved enough diagnostics to study ﬁhe small scales of what happens in a major
disruption appear not to have been carried out. (A respectable beginning on the
problem was made some time ago by Hutchinson1h and_Morton.lS) For the near-term
future, connections between tokamak disruptions and possible inverse cascades are .

likely to continue to be primarily a numerical subject.
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B. DNumerical Examples

We briefly remark upon three examples of attempted computations of
inverse magnetic cascades. The guantities expected to.be inversely cascaded
are mean square vector potential in two dimensions and magnetic helicity in
three.

16

Figure 1, due to Pouquet, - displays the results of a closure calcula-
tion of an inversely cascading magnetic vector potential spectrum in two dimen-
sions. The mechanical and magnetic Reynolds numbers are of the order of L500:
The excitations are injected at a wave number indicated by an arrow, and every-
thing at lower wave numbers is the result of back transfer in wave number space.
The computation is not a direct solution of the dynamical equations themselves,
but rather a statistical, eddy-damped "closure" approximation to them which per-
mits higher values of the Reynolds numbers than a direct computation could possibly
permit with present-day computers.

Figure 2, due to Fyfe et al.,12 shows a direct numerical solution of
the two-dimensional magnetohydrodynamic- equations, driven by a random magnetic
forcing confined to the indicated wavenumber band. All the points below k2 = 55
correspond to inverse magnetic transfer to long wavelengths. ' This, incidentally,
is a calculation in which spatial .resolution was inadequate to the Reynolds number
chosen’; and as a consequence there is no "dissipation fange", or region of pre-
cipitous fall-off at increasing k, apparent at the upper end.

Figure 3 is taken from Meneguzzi et al.,17

and illustrates the results
of a direct computation from the three-dimensional incompressible magnetohydro-
. dynamic equations, again with a random forcing, but this time with a helical,
mechanical -one. A weak "seed" magnetic field amplifies with time as the injected
kinetic energy converts into magnetic energy through dynamo action. The back
transfer of magnetic helicity is apparent.

Additional direct inverse cascade computations which may be mentioned
are those of Lilly18 and Fyfe et al.,12 for the two-dimensional Navier Stokes
case; see also Pouquet et al.lg for the corresponding closure computation. Pouguet
and Patterson7 have displayed three-dimensional magnetohydrodynamic direct compu-
tations. Pouquet et al.8 have given three-dimensional inverse cascade closure
computations for incompressible magnetohydrodynamics.

A1l the computations cited assume rectangular periodic boundary conditions

with no net flux of any quantity through any cross section of the system.
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II. THE STRAUSS EQUATIONS; ABSOLUTE EQUILIBRIUM ENSEMBLE THEORY

Rectangular periodic boundary conditions, which characterize most of
the computational efforts to study inverse cascades, idealize away several key
features of real systems. In particular, they preclude net fluxes of such quan-
titiés as electric current through a cross-section of the region of computation.
They also rule out all true boundary effects, which undoubtedly play a role in
real situations. It is desirable to state the ideas assoc1ated with inverse
_cascades in a mathematics that corresponds to more realistic rgpreséntations of
actual plasmas. ' - ‘ ' .

The Strauss equation520 are a set of magnetohydrodynamlc equatlons that
are close to those of 1ncompress1ble two-dlmen51onal magnetohydrodynamlcs, but
whlch include some important three-dimensional effects. They are far more tractable
>than the full set of three-dimensional magnetohydrodynamic equations. What ap-
pears"to the writer to be a more transparent derivqtion than Strauss's caﬁ be
given, endiné with the same equations; the derivation is not simple; however.
Their most important feature is that of their near two-dimensionality: the
variable magnetic fields and velocity fields are perpendicular to the z-direction
(say), but the field variables are functions of all three spatial coordinates.
The variable part of the magnetic field is B and is expressed in terms of a vec-
tor potential A as B = v, x 8ZA. (The subscript "" will’alﬁays mean pefpendi-
cular to éz.) The velocity field v is expressed in terms of a stream function

Uas v =V, x éZU. There is a constant, uniform dc magnetic field in the z

direction, of megnitude BO >>

in the z direction and are given by V12U = -w and VLZA.= -j, in terms of A and U.

The vorticity w and the current density j are

. 20 . o . . .
The Strauss equations are, in a familiar set of dimensionless variables

in which flow velocities are measured in units of the Alfvén speed,

oA . 2, _ U

B—t + X.VLA - ]JV-L A= BO _aZ (l)
| w . 2 3j '
p(—at+va)—]_§Vlj—va1w—Bo e (2)

The uniform dimensionless mass density p can be consistently'éet equal to unity.

The quantities u-l and v1 are essentially the magnetic and mechanical Reynolds

numbers, respectively.
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Except for the terms on the right hand sides of Egs. (1) and (2) and
the z-dependences, Eqs. (1) and (2) are identical with the equations of two-

dimensional incompressible magnetohydrodynamics,10-12

a system which is now
getting to be rather well understood. Many interesting quéstions can be asked
of Egs. (1) and (2). For example, the question of possible stability thresholds
for quiéscent, slowiy—decaying equilibria as Y and v decrease towards zero is

an analogue of the question of the stability of hydrodynamic pipe flow or Couette
flow as the Reynolds number increases. Computationai'studies of Egs. (1) and (2)

have been initiated by Carreras, Hicks and 011:her32]"22"23’2)4

in connection with
tokamak confinement, ‘
A The following considerationé are intended to facilitate this enterprise
by sharpening the mathematical framework in which the interpretation of a major
disruption as an inverse magnetic cascade may be numerically tested. 1In a paper
published in 1977, we put forward the suggestion12 that the inﬁerse cascade of
magnetic helicity might be'résponsible for major tokamak disruptions, and a test
of this hypothesis seems now to be within reach. Related considerations are
discussed in a fdrthcoming paper by Tetreault. '

A1l inverse cascade cdmputations to date have been métivated by con-
sidering first a model problem in which the non-dissipative dynamical equations

have been expanded in a set of orthogonal functions.3’13

The expansion is then
truncated at a large but finite number of terms. Statistical mechanical proce-
dures are then performed in the phase space definéd by the expansion coefficients.
Somewhat surprisingly, absolute equilibrium canonical ensembles (Gibbs disfribu—
tions) have proved to be accurate prédictors of time averages of phase functions
of the expansion coefficients. Considérihg the limiting behavior, as the number
of'expansion coefficients becomes ihfinita highlights any tendencies which may
exist for some invariant to migrate to long wavelengths:

The Gibbs distributions are constructed from those non-dissipative
invariants which remain invariant after the truncation: i.e., are "rugged". For
the Strauss equations there are apparently three such rugged invariants. They

are the energy E, the "cross helicity" Hc’ and the magnetic helicity Hm:

E = frdrd8dz [B> + v°] (3)
H, = frdrdfdz wA (W)
o = Bo/rdrdédz A. (5)

The integrations are over the three dimensional region 0 < 8 < 2n, 0 <r < a,
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0<z< Lz’ where periodicity in z with period Lz is assumed. Free-slip boundary
conditions g-@r =0, g-ér = 0 are assumed at r = a, the wall of the rigid cylinder.
For added realism (but added complexity), we might add the "no slip" boundary
conditions on the tangential components: (V_L x B) x ér =0 and v x ér = 0. These
are superfluous, however, for the model problem at hand, and greatly complicate
the mathematics.,

Usually, only quadratic invariants are easily proved to be "rugged",
and this can be achieved by the somewhat formal device Qf treatingiBo itself as a
phase space coordinate whose equation of motion just happens to be dBO/dt = 0.
B, itself is then a rugged invariant, and all the terms in Egs. (1) and (2) as
well as the expressions (3)-(5) can be considered as quadratic. The ensemble
chosen can be chosen to be sharp in BO: i.e., microcanonical in BO but canonical
in the other invariants.

A and U are expanded in the complete orthonormal setvof eigenfunctions

of the Laplacian,26

Aimg = Comg”n(Yamg?)ex0(imd + ik 2), ‘ (6)

where k= 2mn/L_, m and n are integers, and Y a is the gqth zero of J (xN©
n Z nmg m

The normalization constant Cnm is

q .
o - 2y=1/2 :
Cnmq = (ﬁLZa ) /Jm+l(Ynmqa). (1)
If we define A2 = Y2 + k 2, V2A = -Ag A, and V,2A = -Y2 . The
nmq nmq n oAmq 5 nmg nmg 1 “nmg nmg’ nmg
A are eigenfunctions of both V,” and V~.
nmq
We may write the infinite sums
U= m%q "mgmg , (8)
A= n%q Enqunmq ‘ (9)
and . . )
2 2 2
E= 2 Yomg Bamg ™ * Mg D) (10)
2 * complex
= +
2Hc n%q Ynmqgnmqnnmq <conjugate) (11)
. 1/2 & g€
Hm=2BO(Ll) y 209 -, p 00 (12)
z 9 Yooq 9 Yoo0q
R - 1/2
where for economy of notation, A = EBO(H/LZ) . The sums are over large but

finite sets of terms once the truncation is performed. Also to be truncated is
the set of ordinary first-order differential equations for dgnmq/dt and dnnmq/dt
that result when Eqs. (8) and (9) are inserted in Egs. (1) and (2).
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The Gibbs ensemble which is appropriate to the case of no initial cor-~

relation between y and B is the multivariate probability distribution

'Dgq, = comst. x exp {faE -8}, k (13)

with reciprocal témperatures a-l, B-l chosen to match desired ensemble expecta-
tions <E>, <H >,
m

Inserting Eqs. (10) and (12) into (13), the modal expectations are

. . 2 2
readily calculated. FlrSt_<Enmq> = <nnmq> =0, m +’n # 0, and
2 2 2 2 2
< > = < > = .
|Enmq| Innmql — m® +n° #0 ., (1k)
Also ) Ynmq
st 1 A .
< D E e e e———
gOOq T 2o 3 (25)
YOOq__ :
: 2. 1
- < =
<(gOoq §00q>) > — . : _ | (16)
Y00q '
a and B are determined as the roots of
2,2
<E> = D B S i S Y (17)
nm% o qla hazyh
n2+me#0 .'00q
d
- > L8 L —— (18)
m® T 20 g ?
Y00q
2

" which keep all the <|gnmq| > and <|nnaq|?> positive.

If <E> and <Hm> are held fixed and the number of nmg modes is allowed
to increase without limit, it is easy t6 show that a + =, |8] + = with |a/B] a
finite ratio. The sum in Eq. (18) is convergent as the maximum q =+ «. Except
for the excess energy distributed in infinitessimal increments over the m2+n2 #0
modes, the fluid excitations freeze into the 00q magnetic modes. The vector

potential <A> approaches a function

<A> > f <g

Q=1 A

>
00q~ “00q

1l

I I (YanaT) .
Y00q%1Vooq?)

a universal function whose defining expression is manifestly convergent. For
all m2 + n2 # 0,
2
<|gnm | <>
____AL____+ 0
<E 2
00q

as the number of terms approaches infinity.
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This behavior is slightly different from the corresponding inverse cas-
cade behaviors found in previously e€xamined cases, insofar as the helicity does
not condense into the 001 mode alone but into the rapidly converging series de-

fined by Eq. (19). The state (19) is in fact a uniform current density state,

with <A> varying proportionately to r2. Nevertheless, the earmarks are there,
ard to anyone familiar with the previous history of the theory of inverse cas-
cades, provide ‘a basis for conjecturing that in the presence of dissipation and
forcing, there would be an inverse cascade of Hm.to'long wavelengths, headed-
for the state defined by Eq. (19).

The uniform-current state (19) has the additional significance of being

either the state of minimum energy for given helicity, or the state of maximal

helicity for given energy. This can readily be seen from the Euler equation for
the variational problem of minimizing E subject to a fixed valqe of Hm: VEA =

a constant. For the dissipative initial value problem, it has been previously
demonstrated that under many circumstances, the directly cascadable invariants
will "selectively decay" relative to the inversely cascadable ones, and their

ratios will approach their theoretical lower bounds for large times.g’27

For
the Strauss equations, it appears that this uniform current state is the
"selectively decéyed" state, analbgous to the "Taylor state"28 or force-~free
state of the full set of.magnetohydrodynamic equations.

If the more realistic "no slip" boundary conditions are invoked, re-
quiring j = 0 at r = a, the uniform current state is not attainable. At the
least, a sharp current gradient must develop somewhere across the cross-section
of the cylinder as the.selective decay progressés, perhaps in the form of a

boundary layer near r = a. (Something similar was seen in a recent selective

2 . . .
decay calculation inside a compact toroid. 9) This current gradient, which

necessarily exists at the edge of a current-carrying plasma bounded by a con-
ducting wall, looms as a rather universal and difficult-to-avoid source of
"tearing mode turbulence."

This gradient in the current near the walls is one among many poten-
tial sources for the helicity which might be inversely cascaded. There is
probably no single mechanism for supplying small-scale helicity. A second

likely possibility is current filamentationlz,that may develop along local hot

spots in the magnetofluid; the resistivity falls off with increasing temperature,
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and may thus channel the current along hot tubes of force, resulting in still -
higher local heating. There is probably no single mechanism for supplying
small-scale helicity, which basically results any time current flows along'a
field line in the presence of resistivity. Arguing in favor of particular
drivers or sources may prove as_fruitless an activity as the generatibn of
debates that has surrounded ;inear instability theory. It appears imperative
to produce .major disruptions in the presence of as many parameter variations
as possible, to begin to acquire discrimination among the variety of sources

that may be operative,
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III. A POSSIBLE COMPUTATIONAL AGENDA

Numerical demonstration of the pbssible inverse cascade properties of
Strauss's equations will be facilitated by taking advantage of earlier experience
and conceptualizations gained in studying inverse'cascades,‘and by resistance to
letting'the conceptual framework be circumscribed by linear stability analysis.
The first limitation that will have ‘to be confronted will be the limitation on
l, u-l. A currently popular rule of thumb for fluid com~

putations is that for every unit of Reynolds number, one grid point (or finite

the Reynolds numbers v

element, or expansion coefficient) is requifed in each spatial dimension. Thus
a three-dimensional simulation at a Reynolds number of 30 requires about (30)3
grid points to resolve the smallest spatial scales. This limitation might be
violated by a factor of two, but probably not by an order of magnitude. At
present the smallest p and V that are feasible to compute with are between about

1072 ana 10’3

for two dimensions and lO—l to lO"'2 for three. The desired physical
'values, for real experiments,are likely to be considerably smaller than that
(particularly u). There is no simple way around this difficulty.

Progress can be made in .perhaps only one of two ways. (1) It may be
attempted to escapé the connecfion between the aforementioned necesSgry
spatial resolution and wave number requirements by introducing an artificial
enhanced dissipation which only becomes effective at high wave numbers%T The
hope is that smalliscale dissipation only provides a sink anyway, and that the
' large scale dynamics will become independent of the details of the sink. (2) A1-
ternatively, one may settle for the qualitative demonstration of ‘the physics and
extrapolate crudely to the behavior at the very high Reynolds numbers. In the
former choice, the ultimate validation can only be a comparison with the results
of very high-resolution codes in which no anomalous dissipation.is introduced.

In the second choice, the ultimate recourse is most probably to experiments.

The most single important possibility, as far as major disruptions are
concerned, has to do with the possible existence of thresholds in Reynolds num-
bers. Such thresholds, at someﬁimes éurprisingly low values, have characterized17
- the three-dimensional computations on the'dynamo.problem: above certain critical

Reynolds numbers, a given stirring mechanism will initiate an inverse cascade,
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otherwise it will not}T Of particular interest to tokamaks is the possibility
that because of the drop of resistivity with increasing temperature, critigal
Lundquist numbers (Alfyén‘speed x>length sca;e/magneti; diffusivity) or magnetic
Reynolds numbers (flow speed x length scale/magnetic diffusivity) will be crossed
as the magnetofluid heats up, and an inverse cascade will start dramaticélly.

A spectral-method numerical solution in search of inverse helicity
cascades might proceed as follows, for Eqs. (1) and (2). Pick u, Q v 1/50 or-
so, with a resolution of the order of, say, 10C in the radial and azimuthal
coordinates and perhaps 15 to 20 in the z coordinate. (It is unknown as to how
rapidly small scales in z will multiply themselveg, but if they develop as
readily as the small scales in 0 and r, the Strauss equatiohs probably are not
useful, anyway.) There is no reason to believe less spatial resolution is re-
quired in 6 than in r. Invariaﬁce of the results to increased resolution in 0,
r, and z 1s a necessary check on their accuracy. An initial cﬁrrent profiie Vhich
is thought to be close to experimental reality should be chosen and an external
forcing term (probably from a random number generaﬂor) should be permitted to
drive the magnetofluid at the small scales, either locally or fandomly in space
as well. This can be most effectively accomplished by adding a small random
term to.the right hand sides of Egs. (1) and (2), in the manner of Lilly%sor
Fyfe 93_9;}2 o ' o

The purpose of this first exercise would be simply to see if an inverse
cascade with the features of a major disruption can be induced, either by,lowering
the dissipation coefficients or raising the strength of the random forcing. Once
such an event has been shown to exist, an infinite variety of refinements of the
calculation, such as eliminating the random forcing in'favor of a resistivity
which depends upon the local temperature T, are imaginable. T, for example,
might be convected and grow locally due to Ohmic dissipation:

(= + y+9,) T = k7,°7 + ni?,

where N is a heating rate, and K is a thermal conductivity.

Finally, the most important question connected with major disruptions
is not so much can they occur as what can be done about them. If their inter-

pretation as an inverse cascade of helicity is correct, then at a formal level,
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the remedy is apparent: feed the magnetofluid some helicity of opposite sign.-
This means in effect inducing in the plasma some current flowing in the opposite
direction from the main toroidal current. Where and how to do this seems like
a delicate matter. Not much help is to be expected from attempts at suppression
by static external helical w1nd1ngs, whlch supply a vacuum he11c1ty at a parti-
cular n,m mode, but do little to the bulk dlstrlbutlon over modes that provides
the basis for an inverse helicity cascade.

The clear-cut demonstration of an example of inverse cascade behavior
for the Strauss equations would ﬁndoubtedly stimulate many additional refinements
ana'insights that are new hard to foresee. The time is overdue, also, when the
plesma simulation community should begin ﬁo seek a conceptual framework for its
coﬁputations in their hydrodynamic antecedents, and cease to expect that linear
stability analyses will provide adequate insight into processes in which non-

linear transfer is the dominant effect.
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* PIGURE CAPTIONS

Fig. 1. Magnetic potential spectrum as a function of wave number for successive
times, in two dimensions. Magnetic fluctuations and kinetic energy are injected

at the wave number indicated by the arrow, and their transfer is approximated by

16,

an eddy-damped "closure" calculation. (Taken from Pouquet.
Fig. 2. Magnetic modal energies, averaged over angle, as function of |k|, for
a direct solution of the two-dimensional magnetohydrodynamic equations in two
dimensions (taken from Fyfe et al.lg). Magnetic fluctuations are randomly
injected in the band between the arrows, and the spectrum is allowed to fill

up. Initially, it is empty.

Fig. 3. Omni-direction magnetic energy spectrum for the three-dimensional case
(taken from Meneguzzi et al.l7). A small seed magnetic field is amplified by
a driven velocity field which contains mechanical helicity, Jv-w d2x. The
spectra are labeled by the appropriate values of the time. This is the most

clear-cut computation of "dynamo" action to date.
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Theoretical Optimization of Stellarators

R. Chodura, W. Dommaschk, F. Herrnegger,
" W. Lotz, J. Niihrenberg, A. Schliiter,

Max-Planck-Institut fiir Plasmaphysik
EURATOM-Association, D-8046 Garching

Abstract

Net current free toroidal ("stellarator") confinement is studied with
a combination of several methods.

1)

2)

3)

4)

A complete set of explicit harmonic fields [1] is used to compose
vacuum field configurations with prescribed properties Tike the num-
ber of field periods N, the aspect ratio A of the outermost magnetic
surface, the twist number : (rotational transform divided by 2w),
the shear, the magnetic well, the variation of [d&/B on maghetic
surfaces (where the integral'is'pérformed along a field line over
one field period), a surface minimum of {ﬁi which only weakly de-
creases outwardly as a prerequisite for improvement of trapped par-

‘ticle confinement at finite B.

Adding finite plasma pressure these configurations are then studied
with 3D-MHD codes [2, 3] to assess the achievable equilibrium-8
limit. The expansion of a general toroidal equilibrium around its
magnetic axis [4] is used as a help for the computational search

in configurational space and for finite-g8 MHD stability.

Monte~Carlo simulations .of ion transport are performed using guiding
centre orbits in given magnetic fields [5]. For a first comparative

study of configurations with different magnetic properties the limit
of small ratio of gyroradius to plasma radius is considered, sb that
the problem of -lost orbits is avoided while computing the transport

coefficient for given mean-free path.

Continuous [6] and line current modular coil systems are calculated
which generate the configurations considered.
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Some results have already been reported [7] and-can be summarized as

follows.

A)

C)

D)

Vacuum field configurations with sizeab1e L =0,1,2,3 fie]ds have
been found which posses simultaneously substantial twist (% ?J
either shear or no shear, significant reduction of the parallel cur-
rent as compared to the diamagnetic current a vacuum magnet1c well,
and a toroidal aspect ratio of 15 - 20. '

Any given field configuration can be generated by a surface current
density on an arbitraky enclosing surface. In addition, the current
lines can be chosen to be po1o1da11y closed loops ( ‘modular coils” ).
A qualitative adjustment of the surface on which the coils are
placed to the shape of the outermost magnetic surface leads to-a
large reduction of the excursions from meridional planes as compared
to a circular axisymmetric enclosing surface. For an aspect ratio

as low as %-of that of the magnetic: configuration, the geometrical
form of the current lines seems still to be acceptable for the con-
figurations characterized.in A) if the enclosing surface is adjusted.

The finite-B equilibrium results for these conf1gurat1ons show that
the finite-g toroidal shift is indeed reduced, so that a 1arger B~
value (factor 2 - 4) than in the equivalent & = 2 stellarator can
be achieved. (Finite-8 equilibrium calculations for & = 2 configura-
tions - with strong -shear hitherto seem not to support the result ob-
tained by asymptotic-analysis [8], namely that <B> =”% sz/A can be

acnieved, %_ = twist number at the boundary.)

b
The 3D codes now in use at IPP do not allow a definite conclusion
with respect to MHD stability. (However, improvement appears to be
possible [9]). Summarizing the evidencé from-i) magnetic well crea-
tion by the residual finite-g shift, ii) numerical 3D code results,
iii) results obtained from the expansion around the magnetic axis
{101, and iv) evaluation of ballooning modes and low-n internal as
well as external modes for helically symmetric equilibria [11], we
want to repeat our previous statement [7] that stable equilibria
with <B> ~ 0.05 - 0.1 stil] appear to be possible. .
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E) Ion transport calculations lead to results in the form D* (A*) where
A = A/LC, X mean free path, LC = NRT/i half the connection length
and _

* - N32/p 2 -
D¥* = D*./ri vi(x = LC)

where D is the computéd diffusion coefficient, rs gyroradius, Vs
collision frequency. It shows that the transport is improved in the
collisional and the plateau regimes and is not worse in the long-

mean-free path regime, if the configurations with magnetic well of
A) are compared to an % = 2 stellarator with correspondingly lower

aspect ratio (as to allow a comparable equilibrium-g value).

To exemplify this'summary, some more récent results are given which
concern the equilibrium-g value and the ion transport of two configu-
rations which are being studied as successors to the IPP W VII-A de-
vice.

