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i x  

ABSTRACT 

A generalized depletion perturbation (DPT) theory formulation for  

1 ight water reactor ( L W R )  depletion problems i s  developed and imple- 

mented into the three-dimensional LWR nodal code SIMULATE. T h i s  

development applies the principles of the original derivation by 

14. L. Williams t o  the nodal equations solved by SIMULATE. The present 

formulation i s  f i r s t  described in d e t a i l ,  and the nodal coupling meth- 

odology in SIMULATE i s  used t o  determine par t ia l  derivatives o f  the 

coupling coeff ic ients .  

new DPT options available t o  the user are  discussed. 

accuracy and the appl icabi l i ty  o f  the new DPT capabi l i ty  t o  LWR design 

analysis i s  examined for  several LWR depletion t e s t  cases. 

The modifications t o  the original code and the 

Finally, the 

The cases range from simple s t a t i c  cases t o  a r e a l i s t i c  PWR model 

for  an e n t i r e  fuel cycle. 

peaking, and peak nodal exposure. 

w i t h  respect t o  perturbations of the various types o f  cross sections 

was a l so  investigated.  

c ien ts  fo r  d i f fe ren t  responses were examined and compared. 

Responses o f  i n t e re s t  included Keff, nodal 

The nonlinear behavior o f  responses 

The time-dependence o f  the sens i t i v i ty  coe f f i  - 

Comparison o f  DPT resu l t s  fo r  these examples t o  d i r ec t  calculations 

reveals the limited appl icabi l i ty  of depletion perturbation theory t o  

LNR design calculations a t  the present. 

r e s t r i c t ions  are  discussed, and several methods which m i g h t  improve the 

computational accuracy of DPT are proposed for  future research. 

The reasons fo r  these 





I .  INTRODUCTION 

General Comments 

Obtaining the maximum energy production from the uranium fuel i n  

l i g h t  water reactors  (LWRs) before removing the fuel from the reactor 

core i s  a primary concern of the commercial nuclear power indus t ry .  

Wi th  the escalat ing costs  for  a11 forms o f  energy and the shortage o f  

resources w i t h  which t o  produce the energy, improvement of the uranium 

u t i l i za t ion  efficiency of the LWR fuel cycle has both economic and 

resource management incentives. 

study i s  the improvement of fuel loading and s h u f f l i n g  programs. 

One of the most important areas under 

Designing optimal fuel loading patterns requires many expensive 

Since these calculations are  usually s imilar  i n  computer calculat ions.  

nature,  they a re  prime candidates fo r  solution by a perturbation theory, 

or s e n s i t i v i t y  analysis ,  approach. 

replaces many r epe t i t i ve  calculat ions w i t h  a s ingle  reference calcula- 

t i o n  

adjo n t  calculat ion,  i s  then used w i t h  the  sens i t i v i ty  coef f ic ien ts  

obta ned by t h i s  type of method to  predict  changes i n  the reactor 

performances for  any number of changes i n  the reference design without 

performing any further cost ly  d e s i g n  calculat ions.  

coeff ic ients  a r e  determined from the forward and the ad jo in t  solut ians  

and from appropriate par t ia l  der ivat ives .  They measure the r e l a t ive  

importance o f  various design parameters and control variables t o  a 

cer ta in  reactor system response. 

A perturbation theory approach 

T h i s  reference calculat ion,  which contains b o t h  a forward and an 

These sens i t i v i ty  

1 
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The use of perturbation theory methods has become more widespread 

fo r  s t a t i c  reactor analysis problems i n  recent years. 

amount of a t tent ion has a lso been given t o  extending these methods t o  

time-dependent cases. 

s e n s i t i v i t y  theory depletion analysis through the development o f  coupled 

adjoint  equations t o  account fo r  variations i n  the neutron and nuclide 

f i e l d s  a r i s ing  from variations i n  the i n i t i a l  conditions and  the nuclear 

data.  Solving these adjoint equations backwards in time yields  sensi- 

t i v i t y  coefficients which r e l a t e  the change i n  a cer ta in  system response 

of i n t e r e s t  (e.g, ,  K e f f )  a t  the f ina l  time t o  changes i n  design pararn- 

e t e r s  o r  nuclear data a t  the i n i t i a l  time. 

to  study the effects  of changing different  design parameters without 

recalculating the forward equations each time. T h i s  can r e su l t  i n  large 

savings i n  computing costs ,  especially i f  very many forward calculations 

An increasing 

Will iamsl has demonstrated the appl icabi l i ty  of 

One then has the capabili ty 

a re  required, w i t h  a minimal loss i n  accuracy. 

Scope and Organization 

The objectives o f  this work a re  ( 1 )  t o  develop the depletion 

adjoint  equations consistent with depletion perturbation theory fo r  the 

three-dimensional LWR nodal analysis code SIMULATE,? ( 2 )  t o  implement 

these equations in to  SIMULATE and make the necessary modifications to 

allow f o r  the solution of these equations in a manner consistent with 

the solution of the forward equations, and ( 3 )  t o  verify and evaluate 

the modified code by comparing r e su l t s  obtained from the solution of the 

depletion adjoint  equations w i t h  r e su l t s  obtained by d i r e c t  calculations.  

The accomplishment o f  these objectives i s  covered i n  the remainder 

o f  t h i s  report. Section I 1  reviews the basic principles o f  perturbation 
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theory and presents the system o f  equations which a re  adjoint to  the 

forward equations solved by SIMULATE. In  Section I 1 1  the derivatives 

needed for  the Taylor Series approximation of the changes i n  the nodal 

coup1 i n g  coeff ic ients  a r e  developed. The resu l t s  of several depletion 

perturbation cases a re  compared t o  d i r ec t  calculations in Section IV. 

Conclusions drawn from this work and suggestions fo r  future work are 

presented i n  Section V.  



11. DEVELOPMENT OF THE GENERALIZED AND DEPLETION A D J O I N T  
EQUATIONS FOR .._ SIMULATE 

Review o f  -- Perturbation T h e o E  -. 

One i s  often interested i n  conlputing the change i n  a reactor 

response such as the effect ive multiplication factor  caused by a change 

in the composition o f  the core design. For small changes or  "perturba- 

t i ons , "  i t  i s  possible t o  do th i s  without performing another complete 

c r i t i c a l i t y  calculation by applying perturbation theory techniques t o  

approximate the response change i n  terms o f  the original calculation. 

To be t t e r  understand the  basic  principles o f  perturbation theory, 

The one-group c r i t i c a l i t y  equation i s 3  l e t  us study a simple example. 

I 
- V  D(F)o+(F) +- Ca(F) = w&(F)~(F) 

which can also be written i n  operator notation 

1 M$ = K Fa 

4 
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The ad jo in t  o f  an operator H (denoted a s  H*) i s  defined by the equation3 

<$,H$> = <@,H*~J> + boundary conditions ( 2 . 3 )  

where < > s ign i f i e s  the inner product o f  the quant i t ies  contained there- 

i n .  The boundary conditions i n  Eq. (2.3) a r e  generally zero, 

Suppose there i s  a small perturbation i n  the macroscopic absorption 

cross sect ion,  aIa(r), caused by the addition of a lumped burnable 

poison. Then the perturbed cross section i s  

The c r i t i c a l i t y  equation for the perturbed system i s  

s ince n&(F) will cause a d i r e c t  change i n  the M operator and  an ind i rec t  

change in  the f l u x .  

t o  the perturbed absorption cross sect ion.  

We will  now attempt t o  predict  the change i n  K due 

We now define the adjo in t  f l u x  as the solution o f  the ad jo in t  o f  

E q .  (2 .2)  

where i t  i s  easy t o  show t h a t  K* = K .3  

Multiplying E q .  ( 2 . 4 )  by the ad jo in t  f l u x  and taking the inner product 

y i  e l  ds 
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Using the adjoint  property, one obta ins  

<@*M$’> = <$’M*@*> 

1 1 - Q*FQ’> = ST <Q’F*$*> K , 

Mu1 t i p l y i  ng E q .  (2 .5)  by the perturbed f lux and taking the inner product 

yields  

Substi tuting these equations into 

<@*AM$’> = [& - i) <@*F$ 

or  

E q .  (2.6),  one obtains 

’> 

All terms on the r i g h t  hand s ide of Eq. ( 2 . 8 )  a r e  Known, w i t h  the 

exception o f  the perturbed f l u x .  Equation ( 2 . 8 )  can be expanded 

. . .  = <$*AM$> + <@*AMA$> - <@*AM$> ___-_ <@*FA$> ..I_ - 
<@*F$> <@“F$> <@*F@>T ( 2 . 9 )  

For small perturbations, second and higher order terms can be neglected 

and we obtain the  following approximation f o r  f i r s t  order (or l i n e a r )  

perturbation theory, 

- <@*AM@> = ___- 
<Q*F$> * 

(2.10) 
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nuu t 

f o r  small perturbations o f  K near 1 ,  so 

(2.11) 

From th i s  simple example one can see t h a t  perturbation theory can 

be a useful tool i n  computing response changes fo r  small perturbations 

i n  a reactor core design. 

Formulation o f  Generalized Adjoint Equations f o r  SIMULATE 

SIMULATE solves a one-group eigenvalue equation which can be 

written i n  matrix form as2 

(M- AE) - s =  0 (2.12) 

where M.,L - -... E nodal coupling coeff ic ients  which a r e  complicated functions 

o f  nodal macroscopic crass  sections 
7 
I A E the eigenvalue = -- 

Keff 

_- S r- the f i s s ion  neutron source density. 

The macroscopic cross sections a re  i n p u t  t o  SIMULATE as  two group crass 

sections (Table 2.1) which SIMULATE t h e n  collapses in to  a s e t  of  one 

group parameters, a s  will  be shown l a t e r  i n  this section. The nodal 
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Table 2.1. Two-Group Macroscopic 
Cross Sections Input t o  SIMULATE 

Ident i f i cation Macroscopic 
Number Cross Section 

coupling coeff ic ients  a r e  calculated then by any one of several options 

i n   SIMULATE^ 

( 1 )  Coarse mesh diffusion theory ( C M D T )  

( 2 )  Modified coarse mesh diffusion theory (MCMDT o r  PRESTO) 

( 3 )  FLARE4 equivalent 

( 4 )  Diffusion theory with Taylor Series expansion ( R O C S ) .  

T h i s  work deals only w i t h  the f i r s t  method, coarse mesh diffusion theory 

The CMDT and MCMD'T methods a r e  the more widely used options Secwse they 

are  much nmre general i n  nature than FLARE o r  ROCS (FLARE requires 

extensive user famil iar i ty  and ROCS i s  1 imi ted t o  two-dimensional 
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cubical node problems). Coarse mesh diffusion theory was chosen for 

this work because i t  can be used for  both two-dimensional and  three- 

dimensional calculat ions,  whereas MCMDT can n o t  always be used for  two- 

dimensional problems. 

SIMULATE has been modified in t h i s  work t o  a lso solve the adjoint 

o f  E q .  ( 2 . 1 2 )  

(E* - E*) ... I s* = 0 (2.13) 

The adjoint  matrix operators M* - and __ F* a r e  determined by reversing the 

coupling of the coeff ic ients .  

a r e  equal t o  zero, the adjoint matrix operators a re  the transposes o f  

the  matrices. However, the boundary conditions are  n o t  equal to zero 

for  FJ and in some core configurations (see Appendix A for  d e t a i l s ) .  