Fig.1l shows vacuum field magnetic surfaces and variation of [d&/B.
Fig.2 shows the corresponding finite-g results with <8> = 0.025 and
<> = 0.04, respective]y; In Fig.3, D¥(A\*) is plotted and compared to
corresponding tokamak and 2 =2 stellarator cases.
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Figure Captions

"Fig.1

Fig.2

Fig.3

Magnetic surfaces of vacuum fields. Columns 1 and 2 belong to
two different field configurations (1, WAD428A: N 10,.+0 =
0.54, tp = 0.80, marginal well; 2, ASC742: N = 5, + = 0.54,
small shear, marginal well). Left sides of abscissas in row 4

correspond to radially outward directed parts of surfaces. Or-
dinates show Q/anis’ Q = Jdl/B,'for a surface with the indi-
cated aspect ratio (solid curves). Curves for & = 2 surface
(with the same value of +, A) are shown for comparison (dotted).
Flux surfaces of the finite-g equilibria corresponding.to the
vacuum field configurations of Fig.l obtained with the NYU-
Code for which the shape of the perfectly conducting boundary
was here described by '
r - R0 = rw(U,V) = (1 + Ao)cos U+ 4, cos v

- Ao cos[(2-1)U - mV] ‘
z = zw(U,V) = (1 + Ao)sin U+ §,sinV

1
+ ZA, sin[(2-1)U -~ mV]

m
O<U<2m, 0sV<2m, V=No
where r, 6, z are cylindrical coordinates, N is the number of
field periods and U the poloidal parameter. For case 1, N = 10,
A ~ 20, and the nonvanishing coefficient are Ay = 61 = 0.39,
Bog = 0.11, 8rq = 0.22, Byy = -0.01, Boq = OiQB, Ay = 0.02,
BAyy = -0.06, A,,=-0.02, A,. = 0.02, A42 = -0.01, Bz3 = 0.03.

40 41
For case 2, N=5 A~ 14, 5 = -0.03, 4, = 0.60, Bpp = 0.23,

1

A21 = 0.35, A22 = 0.01, A23 = -0.02, A30 = -0.02, A32 = -0.02,
A33 = -0.01. The B-values are <B> = 0.04 and <B> = 0.025, res-
pectively.

Curves D¥(A*) (explained in the main text) for various stella-
rator and tokamak casés. Upper part. Solid curve: WAD428A
(column 1 of Fig.1) A = 33, ¢ = 0.61; dashed curves: tokamak
with A = 40, and & = 2 stellarator (N = 10) with A = 40

+ = 0.50, and stellarator (N = 10) with A = 10, + = 0.50.
Lower part. Solid curve: ASC742 (column 2 of Fig.1) A = 20,

+ = 0.54; dashed curves: tokamak with A = 20, and ¢ = 2
stellarator (N = 5) with A = 20, + = 0.50, and stellarator

(N = 5) with A = 10, + = 0.51.



56

10.0}

0.0

0

10,a}

o

L% ]






58

}\*

0.1

10

100

103

-

)\*

0.1

10

100

103




59

RESISTIVE MODES IN TOKAMAK-STELLARATOR _CONFIGURATIONS'

H. R. chks,f B. Carreras, L. Garcia,
J. A Holmes,'r and V. E. Lyncht

Oak Ridge National Laboratory .
_ Oak Ridge, Tennessee 37830 U.S.A.

ABSTRACT

The stability and nonlinear evoiution of MHD tearing modes is studied for tokamaks with
stellarator windings. The approach builds on techniques used for tokamak calculations.
However, there are several significant complications that are absent in the pure tokamak

problem.

fntroduction

A standard procedure for studying tearing modes in tokamaks is first to calculate an
axisymmetric MHD equillbrluni. In general, this is done by solving the Grad-Shafranov equa-
tion on the poloidai plane, although in certain limits analytic equilibria exist. For an unstable
equilibrium, the linear growth rate and eigenfunction of the. fastest growing tearing mode
Instability can be determined by a linear initial value calculation using the reduced MHD
equatlobns.1 The nonlinear evolution of such instabilities can be studied with a nonlinear ini-

tial value code.2

We shall investigate how these methods, and the techniques used to
accomplish them, can be employed for tokamaks with stellarator windings.

Several lessons can be drawn from the tokamak initial value calculations. Linear stability
analysis is not completély adequate. Nonlinear evolution is needed to determine both the
time scale and the extent of damage of unstable modes. Correct geometry is neceséary in
order to get a level of detail sufficient to compare with experiment. In three-dimensional
(3-D) calculations with resistivity, not only can the flux topology change, but fiux surfaces
can be destroyed. Finally, there are two rather technical points: it is desirabla to have an

equilibrium solver which is compatible with the initial value code to be used, and a Fourier

% Research sponsored by the Office of Fusion Energy, U.S. Department of Energy, under
contract W-7405~eng-26 with the Union Carbide Corporation.

+ Computer Sciences at ORNL.
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series representation in toroidal and poloidal angles is usually more economical than finite
difference grids in these directlons.3 ' _

For the numerical experiments presented here, the étrategy conforms with these les-
sons, except that circular cylinder geometry is used. The equations to be solved are the
low-B, reduced, resistive MHD equations. Although considerable work has been done by oth-
ers on stellarator equilibrium and stability, it is hoped thai our somewhat different strategy
will yield results that will complement such work. |

Three techniques for adding external héllcal (stellarator) fields will be considered. In
each case, one must first determine a tokamak equilibrium. For the low-8, circular cylinder
case this can be done analytically. The procedure is to algebraically define a q profile for

the plasma [Fig. 1b (upper curve)]. The equilibrium poloidal flux function is given by

8 =r . :
ar"'eq(r)- q, ’ (1_)

From this the toroidal plasma current density can be derived (Fig. 1a),
19 3
J . s=—|r— .
eq r or [r or weq(r)]
These profiles will be used in the remainder of this work.
. 'Now, consider the vacuum field geherated by a helical coil with 'toro_ldél winding number

n and poloidal winding number /. The pololdal flux function due to this ¢oll Is given by

} w,‘,', (r.O.;’) = rplll(nr /R)cos FIO + ncr) y

-]

which is well approximated by

. _ nN o | @
441'"6((-9-{) = [‘I.nc"l_—T] 12 cos (6 + ncr) , : ' |

where 1‘[ Is a constant related to the coll current.

»
(-]

It is possible to calculate an average Y (r) by averaging the vacuum field over the nc}

»
c

osclllatlons.4 The result is
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3 "o 3 ~ 21—4 (3

— X+ 1
ext 2nr dr| r Oor l,n‘= C o hn

c

So, the parameter *, chosen in Eq. (2) is actually the average rotational transform at the

»

(-] .
plasma edge (r = 1) due to the coil with winding numbers I,nc.

Average Method (or Stellarator Expansion)

If the toroidal winding number of the helical coil .ne is large compared with the toroidal

mode numbers to be considered, then it is appropriate to consider only the toroidally aver-

‘aged helical field. In this model, the tokamak equilibrium is modified by adding ot from Eq.

(3),
At 24 (1) 4, () @
This can 'b_e accompishod WIth
%flt”(f ):= - ‘ﬁ - +extr21_3 L o ‘5)

The added term produces zero toroidal current; so, the current density profile is unchanged.
This new equilibrium is axisymmetric, since the toroidal variable has been averaged over.
The effect on the total q profile is shown in Fig. 1b. This method is important because of its

simplicity and historical role.

Vacuum Coil Field Method

In order to see the effects of toroidal dependence of the helical field, for this method we

use a tokamak equilibrium field plus the poloidal flux function of a helical coii {fEq. (2)] as an
initial condition. Thefield components with the symmetry of the coil (I,nc) are not allowed to
evolve in time. This initial condition is not a self-consistent equilibrium. Moraover, the sta-
bility results obtained from this initial condition are contrary to those obtained with the fol-

lowing more complete model.
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Calculated Equilibrium

Using the reduced MHD equations plus some dissipation, relax from the helical Initial
state (above) to an equllibrlum which has the symmetry of the system. All components,
including the one corresponding to the helical coll, are allowed to evolve. The boundary flux
values are held fixed in time, thus retaining the effects from the external helical coil.

Three dissipative procedures have been tested and are listed as follows:

(1) removing velocity at each iteration (Fig. 2a),
(2) ion viscoslty, and
(8) resistivity (Fig. 2b).-

When only one helical coll Is present,.the equilibrium solution is required to have helical sym-
metry. In this case, for a wide range of qp and+‘m. these relaxation methods successfully
carry the equations to equilibrium solutions. These solutions depend somewhat on the
method of relaxation, but they strongly resemble the initial state and are dominated by its
characteristics (Fig. 3). '

When the initial state consists of a tokamak equilibrium plus the vacuum field from two
helical colls of different pitch, then helical symmetry is broken”a'nd oﬁe has a true 3-D solu-
tion. We still demand that the equilibrium solutions have the symmetry of the device. For
example, if we combine (I=2;nc=4) and (I=3;nc= 4) éollé, then we require that the solution
contain only n = 4, 8, 12, ... components. Such initial states generally contain flux surfaces
surrounded by stochastic magnetic field. .The volume; contalning flux surfaces gets larger
when either. one of the external helical currents is redugedA (Fig. 4a,b,c) or the plasma
current Is reduced (Fig. 4b,d).A We have shown that when the helical flelds are not too
strong, even the 3-D case can be relaxed (Fig. 6a) to an equilibrium (Fig. 5b) using this
technique.

‘Nonlinear Stability '

Taking an initial condition determined in one of these threq ways, we add a small pertur-

t

bation of m = 2, n = 1 mode. . This test mode, when It is unstable, will grow to saturation. We
characterize its final state by the saturated island width. This is indicated in Fig. .6a as a
function of ot due to a single helical coil _(I.= 2;né=4)._ For comparison the average method
result is seen to be slightly more optimistic (more stable). The field‘line configuration fpr

the final, saturated magnetic island, state is shown in Fig. 8b for °axt= 0.9.

Nl
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Numerical Representation

For both the relaxation to equilibrium and the subsequent nonlinear evolution, the solution

functions are written as expansions in ¢ and ¢

¥(ra8)= T ¥_(r)cos(mb+np) . ' (6)
m,n .

For the tokamak case, this is a much more economical representation than a finite difference
grid in @ and ¢ would be because the tokamak solutions can be well represented by a fairly
small‘ number of terms in Eq. 8. The tokamak-stellarator cases studied so far indicate that
such a geometry will generally require more terms in Eq. (6), but this representation is still
probably more economical than a 3-D finite difference grid would be. For the speclal case
of relaxation to a helical equilibrium, the series representation is very economical, requiring
generally less than seven modes. Evolution of the (m = 2;n = 1) mode in a helical equilibrium
can be studied with as few as 16 terms. Relaxation to a 3-D equilibrium dominated by two

helica! coils can be performed accurately with 21 modes.
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current unchanged but lowers the q profile.
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using large resistivity.
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b "(lnz;n.na) = 0.2, the volume of well-defined fiux sur-
faces decreases as the value of a(l=a;na=4) is
Increased from (a) 0.06 to (b) 0.10 to (¢) 0.20. The
3 effoct of removing the flelds due to the plasma from
case (b) is to increase the volume of well defined flux
1 surfaces (d).

initlal states. With central plasma q = 1.2 and h
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Stellarator Stability as a Two-Dimensional Problem

. *
D. A. Monticello and H. R. Strauss
Plasma Physics laboratory, Princeton thiversity

Princeton, New Jersey 08544

We report here én a method of solvihg the 3-dimensional stability problem
of stellarators by an averaging method that reduces the problem to two 2=
dimensional problems. We use the usual reduéed MHD equations appropriate for
large aspect ratio, g ~ 1 devices generalized to include helical fields that
are of the order of the /¢ By« Here, € is the inverse aspect ratio of the

Adevice and-Bo is tge large toroidal field. The reduction to a 2-dimensional

problem is made by taking N, the number of helical periods to be large, i.e.,

1
€

N ~ , and to look for long wave length modes i.e. )\ ~ R . This procedure

is effected by using the techniques of the multiple scale length expansion.
The two disparate'length being R and R/N. The resulting averaged reduced
equations differ from the high B toroidal equations only in that the flux
now contains a contribution from the external helical curreﬁt, aé well as
contribution from the pl;sma currents. In“additioﬁ the curvature term is also
modified by the average curvature of the external helical fields.

For this report we have studied two stellarator devices W-VII with

parameters £ = 2, ha = .25, qg(a) = 1.8, ¢ = %3 , N = 5. Here, g is the

poloidal harmonic number of the helical field coils, h = N/R, and g is the
[}

safety factor. Heliotron E has values f = 2, ha = 1.8, g(a) = .55, ¢ = %6

and N = 19,
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The equilibrium is solved for by constraining the net current through
each flux surface to vanish, i.e., a true resistive equilibrium for the case
of no ohmic driving voltage.

Figure (1) shows the flux contours, Fig. (é) the current profile across
the midplane, and Fig. (3) the current contours for the W-VII device. The
corresponding figures for Heliotron E are quite similar. We stress that thgse
are plots of averaged quantities. For 'example the outer flux surface is not
really circular but is given by r/a =1+ [et/ha(k—ﬂ ]Vzcos(le—NC) to order
Y€ . Here we are using toroidal coordinates r, 8, L. The fact that the
shear is much larger in Heliotron E than in W-VII is illustrated in Fig. (4)
and (5).

Figure (6) shows a <B>c ~ .5% for W-VII for qg(a) = 1.85. However,
Figs. (7) and (8) show that complete stability of the W-VII device is possible
for toroidal mode numbers up to 3, if q(a) = 1.7. These results can be
achieved because the low shear in W-VII make it possible to keep any singular
surfaces from being inside the plasma.

It is not possible to achieve complete stabilization in Heliotron E,
however, because of its large shear the critical beta is quite high, of the
order of 1.5%, Fig. (9). Also in contrast to W-VII there does not appear to
be any second region of stability in Heliotron E. This is probably due to the
fact that the bad helical curvature is about 8 times larger than that for W-
VI1I,

We remark here on the applicability of our results by considering how
well each device satisfies our approximations. € 1is small in both devices,
however, the expansion is in V€ , meaning terms of the order of 20% have
been neglected for W-VII and terms of the_ order of 30% have been neglected for

Heliotron E. The number of helical periods in heliotron is gquite large,
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giving good separation between the two length scales, where as this separation

is not as good in W-VII.

Details of these calculations may be found in Phys. Fluids 24, 6 (June

1981).

Permanent address: Courant Institute of Mathematical Sciences, New York

University, New York, N.Y. 10012,
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VARIATIONAL METHOD FOR THE THREE-DIMENSIONAL INVERSE
EQUILIBRIUM PROBLEM IN TOROIDS

A. Bhattacharjee*, Institute for Fusion Studies, The
University of Texas at Austin, Austin, Texas 78712.

I. Introduction

The computation of magnetostatic equilibria in toroids
is crucial to the study of plasma stability and transport
in toroidal devices such as the tokamak and the stellarator.
In axisymmetric devices like the tokamak, these equlllbrla
are descrlbed by the Grad-Shafranov equation

fi-(%_‘f>+pm+M = 0 , (1)
R R? :

which is commonly solved in cylindrical coordinates (R,¢,2)
with ¢ as the 1gnorab1e coordinate. In the work of Greene,
Johnson and Weimer! on tokamak equilibria, it has been indi-
cated, however, that a very useful set of coordinates is the
magnetic flux surface coordinates (v,@,z), where v 1is a
radial flux surface label, and 6 :and [ are respectively
the poloidal and toroidal angles parameterizing a flux
surface. Indeed, since the magnetic surface coordinates .
have built into themselves the properties characterizing any
toroidal equilibrium, they define the most natural coordinate
system in which an equation, such as equation (1), may be
studied. With this point of view, we will attempt “to
determine the mapping

R = R(v,8,z) , ‘ (2a)
6 = o¢(v,8,5) , .. (2b)
z = 1z(v,8,z) , ' (2¢)

for toroidal equilibria, a problem we have called the
three-dimensional inverse equilibrium problem in toroids.
Figure 1 depicts the two coordinate systems (R,¢,Z) and
(v,0,2); both are right-handed.

In a recent paper, Lao, Hirshman and Wieland? have
constructed a variational principle for the Grad-Shafranov

equation (l1l). For the axisymmetric case, which is their
concern, they have considered the mapping
R = R{(v,08) , : ‘ (3a)

*This work is the result of a collaboration with
J. C. Wiley (Fusion Research Center, University of
Texas at Austin) and R. L. Dewar (Plasma Physics
Laboratory, Princeton University).
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¢
z

[ ~ (3b)
z(v,8) , (3¢)
which is a particular case of equations (2). '

In this paper, we develop a variational method for
three-dimensional equilibria in toroids. The method
generalizes the approach of Lao, Hirshman and Wieland to
embrace all mappings of the form given by equations (2).
Needless to say, the variational principle of Lao, Hirshman
and Wieland is too restrictive to be of use in the general

case. The crucial point is to begin with a variational
principle for the magnetostatic equations
> > > > >
JxB = (VxB xB = Vp, (4a)
V-8B = o0 , ' (4b)

where p 1is the sgalar pregsure of a plasma confined by

a magnetic field B, and J is the current density. The
variational prlnc1ple we use is described in Section II and
is orlglnally due to Grad

II. Varlatlonal Principle for Magnetostatic Egquilibria

It has been demonstrated by Kruskal and Kulsrud" that
solutions of the magnetostatic equations (4) for plasmas
bounded spatially have the property that the magnetic field
lines lie on nested surfaces which are topologically toroids. |
Greene and Johnson® have shown that under these conditions .
the magnetic field B may be represented as

B ﬁc x V¥ (v) + §¢(v) x Vo ’
Vv x (o o - v Vo) , ' - (8)

in the magnetlc coordinate system (v,0,r), where ¥(v) and
®(v) are respectively the poloidal and the toroidal flux
functions. We will now show that the first variation of the

functional . X
B? :
L = J dart [T .— _ ] ’ . ) (6)

v
0 . .
defined over the total volume vy of a toroidal plasma

bounded by a perfectly conducting wall, subject to the
constraint,

it

p = plv) , =~ ‘ (M

vanishes if and only if the magnetostatic equations are
satisfied. Since equation (4b) is satisfied identically by
the representation of B given by equation (5), it will
suffice to show that a necessary and sufficient condition
for extrema of L is given by equation (4a).
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The first variation of L is given by

-> > > > >
L. = -J dT[6v{¢VJ-§6 - WVJ-VC - pv} - 66®VJ-VV
V’ . .
0 .
+ scy F-Vvl, : ) (8)
using the boundary'conditions A . A
“ nxV¢¥ = nxVe = 0 , = . (9a)
Y = 8 = 0 ., ) (9b)

on the conducting wall. Since  dL

; 0V dv,66,8z, the
Euler-Lagrange equations are : :

>, > > . - S

i‘(évve -¥,Ve) - p, = 0 , : : {10a)
Fw = o , (10b)
v = o0 -, S (1oc)

Equations (10R) and (10c) are identical, and require that
the current J 1lies on the flux surfaces in equilibrium.
It is now easily seen from equations (5), (10a) and (10b)
that . ) . . X

JxB = ¥p , : (11)
which proves that if L is stationary under arbitrary
variations: subject to the constraints (7) and(9), the
Euler-Lagrange equations satisfy the equations of magneto-
statics. It is obvious.that the argument’ may be reversed
to show that the equation (11), along with the . constraint
(7), implies that 6L =0 for arbitrary variations.

II1I. Variable Inversion

Since L 1is a scalar, it is independent of the coor-
dinate system 'in which it is expressed. We now transform
from the cylindrical coordinate system (R,¢,Z) to the mag-
netic coordinate system (v,8,f) whereupon R(v,8,z), ¢(v,8,z)
and Z(v,6,z) are the new dependent variables in the :
fungtional L. The elements of the metric tensor gjj =

ej*es , where ej = 939r/3x;, for the transformation from
(x,v,2) ,coordinates to (v,8,7) coordinates are
9yy = RS+ R%¢2 + 22 - (1l2a)
2 _ .
- 9yp RVRe + R ¢V¢e + ZVZe = 9gy v (12b)
= 2 =
9y T RR+RP0 0+ zvzC = Gy v (12;).
9gg = Rg + R2¢g + zg , : (124)
= . R2 = ' ‘
9o, = RgR, + R bg0, * 292, =, 9o (12e)
9p = Rz + R2¢Z + zz . : (12f)
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The infinitesimal volume element dt is given by

dt = dxdydz =  RdRd¢dz = Vgl dvdedc , (13)
where '
vl = /Detgij. = R[Rv(%;C T Zé¢g) +'Re(¢czv - ¢Vz§)
. + R (6,24 - 2,091 . (14)
By straightforward manipulations, we get
ed (2m 2T
L E dV de dC£(R’RV’Re’RC'¢V’¢e’d)c,zvlzelzc)
JO JoO Jo - _
)@ (2T 27 [wé Y96 Qé_gcc dg c. ]
= o™ %o Mz e * 7 et * Mty et ~ P

(15)

where v = a 1is the radial label for the conducting wall,
assumed to be fixed. A necessary and sufficient condition
for extrema of L is then given by the Euler-Lagrange
equations,

0, = & :Tﬁ+%%+ajif:—i'% = 0, (16)
v 6 c

where i =1,2,3 and f! =R, £2 = ¢, f°% = 3.

Using now the definition of £ given by equation (15), we
obtain the following equations for variations with respect
to R, ¢, and Z respectively:

- 9 | 3 d
Q = R[‘Ze¢g = 0l gy v (Bpby m 4l ) g (B0 - ¢vze)§E]
2 2 2
) [ﬁz o0 . v Ser , , 4 0z, p] . y2]2 Re R
2
cor |2 B (R |y e B JL Re ¢9¢

0
1)
i
o)
. PanY
=
N
N
2]

2
e Ja9 02 g : 9gq , 5 R ¢e
+ 2 &% 4 - 0, o+ v =5
x [2 Tol * 2 far T tv® 36

R%¢
2 9 4 3
A /n—rr”"q’"[ﬁﬂmr

J

(18)
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and
_ 9 0 2
. 2
Q3 (0gR; = Rgd gy + (O R, =~ Red)) 55 + (&, Rg ~ R 6o) v
y2 g 0% g g z
v “66 v “LC B¢ 2 0 6
A + — =
x [2 ToT * 7 Tol * Yoo TgT * p] + ¥ =3 T
2 7 y/ g
T LRI S [Ji. & . 2 ——Q—] = 0
v C‘/"E"' v Vv 36 ‘/"E"-k K4 3 |
- (19)

It is easy to identify equations (17), (18) and (19) as
the covariant components of equation (4a) in the coordinate
system (R,9¢,2). This is best‘done by writing equation (4a)

in the form 2 .
B > . :
.ﬁ(p + 37) -BVB =0 , | (20)

and taking its dot product with §R, R3¢ and Vz
respectively. We get

B2 B2 »
v’R-ﬁ(p + 7) BV, R = 0 , (2
: 2
R§¢-§(p + %T) ﬁ(RB ) = 0 , (22)
> 2 > -
%z-v(p + %T) - ﬁ-vsz = 0 , ' (23)
where .
By . = B.VR (24)
B¢‘ = RB-V¢ (25)
and
B, = B:-Vz . - ‘ (26)
If we now use the (operator) equation ,
> > _ 1 -9 9 S -

and the identity

3(v,8,8) 3(R,$,2) _ :
3(R,$,2) d(v,8,0) -~ L (28)

it is straightforward to show that equations (17), (18)
and (19) are respectively identical to equations (21), (22)
and (23) written in inverse variables.
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IV. Choice for the Toroidal Angle

For many cases of interest, a convenient choice for the
toroidal angle is :

We may.not then vary ¢ in computing &L. For the two
independent variations &R and &Z, the Euler-Lagrange
equations are obtained by formally substituting

q)V = 0 I3 ¢e = 0 .r ¢C = 1, (30)
in equations (17) and (19). It may be shown that the
remaining equation (18) can be obtained by linear combination
of equations (17) and (19). By straightforward algebraic
manipulations, we now cast equations (17) and (19) in the form

RZ v 9 (geeWV + geCQV) - jL_(EXQXX) + p
Ol mar 13V \ g reT %%\ srar v
" {@_(gccq’v+ g¢;e\yv) % g
ol oV ol Mol 2/TgT v Lt
- ‘yv 3 g - RZ 9 Q_V 3 Ieg + ¥ K oz
Tal ov 8¢ vv | 2 36 Iiqll v 36 T4l
i |
5 FRg 5 - Rg .| 8 R R | _
*¥oo |2 t e ——| + 02| 5 - = 0,
Vgl 1l gl Mgl
(31)
and
an | v i(%e‘yv . gecq’v) } i(%’e\yv)} v p
ol sremr 3V \ srem AT 30\ rer v
.\ o, {i(gCCQV +g§e‘i’v) _ o i—g;; _ Y, ig
® g g
- v 3 o 8z
RR, 0, {2 36 gl * ¥v 36 Tgll
Z Z Z
? 5 ‘e 2 3 g
—y o | L — ¢ = T | - g2 2 = 0 . (32)
v'v | 98 /"En- 9T g Vv 3g /m
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Dividing equation (31) by RZg, equation (32) by RRg,.
and subtracting the resultant equations from one another
we get

1 s Yzt s - J¢e 1 3 96 5 9o
o 38 "3 (|t W | T 198 Ty T 3T e
/gl el Vgl L ATeT /el dEL

I
o
.