The solutions o f  Eqs. (2 .12 )  and (2.13) can be used t o  calculate  

When the boundary conditions i n  Eq. ( 2 . 3 )  

t h e  f i r s t  order approximation o f  a change in K e f f  caused by some 

perturbation. 

i s  

The exact solution o f  Eq. (2.12) for  the perturbed case 

o r  

Negl e c t i  ng second order terms, one obtains 



1 0  

M u l t i p l y i n g  t h i s  equat ion  by s* and m u l t i p l y i n g  Eq. (2 .12)  by AS - and 

s u b t r a c t i n g  one f rom t h e  o t h e r  g ives  

By t h e  a d j o i n t  p r o p e r t y ,  t h e  f i r s t  term on t h e  LHS o f  t h e  equat ion  

i s  equal t o  t h e  RHS, and the  equat ion  reduces t o  

or  

1 
(2.14) 

Once SIMULATE has so lved Eqs. (2.1 2) and (2.13) ,  t h e  s o l u t i o n s  can be 

used i n  Eq. (2.14) t o  c a l c u l a t e  t h e  f i r s t  o r d e r  approx imat ion o f  t h e  

change i n  Keff for  any g iven A M  - and A F .  - 

I C  a l l  o f  t h e  nodes i n  a p a r t i c u l a r  problem do n o t  have t h e  same 

volume, then t h e  a d j o i n t  source - S* i n  each p a r t i a l  node must be weighted 

by t h e  r e l a t i v e  volume o f  t h a t  node b e f o r e  s o l v i n g  Eq. (2.14).  For 

example, i n  t h e  two-dimensional q u a r t e r  core  problem i l l u s t r a t e d  i n  

F ig .  2.1, t h e  a d j o i n t  source for node 1 must be m u l t i p l i e d  by For  

nodes 2 - 8 and 9, 17, 25, 32, 39, 45, and 50, t h e  a d j o i n t  source i n  

each node must be m u l t i p l i e d  by 7. This  volume w e i g h t i n g  i s  necessary 

s i n c e  Eq. (2.14) i s  e s s e n t i a l l y  an i n n e r  p r o d u c t  over  Ihe  volume as i n  

Eq, (2 .10) .  

1 

1 

The changes i n  t h e  nodal c o u p l i n g  c o e f f i c i e n t s  i n  Eq. (2.14) due 

t o  a p e r t u r b a t i G n  i n  some design parameter can be approximated by a 

f i r s t - o r d e r  T a y l o r  Ser ies expansion 



I 

F ig .  2.1. Quarter Core w i t h  Half-Node Boundaries 
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(2,15)  

(2 .16)  

where P i t h e  des ign parameter t h a t  i s  changed. 

The d e r i v a t i v e s  i n  Eqs. (2.15) and (2.16) a r e  d e r i v e d  i n  Sec t ion  

I11 f o r  coarse mesh d i f f u s i o n  theory .  Combining Eqs. (2 .14) ,  (2 .15) ,  

and (2.16), one can o b t a i n  t h e  f i r s t  o r d e r  approx imat ion o f  t h e  e f f e c t  

o f  any des ign parameter change on Kef f .  

P r e d i c t i n g  changes i n  responses o t h e r  than Keff w i t h  p e r t u r b a t i o n  

theory  r e q u i r e s  t h e  s o l u t i o n  o f  t h e  genera l i zed ,  or f i x e d  source, 

a d j o i  n t  equat i on6 

(M* - AE*) ... - r* = - Q* , (2.17) 

where - Q* i s  def ined t o  be or thogonal  t o  t h e  fo rward  source 

s T Q * = O  , (2.18)  
- .  

and X i s  t h e  e igenvalue o f  t h e  homogeneous equat ion.  

been m o d i f i e d  t o  s o l v e  E q .  (2 .17) ,  u s i n g  t h e  method o f  successive 

a pp r o x  i mat i on s 

SIMULATE has a l s o  

where t h e  s u b s c r i p t  n i s  t h e  i t e r a t i o n  index .  
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Some care must be exercised i n  solving Eq. (2 .17) ,  because the matrix 

on the LHS i s  singular.  

"fundamental made ~ o n t a m i n a t i o n " ~  a t  the end of each outer i t e r a t i o n  

(see Appendix B )  

A routine has been added to  sweep out the 

s* . IC 

- r* = 
1 7 - n  

To predict  the change i n  some response r a t i o  

- Q* i s  set  equal t o  6 

o r  

Substi tuting Eq. (2 .21 )  i n to  Eq. (2.17) yields  

The forward eigenvalue equation f o r  a perturbed case i s  

(2.19) 

(2 .20 )  

(2.21) 

which previously has been shown t o  have the f i r s t  order approximation 
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blul t ip ly icg  t h i s  equation by - r* and  E q .  (2 .17)  by AS- and subtracting one 

from the other gives 

The term containing n x  has vanished because - I‘* i s  orthogonal t o  _ -  F, S. 

f i r s t  two terms in t h i s  equation will  cancel by the adjoint  proper t y ,  

and the equation reduces to  

The 

since 

For a perturbed case, the f i r s t  order approximation of the change 

in  the response r a t i o  R i s  

- aR a R  
A R = - A H + - A S  . a H  - - aS - - 

Calculating the f i r s t  term on the RHS o f  the equation 
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aR 
a& - and subst i tut ing the expression for  -AS,  one obtains 

(2 .22)  

The f i r s t  term on the RHS o f  E q .  (2 .20)  accounts for  the d i r ec t  e f f ec t  

of the perturbation, while the second term i s  the f i r s t -o rde r  general- 

ized perturbation theory approximation of the indirect  e f f ec t  ( i  . e . ,  the 

change i n  - S )  of the perturbation. 

mated by Eqs. (2.15) and (2.16),  respectively.  

Once again, A M  .. and af __ can be approxi- 

As an i l l u s t r a t i v e  example, l e t  us define a response r a t io  for  the 

r e l a t ive  power peak i n  a node. The response r a t i o  i s  

- m -  - - power peak i n  node m 
* S  to ta l  power R E H  

-TOT - 

where 

- I 
- 

and 

HTOT 

and  

vi = 
K =  

"m K l f / v l f  fo r  node m 

0 for  a l l  other nodes 

V i  K l f /v l f  f o r  a l l  nodes 

volume o f  node i 

energy released per f i ss ion  (MeV) 

(2.23) 
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Because S i s  t h e  f i s s i o n  neut ron  source dens i ty ,  i t  must be 

d i v i d e d  by "If t o  o b t a i n  t h e  f l u x .  

f i x e d  source i s  

Using Eq. ( 2 . 2 3 )  t o  d e f i n e  R, t h e  

accord ing  t o  Eq. (2 .21) .  

can s o l v e  Eq. (2 .17)  f o r  - r*. 

peak i n  node m may be computed f rom Eq. (2.22) f o r  any number o f  p e r t u r -  

b a t  i ons . 

Once t h i s  equat ion  i s  so lved f o r  Q*, SIMULATE 

Then t h e  change i n  magnitude o f  t h e  power 

Therefore,  SIMULATE can s o l v e  the  K - a d j o i n t  E q .  (2.13) and then 

c a l c u l a t e  t h e  s e n s i t i v i t y  c o e f f i c i e n t  f o r  some design parameter p 

(2 .24)  

which can then be used t o  c a l c u l a t e  t h e  approximate change i n  Kef f  due 

t o  a p e r t u r b a t i o n  i n  t h e  va lue  o f  t h e  design parameter p 

( 2 . 2 5 )  

Likewise, SIMULATE can s o l v e  t h e  g e n e r a l i z e d  a d j o i n t  Eq. (2.17) and then 

c a l c u l a t e  the  s e n s i t i v i t y  c o e f f i c i e n t  f o r  some design parameter p 
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which can then be used t o  compute the approximate change i n  the defined 

response due t o  a perturbation i n  the value o f  the design parameter p 

(2.25) 

Thus, the above equations provide the basis for  SIMULATE t o  perform 

generalized perturbation theory (GPT) calculations f o r  s t a t i c  (time- 

independent) cases. 

-I Development - o f  Depletion Adjoint -- Equations for  __I-.- SIMULATE 

For burnup-dependent (time-dependent) cases, one may use a 

variational principle t o  develop the depletion adjoint equations such 

as Williams1 used t o  derive the original depletion perturbation theory 

(DPT) equations. 

involved, i t  i s  only outlined here. 

in Appendix C .  

Since the development of these equations i s  rather 

The en t i re  development i s  presented 

There a re  f ive governing equations solved by SIMULATE for  the case 

of no thermal-hydraulic feedback. These equations a re :  

(1  ) Forward Eigenvalue Equation 

(Mi - +LE+) zi = O , (i = O,Iy...yt) (2.27) 

where the subscript  - i denotes timestep i and R i s  the f inal  

t i  mes t e  p ; 

( 2 )  Exposure ( B u r n u p )  Equation 

E = E .  + (R..A.S.) Ti (i = 0,1, ... , a )  -i+l -1 1 ==I+ (2.28) 
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where - Ei 5 nodal exposure (GWD/T) a t  exposure s tep i 

Ti z length (GWD/T) o f  exposure s tep  i 

(Ri*h&) = Pi 5 re la t ive  nodal power a t  exposure s tep  i 

[see Eq. (2 .31) ] ;  

( 3 )  Cross Section Fitt ing Equation 

= f X ( E . ,  Cl, ..., CK ,...) ( i  = 0 , l  , . . . , a )  -1 - -1 

(x = 1,2,"..,9) (2.29) 

where cx = nodal macroscopic cross section o f  type x a t  
-1 

exposure s tep  i (see Table 2 . 1 )  

fX = polynomial expression fo r  1" f i t t e d  against  exposure - - 

E .  and control variables C, ,. . . ,&, . . . -1 

C -K E concentration of Kth control variable (e.g.  boron 

concentration) ; 

( 4 )  Source Normalization Equation 

i = (0,1, ... a )  i h . * S .  = PI 
-1 -1 

where h. E f iss ion source normalization vector -1 
- - 0, Y V 2 Y . .  ' V m )  

V . 
J 

N i  5 magnitude o f  integrated f i ss ion  source 

re la t ive  volume o f  node j 

(2.30) 

m e total  number o f  nodes; 
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(5)  Power Normalization Equation 

Ri h.A.S. = h . P .  - - N i  -1-9-1 -1-1 ( i  = 0 3 1 ,  ..., R )  (2.31) 

where Ri : power normalization constant f o r  exposure s t ep  i 

f o r  conversion of (%) node 
A. E diagonal matrix of 
==l 

nodal f i s s ion  source t o  r e l a t ive  nodal power. 

The source and power normalizations y ie ld  an average value of 1 .O f o r  

b o t h  S.  and P .  f o r  each fu l l  node. -1 --1 

These five governing equations a r e  then used t o  form the functional 

R 

+ 1 a i ( h . - S  -1 - - N i )  
i =O 

(2.32) 

X 
where the parameters z?, E?, s .  a i ,  and bi a r e  as ye t  unspecified. 