—
w
w

~—

Equation (33)'may be identified to be the condition
Fohv = V(B x Vv) =

o ¥+ [|Vv|2Ve - Vv(Vv-Verl - v ¥-[|¥v|?Tz, - ?v(Vv V)l = o0,

- (34)
derived earlier as an Euler—Lagrange equation [(10b) or (1l0c)]
from the variational prlnc1ple. ’

Once equations (31) and (32) are given, equation (34)
is not an independent equation. However, if we take equation
(34) as given, both of the equations (31) and (32) become

¥

v |8 (geewv .\ g6§®v> 3 (9vewv) o

ToT oV ST Mol ) Yl v

L {Ji_(gcc¢v .\ gcewv)' .3 (EEQE!)} - o, (35)
ST oV gl o 3z /gl ,

. . > > > .- . R .
which is J X B = vav in inverse variables..

V. Euler?Lagrange Equations for Fourier Amplitudes of the
Inverse Mapping

Exploiting the periodicity of R(v,0,z) ‘and 2Z(v,8,z)
in ©6 and ¢ , we expand them in Fourier series.

R(v,6,z) = }E: [Rm m (v) cos(mle - mzc)
1™ _
+ Rnl'nZ(V) sin(nle - nzg)] (36)
Z(v,8,z) = :E: [Zpl D (v) coé(ple = Pyk)
) .
+ qu’qQ(V) Sin(qu = qzC)] e (37)

where, unless stated otherwise, the sums extend from -«
to +« over all integers m,, m,, etc. The first variation
of L becomes



We may now treat O

a 27 27 ‘
- dv| ase dc[ §R
Z 0 Jo 0 | MyrMy
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(v) cos(mle - ng)

(v) sin(nle — n2C); Q

ni,n2
f - 5.
+ '6291(92(V) cos(pl6 pzc)
. . R |
+ dqu,qz(v) 51n(q18 - qzc)‘ Q3] . (38)

le,m2 4 éRnlan ’ Gzplrpz » and ququZ

as independent variations to obtain an Euler-Lagrange equation

for each Fourier amplitude.

~ equations,

These ordinary differential
which constitute an infinite set and determine

stationary values of L , are

Kcos(my8 - myz)Q)>> = 0, my,Mmue (==, +=) (39)

<<sin(ny6 - nyg),>> = 0, np,nne(-=,+x) (40)

<<cos(py0 - P,0)0>> = 0, Py.pEl-m,4=) ,  (41)

<<sin(g0 = q,2)0;>> = 0, qy,qye (==,+°) ., (42)

where << >> 1is a doublé—aﬁeraging operatof defined'by
wass = 1 [Ty z'ndz;A.(v.,S,g) . (43)

Equations {39)

(2m)y2 Jo 0

through (42) are the three-dimensional

generalization of the variational moment equations derived
by Lao, Hirshman and Wieland for the Grad-Shafranov equation

(1).

For numerical computations, we truncate this infinite

set by retaining only a few terms in the infinite expansions

(36) and (37).

We will now illustrate the power of this

method by applying it to axisymmetric toroidal configurations.

VI.

Axisymmetric Toroidal Equilibrium

For axisymmetric equilibria, 3/3r = 0 equations (31)
and (32) reduce to . :
GR =
¥ LYo N . .
re | —v_ [ (Fee’v) _ 5 (Fve'v)l, v [ (Tl
78 v 36 ; v ‘
/Tall 1EL /Tall /gl /gl /-
q)Z @2- g (DZR
v 3 v 2 g% v
+ - — —-—— _ - ———— =
Py 2lg oV gcg] 2 sz 36 g 5 0



and
G, = .
[ (55) -5 (530 a5  (52)

Mgl Vgl gl YTgll /Tall .

2 2

*Pv‘fl%l':_vgcc]"%vmv;_e%ﬁ'= 0 . (45)

Equation (23) yields the condition
a‘“’—eﬁ = 0 , . (46)

LQ

which is not an 1ndependent equatlon once equatlons (44)

and (45) are given, but may be incorporated in the (axi-

symmetric) variational form at the outset by defining the
toroidal field function

I
F(v) = —= ¢v-. - (47)
Rl ' 3
If we do so, the two Euler-Lagrange equations, (44) and (45)
become each identical to

_ 1 |3 (9ee’y 3 (Ive'y FFy . _
G = _— W - — - w - . + 2 + p\y = 0 .
lgll VIIg” V“g" R (48) s

which is the Grad-Shafranov equation in inverse variables,

derived first by Greene, Johnson and Weimar, ‘and used )
extensively by Lao, Hirshman and Wieland. We propose, : >
however, to work with equations (44) and (45) because

equation  (34) is not generally reducible to a form as 51mple

as equation (46) [ which, in turn, suggests the definition

of the new dependent variable F(v)] for three-dimensional

equilibria, and it is therefore best to work with a set of

equations easily amenable to further generallzatlon.

1l

In the study of ax1symmetr1c equilibria, it is often
customary to specify F(v) and p(v). Alternatively, as
is done in the study of flux conserving equilibria, one may
specify g{v) and pl(v), where qgq(v) 1is the g-profile,
defined by the equation

@V - q(v)‘{/v = 0 . (49)
For axisymmetric equlllbrla with up-down symmetry, we

must have
R(v,8)

Z{v,H0)

R(Vl_e) ’ ’ (50a)
‘Z(Vl—e) ’ (SOb)
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The approprlate Fourler expansions - for ‘R(v,8) and 2Z(v,8)
are @

R{v,8) =_,:E:Rm(v) cos m6 , (51) -
m=0 ‘

z(v,8) = ZZ (v) sin p8 , | (52)
p=1 P

and the Euler-Lagrange equations for the Fourier amplitudes
are

<cos moGp> 0 me(0,...,o) , (53)
<.§in.peGZ> — pe(l, ..., o) , ©(54)

where <> is now defined to be

1 2m
<A> = 5 dea (v, o) . © (55)
T o

VIT. Choice of the Radial Flux Surface Label and
Boundary Conditions

The radial flux surface label v 1is, as yet, unspecified.
Any one of the Fourier amplitudes may be used for labelling
flux surfaces. However, we may not then vary the chosen
amplitude while calculating the first variation of L.
Instead, the variation of L with respect to ¥ , with- ¢(¥)
fixed, provides an independent Euler-Lagrange equation

K - %= . (s6)

which gives

/n—[r V§3(99V+9”)+ .
Colastetas e
® (g __& :
L {;V( rzb | Jeetv > 0 . (57)
/T AR Vﬂgl :

We 1dent1fy at once equation (57) as the surface- -averaged
form . of equation (35). 1In the special case of axisymmetry,
equation (57) becomes :

3 gee“’v) 3 (gggq’v) .
Yo av tl——} + ¢, =% + /gl p = 6 = 0.
< v ( asr) VAV e v (58)
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We have found it convenient to choose -R; as the
flux surface label v for the study of axisymmetric
equilibria. The boundary conditions on the Fourier ampli- »
tudes for this choice of the flux surface label have been '
obtained by Lao, Hirshman and Wieland. By performing

expansions near the magnetic axis v=0 , they obtain . ,
R V(0) = 0 N m = 0 , . (59a)
Rm(o) = 0 , _ m = 2,3,..., (59b)
z (0) = o'.(- p = 1, 2,.... . (59¢)

The shape of the outer boundary at v=a 1is specified as

an input for this method and provides us with the additional
boundary conditions

Rm(a)

t

Rma m = 0,2,3,..., (60a)

Zpa P
We thus have two boundary conditions for each Fourier
amplitude obeying the second-order ordinary differential
equations (53) and (54). For the poloidal flux functlon
¥ , the two boundary conditions are

2 (a) 1,2,3,... . (60b)

b 4 (0) = 0 , : (61a)
v
and : , . S
v(a) =¥, . D (61b) . 4 .
For the toroidal flux functlon ® , we require that
®(0) = 0o, - a C (62)

and solve the first order differential equation (47) [or
equation (49)} for ¢ if F(v) [or gq(v)] is specified.

VIII. Comparison with Analytic Solovév Equilibria

To solve the two-point boundary-value system of equa-
tions referred to in the last section, we use. the Method
of Collocation at Gaussian points due to DeBoor and Swartz.®
Details will be given elsewhere. We compare the numerical
results from the axisymmetric version of the three-dimensional
algorithm described earlier, with analytic Solovév equilibria’
which are exact solutions of the Grad-Shafranov egquation (1).
It may be shown by direct substltutlon that equation (1) has
the solution

- p
- 2 “0 2 _ g2 »
Y(R,2) = FAe2z2% + 2 (R® - 1) (63)
lf 2 292 2

F? = 4F0£0(Wa -z, (64)
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and P o= pol¥y-¥) (65)
where F_, . is a constant. We note that Y = 0 at the
magnetic axis R =44, 2 = 0.

‘We now consider a model equilibrium for which pg = .125,

Fgp = 0.25 and % = 4, a case also studied in Reference 8.

In order to represent reasonably accurately the outermost

flux surface for the stated parameters, it is found necessary-
to include three Fourier coefficients each for R and Z.

In other words, the parametric equations for the out flux
surface are taken to be

R = ROai— a cosf + R2a cos 260 + R3a cos 36 ' . (66a)
and A . ,
Z = Zla sind + Z2a sin 20 + Z3a sin 36 . ' (66b)

The coefficients Rgas, R2a, Z1a, Z2a, and 233 are determined
by a least-squares. fit to the equation for the outermost flux
surface, ' ' ’

070 :
where we have assumed VY, 1. In Figure 2, we compare the
analytical and numerically determined flux surface contours
for this particular test casé. It is worth noting that '
remarkable accuracy is achieved by solving the variational’
moment equations at only eight collocation points within
the radial interval €(0,1). '

p 2
1 = F20222 4 % (RZ - 22)" (67)

In Figure 3, we have plotted the Fourier amplitudes
as a function of v. 1In the graph, each of the Fourier
amplitudes is normalized to its maximum magnitude, which is
displayed on the top. We note that for axisymmetric equi-
libria of the kind considered here, the Fourier amplitudes
decrease in magnitude rapidly. This accounts for the
accuracy obtainable in the variational method by retaining
only a few Fourier amplitudes.

IX. Concluding Remarks

The- variational method described in this paper may be
used for the study of three-dimensional magnetostatic
equilibria. In this paper, we have presented numerical
results for axisymmetric equilibria in order to establish
the validity of the method and to make contact with existing
numerical codes. The computation of three-dimensional
equilibria will be the subject of a future publication.

The rigorous validity of the method is predicated on
the existence of a flux surface quantity v such that
B+Vv = 0. The existence of a well-defined symmetry direction
is a sufficient condition for the existence of such flux
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surfaces. In that case, as we have seen for the axisymme-
tric equilibrium considered here, the Fourier series for

the inverse variables R and Z converge rapidly. However,
even in the absence of a well-defined symmetry direction,

as may indeed be the case for toroidal stellarators, the
present algorithm may be expected to yield "asymptotic
equilibria”" for which the Fourier series is asymptotic,
provided the equilibria are not characterized by the
presence of large magnetic islands at resonant surfaces
inside the plasma. :

\3
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Figure Captions

Fig. 1 - ‘Two coordinate systems; the cylindrical coordinate

system (R, ¢,2) and the magnetic coordinate system-
(v,8,0). ‘ ' : 4
Fig. 2 Comparison of exact (indicated by dots) and

numerically determined (indicated by solid lines)
flux surfaces for a Solovév equilibrium.

Fig. 3  Radial plots of the Fourier amplitudes for the
equilibrium shown in Figure 2 (Key: ul = Ry,
u2 £ 21, u3 2Ry, u4 = Z,5, udb = Rz, U6 = Z3).
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A REVIEW OF TIME-DEPENDENT,
THREE-DIMENSIONAL RESISTIVE
MAGNETOHYDRODYNAMIC CALCULATIONS*

John Killeen

National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory
Livermore, California 94550

ABSTRACT
" The development of thrée—dimensional, initial-value codes for the
solution of MHD equations has evolved from a few exploratory studies in
the 1970's to several production type codes, which at the present time
are making important contributions to the understanding of resistive
instabilifieS»in toroidal plasmas. This evolution is examined from
several points of yiew. It is useful to consider the following optiéns

for initial-value MHD code development:

* primitive MHD equa;ions, feduced MHD equations
"¢ compressible, incompressible ) v
. * ideal MHD, dissipative MHD
/ + one, two, three dimensions
¢ linear, nonlinear .
* Eulerian, Lagrangian, ALE, dynamical grid
* finite differences, finite elements, expansions

+ explicit difference equations, implicit difference equations,

The codes considered in this review will be' categorized according to
the abqvé options. In addition thé applications of the codes will be
discussed, as these usually explain the choice of options. It is important
to note that all of the models and techniques listed above have been used

and are appropriate for certain types of problems,

Primitive MHD Equations

The numerical study of linear MHD stability has followed two paths.
In the first, the linearized MHD equations (either resistive or ideal) are
treated as an initial value problem. [1-9] The equilibrium state of the
system is specified and is given a perturbation. The MHD equations are
advanced forward in time to trace the evolution of the plasma. The fastest
_ growing instability eventually dominates over all other motions. The second

approach which has been used very successfully is to utilize the energy

*Work performed under the auspices of the U,S.D.0.E. by Lawrence Livermore
National Laboratory under contract W—7405 ENG~48.
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principle [10,11] to-gain information on the full spectrum of ideal MHD
instabilities. '

After the linear modes have been determined, the resultant eigen-
modes may be used to start a nonlinear calculation which can then follow
their growth to some final state. These nonlinear calculations have
all been with initial-value codes in two and three space dimensions.

One of the earliest 3D resistive MHD codes was TRINITY developed by
Roberts and Boris [12]. It was an Eulerian code using an explicit leap-
frog difference scheme with the resistive diffusion terms employing the
DuFort and Frankel algorithm. Similar 3D codes subsequently developed
were those of Wooten et al (ideal) [13], Cochran et al [14], and Pritchett
et al (ideal) [15]. '

Sykes and Wesson have also developed a 3D Eulerian code which includes
a tensor resistivity and thermal conductivity [16-18]. Their code employs
a Lax-Wendroff scheme and the diffusion terms are also treated by an
explicit method, Ogino had developed a similar code at Nagoya. [19]

All of the above codes must satisfy a Courant time-step condition.
Generally this is much smaller than one imposed by the time scale of the
physical instability being studied, To avoid this limitation Finan [20,21]
developed a 3D Eulerian code. which uses the Douglas-Gunn algorithm for
Aliernating—Di;ection Implicit temporal advancement. The eight equétions
are solved simultaneously to avoid syncronization errors. The resulting .
finite difference equations are a coupled system of nonlinear algebraic
equations which are solved by the Newton-Raphson iteration technique.

Time steps 10-50 times the Courant condition are used in long time
simulations. The Finan code; IMP, generalizes to three dimensions techniques
that have proved successful in two dimensional resistive MHD calcula-

tions . [22-25]

All of the above 3D nonlinear codes use finite differences in all
three directions., In order to obtain the required spatial resolution for
high S resistive instabilities, and simultaneously to decrease the computer
time for the simulation of these instabilities, recent 3D MHD code develop-
ments have used expansions in one or two directions with finite. differences
in the remaining direction(s).

Hender [26] has developed a 3D Eulerian code to study resistive Nt

modes in reversed field pinches. It assumes cylindrical geometry and starts
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with an equilibrium which is a function of r only. The linear codes
RIPPLE 4a [2,3] or RESTAB [4] are used to calculate unstable modes which
are parémetrized by m and kzo The 3D nonlinear code uses finite differ-
ences in the r direction and a Fourier expansion in 6 and z, The finite
difference method is a mixture of implicit and explicit algorithms.

Mirin [27] has developed a 3D Eulerian code to study the nonlinear
growth of MHD instabilities in axisymmetric toroidal equilibria which
are functions of r and z. The linear code RIPPLE VI [7] calculates
unstable modes, periodic in ¢, which can be used as initial values for
the 3D nonlinear code. The nonlinear code uses an explicit Lax-Wendroff
method in T and z with a Fourief expansion in ¢,

Turner and Wesson are developing a similar code [28] for 3D MHD
simulations of JET. Wesson will discuss this code at the workshop.

Another/approach for achieving better accuracy is the method of
finite-elements, Kawakami,at this workshop, will describe a finite element

ALE code for solving 3D resistive MHD equations,

Reduced MHD Equations

In order to study resistive instabilities in Tokamaks a set of reduced
equations has been derived [29] aﬁd solved in two diﬁénsions by several
groups. Strauss™[30,31] has extended the reduced model of White el al [29]
to three dimensions. He uses an Eulerian mesh with a leap-frog time
advancement algorithm. The diffusion terms are differenced via the DuFort~
Frankel method. ‘

The Oak Ridge code RS3 [32] solves reduced equations using differences
in all three diréctions with a mixed explicit—implicit scheme. This code
has been superceded by RSF [33] which uses finite differences in r and
expansions in the two periodic directions, and runs considerably faster
for the same accuracy. Applications of this code to Tokamaks has been
reported in a series of papers. [34~41]

Another 3D reduced MHD code which makes use of an expansion in the
two periodic directions is that of Edery et al. [42,43]

A 3D reduced MHD code which makes use of finite differences in all

three directions is that of Schmalz. [44]

Summary t
A number of codes which solve either the primitive or reduced equations

of resistive magnetohydrodynamics in three dimensions, as initial-value

problems, have been examined. Because of the nature of resistive
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instabilities e.g., tearing and reconnection, the Fulerian representation
is generally used. Recent developments favor the use of expansions

in one or two directions because of increased speed and accuracy, as

long as the number of modes considered is not.too large, The codes
which employ expansions are also more compatible with the linear

codes [1-9] which solve each mode separately; These modes can be com-

bined to start the nonlinear problems.
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Tokamak Current Disruptions

due to Impurity Radiation Cooling

Tsuneo Amano and Katsuhiro Shimizu

Institute of Plasma Physics
Nagoya University
Nagoya 464, Japan

Abstract

Major disruption§ in the JIPP T-II and "R" tokamak are investi-
gated. The plasma and impurity transport équations are solved and the
resulting current profiles are used to estimate the growth of island
width of m/n¥2/1 and 2/3 tearing modes. Nonlinear delta prime analysis
code and a single-helicity 2D tearing instability code are employed to
obtain the saturated island width. A 3-D multi-helicity tearing code
is now under development and its possible use is discussed.
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§1. Introduction

The major disruption 1imits plasma density and current in tokamak
experiments. The thoeretical and computational approaches suggest two
plausible causes of the disruptions. One is the contact of m/n=2/1
(m : poloidal mode number, n : toroidal mode number) island with a
1imiter.]) The other is.the overlapping of m/n=2/1 island with m/n=3/2
island.?) R

In near future larger tokamaks with high plasma current, the
effect of the major disruption will be very serious, since the abrupt
decay of the plasma current will cause eddy currents to flow in the
surrounding conductors inducing formidable mechanical loads.

At IPPJ, we are now planning to construct a new tokamak called "R
tokamak".3) Here "R" stands for the “reacting” D-T plasma. The
dimensions and physical parameters are listed in Table I. In this
device, neutral beam power of 15 MW will be injected to heat a plasma
up to 10 keV. Axisymmetric bumper limiters surround the plasma to
absorb the major plasma heat load on the order of 15 MW. During a
Tong pulse operation of one second, it is possible that the sputtered
impurities from the limiters will enter the plasma and cool the
periphery region thereby causing a current distribution vulnerable to
the major disruption. S o _

In order to investigate possible implications of the major
disruption on the "R". tokamak, we attempt to predict the onset of the
disruption by utilizing a 1-D tokamak plasma and impurity transport
code couplied with the non-linear A' analysis. To check the validity
of A' analysis, we use. a 2D single helicity tearing code to calculate .
saturated island widths. We are now also developing a 3-D tearing
code similar to the Oak Ridge code.*)
accurate onset time of the disruption as well as the time scale of

This code will give a more

the current decay. _ : , .
In 8§82, we will consider the major disruptions observed in JIPP
T-11 tokamak.>?®)

been well understood as a overlapping process of 2/1 and 3/2 islands.
5,6,7) )

The cause of the disruption in this experiment has

We use this experiment as a bench mark test to our aha]ysis'of
the major disruption. -We solve the oxygen impurity transport equations
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and include the radiation cooiing effect in the plasma transport equa-
tions. The current profiles thus obtained can well explain the JIPP T-
1T disruptions.

In §3, we use the same approach for the analysis of the "R" tokamak.
Here we inject 15 MW neutral beams and consider the carbon and titanium
impurities sputtered from the Timiters. The resulting current profiles
are used to estimate the stability against the tearing modes.

§4 is devoted to discussion.

§2. Current Disruptions in JIPP T-II Tokamak

The JIPP T-1I is a circular cross-section tokamak whose major and
minor radii are 91 cm and 15 cm, respecthe]y. In an experiment, three
typical discharges with different conditions of gas puffing and current
rise are compared as shown in Fig. 1.5) The discharge of case I is
produced by applying a strong gas puffing from 80 ms without a second
current-rise to the medium q(a) (J4~5) plasma. In case II, a second
current-rise is applied at 90 ms to the relatively Tow density dis-
charge. In case III, both strong gas puffing and second current-rise
are'used, where the start time of the current-rise is delayed by 10 ms
from that of the gas puffing. In case I, the m/n=2/1 mode with 3/2
mode component rapidly grows up just before the major disruption.

Toi has termed this disruption as a "soft" disruption, since the plasma
current does not decay appreciably. In case II, the m/n=4/1, 3/1 and
2/1 modes successively observed in the second rising phase of the
plasma current and the relative amplitude of 2/1 mode fluctuations
attaines 0.8%. In case III, the m/n=4/1 and 3/1 modes are complietely
suppressed and the relative amplitude of m/n=1/2 mode is reduced less
than 0.1%. To explain these results by tearing instability theory,
Toi et al. determined the current profiles through magnetic diffusion
equation by adjusting the Zeff(r) profile iteratively so that the
calculated loop voltage and Tocation of q(r)=1 surface should be the
best-fit to the experimentaly observed ones. He used the current
profiles thus obtained as inputs to a non-linear A' code to calculate
island width and po]oidal'field fluctuations. As a result he has
obtained a good correlation between the experiments and the theory.
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Recently, Toi has analyzed the other high density discharges case IV to
6)

VI.

qa=2.3 and 2.2, respectively.. These two cases are shown in Figs. (2)

In these, cases V and VI are characterized by Tow q values with

and (3). In the experiment, these high density discharges occasionaly
lead to the "hard" major disruption (the right hand side of Figs. (2)
and {3)) in which the currents are terminated abruptly. From the A’
analysis, Toi. has suggested that the almost simultaneous interaction
of the 2/1 island with 3/2 one and the limiter plays an essential role
for triggering the hard major disruption in these discharges.