-1 -1' 

The f i r s t  order estimate f o r  nK i s  then obtained, and a f t e r  several 

s implif icat ions,  the f ina l  conditions ( i = R )  f o r  the end o f  cycle ( E X )  

keff  response a re  determined to  be 
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a = O  
R 

b , = O  . 

The S* i n  Eq. (2.33) corresponds t o  S* i n  Eq.  (2.13). 

c o n d i t i o n s  f o r  a response r a t i o  R a t  t he  f i n a l  time ( i = Q )  

The f i n a l  - - 

all L- 0 

b Q - O ,  

(2.33) 

(2.34) 

(2 .35)  

(2 .36)  

(2 .37)  

(2 .38)  

(2.39) 

(2.40) 

(2.41) 

(2 .42 )  

( 2  -43)  

where R = R ( & , t i Q ) .  
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The depletion a d j o i n t  equations fo r  a l l  preceding exposure s teps  

(icR) a re  ident ical  f o r  both the EOC keff  response and the f ina l  time 

response r a t i o  R: 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

The ?* in E q s .  (2.38) and (2.44) correspond t o  - r* in E q .  ( 2 . 7 7 ) .  

For a1 1 exposure s teps  ( i=O,1  , . . . , R )  , E?; i s  the importance o f  the 

exposure a t  exposure s tep  i ,  and 2; i s  the cross section sens i t i v i ty  co- 

e f f i c i e n t  fo r  the macroscopic cross section of type X a t  exposure s tep  

i .  

Once Eqs. ( 2 . 3 3 )  - (2 .37)  and (2.44) - (2 .48)  have been solved, one 

can predict  the  e f f e c t  of any combination of  perturbations a t  the 

beginning of cycle (BOC)  on the EOC kef f  response. 

t he  control var iables ,  the change i n  the EOC kef f  response i s  approxi- 

mated by 

For perturbations in 
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(2.49) 

where 

A 9  
94 c c 

--1 K i = O  x=l  

= sens i t i v i ty  coeff ic ient  f o r  control variable K. 

For perturbations i n  the nodal macroscopic cross sections (e.g.  changes 

i n  enrichment o r  lumped burnable poison), the change i n  the EOC k e f f  

response i s  approximated by 

(2 .50)  

When Eqs . (2.38) - (2.48) have been solved, one can predict  the 

e f f e c t  o f  any combination o f  perturbations a t  BOC on a f inal  time 

response r a t i o  R. 

f inal  time response i s  approximately 

For control variable perturbations, the change i n  the 

(2.51) 

For perturbations i n  the nodal macroscopic cross sections,  t he  change in 

t h e  f inal  time response i s  
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(2.52) 

SIMULATE has been modified t o  solve the depletion adjoint  Eqs. 

(2.33) - (2.48).  

( s t a t i c )  perturbation theory (GPT) and depletion perturbation theory 

I t  now contains the capabi l i t i es  of both generalized 

(DPT). For perturbations of s t a t i c  cases,  Eqs. (2 .25)  and (2 .26)  may be 

used to predict  the e f fec ts  of  the perturbations, and f0r burnup-  

dependent cases, Eqs. (2 .49)  - (2.51) may be used t o  predict  the ef fec t  

on EOC responses due to BOC perturbations. 



111. APPROXIMATING THE CHANGES I N  THE NODAL COUPLING COEFFICIENTS 

SIMULATE Nodal Coup1 i ng Methodol ow 
I n  SIMULATE, each node o f  t h e  r e a c t o r  model i s  a r e c t a n g u l a r  

p a r a l l e l e p i p e d  w i t h  a square base ( F i g .  3.1), i . e . ,  t h e  X and Y 

dimensions o f  each node a r e  equal w h i l e  the  Z dimension i s  independent.  

Every f u l l  node i n  t h e  model i s  t h e  same s i z e .  Each node i s  coupled t o  

t h e  ne ighbor ing  nodes on each o f  i t s  s i x  faces.  

reactor-  boundary ( c o r e - r e f l e c t o r  i n t e r f a c e ) ,  and thus has no ne ighbor ing  

node on one o r  more o f  i t s  s i x  faces, the  node i s  coupled t o  i t s e l f  on 

each boundary face  by t h e  a lbedo f o r  t h a t  boundary, 

I f  a node l i e s  on a 

( 3 . 1 )  

where Jiout i s  t h e  one group c u r r e n t  l e a v i n g  node i and Jiin i s  t h e  one 

group c u r r e n t  r e f l e c t e d  i n t o  node i. 

The nodal  c o u p l i n g  c o e f f i c i e n t  mat r ices  M - and - .F a r e  seven-s t r iped 

m a t r i c e s  then, s i n c e  each node i s  coupled t o  i t s e l f  and i t s  s i x  ad jacent  

neighbors.  For a two-dimensional problem, t h e  m a t r i c e s  have f i v e  non- 

zero s t r i p e s  because t h e  nodes have no neighbors above o r  below them- 

se lves.  The m a t r i x  equat ion  presented i n  the  prev ious  s e c t i o n  

( 3 . 2 )  

can be w r i t t e n  as a s e t  o f  coupled equat ions f o r  each node i2: 

24 
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( 3 . 3 )  

where t h e  summation over  j i s  a s imple sumnation over  t h e  s i x  nodes 

ad jacen t  t o  node i. The f i r s t  term on t h e  LHS o f  E q ,  (3.3) i s  t he  

d iagona l  c o u p l i n g  c o e f f i c i e n t  o f  M ._ f o r  node i, and t h e  second term 

represents  t h e  o f f -d iagona l  c o u p l i n g  c o e f f i c i e n t s  of M - f o r  the s i x  

ne ighbor  nodes o f  i. 

equa t ion  i s  t h e  diagonal  c o u p l i n g  c o e f f i c i e n t  o f  - f o r  node i, and t h e  

second te rm represents  t h e  o f f -d iagona l  c o u p l i n g  c o e f f i c i e n t s  of - f o r  

t h e  s i x  ne ighbor  nodes o f  i. 

Likewise, the f i r s t  te rm on t h e  RHS o f  the 

The nodal c o u p l i n g  c o e f f i c i e n t s  then a r e  d e f i n e d  as f a l l o w s :  

I Mij = - - r .  v Kj J j i  

Fii = Ki (1 - ai ri 1 v. .)  
1J j 

F~~ = K .  a. r .  v , 1 J J j i  

(3 .5)  

(3.6) 

(3.7) 

where Ki = K, o f  node i and t h e  parameters ai , 

d e f  i ned . 
, and vij w i l l  now be 
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Fi r s t  we examine the parameter ai, which i s  the r a t io  o f  neutrons 

which enter  node i from node j and are  absorbed i n  node i to those which 

enter  node i f r o m  node j and behave like neutrons born i n  node i .  

i s  s ta ted  mathematically as2 

This 

-x B 
a -  i - pji ( 3 . 3 )  

where Bj i  z the d i r ec t  absorption probability of a neutron crossing i n t o  

i from j 

I the scat ter ing probabili ty o f  a neutron crossing i n t o  i from vj i  

j .  

These two probabi l i t ies  are  re la ted to  the ref lect ion probability o f  a 

neutron crossing in to  i from j ,  p j i ,  which was defined i n  Eq. (3 .1) ,  

P j i  + Bji + p j i = l  . ( 3 . 9 )  

All three o f  these quant i t ies  a re  assumed t o  be properties o f  node i 

only. 

The parameter Ti i s  defined a s 2  

1-0 i 
1 a.+o ’ r .  5 - 

l i  
(3.10) 

where ai z nan-escape probabili ty.  The parameter v i j  i s  defined as2 

r i .  ( l - p i  .) 
v =  i j  1-pi j  p j i  9 

(3.11) 



28 

where r i j  = probabili ty tha t  a neutron leaking from node i will leak 

into node j ,  so tha t  c r i j  = 1 ,  and p i j  i s  defined i n  Eq. 

(3 .1) .  

Therefore, i f  node i s  a cube, the probabili ty o f  leakage o u t  a l l  faces i s  

equal, and r i j  = 1/6 f o r  a l l  s i x  faces.  

considered to  be a property o f  only node i .  

The probabili ty r i j  i s  a l s o  

In an attempt t o  be t te r  understand the significance of these 

coupling parameters, l e t  us examine a reactor node (Fig. 3 . 2 )  using a 

response matrix approach.* 

where a uniform incoming current i s  imposed and l e t  v denote each o f  the 

other faces where outgoing par t ia l  currents occur in response t o  the 

incoming current a t  u .  

f i  ned 

Let u denote one nodal face ( x ,  y ,  o r  z )  

A "trans-emmission factor , I ta  tUV, i s  then de- 

out out A out 
- - -2 V+ = J"- Av - - --.-L Jv+ = Jv-  A" JoUt A 

t u v  in i n  i n  A JiY AU J u -  Au Ju-  Au J u +  u 

- .. outgoing par t ia l  current on v face ...._ - incoming current on i - f a c e  ¶ (3.12) 

where A i s  the area and J i s  the current per u n i t  area.  

The ref lect ion of the incoming current plus the outgoing par t ia l  current 

in  the direct ion opposite t ha t  of the incoming current i s  contained in 

a not h e r t e rrn8 

.out .out 
J J u+ - a =U-=--. 

+ pu ' uu J i  n i n  
U-  U+ 

(3.13) 
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where p u  i s  the ref lect ion probabili ty.  

each direct ion (a,,, tuUy and tu, for  v = x,y,z f u )  and three 

direct ions (x ,y ,z ) ,  o r  twelve fac tors  fo r  each node. 

the number o f  factors  which must be stored f o r  each node, i t  i s  assumed 

t h a t  tu, can be separated i n t o  two independent functions p, and rv 

There a r e  now four factors  f o r  

In order to  reduce 

(3.14) 

where 

pu - a"U - t u u  

and 

r = 1 .  2 1  V v=x ,y , z 

The number o f  factors  has now been reduced from twelve t o  s i x :  

direct ionless  property),  pu(u=x,y,z) and rv (v=x,z).  

x and y dimensions a re  equal , and therefore ,  r = r  

t ( a  

Recall t ha t  the 

x Y '  

We now seek t o  cor re la te  the parameters p j i ,  r i j ,  a i ,  T i  t o  t ,  

r By t h e i r  def ini t ions , p u v y  v '  

and i t  has been shown i n  reference (8)  tha t  
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or ,  a f t e r  some manipulation, 

In  addi t ion,  i t  has been shown in the same derivation t h a t  

2 1  c A 
u=x,y,z v=x,ysz t u v  u 

c ( I - P J  A, 
t =  

u=x ,y , z 

and 

P 

t A - - v=x,y,z tvu  v 
r’ tC ( I - P J  A” 

v=x,y,z 

(3.15) 

(3.16) 

(3.37) 

(3.18) 

For the  non-escape probabili ty 0 ,  we will use t he  Wigner rational 

a p p rox i ma t i on 

4v 
l a  A 

’+la 
4v c r =  (3.19) 

where V i s  the node volume and A i s  t h e  node su r face  area.  