Hicks et al. analyzed the case I, II and III of the JIPP T-II
experiment by use of their nonlinear 3D tearing code and obtained a
good agreement between the observations and thercomputations.7)

We will take another approach. We solve the following transport
equations for the JIPP T-II parameters :

?]Te=-}g—rrr,+s; o - e

% %f'neTe ) ; %‘%;‘(TQE) * B, - Eg?-;i-(Te '-Ti).' Wy - NR-(é'Z)
%g—t Ty = - ¥ o (rgy) +3ml?;:_ (Te '.}1‘) - Wy (2.3)
2_23; Czé o | (2.4)

Ez = n‘jz N E%'%'%F (rBe) _ (2.5)
r'=-D ;;9-- ng E;i Lyg .' : . o (2-5)

Q, = ;lXe g;g__ %_DTe-;;S —‘neTe E;i—L24 : ' (2.7)
Q1=-X.%-%DT1 2% (2.8)

where wR, wI,»wcx are radiation, jonization and charge exchahge losses,
respectively. Terms with L]4, L24 represent the Ware pinch effects.
The other variables have their usual meanings. For the anomalous

coefficients D and Xe’ we use



108

1

- 16 . . .
D=4.7 x10 ne“a (?.9)
Xe = 4,0 x neD
 MHD _ ,
Xe = 0.12 neDB (for q(r)<1),

which have been obtained to fit the density and temperature evolution
of the case III. '

The impurity transport equations (or diffusion-rate egs.) are
given by ‘ ’

S| —
W |
=

an,
k _ .
3 - T roar T TelMenSicr T Sk Y M T M)
(2.10)
where N and Pk are the number density and radial diffusion flux of the
k-th jon, and Sk and o are the ionization and recombination rate

coefficients, respective]y.s) For T\ > We assume the form

_ N A
I =T *+ T, (2.11)
where FkN is the neoclassical diffusion flux given by Hirshmang) and
FkA is an empirical diffusion flux,
dn
A _ k
r = -0y o (2.12)

For DA’ we take the same form as Eq. (2.9). From ne» We can calculate
the ionization and line radjation losses WI and NR in Eq. (2.2).

The stability of a cylindrical tokamak plasma against tearing
modes is examined by solving the following equation for the poloidal

flux function w:10)

dj
1d dyy _ (m® . m z
F'_F'(r dr) - (F7'+ rim - nq) dr ) v (2.13)

When a singular surface rere exists in the plasma, the linear stability
against the tearing mode is discussed in terms of A'(o) defined by, .
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. . a
A'(0) = Tim (¥
€50 8r|rs+e Irs—e

)/ (r ) , (2.14)

Now the concept of the nonlinear A'(W) is introduced as

AT = G -y ). (2.15)
r + ' Y - = . . .
s 2 s 2 '
The saturated width w is estimated from A' (ws)-o, since A' (W) is
proport1ona; to the potent1a1 energy of the 1nstab111ty for the tear1ng
11,12

modes.
The current density dfstribution jZ'Which is obtained by solving
Eqs. (2.1)n(2.8) numerically is substituted in Eqs. (2.13) and (2.15)
to evaluate the saturated island width ws. Figure (4) shows the
computed time evolution of the island width of m/n=2/1 and m/n=3/2
tearing modes for cases I, II and III of the JIPP T-II experiment.
In case I, a strong gas puffing cools the periphery of the plasma
together with enhanced oxygen radiations The current channel shrinks
producing a sharp current density grad1ent and the 2/1 and 3/2 s1ngu1ar
surfaces move outward. From 20 msec after the start of the strong gas’
puffing, both 2/1 and 2/3 1s]ands begin to grow and f1na11y lead to a
soft major d1srupt1on by over]app1ng In case II, a rapid second
current-rise moves the g=2 surface outward and enhance the current
density grad1ent there at the. same time. Therefore, the m=2 island is
shifted outward while growing and presumably touches the limiter. In
case I1I, the occurrence of the d1srupt1on has been avoided by an
appropriate combination of the strong gas puff1ng and the second
current-rise. In this case, g=2 surface comes to near r=12 cm close
to the limiter at r=15 cm. The current density gradient near r=12 cm
which is responsible for the.2/1 tearing mode instability is deter-
mined from a delicate balance between heating and coo]ind due to the
increased current and gas puffing. Computationaly, it is difficult
to reproduce'such a delicate balance and the calculated Ee fluctuation
Tevel is much larger than the measured one. It should be noted that
the electron temperature in the region'r=12m15 cm has not been measured.
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The A' analysis by use of experimental measurement of Te profile needed
a trial and error guess for the Te profile in this region.

In Figs. (5), (6) are shown time evolutions of island width
computed by use of a 2-D single helicity code for case I and case II.
The computed island widths agree well with those obtained from Eq.
(2.15).

To understand Murakami scaling 1aw]3)

for the density limit of
tokamaks in terms of the edge cooling of the plasma, we tried the
following simulation for the JIPP T-1I parameters. We fix qa=3.5 and
Zoee=3.0 (oxygen) and change B> Ip and the electron density. The
edge region is cooled mainly by the oxygen impurity radiation in the
simulation. The major disruption caused by the overlapping of 2/1 and
3/2 islands is assumed to be responsible for the density limit. In
Fig. (7) is shown the density 1imit thus obtained in compérison with
the original Murakami scaling law. '

§3. Tearing Mode Analysis for "R" Tokamak

To simulate the neutral beam heating of the "R" tokamak, we solve
the equations given in §2, supplemented with the neutral beam and o
heating Fokker Planck codes. We also include a scrape-off region in
the shadow of the limiters. In this region, paktic]es mbve along the
magnetic field lines and hit the Timiters. We consider bumper limiters
made of TiC tiles. The sputtering processes_taken into account are
D»TiC, T»TiC, Ti»TiC. We assume a fraction o of sputtered atoms‘enter ,
the plasma aéineutrals. In simulations, the neutral beam heating is )
switched on at t=0.1 sec and switched off at t=1 second. We used '
Intror scaling for X_ and D, : X;=5x10'7/n_, D,=1.25 10”'/he. a is
assumed 0.4. In Fig. (8) is shown a time history of the.central
electron density and temperature and ion temperature. After. the onset
of neutral beam injection, the impurity radiation increases almost
linearly with time from 1 MW at t=0.1 sec and 7 MW at t=] sec. The
radiation mainly consists of line radiations from titanium impurity_and
is concentrated in the periphery of the plasma. In Fig. (9), we plot
the calculated island widths of 2/1 and 3/2 modes from Eq. (2.15).
Safety factor q at the plasma surface is 2.7. The 3/2 island gradually
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grows with time approaching the 2/1 island around t=0.3 sec. The two
islands do not overlap, however, they come very close to each other.
It is surmised that the presence of 2/1 island actually enhances the
growth of 3/2 mode through a modification of the current distribution
and leads to the overlapping of the islands. In order to examine such
a surmise, a 3-D multi-helicity code simulation is being prepared.

§4, Discussion

In §2, we have shown that the nonlinear A' analysis combined with
plasma and impurity transport calculations is useful to explain the
major disruption observed in the JIPP T-II.

In §3, an intense neutral beam heating of "R" tokamak has been
simulated. The edge cooling due to the sputtered impurities has not
led to the major disruption as far as A' analysis is concerned.

Since m/n=2/1 and m/n=3/2 islands have come very close to each other,
however, we need a 3-D tearing code analysis to obtain a definite
conclusion.

In "R" tokamak, we are considering a possibility to wind helical
coils to form a kind of helical divertor. There is a danger, however,
that such helical perturbations will induce a disruption by forming
resonant islands inside the plasma. This problem also awaits the 3-D
tearing analysis. '

Table I
R Tokamak Parameters

Major radius R 2.1 m

Minor radius a 0.6 m

Plasma current Ip 1.51.8 MA
Maximum toroidal field BT 5 Tesla
Injected beam power wB 15 MW
Injected beam energy EB 120 keV
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Major Disruption Process in Tokamak

T. Takeda, G. Kurita, M. Azumi, T. Tuda,
T. Takizuka, T. Tsunematsu, S. Tokuda, K. Itoh

Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken, Japan.

The major disruption in a cylindrical tokamak is investigated by using
the multi-helicity code, and the destabilization of the 3/2 mode by the mode
coupling with the 2/1 mode is confirmed. The evolution of the magnetic field
topology caused by the méjor disruption is studied in detail. The effect of
the internal disruption on the 2/1 magnetic island width is also studied. The
2/1 magnetic island is not enhanced by the'fléttening of the q-profile due to

the internal disruption.



117

§1 Introduction

The major disruption of a tokamak is characterized by répid release
of magnetic and plasma energies within an order of us followed by reduc-
tion of the plasma current with the decay time of several milliseconds,
and it is considered to be the main cause of limitation of the plasma
current and density. The disruption may bring about a more serious damage
to the device as the device becomes larger. It is, therefore, urgently
required to clarify the ﬁechanism of the major disruption and to devise
methods to control or suppress it.

The m=2 teafing mode plays an important role in the major disruptionm.
The growth of the m=2 magnetic field perturbation is observed as a precur-
sor of the disruption. When the safty factor at plasma boundary, 9> is
less than 2, the major disruption seems to be suppressed. Waddell et al.
proposed that a nonlinear interaction between m/n=2/1 and m/n=3/2 tearing
modes causes the major disruption1~4). The results of their simulation
seem to well recover the experimental data. They presented the scaling
law of the major disruption time on the basis of the WKB theory. The WKB
method, however, fs not.always applicable to the nonlinear stage of the
mode evolution. It is important to establish the theoretical model relia-
ble in this stage. It is also very important to know the mechanism to '
change the current profile which makes the enhancement of the 2/1 islaﬁd |
width. . ' ' ' '

In this papér we first recover the results of the.ORNL group. We
find a little disagreement with their results. We also investigate the
initiation process of the 2/1 mode assuming that the current density
profile is flattened by the 1/1 mode. The 2/1 island obtained in the
simulation is compared with those calculated by the A' code.

In :the next section the basic equations of the present:analysis are
described. In §3, the results of simulation are preSented; Conclusion

and discussion are given in §4.
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§2 Basic'-Equations

The reduced set of the resistive magnetohydrodynamic equations of a low

B toroidal plasma in the cylindrical coodinate system (R, ¢,z ) is given as

3—‘*’+3-3,W=Boa—¢+nJ-Ew(c) ‘ (1)
t L '14
aU - -> _ -> -> - L 2 l 2-> .-b -> a_J
gc YV VU = VE VXV, (ge)T + () VL V¥ XV, + Bog (2)
9P > > )
% . =
s +v-V,P, =0 | (3)
-+ > -
B =By (Vg + VI xV,¥) (4)
T = (22«0 (5)
Ro -
> 2 3!‘1’
3= (R9V,- 2T (6)
= R
v- (2250 | )
Ro -
p*‘='(Rlo)2Y-P S (8)

where Ry is the major radius, T =Re¢, -V’LE a—aRV'R + aiz-V>z . The quantities
U, Y and ¢ denote the vorticity, poloidal flux and stream function, respec-

tively. The energy integral of this reduced set of equations is given by

d . R\ 2,2 ,2 R 22,2 P
EJdT[(K) | vo | +(R—°) | vy | +Y'—1]

- _Jdr[(%)znf] + MRE (DT, . (9

The first term in the 1l.h.s. represents the kinetic energy, the second one’
the magnetic energy, and the third one the internal energy. The first term

in the r.h.s. is the energy dissipation. The electric field at the wall,

Ey(t), is obtained from eq.(9) by setting the total plasma current Ip comstant.

Now we employ the coordinate system (r, 6, ), in which the magnetic

lines are straight. The radial coordinate r is defined by

r = (RL‘O)Z/? (10)
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where [g is Jacobian.. The variables ¥, J, ¢ and P, are Fourier expanded in

® and 7 directions:

¥(r,8,8) = T ¥ n(r) expi(mb- --7)
. m,n Ro

(11)

where m and n denote the mode numbers in O and T directions, respectively.

The Fourier expanded equations are written.as

follows;

aWm/n' ‘ o By ) . | ‘
T [Y,d ]m/n + R—onq)m/n + NJn/n = Em/n (12)
3Un/n Ry :
—5 = [UQ]/ + [J, ‘{’]m/ nJm/n+[FP] o/n (13)
-OPym/n
o ik N £ 5 5 By (1)
where [ ¥,® Jp/n 1is defined by
[WQQ] = Z - ( ‘y d -—¢® " n - ¢' 1] d " " ) (15)
- m/n m—m +m! T "/n' dr m"/n /n' dr m /n
n-n +n - '
Variables Jm/n and,Um/n take the form;
. d orrd T B
Jlll/rl T peg'eg” [ dr (Gm' dr m"/n) mar ( Car wm"/n
6 d w ~66
- me, ar o'/ mm Gm' ‘ym"/n ] (16)
_ 1 drrd wd ro
Um/n T r mém'+m" [ dr(Hm' dr q)m"/n) n ( Hm' (It)n"/n) '
6 d 1 00
- mHm, ar q)m"/n mm Hm'? "/a ] (17)
Quantities F Gij and H;j are defined by
R .2 .
(Ro Yo o= % Fm(r) exp im6 (18)
r glj = % Gij(r) exp imf (19)
2 ii . . o
r (R;RO) glJ =z H;J (r) exp imb (20)
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In this calculation the equation (14) for pressure is neglected because
the pressure driven mode is not important in a low B plasma. Morever: we
neglect the toroidal effects. Even by this simplification, the essential
mechanism of the major disruption can be described. We assume the resistivity
is constant in time and set it to be .

n(r) = Ew(t=0)/J(r,‘t=O) . : ' (21)
The multi helicity calculation is carried out with up to 29 Fourier
components and 200 equal-spacing radial meshes. The equations are solved by
both the full-explicit and implicit-explicit predictor-corrector time
integration schemes, and a good agreement between both cases is obtained.
The time step for the former scheme, however, is restricted to be much small "

compared with that for the latter scheme.

§3 Computational Resuits

3.1 Nonlinear Destabilization of 3/2 mode

We choose the q-proflle as in Ref 1, q(r)=1.38[1+(z/0. 6) ]1/“ aqd 7
the magnetic Reynolds number S= =2x10% at q=2 surface. Almost the same behavior
'of the plasma as that of the ORNL calculation is recoverd, which is presented
in the following figures (fig.l- 7) Figure 1 (a and b) show ‘the time'
evolutlon of magnetic island w1dth obtained by the single—helic1ty and multi-
helicity calculations, respectively The 51ngle hellcity calculation shows
that the 2/1 and 3/2 modes are both unstable and the widths of the saturated
islands are about 0.4 and 0.1, respective;y. In contrast with the. single-
helicity calculation, the multi—helitity célclulation shows the rapid
destabilization of 3/2 mode after the island of the 2/1 and 3/2 mode.touch
each other at t = 300, due to the nonlinear intefattion between modes with
different helicities. The phase of the 5/3 and 7/4 modes are inverted
several times at fiﬁal stage of the disruption. The evolution of the kinetic
and magnetic energies are shown in Fig.2 (a and b), respectively. Both thé
energies rapidly increase from the island-overlapping time (t = 300).
The time evolution of the growth rate of the magnetic energy is .shown in
Fig.3. The growth rate of the 2/1 mode is slowly decreasing function of time
when the growth rates of the 3/2 and 5/3 modes begin to increase,which means
that the 2/1 mode is in the Rutherford regime even after the time of the
island overlapping. Figure 4.shows the time evolution of the one turn voltage,

V—[ ( E + E )y - Q]/Ip, wbere Ip is total plasma.current, Ek and EM are
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the kinetic and magnetic energies, and Q is the change in the rate of

energy dissipation dué to Joule heating. In this figure, V is hormalized

by nB /uO . The negatlve voltage spike is observed is the figure. The order
of magnitude of the voltage spike is in good agreement with experimental
value. The helical flux contours for several modes with different helicities
at the end of the calculation are'showﬁ in figure'S The magnetic islands

of the hlgher harmonics, such as the 8/5 or 13/7 modes, have also falrly
large amplitude. In Fig.6, 1ntersect10ns of a single magnetic fleld line near
the separatrix of the 2/1 island ar the =0 poloidal plane are plotted.

This figure shows that the stochastic region develdps‘during the interval(t=
300n400) and covers almost the plasma column at the final stage. The
stochasticity can be investigated quantitatively'by calculating the K-S
entropys), which is shown in Fig.7. The evolution of the K-S entropy confirms
the above result. The stochastic magnetic field in the plasma column
enhances the heat loss and causes the rapid cooling of the plasma, which

is observed in the soft X ray signals from the plasma center.

3.2 Effect of the Internal Disruption

Next, we calculate the nonlinear evolution of the 2/1 tearing mode in .
the presence of the 1/1 mode. The purpose of this calculation is to simulate
destabilization of the 2/1 mode by the internal disruption through the
flattening of the gq~profile inside the q=1 surface. The initial q-profile
in this case is q(x)= 0.9[1+(r/0.5)2k]1/% where A= 2+2r , and S= 2X10 at the gq=1
surface. (solid line in Fig.8). In this profile the islands of the 2/1 and 3/2
modes are saturated at relatively narrow width. The saturation width of the
2/1 and 3/2 islands (W 2/l=0.109
and W =0.062 for the

2/lant‘iw3/2) estimated by using a A' code is W
3/2=Q.005 for the initial q-profile, and w2/1=0.204, w3/2

flattened q-profile (dashed line in Fig.8), respectively. There is no island
overlapping between the 2/1 and 3/2 modes for the initial q-profile, while the
island overlapping is expected for the flattened q-profile after the internal
disruption. In order to investigate this possible>enhancement of the 2/1 island
width by the flattening of the current profile due to the internal disruption,
the calculation is started with only the 2/1 mode, and the 1/1 mode is initia-
ted at t=520 aftér the 2/1 island is saturated (Fig.9). The saturation width

of the the 2/1 island at t=520 is W =0.07 which is a little smaller than the

2/1
expected value. With the growth of the 1/1 mode, the 3/2 mode is produced by

the coupling of the 1/1 and 2/1 modes, and the internal disruption occurs at
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t=700. After the internal disruption the q-profile inside of the q=1
surface is flattened and that outside of it is unchanged, (dotted.line in
Fig.8). In spite of the change of the q-profile, however, the isiand
evolution of the 2/1 and 3/2 modes seems unchanged, even a long while
2/1-0 .07 and W3/2-0.014 at t=970.
These values are about 1/3 - 1/4 of those obtained by using thezy

after the internal disruption, i.e., W

code and there is no assurance of island overlapping even if the calcula-
tion continues. There are other possibilities to initiate the major dis-
ruption. In Ref.6, we have shown that the size of the 2/1 island is

strongly enhanced by the internal dlsruptlon due to the toroidal coupling.
This result suggests that the major disruption is induced by the internal

disruption in a toroxdal plasma.

§4 Conclusion and Discussion

'We have studied the nonlinear evolution of tearing modes with differ-
ent helicity in a cylindrical plasma and comfirmed that the major disrup-
tion is caused by the nonlinear destabilization of the 3/2 mode through
the mode coupling with the 2/1 mode. And the evolution of the magnetic
field topology has been precisely investigated. All these results support
the mechanism of the major disruption, proposed by Waddel et .al. The
details of our results, however, are different ffom their results.
Especially, in our simulation, the 2/1 mode is deeply in the Rutherford
regime and jts instantaneous growth rate is not affected even after the .
3/2 mode is nonlinearly destabilized. This behavior of the 2/1 mode
contradicts with the WKB theory. Therfore, the mechanism of the destabi-
lization of the 3/2 mode remains wunsolved

As for the effect of the internal mode on the major disruption, the
flattening of the gq-profile due to the internal disruption did not cause
the enhancement of the 2/1 island width, in spite of the prediction of
the major disruption by the A' calculation. The flattening occurs only
inside of the q=1 surface and the g-profile is not affected near the 2/1
and 3/2 surfaces. Therefore, in order to expect the major disruption by
the internal disruption, we have to take into account other éffects, such

as the toroidicity.
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Figure Captions

Fig.l1 Time evolutions of the m/n‘mode magnetic island width for the case of
(a) singl-helicity calculation and (b) multi-hélicity_calculation. The
widths for both cases are the same before the island-overlapping time (
t=300).

Fig.2 Time evolutions of (a) the kinetic. energy and (b) the magnetic energy
in the case of multi-helicity calculation. Results of the single-helicity
calculation are also shown by dotted lines.

Fig.3 Instantanecus growth rates of the m/n magnetic energy. The growth rates
of the 3/2 and 5/3 modes start to increase at the island-overlapping time
(t=300), while the 2/1 mode remains in the Rutherford regime.

Fig.4 Time evolution of the one-turn voltage at the limiter.

Fig.5 ' Helical flux contours of different helicities at the end of the
calculation, t=440. E

Fig.6 Trajectory of a magnetic field line, starting from a point on the
separatrix of the 2/1 island. The cross-section at the poloidal plane
z=0 is shown. Distinct structure of the 2/1 island is seen at the island-
overlapping time t=300, while the trajectory is almost stochastic at t=
440.

Fig.7 Space distributions of the K-S entropy of a magnetic field line at t=
300, 340, 380 and 420. The K-S entropy S 1s defined by

1 N
S =lim ﬁ'g In 2n

N=o

where n stands for an iteration serial number and Zn is the distance
between two field lines starting from neighbouring positions

Fig.8 Profile of the safety factor q. The solid line denotes the initial q-
profile ( qo=0.9 and qa=3.6). The dotted line is the q-profile changed
by the internal disruption. The model q-profile after the internal
disruption for the A' calculation is shown by the dashed line.

Fig.9 Time evolution of the magnetic island width. The result from t=0 to
t=520 is obtained by the single-helicity calculation of the 2/1 mode.
The 1/1 perturbation is added at t=520, and the evolution is simulated
by the multi-helicity code. The internal disruption, which occurs at t=

690, does not influence the 2/1 mode.
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3-D Nonlinear Resistive Studies of High~B PDX Discharges

W. Park, D. A. Monticello, R. B. White, K. McGuire, and M. Reusch
Plasma Physics laboratory, Princeton University
Princeton, New Jersey 08544 USA

MHD activities of PDX high-B discharges are studied wusing a . 3-D
high-8 resistive code, HIB. The HIB code solves the high—f reduced tokamak

equations finite differenced in r and Fourler decomposed in 6 and 4.

The high-B reduced tokamak equations1 are in (r, 9, ¢) coordinates;

¢ _ Joq = U 2
H—B-t-+vv¢—w+n\7¢ >
2 GP oP
e = Bewy 2A + ?‘ (37 s1nf + oor cose)
dp
w®=°
where v = VuX$ and B = V¢x$ + Boa' Figure 1(a) shows the PDX tokamak -

geometry and Fig. 1(b) shows our computational modeling. Figure 1(b) also
illustrates the position of the plasma-vacuum interface, the placement of
the Mirnov magnetic pick—up loops, and. the rays used for calculating the
soft x-ray signals. The vacuum region 1is modeled by ;using a highly

resistive plasma.

The equilibrium shown in Fig.: 1 has <(a/R)B> = 0.3, 45 = 0.8, Qgyreace
= 3.2, and the q = 1 surface at about 1/3 the plasma radius. Figure 2 shows
the q profile as a function of the square root of the flux, and the pressure
profile as a function of the radius. The abscissa value of 1.0 in Fig. 2(a)
corresponds to the flux surface which intersects the M3 detector. In Fig. 3

the n = 1 linear eigemmode of this equilibrium is showm.

We follow the nonlinear development of this linear eigenmode until the
amplitude of the Mirnov signal reaches the same level as that found in the
experiment. Figure 4 and Fig. 5 show poloidal cross sections of the plasma
at ¢ = 0 and ¢ = n. when AB/B at the loop M3 reaches ~ 0.3% which

corresponds to the maximum experimental loop signal of the dischdrge.

Figure 6 compares the experimental Mirnov signal (a) with the
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computational results at AB/B = 0.15% (b) and at AB/B = 0.3% (c). These
show good comparison in both the signal shape and the relative amplitudes.
The calculated signals of M6, M7, and MR are amplified 7 times for the
plotting. Signals of MA, M7, and MR, which are on the small major radius
side, show fine structure which facilitates a clear comparison between

experiment and theory.

Similarly, Fig. 7 compares the soft x-ray signals between experiment
(a) and theory at two 1instants of time; when AB/B ~ 0.15% (b) and when
AB/B ~ 0.3% (c). Again, ‘both the detailed structures and relative
amplitudes agree very well.- For good comparison, the incorporation of the
nonlinearity of the modes and the vacuum region outside the main plasma were
found to be essential. The realistic value of the resistivity n = 10-7 was

also necessary.