If solutions can be found for tuv and auU3  we can then solve f o r  

Ti, and vij in order t o  obtain the nodal coupling coefficients as a i’ 
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functions of  the collapsed one group cross sections.  

solve fo r  tu" and auu  using coarse mesh diffusion theory (CMDT). 

We now proceed t o  

Determination of the Nodal Coupling Coefficients Using 
Caarse Mesh Diffusion Theory- 

In  coarse mesh diffusion theory, the value used for the f lux,  @, in 

the integral solution of the one group diffusion theory equation 

- JendA - 1 La (l-Km) 4 dV = 0 
A V 

(3.20) 

i s  the node center f lux,  $ c . 2  I n  t h i s  equation 3 represents the net 

outward current from the node surface area A ,  n i s  the outward normal 

vector t o  A, and  V i s  the node volume. 

summations rather than integrals  

Eq. (3 .20)  can be written using 

6 C J j  i n  A j  - 1 JYut A j  - 1, (l-Km) 9, V = 0 , 
j = l  j =1 

(3.21) 

where J i n  a n d  Jout a re  the par t ia l  currents going i n  and coming o u t  face 

j of the node, respectively. The par t ia l  currents are  approximated by 

Fick's Law:3 I 

j j 

+ 
where J, and JX are  the forward and  backward currents in the X direct ion,  

respectively,  D i s  the diffusion coeff ic ient ,  and 
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(3.23) 

i s  the par t ia l  derivative o f  the f l u x  w i t h  respect t o  X approximated by 

coarse mesh methodology for  a node with dimensions a ,  b ,  and c ( F i g .  

3 . 2 ) .  Note t h a t  $(O,b/2,c/2) i s  the f l u x  a t  the  center of the X = 0 

face. 

We now proceed t o  solve f o r  the node center f l u x  $c by applying a 

u n i t  current t o  the X = 0 face and zero current t o  a l l  other faces. 

the X = 0 face, 

On 

(3.24) 

i s  obtained by subs t i tu t ing  Eq. (3.23) in to  Eq. (3.22).  

center o f  X = 0 face i s  

The flux a t  the 

Likewise, on the opposite face (X=a), 

and 

( 3 . 2 6 )  
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Solutions f o r  the fluxes on the other four faces can be obtained 

i n  a similar manner. 

the par t ia l  currents as functions of $c:  

These a re  then used i n  Eq. (3.22) to  determine 

a/4D - 1 + @,/2 
JOUt - - -  

X- 1 + a/4D 

o u t  = J O u t  - 4 p 2  
- 

JZ+ Z- 1 + c/4D 

(3.27) 

( 3 . 2 8 )  

(3.29) 

(3.30) 

Equations (3.27) - (3.30) a re  then subst i tuted in to  E q .  (3.21) t o  obtain 

the solution fo r  the center node flux2 

2 
a ( I  +aT4D) 

1 7- + Ca(l-Km) c u l+u/4D 
+c = 

u=a,b,c 

(3.31) 

T h i s  i s  actually GCx because i t  i s  the flux result ing from a u n i t  

incoming current i n  the X-direction. 

QCz result ing from incoming currents from the other two directions a re  

obtained by subst i tut ing b and  c ,  respectively,  f o r  a in the numerator 

of E q .  (3 .31) .  

The node center fluxes @ and 
CY 

Next, l e t  us examine the ref lect ion and trans-emission factors.  

Substi tuting E q .  (3.27) i n t o  Eq. (3.13) gives 
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(3.32) 

The trans-emission fac tors  a re  obtained by subs t i tu t ing  Eqs. (3.28) 

(3.29) and (3.30) i n t o  E q .  (3.12):  

o u t  
Jx+ Ax - o u t  - - 
J;: Ax 

(%XI2 
'x+ 1 -t a/4D 

p- - - 
txx - (3.33) 

(3.34) 

(3.35) 

The auu  and tuv fac tors  f o r  the y and z directions can be obtained in  

the same manner. The general expressions for  these f a c t o r s  are :3  

u/4D - 1 -+ aCu/Z 
1 + u/4D a =  u u  

and 

I I @ C U I 2  -- 
t u v  1 t u/4D A, 

(3.36) 

(3.37) 

From these expressions we can solve for  the ref lect ion probabili ty 
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(3.38) 

These solutions a re  then substi tuted into Eqs. (3.17) and (3.18) t o  

obtain 

and 

1 
~qi-GpTiJ- F = C  

u=a , b ,c 

(3.39) 

(3.40) 

(3 .41)  

I t  i s  now possible t o  compute the nodal coupling coeff ic ients  

d i rec t ly  from the one group collapsed cross sections (lay Km, D) and the 

nodal dimensions using Eqs. (3 .4)  - (3.7),  (3.10), (3 .11)y  (3.16),  

( 3 . 1 9 ) ,  and (3.39) - (3.41).  

sections in terms of the two group cross sections which are input to 

SIMULATE will then give the nodal coupling coeff ic ients  as functions o f  

the two group cross sections.  

Expressing the collapsed one group cross 

The two group  equations fo r  an i n f i n i t e  system are used to 

determi ne Km: 

(3.42) 
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(3.43) 

Then, 

Using the following expression for  the flux rat io '  

(3.44) 

(3.45) 

where 7 is  the thermal leakage correction ( T  i s  u n i t y  for  no leakage 

between nodes) 

.. 
00 

(3 .46)  

The absorption cross section i s  simply collapsed from the two 

group absorption cross sections 

Substitbting Eq. (3.45) in to  (3.47)  yields  

(3.47) 

(3.48) 
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F i n a l l y ,  t h e  one group d i f f u s i o n  c o e f f i c i e n t  i s  d e f i n e d  as2 

D = CaM’ (3.49) 

where 

where 

Thus, by combining Eqs. (3.46) and (3.48) - (3.50) w i t h  the  

equat ions mentioned p r e v i o u s l y ,  one can express t h e  nodal c o u p l i n g  co- 

e f f i c i e n t s  as f u n c t i o n s  o f  t h e  two group i n p u t  cross sec t ions .  

now use these equat ions t o  d e r i v e  t h e  p a r t i a l  d e r i v a t i v e s  o f  t h e  nodal 

c o u p l i n g  c o e f f i c i e n t s  w i t h  respec t  t o  t h e  two group cross s e c t i o n s .  

We s h a l l  

The P a r t i a l  D e r i v a t i v e s  o f  the  Nodal Coup1 i n g  C o e f f i c i e n t s  
w i t h  __I-- Reseect t o  t h e  Two Group Cross Sect ions 

I n  S e c t i o n  I1  o f  t h i s  r e p o r t ,  i t  was shown t h a t  t h e  p a r t  a1 

d e r i v a t i v e s  o f  t h e  nodal  c o u p l i n g  c o e f f i c i e n t s  were needed t o  compute 

t h e  s e n s i t i v i t y  c o e f f i c i e n t s  f o r  bo th  t h e  s t a t i c  case [Eq. ( 2  24) ]  and 

t h e  burnup-dependent case [Eqs. ( 2 . 3 4 ) ,  (2.40), and (2.47) ] .  Since t h e  

r e l a t i o n s h i p  between t h e  nodal  c o u p l i n g  c o e f f i c i e n t s  and the  c ross  

s e c t i o n s  have been e s t a b l i s h e d  i n  the  preceding p a r t  o f  t h i s  s e c t i o n ,  

i t  i s  now p o s s i b l e  t o  d e r i v e  t h e  p a r t i a l  d e r i v a t i v e s .  
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Expressing the nodal coupling coef f ic ien ts  as functions of the two 

group  cross sect ions was performed in a three step "hierarchy'' as 

i l l u s t r a t e d  in Table 3.1. A reverse procedure will  be followed, 

beginning a t  the bottom of the hierarchy ( the  one g roup  cross sections 

as  functions of the two group cross sect ions)  and moving toward the 

t o p ,  i n  deriving t h e  par t i a l  der ivat ives .  

Table 3.1. Hierarchy fo r  Nodal Coupling Coefficients 
as  Functions of Two-Group Cross Sections 

Intermediate Coupling Coefficients 

- ~ 1 ,  zy g = f 3  (K, E> [Eqs. (3.101, (3.16),  

(3.19) (3.39)-(3.41 ) I  Y 'r 

I One Group Cross Sections 

[Eqs. (3 .46) ,  (3 .48)- (3.50) ]  

-I__. 

We will  begin by taking der ivat ives  o f  the one group absorption 

cross section from Eq. (3.48). Throughout  the der ivat ives ,  T will  be 

assumed t o  be constant. Then the der ivat ives  are:  
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From Eq. (3.46), the  derivat ives  o f  K are:  
m 

(3.51) 

(3.52) 

( 3 . 5 3 )  

(3 .54)  

(3.55) 

(3.56) 

( 3 . 5 7 )  

(3.589 
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Using Eqs. (3.49) and 3 - 5 0 ) ,  we obtain the following derivatives:  

(3.59) 

(3.60) 

(3.61) 

( 3 - 6 2 )  

- - -  - la (T - M2) ( 3 . 6 3 )  
aD 

Ctr, 

Having derived the par t ia l  derivatives o f  the one group cross 

sections w i t h  respect t o  the two group cross sections,  we now proceed 

t o  determine the part ia l  derivatives o f  the intermediate coupling 

coeff ic ients  (a, r ,  V )  w i t h  respect to  the one group cross sections.  

Combining Eqs. (3.16), (3.19) and ( 3 . 3 9 ) ,  we obtain the following 

equation fo r  ( x i :  

(3.64) 

where a = 4V/S. 
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The d e r i v a t i v e s  o f  ai a r e :  

- -  - i [1 +----.-.--- 
(Fa- 1 )  

ani 

aC, I a  

- 

where 

2c -[ 18(DX/4D)2)F  + 

aD DX 1 + DX/4D [DZ( 1 + DZ/4D) IT  
4 (DZ/4D)  

( 3 . 6 5 )  

( 3 . 6 6 )  

( 3 . 6 7 )  

( 3 . 6 8 )  

and DX i s  the nodal dimension i n  the X and Y d i r e c t i o n s  and DZ i s  

the nodal dimension i n  the Z d i r e c t i o n .  

The d e r i v a t i v e s  o f  r i  are determined from Eqs. ( 3 . 1 0 )  and ( 3 . 1 9 ) :  

ari - r i  (2) 
a K  m ( a i  + Ui) 

- - _  

---+ (Oi - 1 ) 2  T )  

a i  + o j  

ari 
..._....._ - 

a la 

r i  (2) 
Cai + 

( 3 . 6 9 )  

( 3 . 7 0 )  

( 3 . 7 1 )  
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Since v i j  i s  dependent on the cross sections o f  both i and j ,  we 

will take two s e t s  o f  derivat ives  - one for vij and one f o r  v j i .  

Equazions (3.11),  (3 .38)  and (3.40) a re  combined t o  obtain the follow- 

i ng der ivat ives  : 

where 

1 
a D i  Di [7u/4Di - 1 )  t (u/4Di f l r ]  

ap . . 1 J l  = -'% 

and 

ar.. 9Fi 
-...L!- = 2(r..)2 u [a. - (1 +DZ/4Di) 'q 
a D i  15 1 1 

DX i f  node j l i e s  i n  the horizontal plane with i 
DZ i f  node j l i e s  in the ver t ica l  plane w i t h  i and = 

Note t h a t  v i j  i s  not a funct ion of I', o r  Km. 