Figure 8(a) shows the Fourier components ¢m in flux coordinates and
Fig. 8(b) shows the magnetic topology 1in the nonlinear state when
AB/B ~ 0.3%. From Fig. 8(b), m > 1 islands inside the plasma are found to
be small. This, together with Fig. 6, then resolves a "puzzling"
exéerimental fact that anomalously large Mirnov signals are detected while m
= 2 islands inferred from the soft x-ray signals appear to he small. " From
the simulations, the m = 2 island is ohserved to grow much slower than the m
= 1 1island for small 7. This 1is consistent with our previous 2-D

calculations.2

This is. further evident in the large current spike at the g
= 1 gurface compared to the small peak at the q¢ = 2 surface Iin Fig. 4 and

Fig. 5, and also in the fact that in Fig. 8(a), ¢1(qv= 1)/¢lmax became

larger than that of the 1linear eigenmode while ¢2(q 2)/¢7max became
smaller. On the other hand, the large Mirnov signals are due to thg fact
that modes whose singular surfaces lie in the  vacuum have significant

amplitudes at the plasma-vacuum interface as shown in Fig. 8(a).

We have also studied low-f cases for comparison. Figure 9 shows a
saturated ohmic state. In this particular case, the m = 1 island saturates
without sawtooth cycle as shown 1in Fig. 9(a). Mirnov signals in this case,
as shown in Fig. 9(d), are AB/B ~ 0.005%, 1/50 times smaller than the
high-f case. This is consistent with the experimental measurements in the

low-f discharges.

One of the most important questions to be answered is how these MHD
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activities influence the confinement characteristics. Preliminary results
show that the Kolmc;gorov entropy calculated from the state shown in Fig.
8(b) 1s 1large enough so t,hét the collisionless diffusion 1is dominant for
about half of the plasma radius. The magnetic diffusion values in this

region are found to be comparable to the anomalous experimental diffusion

rate.

1. H. R. Strauss, Phys. Fluids 20, 1354 (1977).
2. W. Park, Rull. Am. Phys. Soc. 26, 845 (1981) paper 1A4.
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Internal Disruption in High Bp Tokamak

T. Takeda, M. Azumi, S. Tokuda, G. Kurita,
T. Tsunematsu, T. Takizuka, T. Tuda, K. Itoh, Y. Tanaka*

Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken, Japan

The m=1 MHD activity is investigated from the veiwpdint of the sup-
pression of the intermal disruption and the appearance of large amplitude
oscillations observed in the recent high B tokamak experiment. The stabi-
lization of the m=1 internal kink mode by the toroidal effect is confirmed
by using the revised version of ERATO. The nonlinear evolution of the
resistive internal kink mode ié investigated and the reasonable saturation
of the m=1 magnetic island is obtained by using the new reduced set of
equations. The effect of the toroidal coupling between the m=1 and m=2
tearing modes is also stﬁdied. The m=2 mode is strongly affected, but

the saturation of the m=1 magnetic island is not realized.

* On leave from Fujitsu Ltd.

w
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§1 Introduction

The internal disruption was first observed in the ST tokamak as sawtooth
oscillations .on soft X-ray signalsl) and, thereafter, it has been commonly
observed in tokamaks with the q-value less than unity at the magnetic axis.
Since the plasma deformation is restricted within a volume of a critical
radius ( Vv Vf}s, r,s the radius of the q =1 surface ), the effect on the
plasma confinement is not serious in high-q discharges. . In very low-q
discharges, however, the energy confinement time is -considerably reduced by
the sawtooth oscillationsz). According to the model by Kadomtsev3), the
unstable m=1 tearing mode grows expomentially in time until the current
profile becomes flat inside the q=1 surface due to the magnetic field recon-
nection. The disruption process is reproduced in good agreement with the
experimental data by a single helicity numerical calculations4’52 The
sawtooth oscillations are recovered in a result of a tokamak code simulation
based on this model modified to include the kinetic effect6).

In the recent high-power-neutral-beam-injection experiment of the JFT-2
tokamak, it has been observed that the.sawtooth oscillations are replaced by'

7

large amplitude m=1 oscillations . Although Kadomtsev's model has succeeded
in the explanation of the sawtooth oscillations, it can not explain the m=1
oscillation found in the highvBp experiments. Two possible causes of this
new phenomenon are considered: (i) the mode coupling between the m=1 and
m=2 resistive modes due to toroidicity , and (ii) the unstable m=1 'resis-
tive internal kink mode'". .In a toroidal plasma, the m=1 and m= 2 resistive
modes are coupled each other due to the outward shift of the magnetic axis.
By this coupling, the magnetic energy of the m=1 mode can be released through
the m=2 mode, and the disruption is possibly supressed. This effect becomes
larger in a plaéma with higher poloidal beta value because of the larger shift
of the magnetic axis and of the non-uniformity of the equilibrium current
density along the field line.

-As for the m=1 internal kink mode, it becomes unstable when the poloidal

8)

beta value exceeds a critical value ’. 1In spite of the large growth rate,
the saturation level of the mode is quitevlowg’lo). The mode does not develop
into the internal disruption but shows finite amplitude saturation, which
is smaller than that observed in experiments. Taking into account the resis-

tivity, the "resistive internal kink mode" develops beyond this saturation
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level due to the field line reconnection. The evolution of the energy of
the toroidal field works as a stabilizing factor to prevent the disruption,
and the saturation of the magnetic island is expected.

The purpose of this paper is to study the effects of the toroidicity
and ideal mode on the internal disruption, especially in a high beta plasma
with the low gq-value. In the next section we study the m=1 internal kink
mode in a tokamak by using the code ERATO and show that the internal mode
becomes unstable for increasing the poloidal beta value. The unstable in-
ternal resistive mode in a cylindrical plasma is studied in §3 by using the
new reduced set of the MHD equation, and the saturation of the magnetic
island is shown in a plasma with the high poloidal beta value. The toroidal
effects on the nonlinear evolution of the m=1 and m=2 tearing modes are

studied in §4. Summary is given in §5.

§2 Toroidal Effect on the Internal Kink Mode

»

In this section we study numerically the. toroidal effect on the m=1

11)

internal kink mode by using the code THALIA and the revised version of

ERATOlZ) which is incorporated to a high accuracy mapping module and. can
give accurately a solution with a small growth rate. By the numerical
analysis we confirmed that the toroidicity stabilizes the internal kink mode

8)

as shown by Bussac et al. and obtained some insights into the resistive
internal mode.

Equilibria used in the analyses are as follows. In the toroidal calcu-
lations an FCT series of equilibria with a circular cross section and aspect

ratio A of 3 is computed for a given pressure profile p(y¥)
P -ppll-ap-Q-an'l,  0<pcl (2.1)

where the parameter Po is varied and the safety factor profile, q(¥), is
obtained for a low B and null diamagnetic current ( TdT/dy =0 ) equilibrium.
The choice of the q-profile gives the ratio qa/q0= 2.5. In the cylindrical

case the pressure and toroidal field functions are given as

Eepg (1=, 0<y<1 (2.2)
dB, o1 dp
B, @ " [6 -1) av (2.3)
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This profile gives the ratio qa/q0 N 2.4, which is the approximately same

as that of the toroidal analyses. Figure 2.1 shows the profiles of the
safety factor q for a toroidal (a solid line ) and cylindrical ( a dashed
line’) equilibria with Bp==l and q0==0.§. The difference of the positions

of the q = 1 surface is small between these two cases.

The "toroidal" wave number of the cylindrical plasma, k a = na/R, is chosen
as 1/3 which corresponds to the n=1 mode in our tor01dal calculations.

In Fig. 2.2 the squared growth rates I'? vys. Bp are shown for q0==0.9. The
growth rate I'? tends to zero for Bp + 0 in the cylindrical model, whereas,
the mode becomes stable at a finite Bp in the toroidal case. Figu?e 2.3
shows the stability diagram in the qo-Bp plane. The solid line and the
dashed line denote the stability limit for the toroidal and cylindrical
cases,respectively.’ The dotted-solid line denotes the cylindrical 'equilibria
where the safety factor at the plasma surface ( q, ) is unity, which shows
that the stability is almost determined by the existence of the q=1 surface,
in the cylindrical model. 1In the toroidal case, however, there is a critical
Bp ( Bp = 0.7 in our model ).below which the internal .kink mode is completely
stabilized. Figure 2.4 shows the structures of the azimuthal component ( Ee )
of the plasma displacement. As B_decreases, Ee becomes steep in the
toroidal model. For Bp = (.75, the half width of the mode is about 0.05a.
When the ‘magnetic Reynols number is S = 10°, the width of the resistive

layer is the order of gT1/3

= 0.01. This means that the resistivity
broadens the eigenmode when B < 0.75. In usual ohmlcally heated plasmas

( B < 0.5 ), the resistive mode plays a dominant role in the confinement
of a plasma. When BP increases, the width of the elgenmode is much broader
than that of the resistive layer (Fig.2.4(a)) and resistive effect is weak

in the exponentially growing phase.

§3 Simulation of the Resistive Internal Kink Mode

In this section, we study the linear stability and' the nonlinear
evolution of the m =1 "resistive internal kink mode" in a cylindrical plasma.
The evolution of the tearing modes has been studied by using the usual reduced
set of MHD equations. In this set of equations, however, the m = 1 internal
mode is marginally stable because the driving terms of this mode, i.e., the

second order terms in the inverse aspect ratio are neglected. In order to
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simulate the resistive internal mode, therefore, we have to include these
terms correctly.

In the following, we assume the perturbations with a single helicity
( f(;,t) = f(r,6+kz,t) ), the incompressible fluid motion V-3?=O and the uni-
form mass density p(;,t?O) =1. Under these assumptions, the magnetic field
ﬁ and the velocity 3 can be expressed by the helical flux function p and the

helical stream function ¢ as

-+ -+ -+ >
B = Brep + ep X vy (3.1)
> -> -+ >
v = vzep + ep X VO (3.2)

where ;£==(Zé-krzz)/d is the unit vector along the helix and © =1 +(kr) 2.

Using these expressions, the MHD equations can be rewritten into the

following equations:

;_lt’+;:.'v'(q+2—1‘2-v;) =m—1;i—za‘:—§-f§-ﬁ-;§%i§§i €3.3)

2 4 3, =s.¢mc 6.9

a—‘” =BV + onJ - Eg(t) | : | (3.5

% - -;‘*,.'6(_-) + gB- v(—) - E B-Vé + onRy (3.6)
= A, J = AxY +‘%}BC and R = A*Bc A%J

(m=1), where EC is the externally induced electric field, which we set such
that the total plasma current is constant. The energy integral of these

equations is written as
& ®+m+q=0 | (3.7

where K, M and Q denote the kinetic energy, magnetic energy and the rate of
the energy dissipation, respectively,

SlpR e @il o
k=2 B G2+ ¢ 35> * 5 vg lrdrde (3.8)
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a L
u=2/ [_% GO+ & ;}3-) 2 B 2Jrdrde | (3.9
BB
Q = [nlo? +% G2 + (r — 2Bey2 errde : o -
r V] oY - .
-3 [(E - E) oo+ nBC S ] e f : (3.10)

Ir=a

This set of equations reduces to the conventional one when the'longicudinal
wave number k goes to zero with keeping kBC constant. Thus, the set of equa-
tions can express three different modes; i.e., the internal mode (n 0, k#
0), tearlng mode (n #0, k= 0) and resistive internal kink mode (n #0
k #0).
Before studying the nonlinear evolution of the resistive internal kink
mode, we study the paraneter dependence of the linear growth rate of this
mode by linear1z1ng the equations and deriving a generalized matrix elgenvalue
equatlon on the basis of the finite element formulation. Figure 3.1 shows the
dependence of the growth rate on the longltudlnal wave number k and the resis-
t1v1ty n, .where the q profile is chosen as q(r)-—O 9+0.2r% and the radial
mesh number N is 50100 with mésh accumulation near the q=1 surface. InA
a cylindrical plasma, the internal mode is always unstable, except k=0.
When k is small and the growth rate of the teaylng . mode Yn is much larger
than that of the ideal mode Y the localization width of the vorticity near the
q =1 surface is determined by the tearing mode. As k increases, the mode
becomes essentlally the ideal one ( Y >> Y ). The trangition of the mode
from the resistive one to the 1nternal one 1s consistent w1th the analy51s
by Copp1 et all3)
Now we study the nonlinear evolution of the re31st1ve 1nternal kink
mode. We Fourler—expand Eqs.(3.3) to (3. 6) with respect to 8+kz. The
Fourler~decomposed equations are solved by the predlctor—corrector explicit’
time integration scheme. The evolutions of the three modes, i.e., the
.‘incernal kink mode, tearing mode and resistive internai kink mode; are
studied for the same gq-profile ( q(r)==0;8(i+f2) ) and pressure profile
( p(o) =2(1-r?) ). The maximum Fourier mode number is 20, and the'radial

mesh number is 201 with accumulation near the singular point. 'Figﬁre 3.2
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shows the temporal change of the posiiion of the magnetic axis ra for three
cases. When k=0 and n = 10‘“, the internal kink mode is marginally stable

and the magnetic axis shifts outwatd exponentially in time due to the resistive
mode, and the internal disruption occurs when the magnetic axis touches the
3). When k = 1/3 and n=0,

the internal kink mode causes the shift of the magnetic axis, but this shift

critical surface r==rc as predicted by Kadomtsev

saturates at low level due to the development of the skin current. The
saturation level of the shift ragiO.l is slightly larger than the analytic
9)

value This difference is due to the formation of a thin magnetic island
caused by the numerical reason in the saturation stage.

When we take into account the finite resistivity n=10""%( the resistive
internal kink mode ), the magnetic axis shifts beyond the saturation level of
the internal mode due to the magnetic field line reconnection. Unlike the
resistive mode, the longitudinal field BC forms the island structure and the
development of the large diamagnetic current prevents the further shift of
the magnetic axis before it reacheg the critical surface r=r_. In this way,
the resistive intermal kink mode forms the large, saturated magnetic island.
Figure 3.3 shows the ¥ and BC contours in the saturation stage. These results
shows that the resistive internal kink mode is a candidate of the experimen=-

tally observed large amplitude m=1 oscillations.

§4 Simulation of the Tearing Modes in a Toroidal Plasma

In this section we study the nonlinear evolution of the m=1 mode in a
low Bp toroidal plasma. In order to understand the evolution of the m=1 mode
in a tokamak with high poloidal beta values, we have to take into account
correctly both of the mode coupling due to the toroidicity and the unstable
internal kink mode. The latter effect can be neglected in a low Bp toroidal
plasma. The unstable modes are only the resistive ones and it is relevant to
study their evolﬁtion~using'the conventional set of reduced equationslé).

We consider a tokamak with circular cross section and employ the coordinates
(r,0,4), where field lines are Straight and ¢ = /g Ro/Rz. Assuming the small-
ness of the inverse aspect ratio, € =r/R, the reciprocal metric tensor is
approximated as

r Y d®A . 1dp 1

r da .. = - 8,248 _
g -l+2drc056,—, g (dr2+rdr Ro)s:lne
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80 _ 1 _ 4 = 1. ¢d _ o2 xr :
g =22 {1- 2¢ iz R)t:ose }s gt = &0(1+2R0 c?se Y, 4.1)
where A is the shift of the magnetic axis defined by
a T "
_1|® 2_,.dp
A(r) Ry Sr ﬁg‘jo (Be 2r = drdr. (4.2)

The safety factor and pressure profileé used in the following simulations are;
q(xr) =0.9{l—(r/r0)2>‘}1/>\ with roﬁ 0.5 and A = 2 + 2r?, and p(r) = 'po(l—rz)z.
We employ the equal spacing radial meshes (Nr= 201 ), the maximum mode number
Mm= 31 and the implicit-explicit time integration scheme.

Figure 4.1 shows the temporal evolution of the magnetic islands with
differént helicity for the aspect ratio\Ro/a=lO, the poloidal beta value
Bp =0 and the resistivity n=10"". The phase of the initial perturbation of
theé m=2/n=1 mode is chosen to be the same as that of the m=1 mode for the
case (a) and opposite for the case (b). For the comparison, the cylin&r‘ical
caée (Ro/a=°°‘) is also subject to the simulation ( case (c¢) ). The behav-
ior of the m=1 mode in a toroidal plasma is essentially the same as in the
cylindrical plasma. Untill the m'=1 mode grows to a finite level ( t <50 );
the m=2 magnetic island also grows independently of the m=1 mode as in the
cylindrical plasma. Thereafter,the m=2 mode is strongly affected by the m=
1 mode through the toroidal coupling. For the case (a), the m=2 island
shrinks and finally changes its phase. On the other hand, the island width
for the case (b) is widened by the toroidal effect. This can be seen more
remarkably in Fig. 4.2, where the evolution of the magnetic energies with the
different helicity is plotted. The eneérgy of the m=2 mode with the initially
opposite phase grows exponentially with the growth rate of about half of that
of the m= 1 mode without entering the Rutherford regime, while the energy of
the m =2 mode for the case (a) decreases from the one for the cyliﬁdrical
case.

Now we consider the difference of the toroidal effect on the m=2 modes
of the in-phase aﬁd opposite-phase cases. The total energy of the reduced

set of MHD equations in a toroidal plasma is given by

a 2 R, 2
E'=§SO[ (%) |ve|? + (TOJ [vp|? 1 dt | s C(4.3)

This energy can be devided into two parts; the cylindrical energy, E , and

cyl
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the toroidal one, Etor' When we divide the reciprocal metric gij into the
cylindrical one giJ and the toroidal one EIJ(e), then Etor is expressed, up
to the first order of €, as ‘
a od., 3d, oY, W 99, 3¢
i ok 1 2 1 2y 4r 4
B, =) @@+ o3 2+—F G- 1240 g
0 x~ X 9x ox? 0 3x 9x
where we take into account only the toroidal coupling between the m=1 ( the

suffix "1" ) and m=2 ( the suffix "2" ) modes. We approximate Ql and @2

~ - ~ 2 .
as Ql::er/rs|m=l and ¢, g_éz{r/rs|m=l }2 in the region r f-rS|m=l . Then
using the relation ¢ = -F & /y , we have
m mm m
rs|m=l 4 rs|m=l
Bror 2 Ry |, W27 R | 4 v (.5

where Yo is the growth rate of each mode and Fm==mBe/r + nBz/Ro. This expres-
sion shows that the sign of the toroidal ;oupling energy Etor depends on the
phase between the m=1 and m=2 modes. Because of the small dissipation, the
total energy of the system is almosﬁ conserved, so that Ecyl becomes smaller

( or greater ) than that in the cylindrical plasma for wlwz >0 ( or wlwz

< 0 ). Since the m=1 mode has the larger growth rate and the larger ampli-
tude than those of the m=2 mode, the effect of the toroidal coupling on the
m=1 mode can be neglected. ' Therefore, the energy of the m=2 mode decreases
( or increases ) due to the toroidal coupling for wlwz >0 ( or wlwz < 0).
From these results we see that the toroidal coupling influences only on the
m=2 mode; the evolution of the m=1 mode is almost unaffected and the
disruption occurs after the same development shown in the cylindrical

calculations.

§5 Conclusion

In this paper, we have studied the linear stability and the nonlinear
evolution of the m=1 mode. The results obtained here are summarized as
the followings; |
1. By using the revised version of the code ERATO, it was confirmed that
the toroidicity has the stabilizing effect on the m=1 internal kink mode
‘and the mode is unstable only for the polidal beta higher than a critical

value in a toroidal plasma.



149

2. The nonlinear evolution of the resistive internal kink mode in a cylin-
drical plasma shows that the internal disruption can be suppressed due
to the modulation of the longitudinal field.

3. In a low B toroidal plasma with large aspect ratio, the behaviour of the
m=1 tearing mode is found to be essentially the same as in a cylindrical
plasma. The m=2 tearing mode, however, suffers a strong effect of the
m =1 mode through the toroidal coupling and forms the magnetic island with
larger width than in a cylindrical case.

All these results show that the Kadomtsev's model of the internal
disruption is valid in a toroidal plasma with the low poloidal beta. In a
high B plasma,however,the internal kink mode was shown to be unstable and
this mode plays an important role on the evolution of the m = 1 mode.
Although the simulation of the nonlinear evolution of the resistive internal
kink mode has been studied only in a cylindrical plasma, we can expect
the saturation of the island in a toroidal plasma. As for the simulation
of the tearing modes in a toroidal plasma, we could not see the remarkable
change of the m = 1 mode for Bp = 0. We also simulated the case with Bp =1,
and the result is the same as for B§ = 0. The reason is considered to be
that the pressure driven term was dropped in the simulation. The effect of
this term is now under investigation.

In order to extend these results and to understand the saturation of
the m=1 mode observed in the high B tokamk experiments, we are preparing
the simulation which includes both effects of the unstable internal kink

mode and the toroidicity.
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Figure Captions

Fig.2.1 Profiles of safety factor q(s) ( s = /$7$; ) forvBp =1 and

qq = 0.9. The solid and dashed lines denote the toroidal.and
cylindrical cases, respectively. The q ='1 surfaceses lie at s = 0.45
(the toroidal case) and s = 0.4 (the cylindrical case).

Fig.2.2  Squared growth rate_Fz.vs. Bp for 9 = 0.9. The growth rate tends
to zero for Bp — 0 in the cylindrical case (dotted line),whereas
the mo@e.becomes stable at a finite Bp ( Bp = 0.7 ) in the toroidal
case (solid line). _ , »

Fig.2.3 Stability diagram in the qof,Bp plane. The stability limit for
the cylindrical case (dashed line) is almost determined by the
existence of the q = l_surfaqe (dotted—solid line). In the toroidal

case, there is a critical,Bp ( Bp = 0.7 ) in the stability limit

(solid‘line)'below wﬂich the internal kink mode is stabiliiéd;

Fig.Z;hr‘ Structures of the azimuthal component ( Ee ) of théﬂ;i;sma
displacement for (a) Bp = 1.25 and (b) Bp ='0.75. The solid line
denotes the toroidal case and the dashed line the cylindrical case.
As Bp decreases, Ee becomes steep for the toroidal case and the
half width of the mode at q = 1 surface for 8 = 0.75 is comparable
to that of the resistive layer S-l/3 = 0.01 fgr s = 10°.

Fig.3.1 Dependence of the linear growth rate I' of the resistive internal
kink mode on the longitudinal wave number k . The safety factor
profile is q(r) = 0.9 + 0.2r2,

Fig.3.2 Evolution of the magnetic axis due to (a) the tearing mode
(n =10 "%k = 0);(b) the internal kink mode ( n = 0, k== 1/3 ),
and (c) the resistive intermal kink mode ( n = 10—“, k =1/3).
The profiles of the safety factor and the pressure are q(r) =
0.8(1 + r? ) and p(r) = 2(1 - r? ), respectively. The positions of
the rational surface and of the critical surface for the disruption

oot 1ot

are denoted by LA and rc , respectively.

Fig.3.3 Contour of Y and B_~at the saturation stage of the resistive

g
internal kink mode.
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Fig.4.1 Evolution of the magnetic islands with different helicity n/n ,
where m is the poloidal mode number and n is the toroidal one.
The safety factor is q(r) = 0.9(1 - (r/O.S)ZA)llx with A = 2 + 2r?
and aspect ratio is 10. The initial phése of the m = 2 mode is the
same as that of the m = 1 mode in the case (a) and is opposite in
the case (b). The case (c) shows the results in the cylindrical
plasma. In all case, the internal disruption dccurs at t = 160,

Fig.4.2  Evolution of the magnetic energy defined by

1
Mp/n = %J [(%/n)z + (%Wm/n)zj rdr

with different helicity ( m/n = 1/1,2/1 and 3/2 ). Other parameters
are the same as in Fig.4.l1. The toroidal effect on energy of the m = 2
appears earlier than that on the magnetic island. The width of the
island is determined by the perturbation at the rational surface.