(3.72) 

(3.73) 

(3.74) 

( 3 . 7 5 )  

The f ina l  s tep  i n  the hierarchy o f  derivat ives  i s  taking the 

der ivat ives  of  the nodal coupling coef f ic ien ts  with respect to  t h e  

one group cross sections.  The def in i t ions  of the nodal coupling 

coef f ic ien ts  given in Eqs. ( 3 . 4 ) - ( 3 . 7 )  a re  used t o  derive the 

following equations. For the coef f ic ien ts  of - M we obtain:  
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a M . .  M 

Ki a Ki 
1J = 

- -  aMji - k(:) 
a l a ,  r i  

+ r i  I(%) aDi 

j 

a M . .  

aDi j aDi 
J J  = (avji) 

(3 .76 )  

( 3 . 7 7 )  

(3.78) 

( 3 . 7 9 )  

( 3 . 8 0 )  

( 3 . 8 1 )  

(3.82) 

( 3 . 8 3 )  

( 3 . 8 4 )  

(3.85) 



45 

For the c o e f f i c i e n t s  o f  F=we ob ta in :  

A = F  aF [t (z) + {  ($)I a Ki j i  

aFi - - 0  

a la  1 

( 3 . 8 6 )  

(3.87) 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

( 3 . 9 3 )  

(3.94) 
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(3.95) 

Now t h a t  t h e  d e r i v a t i v e s  o f  t h e  nodal c o u p l i n g  c o e f f i c i e n t s  w i t h  

r e s p e c t  t o  t h e  one group c ross  s e c t i o n s  have been e s t a b l i s h e d ,  the  

d e r i v a t i v e s  of  t h e  nodal  c o u p l i n g  c o e f f i c i e n t s  w i t h  r e s p e c t  t o  t h e  

two group c ross  s e c t i o n s  may be computed by u s i n g  t h e  cha in  r u l e  o f  

c a l c u l u s .  

d iagonal  c o u p l i n g  c o e f f i c i e n t  Mii w i t h  r e s p e c t  t o  the  thermal absorp- 

t i o n  cross s e c t i o n  1 

For example, i n  o r d e r  t o  o b t a i n  t h e  d e r i v a t i v e  o f  t h e  

one would c a l c u l a t e  i t  as fo l lows:  
a2 

aMi aMii aKi aMii a)& aMii aDi 
+-- -- + -LI 1_-.- 

- - (3.96) 

A l l  o f  t h e  terms on the  RHS o f  Eq. (3.96) a r e  known. 

d e r i v a t i v e  of t h e  nodal  c o u p l i n g  c o e f f i c i e n t s  w i t h  r e s p e c t  t o  t h e  two 

group i n p u t  c ross  s e c t i o n s  can be computed i n  a s i m i l a r  manner. 

Every o t h e r  

We have s u c c e s s f u l l y  def ined the  r e l a t i o n s h i p  between nodal 

c o u p l i n g  c o e f f i c i e n t s  and t h e  two group c ross  s e c t i o n s  which a r e  i n p u t  

t o  SIMULATE u s i n g  response m a t r i x  methods and coarse mesh d i f f u s i o n  

t h e o r y  Eqs. (3 .1 ) - (3 .50) .  Us ing these d e f i n i t i o n s ,  we have t h e  

d e r i v e d  t h e  p a r t i a l  d e r i v a t i v e s  o f  t h e  nodal c o u p l i n g  c o e f f i c i e n t s  

w i t h  r e s p e c t  t o  t h e  two group c ross  s e c t i o n s  Eqs. (3 .51) - (3 .96) .  

these equat ions and t h e  ones developed i n  Sec t ion  11, we have 

e s t a b l i s h e d  t h e  f o u n d a t i o n  f o r  SIMULATE t o  per fo rm d e p l e t i o n  p e r t u r -  

b a t  i o n  c a l c u l a t i o n s  . 

With 



IV. COMPARISON OF GPT AND DPT RESULTS TO 
DIRECT CALCULATIONS 

The purpose of this section is  t o  examine the val idi ty  o f  depletion 

perturbation theory f o r  a LWR nodal code by comparing the DPT resu l t s  

w i t h  those obtained by performing d i r ec t  calculations w i t h  SIMULATE fo r  

several d i f fe ren t  pertubation cases. 

problems t o  a r e a l i s t i c  PWR model fo r  an en t i r e  fuel cycle. 

i n t e re s t  included K e f f ,  nodal power peaking, and nodal exposure. Most 

cases studied were concerned w i t h  the Keff response, because i t  i s  the 

most simple for  performing DPT calculations and i t  i s  o f  more general 

i n t e re s t  than any other s ingle  response. 

The cases range from simple s t a t i c  

Responses o f  

Throughout this section, the 

percentage e r ror  is calculated as 

DPT value - Direct value 
Error (DPT) = Direct value 

S ta t i c  Cases 

The resu l t s  of several s t a t i c  cases are examined f i r s t ,  i n  order 

that  the accuracy of the GPT results may be compared t o  the accuracy 

o f  the DPT r e su l t s  for  several burnup-dependent cases, which will be 

presented l a t e r  i n  t h i s  section. T h i s  will allow one to  see the 

differences between using perturbatior: theory t o  predict  a change i n  

a response due to  a perturbation a t  a spec i f ic  point i n  time and a 

response change due t o  a perturbation over a period a f  time. 

The f i r s t  s t a t i c  case i s  a simple quarter core niodel of  eleven 

(11)  fuel assemblies. A two-dimensional top view of the fuel load- 

i n g  pattern i s  shown in F i c .  4.1. For this problem, a three-dimen- 

sional model was used. Each assembly was broken i n t o  s i x  axia l  nodes 

o f  equal s i ze ,  yielding a to ta l  of 66 nodes. The inner assemblies 

47 
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ORNL- DWG 80-18172 

\ 

LOW ENRICHMENT FUEL ASSEMBLY 
(-2.0 w/o U235) 

LOW ENRICHMENT FUEL ASSEMBLY 
WHERE PERTURBATIONS OCCUR 

HIGH ENRICHMENT FUEL ASSEMBLY n (-3.0 W I O  U235) 

Fig. 4.1. Two-Dimensional Top View o f  GPT T e s t  Model 1/11 Core 
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(shaded i n  F ig .  4.1) contain IOW enrichment fuel (approximately 2.8 W/O 

U235) and the outer assemblies contain h i g h  enrichment fuel (approxi- 

mately 3.0 w/o U 2 3 5 ) .  

was 0.9994. 

The value of  K e f f  f o r  the reference case 

Perturbations of 5%, lo%,  and 15% were made t o  VI and 
f 1 

i n  node (2,2,4), the fourth axial node i n  the fuel assembly 
V C f  2 

which i s  cross hatched i n  F i g .  4 .1 .  Sensi t ivi ty  coeff ic ients  from 

the reference case were used t o  then predict the changes i n  both 

and the power peak i n  node (2,2,4). The re su l t s  a r e  given i n  Kef f 
Table 4.1. T h e  r e su l t s  for  the Keff  response are  obviously more 

Table 4.1 Comparison o f  GPT Results 
w i t h  Direct Results 

% Error 
LK/K  AK/ K 

% Perturbation AK,K 

Cross Sections (GPT 1 o f  Fission (GPT) (Direct)  

5 0.0017 0.0018 -5.56 

10 0.0036 0.0039 -7 64 

15 0.0055 0.0063 - 1 2 . 1  

(Reference val ue : keff  = 0.9994) 

Power peaking i n  node (2,2,4) 

% Error 
AR/ R 
( G P V  

% Perturbation nR,R AR/ R 
of  Fission 

Cross Sections 
(GPT) ( D i  r e c t  ) 

5 0.1263 0.1340 -5.75 

10 0.2523 0.2900 -13.0 

15 0.3814 0,4742 -19.6 
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accurate t h a n  those for the power peaking response. 

bation theory predicts changes i n  Keff  more accurately t h a n  changes i n  

other responses, because Keff i s  a more global response, for which 

there i s  usually a cancellation of errors  due t o  competing e f fec ts .  

Generally, pertur- 

Two other perturbations were made t o  the reference problem. The 

fuel enrichment was changed from the lower enrichment t o  the higher 

enrichment in: 

assembly ( 2 , 2 ) .  This second change i s  equivalent t o  swapping a low- 

enrichment fuel bundle for  a high-enrichment fuel bundle i n  location 

( 2 , Z ) .  The GPT resu l t s  are compared t o  the resu l t s  o f  d i rec t  calcu- 

la t ions in Table 4 .2 ,  and the magnitude o f  the perturbations of the 

individual cross sections for these two cases are  a l s o  l i s t e d  there.  

A l t h o u g h  the error  i s  ra ther  large,  i t  does not seem so unreasonable 

for  perturbations of t h i s  magnitude. 

( a )  node (2,2,4) only and ( b )  in the en t i r e  fuel 

The remaining cases are  adapted from Three Mile Island Unit 1 

data for  i t s  f i r s t  fuel cycle.g These problems const i tute  r e a l i s t i c  

examples for  a commercial pressurized water reactor ( P W R ) .  A two- 

dimensional top view o f  the fuel loading p a t t e r n  f o r  t h i s  1/8 core 

model i s  shown in Fig. 4 .2 .  The f i r s t  s e t  of perturbations which 

will be examined for  t h i s  model i s  individual perturbation case5 of 

5% and 10% to  each cross section type in fuel assembly 13. 

for  these calculations i s  a two-dimensional model which has a 

reference value fo r  Keff  of 1.00377. 

o f  these perturbations i s  calculated by two d i f fe ren t  methods. The  

f i r s t  method uses the conventional GPT s ens i t i v i ty  coeff ic ients :  

The model 

The changes i n  Keff  for  each 
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Table 4.2. Comparison of GPT Results w i t h  
Direct Results fo r  C h a n g i n g  Enrichment 

One node 0.0075 0.0092 -18.5 

Fuel Assembly 0.0258 0.0339 -23.9 

(Reference value: k e f f  = 0.9994) 

Perturbation i n  Cross Sections 
for Changing Enrichment 

Cross Section % Perturbation 

Ctr +2.17 

la -5.37 

V C f l  +35.96 

Itr2. +1.53 

7 +8.07 -a 1 

Jf2 +24.06 

Equation (4.1)  i s  taken from Eqs. (2 .47 )  and (2 .50) .  

simply the f i r s t -order  Taylor Series approxima t i o n  for the following 

equation: 

T h i s  equation i s  
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T h i  i s  the second method, w h i  h we will ca l l  the "semi-direct method." 

This method i s  n o t  ordinar i ly  used for  two reasons. 

coeff ic ients  for  --- M and 1 _-  are  not usually calculated because o f  the 

large volume of computer storage required. 

o f  M and 1 _ _  a r e  n o t  usually known, because they would have t o  be calcu- 

la ted from the perturbed cross sections i n  a separate calculation. 

Since i t  was necessary to perform the d i r ec t  calculations for  the per- 

turbed cases i n  order to  determine the GPT e r ro r ,  the perturbed values 

o f  - and - F were calculated,  too. By comparing the e r ror  of the semi- 

d i r ec t  (SD)  method w i t h  the e r ro r  o f  the conventional GPT method, one 

can determine the additional e r ror  incurred by the f i r s t -order  Taylor 

Series approximation. The two-dimensional model was used i n  order to  

reduce the amount o f  computer storage required for  the exp l i c i t  calcu- 

l a t ion  of the matrix coupling coef f ic ien ts .  

F i r s t ,  the matrix 

Second, the perturbed values 

The GPT and SO r e su l t s  f o r  the 5% and the 10% perturbations a r e  

compared t o  the d i r ec t  calculations i n  Table 4 . 3  and Table 4 .4 ,  

respectively. 

two tables  reveal t h a t  Keff  has a nearly l inear  behavior w i t h  respect 

t o  v I f l ,  while i t  behaves i n  a very nonlinear manner w i t h  respect t o  

la, and v l f 2 .  Perturbing 1 
The data show t h a t  although these two perturbations are the la rges t  i n  

magnitude, they produce the smallest changes i n  the response. 

the perturbations of 1 

Examining the e r rors  f o r  each cross section type i n  these 

o r  ltrz has only a s l i g h t  e f f ec t  on Kef f  
t r  1 

In f a c t ,  

create  such small changes i n  Keff t h a t  they tr.2 
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cannot be measured accurately from d i r ec t  calculations,  because they 

are  the same order of magnitude a s  the convergence c r i t e r ion .  

reason, the SD resu l t  i s  considered t o  be the correct  value for 1 
perturbations in Tables 4.3 and 4.4.  

For t h i s  

tr2 

Comparing the GPT and SD errors  shows tha t ,  in general, the Taylor 

Series approximation [Eq.  ( 4 . 1 ) ]  introduces a second er ror  t h a t  i s  

approximately equal to the f i r s t  e r ror  which appears i n  the SD method. 

I n  the case of  1 , i t  introduces a n  error  which i s  much larger  t h a n  the 

original e r ror  i n  the SD method. Another unusual phenomenon in the 
r l  

case i s  the s l i g h t  decrease in  the GPT e r ror  when the perturbation Ir- 1 

i s  increased from 5% t o  10%. 

The same d i r ec t  calculations for the 10% perturbations were used 

to t e s t  the a b i l i t y  of the GPT and SD methods t o  predict changes in the 

power peaking response in fuel assembly #3. 

resu l t s  i s  tabulated in Table 4 .5 .  The value o f  t h i s  response for  the 

reference case was 1.390. The semi-direct method gives bet ter  resu l t s  

in every case except 1 and 1 . The only case where there i s  a 

s ignif icant  difference between the two methods i s  t h a t  of 1 
again, the e r rors  in the power peaking perturbations are  generally much 

larger  than those in  the Keff perturbations, since the power peaking 

response i s  a localized, and  therefore, more nonlinear response. 

The comparison of these 

t r  1 a1 
. Once 

a 2  

A ser ies  o f  10% perturbation cases was also performed for  a three- 

dimensional model o f  the reactor core pictured in F i g .  4 . 2 .  Each 

assembly was divided into seven ( 7 )  axial nodes of equal s ize .  This 

model contained 203 fueled nodes and  required too much computer storage 

t o  use the senii-direct method. The GPT calculations were performed and 



Table 4.5. Comparison o f  GPT and SD Results t o  Direct Calculations 
f o r  10% Perturbations of a 2-D Model f o r  

Power Peaking i n  Fuel Assembly #3 

Perturbed A W R  % Error 
Cross 

Section, 7" ay "( cm- } (GPT) (SD) (Direct)  (GPT) (SD) 

2.280X10-' 1 .159~1  0-3 1.088X1 0-3 1 -439x1 0 - 3  -19.4 -24.4 

8.792~4 O-@ 1 .723x1 0-2 1 .664x1 O-' 1 .799xl 0-2  -4.21 -7.50 

l t r l  
l a l  
L; 

Ea2 

0, 1 .779x1 0-3 - 9 . 8 4 7 ~ 1 0 - ~  - 9 . 6 5 0 ~ 1 0 - ~  -7.91 ~ x I O - ~  24.4 21.9 v 

5.206Xl O - h  -1 .073X10-2 - 7  .084X10-2 -1 .223X10-2 -12.2 -11.3 c 
L, f l  

7 8.448~1 a-2 9 .970~1  O m 5  9.154~1 0 .0  - - 
tr, 

6.899xl O m 3  3.71 1x1 0-2 3.354xl 0-2 3.309X1 0-2 12.1 7.37 

7 9 . 3 7 8 ~ 1 6 ~  -4 I 144x1 0-2 -4.299Xl O-' -4.964X1 0-2 -16.5 -13.4 
L"4f2 

[Reference value: R = 1.3901 
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appear i n  Table 4.6 w i t h  t h e  r e s u l t s  of  t h e  d i r e c t  c a l c u l a t i o n s .  

e r r o r s  a r e  approx imate ly  t h e  same f o r  t h e  three-d imensional  model a s  f o r  

t h e  two-dimensional model (Tab le  4.4).  

l i n e a r l y  w i t h  r e s p e c t  t o  VI 
I n  o r d e r  t o  b e t t e r  understand t h e  d i f f e r e n c e s  between t h e  l i n e a r  and 

n o n l i n e a r  behav io r  p a t t e r n s ,  a d d i t i o n a l  d i r e c t  c a l c u l a t i o n s  were p e r -  

formed f o r  +5%, -5%, and -10% p e r t u r b a t i o n s  i n  t h e  base c r o s s  s e c t i o n s  

f o r  VI and la . The Keff response a s  a f u n c t i o n  o f  v7 i s  t a b u l a t e d  

i n  Table 4.7 and p l o t t e d  i n  F ig .  4.3. 

Kef f  as  a f u n c t i o n  o f  1, . 

The 

The Kef f  response behaves most 

and most n o n l i n e a r l y  w i t h  r e s p e c t  t o  1, . 
f 1 2 

fl 2 ’f 1 

Table 4.8 and F igure  4.4 g i v e  

These r e s u l t s  c o n f i r m  t h a t  Kef f  v a r i e s  
2 

Table 4.6. Comparison of GPT Resu l ts  t o  D i r e c t  C a l c u l a t i o n s  
f o r  10% P e r t u r b a t i o n s  of a 3-D Model f o r  Keff Response 

Perturbed AK/ K % E r r o r  Cross 
Sect ion,  7 %  *IX (cm-’) ( GPT) (-i.G-- -0- 

jJtrl 2. 28OX1 O-’ 

8. 79ZX1 O W 4  

lr l  1 ,779x1 0-3 

U’j.f 1 5. 206x1 0-4 

L2 8. 448x1 O - *  

c, 7_ 6.899x1 O m 3  

Jf2 9.378x10-3 

1 

4.533x1 0-5 4.1 94x1 0-’ 8.10 

- 1 . 3 6 8 ~ 1  o - ~  - 1 . 2 5 7 ~ 1  0-3 8.85 

3 . 8 3 2 ~ 1  o - ~  4 . 2 0 4 ~ 1  0-4 -8.84 

7.983x1 O m 4  8.31 7x1 0-4 -4.02 

8.044X1 O m 6  2.995X.I Oe6 -? 

-2.623x1 O q 3  -2.161 X1 0-3  21.4 

3 . 0 6 1 ~ 1 0 - ~  3 . 6 7 1 ~ 1 0 - ~  -16.6 

tAK/K i s  so smal l  t h a t  AK’K (GPT) i s  p robab ly  more accurate than 
AK’K ( D i r e c t ) .  

[Reference va lue:  Kef f  = 1.001541 
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Table  4 .7 .  Keff vs. d r f l  

- - 
S e n s i t i v i t y  % Error i n  
C o e f f i c i e n t  GPT S e n s i t i v i t y  

( D i r e c t  ) C o e f f i c i e n t  bJf ( cm- ) M I K  
_I -_ -- -. f l  (cm-l) K e f f  

,4686 x l  0-2 1.000775 - .5200~10- -.7638X10-3 1.467 4.29 

. 4946x1 0-’ 1.001149 -. 26OOx1 0-3  - . 3904xl 0- 1.500 2.00 

.5206x10-2 1.001540 0.0 0.0 _- 

.5467“1 0-‘ 1 .001947 .261 Oyl 0-3  .4064 y1 0- 1.561 -1.99 

.5727x10-7 1.002373 .521 O Y 1  0- .831 7x10- ’ 1.594 -4.02 

[GPT S e n s i t i v i t y  C o e f f i c i e n t  = 1.5301 

Table 4.8. Keff vs.  7,a2 

S e n s i t i v i t y  % Error i n  
C o e f f i c i e n t  GPT Sensi ti v i t y  

Ala2 (crn-l) G K I  K ( D i  r e c  t ) C o e f f i c i e n t  
- 1a2 (cm-1) K e f f  

.7889X10-’ 1.003000 - .345OXlO-’ . 1458x10-’ -0.421 9 -9.93 

.8234x10-1 1.001540 0.0 0.0 

. 857gX1 0-I 1.000355 .3450;<10-’ -.1183“10-’ -. 3430 10.8 

.8924x10-’ 0.999376 .6900X1 0 - 2  - .2161”10-‘ -.3127 21 . r l  

._I_____I ----1----- 

.7544”10-’ 1.004842 -.690Ox1O1’ .3297*10-’ -0.4771 -20.5 

I_ 

- 

[GPT S e n s i t i v i t y  C o e f f i c i e n t  = -.3795] 
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almost inear ly ,  a s  assumed by generalized perturbat on theory, with 

respect to  VI 

t o  1, . 
V I f l  than f o r  1, . 
Tables 4.7 and 4.8 measure the difference between the actual s e n s i t i v i t y  

coeff ic ient  obtained from d i r e c t  cal cull a t i  ons 

, and t h a t  K e f f  varies i n  a nonlinear manner with respect 

T h u s ,  perturbation theory i s  valid over a much wider range f o r  
f 1 

2 

The e r r o r s  tabulated i n  the f ina l  column of both 
2 

and the s e n s i t i v i t y  coeff ic ient  calculated u s i n g  generalized perturbation 

thBory for  the reference case 

or 

(4.5)  

w h i c h  i s  equivalent t o  Eq. (2 .50) .  

T h e  data contained i n  Tables 4 . 7  and 4.8 a l so  provide us w i t h  the 

means to  check fo r  any e r r o r s  i n  the SIMULATE perturbation theory 

methodology fo r  calculating the GPT s e n s i t i v i t y  coeff ic ients .  

the actual s e n s i t i v i t y  coeff ic ients  for  two perturbations of equal 

magnitude i n  the opposite direct ions should give approximately the same 

value as the corresponding GPT s ens i t i v i ty  coeff ic ient .  The average of 

the V I f  

1.5305, only .03% from t h e  GPT value of 1.530. 