The m = 1 perturbation is restricted within it's critical radius

r, = VZ rs'm=l’ so that the toroidal effect of this mode on the m = 2
mode is also restricted within this radius. The m = 2 perturbation

in r < L propagates to the rational surface rslm-Z after a while,
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RESISTIVE MODES IN A HIGH g TOKAMAK"

J. A. Holmes, B. A. Carreras,'* L. A. Charlton,
H. R. Hicks, and V. E. Lynch

Computer Sciences at
Qak Ridge National Laboratory
Oak Ridge, Tennessee 37830 USA

ABSTRACT

The stability and evolution of the (m= 1;n = 1) mode in tokamaks
having finite R are studied numerically wusing a reduced set of
resistive MHD equations. Particular attention is given to the effects
of B8, q-profile, and plasma cross-section shape. The results of these
studiés égree with the systematics of the observed MHD activity in
ISX-B [1-6]. Detailed comparison of theoretical and experimental x-ray

and magnetic loop signals shows excellent agreement [3-5].

INTRODUCTION

With the success of neutral beam . heating, tokamak operation at
nonnegligible R has become a reality. In order to study MHD activity
at finite R, a 3-D computer code, RST, has been written. RST solves a
reduced set of resistive MHD equations as én initial value problem.
These equations were first dérived by Strauss [7] under the assumptions
of large aspect ratio (e = a/R << 1), moderate B8 (B8 ~ g), and
approximate force balance,

In dimensionless form these equations are

> >

%% =B « 90+ nd _ (1)
> + > > B

Vv .vu=s2(B.vs+_223P (2)

*Research sponsored by the Office of Fusion Energy, U.S. Department
of Energy under contract W-7405-eng-26 with the Union Carbide
Corporation.

%% . Co s
Fusion Energy Division.
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> >
%+V-Vp=0 (3)
>

where B = £

~ > ~ > > ~

ST x e, Iz AN, U v25, and v = V6 x z. All lengths
are normalized to a generalized minor radius a, and all times to the
resistive time 1, = azuo/no. The quantity S is the magnetic Reynolds
nunber, defined by S = Tr/THp where THp = Ro(uopm)1/2/BCO is the
poloidal Alfvén time. These high g reduced equations contain_ both
current and pressure driving forces.

In order to consider high B8 plasmas having circular or noncircular
cross-section shape, a flux coordinate system based on the 1initial
equilibrium is adopted. This system is the same as that defined by
Grimm, Green, and Johnson [8]. Even though Egs. (1)-(3) are 1lowest
order in g, geometric terms are retained such that the axisymmetric

toroidal Grad-Shafranov equation

8 . :
avy = - 0 g2 dp_ 1 pdF

, — . (W)
2¢2 dy 2 dvy .

[

exact to all orders in ¢, is an equilibrium solution. - By considering
flux—-conserving sequences of equilibria for several plasma shapes and
g-profiles, it is possible to study B effects, g-profile effects, and
plasma shape effects independently. Since the present study focuses on
the (m = 1;n = 1) mode, g-profiles are chosen such that this mode is
the dominant instability in the low g cylindrical 1limit. The
calculations are carried out using a finite difference representation
in the generalized radial coordinate p, and a Fourier series expansion
in the poloidal and toroidal angles O and 1, respectively. "~ In this
representation equilibrium effects such "as toroidicity, eBp, and
cross-section shape linearly couple components of different poloidal
nunber m for each toroidal 'number n. This coupling has observable
consequences, as will be shown later. Further ‘"details on: the
assumptions, equations, and numerical techniques wused in RST are

contained in Refs. 2 and 9.
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LINEAR RESULTS

In order to understand the structure and stability properties of

the fastest growing eigenfunction for each n, it is possible to run RST
in a linearized fashion.,. For a particular flux-conserving sequence of
equilibria the effect of increasing B8 wupon the n= 1 linear
eigenfunction can be understood as a transition from current-driven to

pressure-driven dominance, As is increased, the toroidal current

B

distribution shifts relative to thepflux coordinate system which tends
to reduce the average current gradient at the q = 1 surface. The
overall effect. is to stabilize the current-driven part of the mode.

When pressure forces are taken into account, three regimes emerge: a
low B regime in which the mode is mainly current-driven and the effect
of pressure 1is an additional stabilization, probably due to increased

couplings between the m = 1 and more stable components; a high B regime
in which the mode is mainly pressure-driven; and a transition region in-
which both current and pressure effects are apparent.

For several flux-conserving sequences of equilibria satisfying the
constraint of (m = 1;n = 1) dominance in the low B cylindrical limit,
the above behavior 1is observed [Fig. 1a]. In the high R regime
(Bp 2 1.0) the growth rates are rather insensitive to the g-profile.
However, in the low 8 and transition regions, where current driving
terms are important, linear growth rates are sensitive to q with larger
(smaller) growth rates corresponding to gq-profiles having more (less)
shear. For another flux-conserving sequence in which an elliptical
cross-section (e = 1.5) and circular cross-section are compared, the
effect of elongation upon growth rate is minor with a slight uniform

(as a function of eep) stabilization observed [Fig. 1b].

NONLINEAR RESULTS

When full nonlinear simulations are carried ,out for a

flux-conserving sequence of eqqilibria, increasing Bp causes a slpwing
down in time of the growth of the (m = 1;n = 1) mode. For high enough
Bp the 1/1 magnetic island saturates at finite width and remains in the
plasma. EqQuilibrium effects induce strong couplings between the
(m= 1;n= 1) and other components such as the (m = 2;n = 1) giving

rise to a strong poloidal field at the plasma edge in the driven
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components. Associating the growth of the 1/1 magnetic island with the
observed m = 1 x-ray signal in the ISX-B plasma, and the poloidal
magnetiq fields at the plasma edge with"the observed Mirnov lodp
signals, the experimental behavior as a function of beam power is the
same. .Detailed discussions and comparisoh of calculated and
experimental results are given in Refs. [2] and [3j.

In ISX-B it has been observed that increasing d, for fixed. Bp
leads to a return to "classic" sawtooth behavior: . a decrease in the
duration of precursor activity, and a decoupling and reduction of the
ms= 2 magnetic signal. This behavior 1is also observed in the
calculationé [Fig. 2al] and is due to the increase in shear as q, is
raised. ‘ .

The effects of plasma cross-section shaping upon the (m = 1;n = 1)
evolution are presently being explored. Plasma elongation does not
greatly modify the evolution [Fig. 3], but triangularity causes the 1/1
magnetic island to saturate at a finite width for values of eep at
which the circular and elliptical cases undergo full reconnection
[Fig. 31. .

The interpretation of ISX-B experimental data requires a reliable
parameterization of the.eqqilibrium. One equilibrium parameter which
is not well known is Qg+ but the shear and consequently the type of MHD
activity observed are quite sensitive to this parameter [Fig. 2b]l. The
RST code can be useg to help determine G, by making runs with several
test equilibria differing only in q, and then comparing the calculated

MHD activity for each case to that observed experimentally.

COMPARISON WITH EXPERIMENT
Detailed cémparison with experimental X-ray and magnetic
fluctuation data 1is carried out through the use of several diagnostic
computer codes which analyze RST results [9]. Equilibria which match
the actual experimental parameters are used in the RST calculations.
Theoretical x-ray data is calculated by assuming that the emissivity is
proportional to a power of the pressure p® where a = 2 is normally
taken. Then, assuming either toroidal or poloidal rotation, an x-ray
signal is calculated by evaluating line integrals across the emissivity

profile along the actual x-ray chords. These 'signals are then compared
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with the experimental data ([Fig. 41]. With toroidal rotation the
agreement between theory and experiment is remarkably good, showing
chord by chord agreement on the structure, including interference
effects, and relative amplitudes of the signals. With poloidal
rotation the comparison is good inside the q = 1 surface, but outside
q = 1 where the (m = 1;n = 1) component is small, the results do not
agree. This 1is consistent with the fact that 1ISX-B has a large
toroidal rotation velocity due to the coinjection angle of the neutral
beams.

A detailed comparison of magnetic fluctuations with those in ISX-B
has not been attempted since RST does not 1include the actual vessel
geometry or 1loop positions, Theoretical poloidal magnetic field
fluctuations are calculated by evaluating Ee/aolp=1 and assuming either
toroidal or poloidal rotation of the field. Even so, the calculated
and experimental fluctuation amplitudes agree well both in magnitude
(~1% peak) and in angular dependence, being large toward the outside
major radius of the torus and small toward the inside major radius
[Fig. 5]. In the region of 1large amplitude toward the toroidal
outside, several different equilibria of various g8, q-profile, and
shape all°- show magnetic fluctuation phase behavior in poloidal angle
which looks like pure m = 2 [Fig. 5]. The presence of other prominent
components, such as (m= 3j;n= 1) and (m=z 4;n= 1), is revealed by
rapid phase changes toward the inside\ of the torus, where the
fluctuation signal 1is small. This situation accentuates the presence
of the (m = 2;n = 1) mode and makes the experimental observation of

other modes difficult,
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FIGURE CAPTIONS

Fig. 1a. n.=z 1 linear growth rate (~ THp-1) vs esp for three
flux-conserving sequences of equilibria. The solid curve is for
q, = 0.9, q = 2.3; the long dashed curve is for gq, = 0.9, q, = 3.3;

and the short dashed curve is for q, = 0.8, qQy = 2.3.

Fig. 1b. n = 1 linear growth rate (~ THp‘1) vs esp for elliptical
(e = 1.5) and circular flux-conserving sequences of equilibria. Both

sequences have the same q-profile given by q, = 0.9, q, = 3.6.

Fig. 2a. m = 1/n = 1 magnetic island width vs time for Bp = 0.38
(g4 = 0.9, g5 = 2.3) and Bp = 0.34 (g4 = 0.9, q5 = 3.3) equilibria.

Fig. 2b. m = 1/n = 1 magnetic island width vs time for sp = 0.59
(qg = 0.9, g, = 2.3) and Bp = 0.57 (ap = 0.8, q; = 2.3) equilibria.

Fig. 3. m= 1/n = 1 magnetic island width for circular
(sep = 0.17), elliptical »(eBp = 0,20, e = 1.5), and D-shaped

(eBp 0.16, & = 0.5) plasmas. All cases have identical g-profile

parameters q, = 0.9, q4 = 3.6.

Fig. 4. Experimental (left-hand side) ISX-B and theoretical
(right-hand side) x-ray signals. The equilibrium simulates the actual
experimental shot: gqg = 4.15, Bp = 1.05, <B> = 1%, e = 1.3, & = 0.12.

Fig. 5. Phase and amplitude of calculated poloidal magnetic
fluctuation signal at plasma edge as a function of poloidal angle O for
circular plasmas having q, = 0.9, qg = 2.3 and qq = 0.9, Qg = 3.6 and
D-shaped plasma having q, = 0.9, q, = 3.6.
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PROPERTIES OF THE IDEAL-MHD m=1 MODE IN TOKAMAKS

J.”J. Ramos and G. B. Crew
Massachusetts Institute of Technology. Cambridge MA 02139. USA.

Large aspect ratio asymptotic expansions about circular cylinder
solutions 1 are used to investigate the ideal-MHD structure of m=1 modes
in current carrying axisymmetric toroidal plasmas. The linear eigenfunctions
are assumed to be dominated by an m=1 poloidal harmonic, which couples to
small amplitude m=0 and m=2 sidebands through the poloidal modulation of the
equilibrium.functions. The fadiélly dependent Fourier coefficients exhibit
discontinuities at the resonant surface rl, where n q(rl) = 1. The behaviour
of the m=1 coefficient of the radial plasma displacement, El, can be

described in terms of the parameter

d g

(r—rl)2 1 -

A, = lim -w
H. r+rl r, dr

It is shown that AH has the same value at both sides of the mode
resonant surface, thus making it possible a symmetric matching through the
singular layer where non-ideal effects should be included. By an appropriate
choice of gauge; a perturbed magnetic potential can bé defihed in such a
way that its parallel component is related to the radial component of the
perturbed magnetic field through

- La(lui)_

r r R a6

The discontinuity of the m=1 Fourier coefficient of AII is then shown to be

- r.+0
d 1ln A 1

A‘: = o e—
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These relationships provide a straightforward generalization of the results
in cylindrical geometry.

The parameter AH is evaluated analytically in the limit r1+0. Numerically
obtained values of A, are also presented for several choices of pressure and

H
rotational transform profiles.

1 M. N. Bussac, R. Pellat, D. Edery and J. L. Soule, Phys. Rev. Lett.

35, 1638 (1975).
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3-D Simulation of Spheromak Formation
Tetsuya Sato

: Institute for Fusion Theory
Hiroshima University, Hiroshima 730, Japan

Three-dimensional magnetohydrodynamic (MHD) code "MAGIC 3"
is developed based on the two-step Lax-Wendroff scheme. In the
first part, simulation results of the Princeton spheromac forma-
tion and the merging of two spheromaks obtained by using the
two-dimensional MHD simulation code! are briefly reviewed. Then,
the result of a preliminary run done by MAGIC 3 is presented.

Two-Dimensional Spheromak Formation

It is already shown by simulations?’?® that the Princeton
formation scheme can soundly produce spheromaks. In this paper,
a new aspect of spheromak formation is emphasized. The previous
simulation?® assumed that the shape of the spheromak plasma would
be independent of the formation speed. The present simulation,
however, has shown that the shape of the spheromak is largely
dependent upon the formation speed. Figs.l~3 show the spheromak
shapes for three different formation speeds, namely, T./1,=68.6,
21.7 and 4.35. As can be clearly seen, the size of thé sphero-
mak becomes smaller and smaller as the formation speed increases.

oo o . "
TOROIOAL | . TOROIDRL™ .- ' .. g . JOROIDAL

T=112.58 Teg3.%50
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Merging of Two Spheromaks

By using the same code the merging process of two spheromaks
is performed. Two spheromaks are generated from two identical
flux cores placed with a certain distance by the Princeton method
and let them approach to each other to merge into one.

Fig.4 shows an example of such runs. It is seen that two
almost identical spheromaks are spontaneously merged. The follow-
ing flux relation is obtained:

where ¢ _ and ¢,, are the poloidal and toroidal fluxes, respectively,
after mgrging and the subscripts "1" and "2" correspond to those
before merging.

\
Three-Dimensional Simulation

Three-dimensional MHD simulation code based on the Lax-Wen-
droff method is developed. As the first application of this code,
the formation of the Princeton Spheromak is simulated.

A preliminary run with 31x31x10 (r,z,6) grid points has shown
that the spheromak tends to shift vertically, shifting instability,
as shown in Fig.5a,6. These figures correspond to the toroidal
field intensity contours (left) and the vertical (z) flow (right)
at two cross sections with 90 degrees difference in the azimuthal

direction. Fig. 6 shows another example where the formation speed

is lower than the other case. Note that in this case shifting
instability is weak.

1. T.Sato and T.Hayashi, Phys. Fluids 22, 1189, 1979: T.Sato,
JGR 84, 7177, 1979. :

2. S.C.Jardin and W.Park, Phys. Fluids 24, 679, 1981.

3. H.C.Lui, C.K.Chu, and A.Aydemir, Phys. Fluids 24, 673, 1981l.
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MULTIDIMENSIONAL MHD COMPUTATIONS FOR THE FIELD-REVERSED THETA
PINCH AND THE REVERSED-FIELD PINCH

D. D. Schnack
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

I. INTRODUCTION

The study of alternative approaches to the tokamak for the design of a
magnetic fusion reactor 1s an area of active research in both the United
States and Japan. Among the most promising of these concepts are the
Field-Reversed Theta Pinch (FRTP) and the Reversed-Field Pinch (RFP). This
paper briefly describes some recent large-scale numerical MHD simulations of

these devices.

The FRTP 1is one of a class of Field-Reversed Configurations (FRCs) that
are characterized by the presence of a separatrix that extends to the major
axis.  Unlike the spheromak, the FRTP is highly prolate (elongations of 4 to
1 or more are typical) and contains no toroidal field. A field null thus
exists. Additionally, both the safety factor and the shear vanish
everywhere. The validity of the MHD model 1in such devices may thus be
questioned. However, such calculations are known to give a pessimistic view
of stability, and certainly become more valid for larger devices where
kinetic effects may become less important. Examples of these caiculations

and their relevance to particular experiments are given in Sec, 'II,

Like the tokamak, the RFP is a toroidal pinch that contains both poloidal
and toroidal fields. The tokamak attains stability against large-scale ideal
MHD modes by satisfying the Kruskal-Shafranov condition. This requires the
imposition of a strong toroidal magnetic field such that Bp/BT ~ € << 1,
where € is the inverse aspect ratio. The resulting "safety factor profile
q(r) 1is greater _than unity and monotone increasing. The RFP, on the other
hand, is characterized by fields such that Bp/BT ~1, and a profile
q(r) << 1, which is monotone decreasing and changes sign in the outer regions
of the plasma. The resulting shear grossly stabilizes the pinch. Thus, high

values of B may be attainable, Also, since the toroidal current is not



limited by the Kruskal-Shafranov condition,

occur,

It 1is now
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significant obmic

heating may

accepted that much of the characteristic behavior of tokamak

plasmas can be described in terms of the 3-D nonlinear evolution of resistive

MHD instabilities..
in the RFP remain unknown.

attainment

estimates of the resistive diffusion time in the ZT-40M device at Los

indicate loss of field
lifetime.

mean magnetic field, or

and maintenance of field

This dynamc effect may result from

However, as yet the fundamental MHD processes that occur

Such processes are probably responsible for
reversal, In particular, simple
Al amos

reversal
the turbulent

from large scale modes.

generation

in a time short compared to the observed

of

Accurate simulations of

these 3-D nonlinear processes are vital to understanding the basic ﬁhysicé of

the RFP.

The advances 1in 3-D

calculations for tokamaks depehd

expanding the primitive MHD equations

9B _ Ux(vyxB - — VxB)
3t Ry R
f;;;l = - V+[oyy - BB
?Tf:’ = - Ve(py)

S (Bp) = - pVey -

in the small parameter € =

set of equations

Bp/BT, discussed earlier, to obtain

crucially on

(la)

(1b)

(lc)

(1d)

the reduced
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%A n . dv
. -_.V =
TR AL ST IS ()
dw ' 3] ‘
- v - o7, 3 = _
5t + ! _L(.l) E 1] BO 32 (Zb)
where B = VLX;zA’ v = leézv, Viv = - w, and Vf A = - j. However, since the

field components in the RFP are all of the same order, and since these
devices may possess finite 3, no universally small expansion parameter exists
for this device. Thus, instead of solving the two scalar equations (2) as is
the case for the tokamak, computations for the RFP require the solution of

the eight primitive equations (1).

Additionally, the computational speed of codes based on the tokamak
reduced equations (2) is greatly enhanced by the fact that in this ordering,
the plasma 1is . incompressible. This eliminates the fast compressional wave
from the calculation. This wave evolves on a time scale that is‘on the order
of the minor radius divided by the Alfven velocity. The remaining time scale
is defined by the shear Alfvén wave that, because of the strong toroidai
field, evolves on a time scale that is on the order of the major radius
divided by the Alfven velocity. This time scale may be more than an order of
magnitude longer than that of the compressional Alfven wave. In the RFP, on
the other hand, even the (unjustified) assumption of incompressibility does
not eliminate the fast time scale, since now a shear Alfven wave traveling
near the field reversal surface evolves on a time scale that is on the order
of the minor radius divided by the Alfven velocity, i.e., the same order as

that of the compressional wave.

To summarize the above remarks, calculations for the tokamak require the
advancement of two equations that evolve on a slow time scale, while those
for the RFP require the advancement of eight equations that evolve on a fast
time scale. Because such calculations are difficult and time consuming, most
simulations of the RFP have been in two dimensions or have assumed helical
symmetry. A recent example of such a calculation is discussed in Sec. III.

There we also speculate on a possible dynamo mechanism 1involving the
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interaction of a few large scale resistive modes, and briefly describe -a 3-D

code that is presently under development.
I1. FIELD-REVERSED THETA PINCH

The MHD stability of compact toroids was first investigated analytically
by Rosenbluth and Bussacl'who_used a modified energy principle to determine
marginal stability to all ideal modes and. most ‘tearing modes. They found
stability against magnetically driven modes for all toroidal mode numbers
n > 1, but found an unstable n = 1 mode for prolate spheroidal plasmas. This
mode, which 1is characterized By a rotation of the major axis inside the
separétrix, is termed the tilting mode. Highly elongated configurations

characteristic of FRTP plasmas were investigated by Barnes ?

who found
instabilities for all n if the flux surfaces where elliptical. In this case

the unstable n = 1 displacements are more axial than rotational.

Computationally, these predictions have been investigated in a
numerically generated equilibrium that includes plasma on open field lines
and closely resembles the FRX-B experiment at Los Alamos. 3:" These studies
have employed the linearized code RIPPLE VI® and the nonlinear ideal 3-D code
MALICE.® Both solve the primitive MHD equations and are initialized wiéh
perturbations characterized by n = 1 and k = 1 for the toroidal and axial
mode numbers. They both develop wunstable tilting instabilities and the

growth rates are in good agreement when the codes use comparable grids.

Using the MALICE code in the pure Lagrang{an mode, the instability has
been followed into the nonlinear regime. When the tilt has proceeded about
20° a damping of growth and a corresponding increase 1in internal energy
produced by compressive heating effects are observed. At this point the
shorténed grid spacings of the Lagrangian mesh produces unacceptably small
time steps. Attempts to remedy this by increasing the amount of rezoning
have lead to numerical diffusion of the magnetic field, which causes much of

the reversed-field region to be lost.
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The results of the nonlinear simulation are shown in Fig. 1 where
contours of constant plasma density, both initially and at the end of the
run, are shown. Note that the displacement is primarily axial, in agreement

with the theory of Barnes. 2

The growth rate Wty = 0.5 as determined numerically corresponds to an
e~folding time of ~2 us. However, experimental results indicate that such
configurations can persist in a stable state for times approaching 30 us, the
discharge being lost due to a rotational n = 2 interchange instability.

7 using the Vlasov-fluid kinetic model, has shown that

Recently Schwarzmeier,
parallel kinetic effects can stabilize the tilting mode. Additionally, he
has shown that shaping the flux surfaces in a racetrack manner can
significantly reduce the MHD growth rate. Both effects are probably
important. experimentally, pérhaps accounting for the lack of observétién of

the tilting mode in FRTP devices.

The n = 2 rotationdl instability has also been simulated with the MALICE

code. The results are detailed elsewhere.®

III. REVERSED-FIELD PINCH

For the reasons cited in Sec. I, studies of global MHD activity in the
RFP are in approximately the same state as similar studies for tokamak
plasmas about five years ago. Much of the activity currently underway is
limited to the case of helical symmetry. The thrust of these studies is as

follows.

1. - Classify Possible Modes. Indications are that the RFP does not simply

behave as a modified tokamak, but rather exhibits MHD behavior uniquely

its own.

2. Can MHD Activity be Induced by Transport and How Does MHD Activity Affect

Transport? Studies with transport codes have shown that initially stable
profiles will naturally evolve to unstable states. The major question
is: how does the nonlinear evolution of these destabilized modes modify

the profiles, and can these effects be modeled in transport calculations?
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3. 1s Self-healing of Profiles Possible? 1In tokamaks, sawtooth oscillations

result when a profile that is destabilized by transport is stabilized by
nonlinear MHD activity. There is evidence that analogous activity can

occur in the RFP.

4. Can Dynamo Action Result From Large Scale Modes? The wusual = theories

relate dynamo action to small scale turbulence. In either case, fully

3-D simulations are necessary.

An example9 that addresses part or all of the above questions will now

be given.

A stabilized tokamak profile typically has q > 1 on axis. Transport
processes peak the current on the axis thus lowering q and eventually
introduce the q = 1 resonance into the plasma. The nonlinear evolution of
the resulting m-= 1/n = 1 mode (which does not enter the Rutherford .regime
and saturate at a low level) flattens the current outward, raises q on axis,
and removes the q = 1 resonance. This self-healed profile then evolves again

due to transport process leading the familiar sawtooth oscillation.

In:the RFP, on the other hand, since q << 1 many m = 1/n >> 1 resonances
exist even in the stable state (they are shear stabilized, for example).
Transport processes again peak the current on the axis causing a decrease in
q there and a loss of shear stabilization. This process has been observed in
1-D transport studies, and the nonlinear evolution of the resulting
m = 1/n = 10 tearing mode has been followed with a 2-D helical resistive MHD
code that solves the primitive equations.10 It 1is found that the mode
undergoes two successive reconnections resulting in a stabilized profile.
Like the tokamak, the first reconnection removes the q = 1/10 rational
surface from the plasma. However, since in this case q 1is monotone
decreasing, this must decrease q on axis, Thus, instead of flattening the
current, the first recoannection enhances the overpeaking. The plasma then
undergoes a second reconnection that flattens the current, increases Qaxis»
and restores the original resonance to an axisymmetric profile that is stable

to the original mode.
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The sequence of double reconnection is shown in Fig. 2, where we plot
the helical flux surfaces and flow patterns at various times during the
evolution of the mode. Time is measured in units of Alfvén transit times.
The first reconnection is completed by t = 37, and the second reconnection
results in an axisymetric state. This convoluted, unlocalized, nonsymmetric

tearing has been independently verified by another code. 1

One can néw envision the self-healed profile again evolving due to
transport, resulting in relaxation oscillations reminiscent of the tokamak
sawtooth behavior. Indeed, bursts of m = 1 activity lasting for tens of
microseconds separated by periods on the order of 100 microseconds have been
observed in the density signals from ZT-40M. These time scales are
consistent with the time scales of the MHD and transport calculations

described above.®

In light of these results, one can now speculate as to a possible
mechanism for the maintenance of field reversal due to large scale modes. ? It
is likely that more than one m= 1/n >> 1 mode will be unstable
simultaneously due to the close proximity of the rational surfaces 1in the
RFP. (In the tokamak, the only m = 1 mode allowed corresponds to n = 1 since
q > 1 everywhere.) It is also likely that these m = 1 modes will be preferred
over other poloidal mode numbers because they do not enter the Ruther ford
regime. These modes will interact nonlinearly. . For example, the

m=1/n= 10 and m = 1/n = 11 modes will interact as follows:

Oth interaction 1/11 . 1/10

lst interaction- 0/1 2/21

2nd interaction 1/12 . 1/10 1/11 - 1/9 from 0/1
3/32 1/10 3/31 1/11 from 2/21

It 1is likely that the 2/2] mode will be stabilized by FLR effects due to its
large toroidal mode number, Thus, the only avenue to the nonlinear
generation of m =1 modes (they are "preferred") is by the presence of an

active m = 0/n = 1 mode that requires a reversal of the toroidal field for
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resonance. We hypothesize that the q = 0 rational surface may be necessary
for the 'preferred" spectrum and may be created and maintained by the

nonlinear interaction of m = 1 modes.

It is interesting to note that the observed m = 1 density oscillations
mentioned previously are accompanied by m = 0 oscillations, and that
m = 0/n = 1 flux loop signals are characteristic of the latter stages of the

ZT-40M discharge.

To either refute or verify the above hybothesis requires an accurate 3-D
resistive MHD code in realistic geometry. Such a code must solve the
primitive equations, and must include the effects of compressibility since
density fluctuations are observed to be large experimentally. To handle a
large number of modes accurately and efficiently, spectral or pseﬁdospectral
techniques should be employed. This is crucial since one cannot rule out the
importance of small scale turbulence. With the advent of vector computers,
and for ease of debugging, such a code should be explicit. Additionally,
unconditionally stable explicit pseudospectral numerical algorithms can be

constructed. !2 Such a code is currently being written at Los Alamos.
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A Spectral-Finite Difference Algorithm for Three Dimensional
Incompressible MHD _
A. Aydemir and D.C. Barnes
The Institute for Fusion Studies,The University of Texas at Austin
I- Introduction
We have developed a code that solves the three dimensional
incompressible magnetohydrodynamics equations in a cylindrical
geometry. Our algorithm differs from those used in some of the

existing 3D codes(l'z)

in that no assumption is made about
ordering of various quantitiesjthus, it is applicable‘fér
arbitrary beta and aspect ratios. However,we have retained the
incompressibility condition in order to eliminate the fast Alfven
time scale.

‘ Variables are expanded in Fourier series in the azimuthal
‘and axial coordinates, which reduces the three dimensibnaIIMHD 
equations to one dimensional equations in the radial coordinate
for each of the Fourier harmonics. These resulting equations
are integrated using a finite-difference scheme in the radial
direction.
II- The Equations

We use the usual set of incompressible MHD equations

written in the following normalized form:

¢ - g.(-uu 4+ BB) - vt (0
== (-uu + BB) - Vp
2B -VxE (2)
2t = , v
E o -uxB *+ -iseg‘ (3)
T= UxB | l4)
P _1?__'32 (s)
¢ = | (¢l
v.u (= 0 (7)
OB = 0 : (3)



188

The symbols have their usual meanings. The density is
assumed to be constant (unity), which is consistent with Eq. 7
and a uniform initial state.

ITTI- Numerical Scheme
A simple leap-frog scheme is used to time-advance the

variables: n
) yﬂ“ - gﬂ-\ " Q.G"(:{ o '('\1“! ""_B?) R v/ p*h ‘_ (q)
ém = BM A 2%t Vx&@x@)“- —g.—'g'""] (10)

In order %o ensure that the flow is divergence-free,
we take the divergence of Eq. 9 and set V-g“lé O to obtain,
2 4N _ | n-l . " .
Ve = oo Ve r :(-uu + BE) G
which is then inverted to obtain ¢" :hat goes into Eq. 9.(3)
Thus, the veiocity field g&‘ given by Eq. 9 satisfies the condition
\’7.\3'“4:0 identically, even if \7.9“" +0 .
The curl operator in Eq. 10 satisfies the finite-difference
form of the vector identity 7. VxA=0 , for any A, so that
Y?-gr“= Ch§f4 identically. Thus, if the initial magnetic
field is divergence-free, then '
\'7-‘3"M = 0 + ( accumulated truncation errors ).
In outr tests until now, the velocity and the magnetic
fields have always satisfied the conditions
loull ¢ TH@DLI < 16"
N

. - 19
Weorl ¢ Z W 8), 1| <<
- ™n
IV- Stability Criteria
It is difficult to derive necessary stability criteria for
the full set of equations used in the code, but one can use
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the following conditions obtained from simple model equations
as guidelines:

NN <l | - S (a2)
D l i e B.) l< ' for stability

“) —‘— —-‘-S" £ Ynin { =z’ 2——3% (l?)
Where k = .— e + D_ S :

M s maximum poloidal mode number .
S : magnetic Reynolds number

Near the axis, Eq. 12 implies

St < —a | (14)

since'BQ;.r for r—»0.
To be able to resolve such fine scale structures as tearing

f'k M’Becé\
\

, Or

layers, etc., one needs to have the mesh size Sr small enough
so that  Spr’~ 0(1). Setting S§r° = 1, Eq. 13 imlies
- St < 1hm? (%)
which is more stringent than Eq. 14, If the resistive
terms are treated implicitly, then the time steps that are larger
by a factor ofaM . can be used, However, in an implicit
calculation it would be very difficult, if not impossible,
to ensure that V. B =7 B , thus, resulting in large errors in V.- B.
V- Checks on the Code and Some Preliminary" Results
"a) Dispersion Relation Check. ' _

The frequency of induced shear-Alfven waves is checked
by perturbing a uniform axial field equilibrium with a %Srsméo,n=l)
perturbation. For By = 1, the period of the oscillations is found
to be 6.28 + 0.01 in-'a cylinder of minor and major radii equal to 1,
which agrees well with the expected result of 21, The oscillations
were followed for'eight periods, during which time the ratio of
the'change in total energy to the change in kinetic energy, A TVI/AE
was less than 0.2 percent,

b) m=1 Ideal Internal Kink.

Starting with the same equilibrium as in W. Park, et. al..(u)
we calculated linear growth rates for various aspect ratios.
The values we obtained were in agreement with theirs to within
a few percent.

We also did a non-linear calculation with four harmonics,(0/0,
1/1, 2/2, 3/3) for an aspect ratio of one (Fig. 1). We do see a current
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sheet developing at the singular surface; however, without the
addition of "artificial field" as in Ref. 4, we are not able to
follow the evolution of the instability all the way to saturation.

¢) m=2 Resistive Tearing Mode
We did a series of calculations with the following square

(5), y
() = Q.{_.‘_"' e ¥
i - 4 ""(ﬁt /’t)%

where the current channel width r,= 0.6, and the radius of the gq=2
surface ry = 0.7 (Minor radius is equal to one.). Fig. 2a shows
the contours of m/n = 2/1 helical flux obtained by integrating
the fields, for an aspect ratio of five., Fig, 2D shows the m/n = 2/1
harmonic of the radial field for the same case.

Figs. 3 and 4 show B;(rim/n=2/1) for different aspect ratios.
As expefted from low-ﬂ MAD ordering » the axial field perturbation

tends to zero with increasing aspect ratio for most of the plasma

safety profile

column.However, in the tearing layer around the gq=2 surface,

a strong perturbation remains, even .with the . relatively high
aspect ratio twenty (Figs. 4a,b). The runs with aspect ratios

of five and twenty were made with 1024 radial mesh points, and as shown
in the blow-up of the tearing layer in Fig. 4b, the oscillatory
behavior is resolved with approximately 50 mesh points and does not
. seem to be numerical. The axial velocity displays a similar
behavior in the tearing layer. Fig. 5a shows the m=2 island from

" an incomplete non-linear run with 3 harmonics (0/0, 2/1, and 4/2).
The axial current density altered by a current sheet developing

at the gq=2 singular surface is shown in Fig. 5b.



REFERENCES:
(1) W. Park, D.A.

191

Mont1cello. ReB. Whlte, Bull. Am. Phys. Soc.,

22, 779 (1978)- :
(2) H.R. Hicks,’ B. .Carreras, J.A. Holmes, D K. Lee, B.V., Waddell,
ORNL Report No. 0RNL/PN-7132
(3) F.He. Harlow, J.E. Welch, Phys. Fluids, 8, 2182 (1965).

(4) W. Park, D.A.
Nucl. Fusion,
(5) B.V. Waddell,
Phys. Fluids,

(6) HeR. Strauss,

Monticello, R.B. White, S.Ce Jardln.
20, 1161 (1980).
B. Carreras, H.R. Hicks, and J.A. Holmes,

22, 896(1979).
Phys. Fluids, 19, 134 (1976)y



192

-
NENL IMEAD | NTEZRINAL 1IN TEST {Mdm! .0 [BAR) B0}
1340896 OTA0) M 447190 1w 1AL
Tt O ite JTLAINATY Wive  FOAIL00 -
Flo. o, HELCAL FLuX coNTours (IWTERWAL kwk)
»

¥ T T T T T 7T =T T L T T T
J -r-\.,_c

-~ .

sa b - . ]
/‘ J
1.4 | .'__a" -
.»-'“J’-
1.0 | / J

a b . 4
I f'/ ("‘-..

-2 ‘{1,"—. '.__"‘.‘ m
e L",-""- ’.""...-|
s f “]'
o ,:‘ '
< F

{
-t
|
-3¢ 1
A b -
]

oL
1 L N

1 1
TR W - w4 4 M o e W . e owm W e @ . om omowm
"‘ ' 1 1 | ' 1 i 1 ' 1—.

Fi6. dlb. WELICAL CURRENT PENSITY

1 H A i i 1 1 i 1 i i L llj




193

FIG.2a ™ T
LIMEAR B Mt TEARTNMY DO {(BARRS| Y Wiwq, Sul 12AS]
[ B TR T T~ 2N
TeThe D Hildn L BHEG WA L PTG e B §oHE FLi
it - ki T T T ¥ T T l‘_, Rl B l T T ¥ i ¥ T v L2 T .
RO 0o I S ¥ As b
wan [
apie o o ' o
1 f‘r }-.
Sy . i 3 ]
- 0y L
K TR ' J{ .‘I -
R TT I },J' :,l E
s - 4 3 -
. J i :
X7 IT I o {.‘

iy / b
iy ". ‘ -4
e |

B3 TE R f ' \l
!

o,
4

e | !
] ]
R ," 1
. . .
-Tinar .'} ‘] E
-r I .
Lsinae [ J } §
) L}
Jainas t { i
some b7 i |
+ i‘ fi .
ey !— i : -
1]
] .
b bt N -
e ' l:" F ‘ G- Q- b . %
LTV ) » -
L 1 ! ] ] i i L] ‘;-1 1 i ! i .H—i-—"f—'\-k-—) 4 '
T
- - [ ) wa - “a - »a ] u = i3 - -3 - o - ) L) i -
= = b ad ” - ] -t o ol - - ) - = P T = e at t ] -
L] k] 1] * 1 1] 1 1 1 1] 1 & 1] 1 [} 1 t 3 1 1] .'_l

0823004 1D/10/84 T =% 02EHD? 4R{ 2, 1 ]



Ddi?
-baple
©Laans
Dokl ¢
-msll
-b3ely
LI
Lbanty
-lakan
<faeae
R H
~faltae
AL 0]
<Ialt4
" .mapar -
-y
MY

A7

- {' " ! -
" / j
I ] ‘f ) 1
= ; "' -1
- -f) -y
/
- ',-" ' b
"f' ERS V 3
_ |
L ; Kd ' J
i v I |
A . c
B ,I"." FIG. 3(“) . %‘((a m/ﬂ'z/' ) | i
T Fo R R (%2 l “ |
=1 1 T EE SR TR YUY DUN SHEN SANN M S N W ¥, S I TN M
T T T T T T T T T T T T NN S Bas S |
L i
| 4
L J
i ;
- A .
"lv. ||
- ’ d .
|
’;'// -i
= 4
"{’,
o
L . o B
r-"f"‘.
s "__,.-—""f }

—**““""'fmc,. 3 By(wmpmz24)

bbb 44 FOR JQ°T 51_ L J"c Y N J
w m  mm an W oum e W M A e tm w9 W e w m n o
- - ™ Eal w4 »e s re - - - - - - P Fors - Lod - - -
L 1 Al 1 [} ’ * 1] ' 1] 1 k] Al Al t * * 1 st 1 0
-

TULAEI AT VISR T =~ dRE4DY grs 7, 1 )



T T T T T T YT T T =T
wl ]
28 -
- s
3 |- -
i r -
“F .
13 .
4 -
IR o 4
s 2
* -
* 4
.4 l 'f"
. - ]
.1 F16. &la) B¢ (wln = zé'l , ¥ .
Lo ] [ | i1 LFOIR |R°|—_l L1 14 O WY B |
TRINTT ADVEEE T B OREHNY LR B
T T T L T T T T T T { paaan
i
4 ! i J
[
t ! . ‘,
m - .l 1 K
N l' '% o
i f ‘ R
i i
1% { 2 K
[
14 L ' J 4
. !
L. }| l . N
i i
LI i i 4
| 'a
I o 1 4!
s} ] l‘ 4
i' ii
([ ¢ | l{ 4
b ¢ ;
< : 3 T
RTTPOTEE } 'n {
1 s ' Il. - TN
| {:‘ 5 e
== i o -
Bt l 1 : ; I R : i : ;
' FIG. L(Y):TEARNG LAYER
12238022 10/%5/81 T =B OGEHDZ  BI] 2, 1)



196

WOM-L INEAR M3 Mol TEAR NG UINE { IBARS310, Ml Sovi _(P49Y

b

F16. 5(b)

1.4
1.3
1.2
1.4
1.5

-
g~
*-
-
¥

et

-
& -~

[

A% 1AL CURRENT DENBITY

T =i . 62EHY

10081814

12:42: 48



197

3-D TENSOR PRESSURE EQUILIBRIA FOR EBT*

L. W. Owen
Computer Sciences at
Oak Ridge National Laboratory
Oak Ridge, Tennessee

C. L. Hedrick
Fusion Energy Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee

ABSTRACT

Techniques for calculating magnetohydrostatic equilibria with
tensor pressure are reviewed, Mgorithms for computing 3-D hot
electron ring equilibria for the £lmo Bumpy Torus (EBT) with a
separable model for the pressure tensor are discussed, as are the
numerical methods used in the implementation of those algorithms in a
computer code. Some typical results of 3-D equilibrium calculations
for EBT-I/S and an EBT reactor conceptual design illustrate the effects
of the relativistic electron annuli on the magnetic field. Two
significant additions to the 3-D code are planned for the near-term and
discussed 1in this paber. This first concerns the addition of an
isotropic pressure component to model the core plasma in EBT. The
second is the 1inclusion of the flow and electric field terms in the
momentum balance equation.- A straightforward method of including mass
flow due to the ExE plasma rotation and a discussion of its possible

importance for 3-D equilibria in EBT are presented.

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract W-7405-eng-2€ with the Union Carbide
Corporation.
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In this paper we discuss methods for computing three-dimensional
finite-beta equilibria for the anisotropic electron ring plasma in the
Elmo Bumpy Torus (EBT). Typical results of some 3-D tensor pressure
equilibrium calculations for EBT-I/S and an EBT reactor conceptual
design illustrate the effects of the electron ring diamagnetic currents
on the magnetic field. (Space limitations do not permit a discussion
of all the topics mentioned in the abstract and covered in the oral
presentation; however, a complete report1 of this workAis forthcoming.)

Techniques for determining tensor pressure equilibria, presented
in a review by Hedrick, et al..2 are briefly outlined for a ring
pressure model which 1is a separable function of the magnetic field B
and flux coordinates (a,8). The fundamental magnetostatic equilibrium

equations are Maxwell's equations

(1

<
.
[o2]
1t
o

JxB = VP, : (2)

R .
where J is the plasma current and P is the pressure tensor, given by

2= pil+ (py - pyIod - " SRR X

>
(V+P) can be resolved into components parallel and perpendicular toc B,

with (V+P), = O yielding the useful relation

op {py = p)
AL Ly
3B B

and
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> >

Consider a coordinate system in which field lines are labeled by (a,B)

> > > +
and B is written in the Clebsch representation B = Va x V8. For

py, = py(a,B,B) and p; = p,(a,8,B), (5) becomes

> > Bp" > 3p“ >
{Vx(oB)]xB = —— Va + — VB , (6)
da 9B

where we have defined the inverse of the permeability

—) _ (7

and used (1) and (4). The form of (6) suggests that we define
> > .
current-like quantity K = Vx(gB); then

b d ap" Ed Bp" > 3
XB=s——7"9Ya +— V8 . (8)
a 3B :

¥

> >
Since V<K = 0, K can be described by a Clebsch representation,
> > > > >
K = 999 x Vo = Vx(¢17¢p) = Vx(aB) . : (9)
> > .
Hence Vx(oB - ¢,V¢,) = O has solutions of the form

> > >
oB = ¢1Vép + Vo3 . ' (10)

In order to determine ¢, and ¢,, use (10) to form
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> > > > > > > >
KXB = Vo5(BeVo;) = Vo1(BTop) . (n

It is assumed in'our 3-D code that

Py(a,8,B) = P (B)g(V)

(12)k
PL(Q’BUB)

P, (B)g(L) ,

where U is a slowly varying function of (a,B8). The distribution
functions p, and p, are given in Reference (2) and plotted as functions
of B in Fig., 1. If we substitute (12) into (8), we find that
> > ~ + -
KxB = p,(B)Vg , (13)
where
3u

Vg = g- ) Y o + 2 Vel . (14)
da 3B

Comparing (11) and (13) suggests the choice 4, = g(U). Then
>

> > > > ~ > > > a
KxB = Vg(B+V¢,) = p,(B)Vg, provided (B:V$;) = p,(B), or

L de”
¢1(G'Bp2) = IQT P“(B) . (15)

-+
The system of equations is complete if we substitute (10) into VB = 0

to obtain a Poisson's equation for 3

2 +> > +>
V93 = =V+($478) + B+Vo . (16)

The pressure surfaces are determined in 3-D by requiring that the

>
parallel component of J vanish at symmetry planes. 1In (15) let 2£=0 and
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and 4&=%, correspond to a sector midplane and adjacent coil plane,

respectively. Define 3§, = ¢4(a,B,%,) and notice that the current

> >

> S > >
ougd = o(VxB) = V$1xVg + BxVo ,

has the parallel component (at 2=2,)

> P > > .
ougdy = gugb *d = V3, x Vg = 0. (17

Hence 561 is parallel to %g and contours of constant g (or U) must
coincide with contours "of constant Fq. This result is the tensor
pressure analog of the fact that . for scalar pressufe the 4igcobaric
surfaces must coincide with surfaces of constant édﬁ/B.

In the calculations discussed below, the ciioice of ring pressure
parameters 1is based on present understanding of ring formation,
location, size, shape, étc. In EBT-I/S the annuli form at the position
at which the second harmonic of the electron cyclotron frequency 1is
resonant with thebapplied'microwave frequency. The axial length of the
rings is’thought to be approiimately equal to their radius, and the
radial thickness is a few thermal gyroradii.

With reasonable pressure anisotrbpy it is found that (17) can be
satisfied with pressure surfaces that are concentric circles 1in the
midplane, centered roughly at the location of the peak of mod-B, e.g.,
approximately 3 cm inside the minor axis for EBT-I1/S. A comparison of
contours of constant U and '31 is shown 1in Fig. 2 for an annulus
pressure profile having a radius of about 12 cm. The only significant
differences in the contours are in regions in which the pressure is
less than 10% of its peak value., This difference 1is to be expected
from the behavior of the vacuum magnetic field and can be easily
eliminated by spreading out the U contours on the outside (where
R-Ry > 0) so that they more closely resemble the contours of vacuum

mod-B in the midplane.
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Figure 3 shows the effects of finite-beta on mod-B in the midplane
for two pressure profiles in EBT-I/S; B, as a function of minor radius
is also shown. Figure 3a probably represents the more realistic
annulus, with the peak 81 = 27% and the radial thickness of the annulus
=2.25 cm. In Fig. 4Y4a, mod-B contours and magnetic field lines in the
equatorial plane are shown for the vacuum field and for the L < 40%
equilibrium field displayed in Fig. 3b.. In Fig, 4b, are shown
isometric plots of mod-B in the equatorial plane corresponding to the
curves in Fig. 3b. '

' Figure 5 shows the results of two equilibrium calculations for an
EBT reactor conceptual design with and without symmetrizing coils.3 In
each case the annulus radius is chosen to give the 1largest possible
plasma volume (dotted region) subject to constraints imposed by the
heating geometry and by the location of the first wall of the reactor -

chamber.

REFERENCES

1. L. W. Owen and C. L. Hedrick, "Tensor Pressure Equilibria and
Particle Orbits in EBT," to be published as ORNL/TM-7388.

2. C. L. Hedrick, G. E. Guest, and D. B. Nelson, "Some
Techniques for Determining Tensor Pressure Equilibria,"
ORNL/TM-4076 (1973).

3. L. W. Owen and N, A, Uckan, "Optimization of EBT Reactor
Magnetics," ORNL/TM-7729 (1981).
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Figure 5. Results of 3-D equilibrium calculations for an EBT reactor
conceptual design without (top) and with (bottom) symmetrizing coils,
These results illustrate the importance of 3-D equilibria in
ascertaining reactor volume utilization efficiency.
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Finite Element Method for 3D MHD Simulations |
Ichiro kawakami ” .
Atomic Energy Research Institute
College of Science and Technology, Nihon:Univeréity
Presented the US-Japan Workshop on "The 3D MHD‘Sfudies fof Toroi-

dal Devices'", Oct. 19-21, 1981, at Oak Ridge National Laboratory

§1. Introduction

For MHD simulations of plasmas confined in fusion devices,
finite difference methods (FDM) have been used, and among them,
the two step Lax-Wendroff method, the Crank-Nicholson method, the
leap from method and doner cell are prevailingly used. Recently,
the other types of methods along the line of FDM are available.
They are FCT (Flux Corrected Transport), ICE (Implicit Continuous
fluids-Eulerian), LINC (Lagrangian'teéhniqué for incdmpressible
fluid), GALE (Generalized Arbitrary Lagrangian and Eulerian) and
FIC (Fluid In Cell). ICED ALE useé moving grids (Arbitrary
Lagrangian and Eulerian) to improve accuracy.