Averaging 

s e n s i t i v i t y  coeff ic ients  f o r  perturbations of +5% and -5% i s  
I 

The average o f  the 1 
a2 
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sens i t i v i ty  coef f ic ien ts  for  similar perturbations i s  -0.38245, hihick 

varies only 0.78% from the GPT value of -0.3795. 

conclude tha t  the sens i t i v i ty  coeff ic ients  calculated by SIMULATE a re ,  

in f a c t ,  the sens i t i v i ty  coeff ic ients  predicted by perturbation theory. 

Thus, the e r rors  in the GPT predictions fo r  A K / K  are  due en t i r e ly  t o  

nonlinear e f f ec t s  and not t o  any e r ro r  in the SIMULATE perturbation 

theory methodology. 

From this,  one can 

S i x  " r e a l i s t i c "  s t a t i c  perturbation cases were studied using t h i s  

PWR model t o  t e s t  the va l id i ty  of generalized perturbation theory for  

LWR design modifications. The f i r s t  perturbation was t o  decrease the 

lumped burnable poison ( L B P )  concentration i n  fuel assembly #12 from 

0.054 gm/in. of boron t o  0.047 gm/in. of boron. This a very small 

perturbation, a s  can be seen from the cross section changes in Table 

4.9. For small perturbations such a s  t h i s  one, perturbation theory 

should give very accurate r e su l t s ,  which i t  does, a s  shown i n  Table 4 .9 .  

The second perturbation i s  removing a par t ia l  control rod from fuel 

assembly #13. Table 4.10 shows tha t  the only s ignif icant  change i s  i n  

However, this cross section has an extremely nonlinear e f f ec t  on 

a s  was discussed e a r l i e r .  

. 
la2 

The large e r ro r  i s  consistent w i t h  the Ke ff 5 

r e su l t s  in Table 4.8. 

The next perturbation i s  the converse o f  the previous perturbation. 

I t  i s  the inser t ion of a par t ia l  control rod into fuel assembly #4 

(Table 4.11).  The changes in  the cross sections for  t h i s  case have the 

same approximate absolute values and the opposite signs as  those i n  the 

previous problem. 

tude and has the opposite sign a s  the e r ror  i n  the previous case. 

i s  a lso consistent w i t h  the data i n  Table 4.8.  

Likewise, the e r ror  i s  approximately the same magni- 

i h i s  
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Table 4.9. Decrease LBP Concentration 
i n  Fuel Assembly # I 2  

% Error A U K  
(Direct)  ( GPT) i n  GPT 

.5092x1 .5022xl 0-3 -1.37 

[Reference Value: K e f f  = 1.001541 

a x  ( G P T )  

l t r l  

J f2  

0.0 1 . 2 6 4  0-3 

-0.30 -2 28 

-0.13 0.526 

-0.07 2.28 

0.0 2 . 5 6 . ~ 1 0 - ~  

-0.56 0.465 

0.17 0.378 

The fourth and the f i f t h  perturbation cases deal w i t h  the removal 

o f  a control rod (Table 4.12) and the inser t ion o f  a control rod (Table 

4.13),  respectively. 

perturbations a s  they were fo r  the two previous cases. 

absorption is  the dominating e f f e c t ,  and causes very serious e r ro r s  i n  

predicting the changes i n  K e f f  f o r  these two cases. 

demonstrate t h a t  the va l id i ty  of perturbation theory i s  severely 

r e s t r i c t ed  for  perturbations i n  the thermal absorption due to  the strong 

nonlinearity o f  K e f f  w i t h  respect to  la2. I t  should be noted tha t  these 

The changes i n  1, are  twice a s  large for  these 
2 

The thermal 

These examples 
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Table 4.10. Remove Part ia l  Control Rod 
from Fuel Assembly #13 

A K l  K 
(Direct)  (GPT) 

% Error 
i n  GPT 

.4137x1 O e 2  .32330xlO-' -21 .9  

[Reference Value: Keff = 1.001 54) 

% aC" i x x  ( G P T )  c" I_ 

l t r ,  

la1  -2.67 -1.55 

-0.92 1 .99x1 f 3  

L-, -1 .13  0.219 

v c f, -0.52 1.53 

1tr2 0.08 4.61 X 1  O C 5  

V l f  2 

-8.29 -0.380 

1 . ? 2  0.327 

e r ro r s  would have been approximately one-half a s  great with the semi- 

d i r ec t  method. 

A general trend about the iniportance of the d i f fe ren t  cross section 

types can be observed from the sens i t i v i ty  coeff ic ients  in Tab?es 4 .9  

through 4.14. 

vlf l .  
magnitude l e s s  t h a n  the f i r s t  two cross sections.  

sections, 1 

The most important cross sections a re  usually 1 and 

The importance of Irl, la2 and V I f  a re  typical ly  an order of 

a ,  

2 

The transport  cross 

and ltr2, have a negligible e f f ec t  on Keff. The 
t r  1 
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Table 4.11. Inser t  Par t ia l  Control Rod 
i n to  Fuel Assembly i f4 

hK/ K % Error 
( D i  r e c t )  (GPT) in GPT 

- .2596x10-2 -. 3205x10-2 23.5 

[Reference Value Kef f  = 1.00154] 

% A I " '  -.I-- __I___ 

x 

0.93 9 .52x l  0-5 

C, 2.74 -1.66 

1.15 -0.051 

c 0.52 1.18 
f ,  

-0.08 2. 32x1 Om6 

9.05 -0.371 

-1 . I 1  0.272 

s e n s i t i v i t i e s  of the f i s s ion  cross sections a re  always posit ive and 

those o f  absorption cross sections a r e  always negative. The removal 

cross section generally has a posit ive s e n s i t i v i t y  coe f f i c i en t ,  b u t  i t  

can he negative occasionally (Table 4.11). 
1 

'The f ina l  s t a t i c  perturbation case consis ts  o f  two perturbations, 

replacing a 2.06 w/o enriched fuel assembly and a 2.747 w/o enriched 

fuel assembly w i t h  two 3.05 w/o enriched fuel assemblies. The cross 

section changes and the s e n s i t i v i t y  c o e f f i c i i n t s  for  each assembly a r e  

l i s t e d  i n  Table 4.14.  The greatest  perturbations i n  the cross sections 
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Table 4.12. Remove Control Rod 
from Fuel Assembly #24 

hKl , I  % Error .. 
(Direct)  (GPT i n  GPT 

- 
. 1 1 243x1 0-l  .03531XlO-l -68.6% 

[Reference Value: Kef f  = 1.001 541 

1" % A):" ax (GPT)  

-2.0 2.1 6x 1 O W 3  Ytr 1 

131 
k- 
Jf 1 

-9.00 -0.664 

3.60 0.043 

0.544 
1 

-0.92 

7 2 . 4 3  3 . 7 0 ~ 1  o - ~  
-tr 2 
c -21.52 -0.094 
-2 

4.89 0.086 

and vy i n  fuel assembly #l3, where a low enrich- Occur i n  V I f l ,  la, f 2  

inent assembly has been replaced. 

dominated by v7 

s t a n t i a l  nonlinear e f f ec t s  on K e f f .  

t ha t  the response varies l i n e a r l y  w 5 t h  respect t o  t h e  perturbed 

variables,  i t  i s  possible t o  use perturbation theory to  approximate the 

e f f e c t s  of two or more perturbations simultaneously, a s  was done fo r  

t h i s  case, 

The e r ro r  fo r  this  case i s  obviously 

and 1 , both o f  which have been shown to  have s u b -  
f 2 a2  

Because perturbaticn theory assuines 

Doing t h i s  can have the e f f e c t  o f  adding e r ro r  t o  e r ro r  or 
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Table 4.13. Inser t  Control Rod 
i n to  Fuel Assembly #22 

A U K  % Error 
I_. 

(Direct)  ( G P T F -  i n  GPT 

- .2097Xl 0-2  - .3373X1 0-2  60.9 

[Reference Value: Keff  = 1.00154] 

% A I '  

1.57 

ax (GPT) - 

-8 e 46x1 0-4 

l a  6.01 -0.929 

Crl 1.34 0.020 

Jf 1 0.93 0.700 

Ctr2 0.723 -1.62X1 

l a2  
17.0 -0.145 

J f 2  -2.61 0.108 

cancelling e r ro r s ,  depending upon the signs of .the e r ro r s  for  each 

individual perturbation e 

Burnup-Dependent Case2 

The r e su l t s  of  several burnup-dependent cases a r e  now presented i n  

order to  determine the va l id i ty  o f  depletion perturbation theory fo r  

LWRs. The model used for a l l  these cases i s  the 1/8 core P U R  model 

i l l u s t r a t e d  i n  Fig.  4 .2 .  

The f i r s t  s e t  o f  perturbations o f  a depletion problem i s  individual 

perturbations o f  10% t.o each o f  the f ive  most important cross section 
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Table 4.14. Replacing a Low Enrichment Fuel Assembly 
and a Medium Enrichment Fuel Assembly w i t h  

Two High  Enrichment Fuel Assembl ies 

% Error AK/ K 
( D i rect 1 (GPT)  i n  GPT 

1” 

.2413 x? 0- . I  546 xl  0” -35.9 

[Reference Value: Keff  = 1.003771 

Assembly #2 Assembly #13 

% 01“ a‘ (GPT) % ccx  ax (GPT) 

Itr, -0.57 2.1 5 x; 0- -0.04 1 .59x10m3 

Ca -2.11 -1 .33 3.73 -1.56 

2.95 0.433 -7.03 0.208 

6.24 1.46 24.01 1.52 

tr.2 3.32 4.32 x? 0- 0.04 3.70 ‘10- 

Fa2 -4.17 -0.289 13.04 -0.379 

v F f, 11.76 0.240 41.82 0.326 

types. 

them has v i r tua l ly  no e f f ec t .  

cycle o f  40 MWD/T, w i t h  calculat ions a t  0, 20, and 40 MWD/T. 

results f a r  the Kef f  response a t  the end  of  cycle (EOC)  a r e  compared t o  

d i r e c t  calculat ions i n  Table 4.15. 

compared w i t h  the data i n  Table 4.6 t o  rea l ize  the difference i n  

accuracy of perturbation theory for  s t a t i c  and burnup-dependent cases. 

T h e  two t ransport  cross  sections were omitted since perturbing 

The  b u r n u p  calculat ions covered a short  

The DPT 

The resu7ts i n  this tab le  may be 
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Table 4.15. Comparison o f  DPT Results to  Direct 
Calculations f o r  10% Perturbations of a 3-D Model 

from 0-40 MWD/T f o r  EOC Keff Response 

.____I_ 

Perturbed AK/ K .- % Error 
Cross Section, 1' (DPT) (Direct) i n  DPT 

- .1294X1 - ,1244X1 0-2  4.06 

.3791x10-3 .4040X10- -6.18 
L3 1 

L 
Jf 1 

1% 
Jf 2 

.8024xlO- .8577X1Om3 -6.44 

-. 2380x1 0-* -. 21 29x1 O m 2  11 .8 

.2937x1 0-2 . 3722X70-2 -21.1 

[Reference Value: Keff  = Q. 9553551 

The DPT e r r o r s  i n  Table 4.15 are l e s s  t h a n  the GPT e r r o r s  i n  Table 4.6 

except fo r  the f i s s ion  cross section, especially VI 
i n  e r r o r  o f  the thermal absorption i s  the most s ign i f icant  change, 

decreasing from 21.4% i n  the GPT case t o  11.8% i n  the DPT case. 