In this report, we propose another way of numerical method
than FDM. We call this method as.FEMALE (Finite Eleﬁent Methbd
fof Arbitrary Lagrangian and Eulerian elements), which may be
regarded as a member of finité‘element method (FEM). In many
cases, FDM can be regarded as a special case of FEM. ICED ALE
is a special case of FEMALE where the shape function is constant
in element (cell). FEMALE makefuse of grids which move arbitra-
rily, as the ICED ALE does. To achievé this, FEMALE uses the »

shape function which moves with the grids, so the shape function
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is time dependent. This show FEMALE is an extention of usual

FEM where the shape function is constant in time.

§2. Formulation of FEMALE
2. 1 Basic Equation - differential form
As an example, the following set of differential equations

are emﬁloyed,

M4 divad) = 0, | (2. 1)

gg_‘?g div¥ =0, | - 2.2)

%%;div~g>=0, | ‘(2._3)

%% + curl E = 0:. | o (2. &)

Here _ v _
'613)=(p+2%0-B2)6]" +p-\7\;-%§§, Ces)

u = % pv2 + 5 p + 7%; B? , (2. 6)

2= (p+ wv+ %;-(ﬁxg)_- kgrad T. 2. 7)

The following relations complete the system of MHD equations,

E+vxB=%7 , (z. 8)

7 = 1 cur1 3 , ' ' (2. 9
Mo

p = mn, T=p/n, . ) (2. 10)

where n = number density, v = velocity, p = pressure, B =

magnetic'field; E = electric field, and the other quantities

O



209

may be clear. Dependent variables are n, pV, u and B .

These equations aré to be expressed in specific coordinate
system for each space component. For 1D and 2D cases, the co-
ordinates system may be cartesian, cylindrical, toroidal or
helical, depending plasma geometries. For 3D case, the coordi-
nates System can Be cartesién for all plasma geometries;

2.2 Shape Functions
Let Q@ be a space occupied by plaéma. £ is divided into

finite elements, Re (e = 1, 2, ++«+E):
E
Q= URe , (2. 11)
Re r\Rf = ¢ for e #'f . (2. 12)

'E is total number of elements. Let Ne and N be numbérs of nodes
(verteces) in Re, and number of nodes in @ , respectively. For
simplex element, Ne = 4 (tetrahedron) for.3D, Ne = 3 (triangle)
for 2D, Ne = 2 (line) for 1D.

A set of N shape functions {¢!, ¢2, sec-- ¢N} is introduced
as follows:
N >
(1) Je"@® =1 ctea | (2. 13)
(ii) $ﬁlis localized in the elements which include the node

¢, and ‘
oM (&) = MY, (2. 14)

where ¥ is the position of the node u
(ii1) (B¢ + Vg .grad)e® =0 , | (2. 15)

where ;g is the grid velocity.
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We define a basic matrix in terms of shape function ¢":

A= [a"V], (2. 16)

A is positive definite and symmetric. Note that A is a band
matrix because ¢“'s are localized. Even in the band, A is
sparse. |

Associated matrix with the basic matrix is defined as

] (2. 18)

where

N
Yoo ofV = s¥Y (2. 19)
p=1 up
so that the associated matrix is a inverse of the basic matrix
-1 . .
A. In terms of A ', we introduce a set of conjugate 'shape

functions {¢,, Gpp tt0e ¢N}

as
o = ? a. o° . (2. 20)

W7 o,2p HP , _
¢u ‘is no more localized around the node u . The ¢u's play a

~important role in evaluation of derivatives.
2. 3 Basic Equations - discretized form

For the continuity equation (2. 1),
M
P M. _ ‘~ 00 U don . u_>
= deQ¢ n = IQdQ(Ef_ n o+ 98 wp) ¢+ [de div(e nvg).

The 1ést term comes from the fact that the boundary of the
plasma moves with the velocity Vg. Substituting (2. 1) and

(2. 15), we obtain
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. J dosn = - [ qagdaiv n(F - V) (2. 21)

where ¢" is constant in a cell. Eq. (2. 2) is reduced to the
basic equation of integral form of ICED ALE method. In a similar

way, eqs. (2. 2 - (2. 4) yield the following equations:

3 .
9 H = - 5 3
=% deQ¢ oV, deQ¢ jzlggg (Py; - oVives) (2. 22)
2 [ dgetu = - [ ¥ divig - WV ], (2. 23)
) Q g S L
3 9

o3
+

doeMB. = [ dePdiv(B.v.) - [ doe (o - 3. (2. .
J d0¢7B; = [ da¢"div(B;v,) [Qd ¢ (5EJT By - gr By)e (2. 20)

Additional term may appear in eq. (2. 22) originafing from
coliolié forcé in the noncartesian coordinates sfstem, which is
ignored because we are concérned with 3D problems énd then dnly
the cartesian codrdihates.syétem is concerned.

We expand the quantity f in Galerkin series,
N - .
£= 7 £o" (2. 25)

where fu is the value of f at the node u . Then, eqs. (2. 21)

- (2. 24) can be written as

§f oMVn = - Di:uvnv(vi,v - Vgi,v)l; (2. 26)
2otV ovy), = - D{’uv(pij’v - (V) Vg ) N (2. 27)
;f a“vuv = - D{’“v(gj’v - uvvgj,v)’ | (2. 28)
2 "By | = - D%’“VEk,V + DE’“YEj’V + D%’uvBi’vvgz’v, (2. 29)

where the summation convention is used for repeated indices.

In eq. (2. 29), (i; j, k) is cyclic permutation of (x, vy, 2z).
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Eqs. (2. 26) - (2. 29) are our basic equations correspond-
ing to eqs. (2. 1) - (2. 4). The coefficients, a"V and Di’uv,
are geometrical factors which do not depend on the physical
quantities. They depend on the position of fhe nodes and time.
We shall solve these equations under prescribed intial and

boundary conditions.

§3. Numerical Methods
3. 1 Evaluation of Coefficients

For general shape functions, o and D have to be obtained by
numerical integration. Gauss's integration formula mayfbe
recommended becausé it is available with small number of evalua-
tion points, However; we can obtain these coefficients by

direct and analytic method for the simplex elements. For 3D

tetrahedron,
oMY = g% BV
(3. 1)
6V.
= 120 WV
Di,uv 1 i (3. 2)
1 —nau ) .

for each tetrahedron. Here V is the volume of the tetrahedron,

r -

6V = det |1 x, vy, 2z,

1‘ X, Yo Z, (3. 3)
1

Xq )’3 Z3

1 X y, 2

L

and aﬁ's are minus of the determinant of matrix obtained by

replacing the i-th column of the matrix



213

b S z . ‘ (3. 4)

by unity, where (¢ , v, p , w )‘is cyclic permutation of node
number (1, 2, 3, 4) of tetrahedron.
3. 2 Evaluation of Derivatives

Eqs. (2. 27) - (2. 29) include aerivatives, ;, grad T, and
div 3, which have to be evaluated at the nodes. We investigate
here how derivative can be evaluated at nodes. As simple

¥

example, we look into 1D derivative of f,

d = g% i (3. 5)

When we substitute Galerkin series (2. 25) for f into eq. (3. 5),
d is reduced by one order. In stead of eq. (2. 25), we use the

Galerkin expansion

f = uglcbufu s (3. 06)
in terms ¢ﬂ introduced in eq. (2. 20). This improve the accuracy
because f is interpolated in terms of the Value.fu at all nodes
(note that ¢u is not 1ocalizedj. Unfortunately, interpolation
(3. 6) requires large computing time, and is actually impossible.
Equivalent approximation can be obtained by d expanded as

N
a- 1

dv¢v | (3. 7)
e

1
where d, is derivative at the node v . Then eq. (3. 5) is
N N v
v do
Idye = Zlfv dx

v=1 v=
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WV o pXouvg

o v 1 Vv

. (3. 8)
For the linear shape function, and equal grid spacing Ax,

1
G AX(du

LA AL ) =y B - £ (3. 9)

p+1 u+1 p-1

This is the equation for du's. The Taylor expansion shows the
solution du is accurate up to the order of magnitude (Ax)".
When the grid spacings are not equal, error (difference of the

left and the right hand sides of eq. (3. 9)) is

1 LA f 1 wqy A'f
e = - §[(ax)2]—= - S§[(Ax)"*]
1z dx? 'x=x 112 dx* 'x=x
5f H
+ 3%‘6 [(Axu+1)5 + (Axu)s] d__ + ®esee , (3. 10)
dx® 'x=x
u
where
s[(ax)2] = (axMT1)? - (ax)?
SL(AX)*] = (axM™hy - (axM)*
Axu = x”+1 - xu
Note that when oV’ is lumped, eq. (37 9) is reduced to
, _ 1 ) )
Axdu =7 (fu+1 fu-l) . (3. 11)

and du is centered difference.

Then we evaluate derivatives by solution of equations of
the form (3. 8) at each time step.
3. 3 Method of solution of FEMALE equations

Eqs. (2. 26) - (2. 29) have the form

5 _ :
It AU = C(U) , : '(3. 12)
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which is non-linear, simultaneous, ordinary equation for U. To

avoid numerical instabilities, we assume fully implicit scheme:

APTINT oAt s cu™Y) e (3. 13)

At each iteration step, this takes the form;
AU = B, o - (3. 14)

where B is assumed to be known. A is the basic matrix.

‘Let us introduce the lumped matrix element,

oV = (] oMMy, o (3. 15)

which is diagonal. From a , define the diagonal matrix,

b = [J&““] . (3. 16)
And then define

- _ a-1 =-1

A=DdD 'AaDd"', (3. 17).
and

8=D"'B. (3. 18)

Then eq. (3. 14) can be written as
AU=3B |, . (3. 19)

where 0 = D U. A is symmetric and positive definite. Eigen
values of A are nearly unity. So eq. (3. 19) can be solved by
conjugate gradient method. In this case, B is good initial
guess for U. This method is a special case of ICCG (Incomplete
Cholesky-Conjugate Gradient method), and is called LMCG (Lumped

Matrix-Conjugate Gradient method). We have tested, and found
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that LMCG is more efficient than ICCG for the basic matrix A,
since A z DD.
3. 4 Further Improvements

(1) For saving the computing time and storage, we took U = B

or U=D""'D"'B., We compared the 2D results with the results by

the ICED ALE, and found qualitatively good agreement.

(ii) Coefficients described in section 3. 3 sometimes yield
the computed results depending on the shape of element. We do
not know the reason. However, our conjecture is that the shape
of control volume depends on that of element, and we have found

the control volume less dependent on the shape of element.
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Setting Up Phase of Reversed Field Pinch

~H. Matsﬁda, S. Ido* and I. Kéwakami
Department éf Physics
College of Science and Technology
and o
Atomic Energy_Resear;h Institﬁte

Nihon University, Tokyo, Japan

Presented at the Workshop on '"3D MHD
Studies on Toroidal Devices'", Oct. 19-21,

© 1981, Oak Ridge National Laboratory

§1." Introduction

This report summarized the computational studies on .
reversed field pinch. Main effort in this report concentrates
on the setting up phase of the reversed field pinch of TPE 1R
of Electrotechnical Laboratory, Tanashi, Tokyo, which is one of
the programmed (aided) and fast reversal of toroidal field,
time scale being the order of Alfvén time scale. - Non-linear

evolution of high n mode is also described.

* Present Address, Institute for Laser Engineering, Osaka

University, Osaka, Japan
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§2, Models

The model of computation is described by a set of non-
linear MHD equations. The plasma is a single fluid. The elec-
tric field, E » is given by simple Ohm's 1law, E+Vx3B =*ﬁ§.

The thermal conduction, a = - k grad T, and the energy loss term,
L = - p(r/a)z/TL, where Ty ® 1 usec, are inciuded.

The numerical method is somehow modified ICED ALE, where
the position, X , the velocity; v , and the magnetic field, B ,
are defined at the vertices of quadrilateral mesh, while the
density, n , the temperature, T , the preésure, P , the electric
field, E , and the current, 3 , are defiend at the center of the
quadrilateral. The plasma is bounded by the cylindrical conduct-
ing shell.

In 2D simulation, initially, the plasma has constant density
and temperature, confined by the toroidal magnétic field, and at
rest. The plasma at the wall is at rest throughout computation.
The toroidal field at the wall begin to_decrease at some instant
(~ 2 usec), and finally reversed. The poloidal field, which is
initially vanishing, start increasing because of increasing of
the toroidal plasma current, which reaches the maximum value at
some instant ( - 4 usec), and then crowbered.

For the 3D simulation, we start computation from the state
with the Bessel function model for the magnetic field, and with
non-vanishing pressure, on which some perturbations of m = 1 and

n > 0 modes are imposed.
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§3. The 2D simulation.

We investigate the setting up of the reversed field configu-
rations by the F-6 diagram and the profiles of magnetic fields
and of currents.

For general references, wé first consider the case where
the resistivity,'ﬁ , is classical. Results are shown in Fig. 1.
The fields are flat .around axis, so that the currents are peaked
near the wall. These show the diffusion is poor in this case,
suggesting n must be anomalous. The F-6 diagram is shown in
Fig. 2. Simulation points go down along the Bessel function
model line. After the reversal of field, the 6 values stay near
871.2.

The result of computation with the pure classical resistivity
showed that the plasma profiles are notin agreement with the
experimental ones, and the plasma must be more resistive. . We
examined the resistivity which is anomalous and isotropic.. The
profiles of the magnetic fields are also shown in Fig. 1. The
diffusion of the magnetic fields are observed. However, the
F-6 diagram shows. the failure of setting up of equilibrium of
reversed field configuration for this case. The 6 values grows
indefinitely.

These two cases of computation suggest that the resistivity
is anomalous at the setting up phase. However, the anomalous
resistivity fails to sustain reversed field configuration. We
note that at the setting up phase, the current has a large
perpendicular component to the maghetic field, while the current
is almost parallel to the magnetic field (force free configura-

tion). We conjectured that the 7 is not isotropic, and the n,
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is classical and the n,is anomalous. The conjecture is con-

D

fiemed as shown Figs. 1-4. The plasma is almost force free and
the 6 value remains at 1 $6 s 2 for long time.

We have assumed that the anomaly is of the Chodura ‘type.
We examined the other.type of anomaly, such as the Bohm anomaly,
and found that the anomaly has little effect on the diffusion.
We must note that we are investigating the fast MHD processes.

The anomaly we have assumed is not used in the joule heat-
ing, but is included in the diffusion term of the magnetic field.
When we included the anomaly in the joule heating, an anomalous
heating of the plasma near the wall was found, and the resistiv-
ity became so small and the diffusion was also small. The
resulting profiles are not in agreement with the force free
configuration. Thus, we are thinking thatlthe anomaly -do not
come from collisions. The anomalous diffusion may be some 2D

projections of 3D MHD activity.

§4. The 3D simulation
In the 3D simulation, the periodic boundary condition along

the axis is assumed. The pressure is initially assumed to be

sinusoidal, p P, cos(mr/2a). Upon this quasi-equilibrium,
small perturbations of (m, n) mode are imposed. The resistivity
is constant throughout computation and over whole plasma region.

The parémeters given in this way correspond to the magnetic

in

Reynolds number, S 5 x 10° and the safety factor, q = 0.154 to

- 0.042.

The evolution of kinetic energy is shown in Fig. 5. The
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vorteces are formed corresponding té the (m, n) values. For

m =1 and n ¢ 5, we could not observe the growth of kinetic
energy; showing non-linear stability. For high n modes, n > 10,
the plasma is initially stable, showing the decreaée of kinetic
energy. However, it suddenly ;hows rapid growth of kinetic

energy. For intermediate values of n , we have not yet analysed

complicated behaviors of perturbations.
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Fic, 1 PROFILES OF TOROIDAL FIELD, BT,'AND POLOIDAL
FIELD, BP, AT 10 us FOR cLASSICAL N (----),
ANOMALOUS n (-+=<-), AND CLASSICAL N, AND

ANOMALOUS N, (—),

<



Fic, 2 F-8 DIAGRAM FOR CLASSICAL n (----), ANOMALOUS n (-:-.-), AND

CLASSICAL n, AND ANOMALOUS n; (——) ,

€7¢



Fic., 3

PROFILES OF PRESSURE, TOROIDAL AND POLOIDAL FIELDS, AND
TOROIDAL AND POLOIDAL CURRENTS AT 5 HS

%ee



Fic. 4 PROFILES OF PRESSURE, TOROIDAL AND POLOIDAL FIELDS, AND
TOROIDAL AND POLOIDAL CURRENTS AT 15 us
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Abstract of presentation at the US-Japan Theory Workshop on
3D-MHD Studies to be held in Oak Ridge, Tennessee on October
19-21-, 1981. ' :

A 3D MHD ALGORITHM FOR SIMULATION#*
by '
Torkil H. Jensen and Ming S. Chu
General Atomic Company

San Diego, California

Computer simulation of plasma dynamics has become important since
it has been realized that strict stability of simple MHD equilibria
against instabilities in the resistive MHD model may not be required
for fusion plasmas. Simple axisymmetric.tokamak plasmas for example,
which are unstable to tearing modes, have shown an ability to relax
to nearby, nonaxisymmetric equilibria which are more stable than the
original axisymmetric plasmas. One role of computer simulation is
therefore to search for such more stable.equilibria; another is to
assess if these more stable configuratioms are stable enough to be.
of interest for fusion reactors. Since such configurations presently
appear too complicated for analytical treatment, the numérical approach

seems necessary.

A fusion reactor plasma may, in the approximation of resistive
MHD, exhibit dynamical behavior with timescales ranging from the
Alfvén time scale (“—10-'7 sec) to the resistive time scale
(~103 sec). Classical transport phenomena, which here are assumed
not included in the resistive MHD description, may give rise to
dynamical phenomena on the time scale of the necessary energy confine-
ment time (~1 sec). Therefore, in the simple resistive MHD

e . : -7 <
description, phenomena of interest have timescales from 10 to 1 sec.
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In the common approach to the simulation problem the finite mass
density of the plasma is taken into account. Such simulation codes
have been'able successfully to exhibit phenomena similar to those
observed experimentally(l). Dynamical phenomena such as sawtootﬁ
oscillations and disruptions appear similar in experiments and in
simulations, and almost stationary (but rotating) equilibria with
complicated configurations found in experiments show striking similar-
ities to those found using simulation codes. This suggests that the

MHD model is reasonably realistic.

One limitation in the usefulness of existing simulation codes
stems from tﬁe finite computer time available. Therefore, there is
~ a need for a search for alternative approaches. We are suggesting
an approach in which inertial forces are neglected entirely, i.e.
the ratio between the resistive and the Alfvdn time scale, S, is
infinite instead of S~1010 for a fusion reactor. With this assump-
tion, the linear growth, of for example a tearing mode, cannot be

simulated since the growth rate is infinite. Very similar phenomena

R
(a/A)ZTRfl, where a is a characteristic dimension of. the plasma, A

may, however, be simulated with growth rates of a/A T or

is the grid distance and 1, the resistive time, T E‘az/n where n is

R

the plasma resistivity. The slower growth rate m§§ correspond to the
case of a singular surface, the faster to that of a singular line
(hyperbolic axis). This approach, where inertial forces are neglected
may be considéred an extension to three dimensions of the two dimen-

@)

sional code of Grad
The basic idea of the suggested approach is given elsewhere(B).
The numerical advance of a state is done in two steps; one step may
be termed an ideal MHD step, the other a resistive step. For the
ideal MHD step, the ideal MHD constraints are observed, i.e. the
change of the vector potential is everywhere perpendicular to the
magnetic field, the number of particies in a fluxtube is conserved,

and the pressure follows the adiabatic law. Within these constraints
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one seeks the state of lowest energy. This state of lbwest energy

is an MHD equilibrium and it can be shown that the suggeste& algo-
rithm- (which is similar to the one used in the Cﬁodura code(A)) always
converges exponentially toward a stable MHD equilibrium (in the ideal
MHD sense). The resistive step consists of changing everywhere the
component of the vector potential parallel to the magnetic field
whereby the ideal MHD constraints are changed. This change is pro-
portional to the component of the current density in the direction

of the magnetic field, to the plasma restivity and to the length of
the time step. The state after this resistive step is not an MHD
equilibrium, but the subsequent ideal MHD step will find a (the)

nearby (stable) MHD equilibrium with the same constraints.

One may expect (hope) that a simulation in this (S = «) approxi-
mation will carry the plasma through similar configurations as those
found from a simulation in which inertial forces are taken into
account. The main difference may be that fast dynamics are not
accounted for accurately in the § = « simulation, since slow dynamics
are independent of inertial forces. One may expect that a simulation
code in which the effects of inertial forces are neglectéd may require
only a relatively coarse grid and relapively_liﬁtle computer time.

It appears difficult to test the validity of these expectations by

other means than direct comparison of code results.
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AGENDA

US-JAPAN THEORY WORKSHOP ON

3-D MHD STUDIES FOR TOROIDAL DEVICES

Monday, October 19, 1981

OCTOBER 19-21, 1981

Oak Ridge, Tennessee

Registration, Ridge Room, Holiday Inn

Welcome

" "3-D MHD Equilibrium," H. Weitzner

8:00 - 9:00°
9:00 - 10:15
10:15 - 10:30
10:30 - 12:00
12:00 - 1:00
1:00 - 3:15
3:15 - 3:30
3:30 - 5:00
6:30 - 7:30

Tuesday, October 20, 1981

8:00 - 9:15
9:15 - 10:15

10:15 - 10:30
10:30 - 12:00

12:00 1:00
1:00 - 3:15

COFFEE BREAK
"Beta Limits for Torsatrons," 0.>Betanqourt

"MHD Equilibrium and Stability of Straight Helical
Systems,”" K. Hanatani

LUNCH
"Computation of Inverse Magnetic Cascades,” D. Montgomery
"Theoretical Optimization of Stellarators," J. Niirenberg

"Resistive Modes in Stellarator-Tokamak Configurations,"
H. R. Hicks

COFFEE BREAK

"Limiting Beta of Stellarators with No Net Current,"
D. Monticello

"Variational Solutions to the Three-Dimensional Inverse
Equilibrium Problem in Toroids,”" A. Bhattacharjee

RECEPTION

Registration

"A Review of Three Dimensional Resistive Magnetohydro-
dynamic Calculations,'" J. Killeen

COFFEE BREAK

"MHD Calculations for Toroidal Devices - Aims and
Methods," J. Wesson

"Tokamak Current Disruptions Due to Impurity
Radiation Cooling," T. Amano

"Major Disruption Process in Tokamak,'" T. Takeda
LUNCH

"3-D Nonlinear Resistive Studies of High Beta PDX
Discharges," W. Park

"Internal Disruption in High Bp Tokamak," T. Takeda
"Resistive Modes in a High Beta Tokamak," J. A. Holmes

N
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Tuesday, October 20, 1981 (Contd.)

3:15 - 3:30
3:30 - 5:00

COFFEE BREAK

"Particle MHD Code Applied to Combressible High Beta
Plasma and Fast Magnetic Reconnection,'" F. Brunel

"Properties of the Ideal MHD m = 1 Mode in
Tokamaks,'" J. Ramos

Wednesday, October 21, 1981

8:00
9:15

10:15
10:30

12:00

9:15
10:15

10:30
12:00

1:00
3:15

3:30
4:30

5:00

Registration

"3D MHD Simulations of Spheromak Formation,"
T. Sato

COFFEE BREAK

"Three-Dimensional MHD Computations for RFP and FRC
Plasmas,” D. D. Schnack

"A Spectral-Finite Difference Algorithm for Three
Dimensional Incompressible MHD," A. Aydemir

LUNCH
"3-D Finite Beta Equilibria for EBT," L. W. Owen

"Finite Element Method for 3-D MHD Simulation,"
I. Kawakami

"Setting up Phase of Reversed Field Pinch,”
I. Kawakami

"A 3-D MHD Algorithm," T. H. Jensen
COFFEE BREAK '

"Particle Simulation of Ion Heating and Current
Generation due to the Localized Lower Hybrid Waves,"
H. Abe

Discuss Next Workshop
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