. The reduction 
f 2  

The 

decreased e r ro r  fo r  a depletion case i s  a common phenomenon which i s  

caused by the cancellation of errors from the terms of the d i f fe ren t  

trimes teps. 

Another set of DPT calculations were performed f o r  the EQC peak 

exposure response f o r  the same depletion problem. The s e n s i t i v i t y  

coeff ic ients  fo r  thi  s response a re  determined by set t ing 

fo r  the node w i t h  the exposure peak 
for  a l l  other nodes -7% E* ={'o 
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i n  Eq. (C.16) o f  Appendix C. Equat ipn  (C.34) then becomes 

where s'l. f EOC peak exposure sens i t i v i ty  coeff ic ient  for exposure s tep 
-1 

i and  cross section type x and 

E = peak exposure a t  the final exposure s tep.  Pi- 
The DPT r e su l t s  fo r  the same s e t  of perturbations a re  compared to 

d i r ec t  calculations for the EOC peak exposure response in Table 4.16. 

The er ror  for each one of these i s  much greater  than tha t  for  the K e f f  

response. 

buted to the f a c t  t h a t  these perturbations have only an ind i rec t  e f f ec t  

The reason for the increased amount of  e r ror  may be a t t r i -  

on the peak exposure, since i t  occurs i n  another fuel assembly. This 

type of e f f e c t  i s  more d i f f i c u l t  t o  predict  in LWRs because localized 

perturbations a r e  hardly f e l t  i n  other regions o f  the reactor.  

The r e su l t s  of several " r e a l i s t i c  cases" w i l l  now be presented t o  

t e s t  the appl icabi l i ty  of depletion perturbation theory t o  PWR design 

problems f o r  an e n t i r e  fuel cycle. These problems a l l  have a fuel 

cycle of 14,000 MWD/Ty calculated in 22 exposure s teps .  The f i r s t  t e s t  

case consis ts  o f  the same perturbation as t h a t  presented in Table 4.10, 

i .e. ,  the removal o f  a par t ia l  control rod from fuel assembly #13. How- 

ever, i n  t h i s  case the perturbation occurs throughout an en t i r e  fuel 

cycley rather  than f o r  a s t a t i c  BOC calculation. The DPT and SD r e su l t s  

for  t h i s  burnup-dependent case are  compared t o  d i r ec t  calculations i n  

Table 4.17. Notice t h a t  the DPT e r ror  i n  A K / K  i n  Table 4.17 i s  almost 

half a s  large a s  the GPT e r ror  i n  A K / K  i n  Table 4.10, The agreement o f  



Table 4.16. Comparison of DPT Results t o  Direct 
Calculations for 10% Perturbations of a 3-D Model 

from 0-40 MWD/T f o r  Peak Exposure Response 

Perturbed A E (  1,3,4) GWD/T- % Error 
Cross Sect ion,  1” ( D P T )  (Direct)  i n  DPT 

.0008 .0011 -2T. 3 

-. 0003 - .0005 -40.0 

c -. 0005 - .0007 -28.6 

.0015 .oozo -25.0 

-.0019 -. 0029 -34.5 

l a  1 

1% 
Jf2  

1 

f l  

[Reference Value: E(1,3,4) = 0.0677 GWD/T = 67.7 MWD/T] 

Table 4.17. Removal of a Par t ia l  Control Rod 

of 14,000 MWD/T 
from Fuel Assembly #13 fo r  a Fuel Cycle 

_- -. 

EOC K e f f  Response 

( DPT - r - ( D i r e c t >  ( DPT) ( S DJ--- 

__I___-- 

A U K  % Error 

. 263ZX1 0-2  . 2976xl O m 2  . 2945x1 0I2 -10.6 1.05 

[Reference Val ue : Kef = 0.9851 761 

EOC Peak Exposure Response ...._.__ 

A E  (GWD/T)  % Error 
(DPT)  (SD) - ( Direct) 7JDPT) 

-0.288 -0.320 -0.410 -29.8 -22.  c 

= E ( 1 , 7 , 2 )  = 17.861 GWD/T] 
E P  

[Reference Val ue : 
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the semidirect method approximation fo r  A K / K  with the d i r ec t  calculation 

i s  excel lent .  Once again, the DPT and the SD e r ro r s  i n  the change in 

peak exposure a re  much greater  than the e r ro r s  i n  A K / K .  This occurs 

because the peak exposure i s  a localized response, and because the 

perturbation i s  made in a d i f f e ren t  assembly than the one i n  which the 

peak exposure i s  found. The magnitudes of the cross section perturba- 

t ions  a r e  given i n  Table 4.18 for  the b e g i n n i n g  and the end o f  cycle. 

The values of the f ive  s ign i f icant  cross section sens i t i v i ty  co- 

e f f i c i e n t s  for  Keff a re  shown f o r  the en t i r e  fuel cycle i n  Figs. 4.5 - 

4.9.  

step except the f ina l  one. 

i n  EOC Kef f  i s  made a t  the EOC calculat ion,  which i s  a s t a t i c  calcula- 

t ion.  

perturbation a t  the end of cycle, since i t  i s  a response which i s  purely 

dependent on perturbations a t  previous exposure steps.  This can be seen 

by examining graphs ( F i g s .  4.10 - 4.14)  of the peak exposure sens i t i v i ty  

coeff ic ients  over the course of the fuel cycle.  

v i ty  coef f ic ien ts  for  perturbations in fuel assembly #22, where the next 

two perturbations occur. These coeff ic ients  d i f f e r  greatly in  character 

from those in  Figs. 4 .5  - 4 .9  for  the Keff  response. 

absorption cross sections will decrease the EOC exposure since they 

will increase the self-shielding of the fue l .  Increasing the removal 

o r  the f i ss ion  cross sections will increase the EOC peak exposure, since 

i t  will increase the f i ss ion  density o f  the fue l .  

These sens i t i v i ty  coef f ic ien ts  a re  almost zero f o r  every exposure 

Thus, the greatest  contribution t o  the change 

Unlike K e f f ,  the EOC peak exposure i s  not affected by a s t a t i c  

These a re  the sens i t i -  

Increases in the 

The next depletion case i s  the replacement o f  the F type fuel 

assembly (3.05 w/o and 0.054 g / i n  boron) w i t h  an A type assembly 
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Table 4.18. Cross Sectian Perturbations 
f o r  Removal o f  Part ia l  Control Rod 

from Fuel Assembly #13 

- 
BOC 

_I --_ 
Perturbed Crgss 

Section, 1 *IX (cm-9 % A C x  __ 

-0.92 l t r l  - ,2124~1 0-2  

l a1  - .2429X1 O W 3  -2  67 

- .1977~1 0-3 -1.13 

J f  1 -. 2771 x1 O”’.t -0.52 

4 r 2  .6340~10- 0,08 

- ,6821 x1 0 - 2  -8.29 a2 r 
J f 2  .1050x1 0-2 1 .12  

EQC 
l__._l_ ._.. -. - 

&rl -.2176~1C-’ -9.96 

1 -. 2762x1 O m 3  -2.70 

-. 1056x1 0-3 -0.63 

v r Z f 1  -. 9956x1 0-4 - 2 . 1 2  

Itr2 -. 51 67x1 0-3 -0 * 06 

l a 2  - .9565~1 0 - 2  -10.5 

c f 2  -. 3507x1 O V 2  -3.20 
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(2.06 w/o) i n  location #13. 

l a t i o n s  are presented i n  Table 4.19. 

approximations o f  AK/K a r e  much l a rge r  than f o r  the previous case, due 

t o  the l a rge r  perturbations of  1, , vIfl, and vlf,,  a s  shown i n  Table 

4.20. 

SD e r r o r ,  b u t  the errors have opposite signs. Thus, the e r ro r  due t o  

the Taylor Series approximation o f  the change i n  the m a t r i x  coupling 

coef f ic ien ts  i s  p a r t i a l l y  o f f s e t  by the e r r o r  due t o  l i nea r  perturbation 

The results of DPY,  SD, and d i r e c t  calcu- 

The Error i n  the DPT and SD 

2 

The magnitude o f  the DPT e r r o r  i s  only s l i g h t l y  greater than the 

theory . 
The error i n  the DPT and SD approximations o f  the changes i n  the 

EOC peak exposure a r e  a l so  larger  for th i s  case because o f  the much 

l a rge r  cross  section perturbations. 

Table 4.19. Replacing a High  Enrichment Fuel Assembly 
w i t h  a Low Enrichment Fuel Assembly f o r  a 

Fuel Cycle o f  14,000 MWD/T 

EOC Kef f  Response . 1, I 

% Error an/ K 
(DPT) (SD) (Direct)  T D P T )  ( S D )  

-. 144gX1 O-’ -. 2331 x 7  0-’ -. ’I91 3 x i  0-2  -24.3 21.9 

[Reference Value: Keff  = 0.9851 761 

EOC Peak Exposure Response 

Z Error - 
AE (GWD/T) 

(Direct]- ( DPT ) (SD) 

-1.376 -1.966 -3.009 -54.3 -34.7 

[Reference Value: E = E(1,7,2) = 17.861 GWD/T] P 
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Tab le  4.20. Cross Sect ion  P e r t u r b a t i c n s  f o r  Replac ing 
a High Enrichment Fuel Assembly w i t h  a 

Low Enrichment Fuel Assembly 

- -.._ -----I.- -- 
BOG 

Perturbed CrRss -_ 

% A C x  
__ I 

Section, 1 *IX (cm- l )  

It,, -. 3372x1 0-2 -1.47 

l a  - . 9257x1 0-3 -9.45 

h 

1% 

.1821 x1 O-'? 11.7 

Jf 1 - .1 277x1 -19.8 

Itr2 . 2384x1 0- 2.87 

-. 258ZX1 0-1 -25.4 

7 - . 3538x1 0-1 -27.2 f2  

EOC 
. - . ~  --_- 

L, -. 331 1 x1 0-2 -1.45 

'a 1 

1 . 1 635x1 0-2 11.1 

Jf 1 -.1044x10-2 -19.0 

L 3  1 

-. 3756x1 0-3 -3.54 

h r *  . 2344x1 0-l  2.74 

- . 1 87OX1 0-I -18.7 

J f2  - .3611 x1 0-l -26.0 
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Another perturbation made to  t h i s  depletion fuel cycle calculation 

i s  the removal of the lumped burnable poison in  fuel assembly #I3 a t  the 

beginning of the cycle and the inser t ion of the control rod  into t h a t  

assembly a t  8,000 MWD/J f o r  the remainder o f  the fuel cycle. The DPT 

r e su l t s  fo r  t h i s  case (Table 4 .21)  a r e  much worse than fo r  the previous 

burnup-dependent examples. 

4 . 2 2 ,  The cross section perturbations a t  the BOC, when the LBP i s  

removed, and a t  8,000 MWD/T, w h e n  the control rod i s  inser ted,  are  

r e l a t ive ly  small. 

bation a t  the EOC,  where Keff i s  much more sensi t ive,  i s  35.8%. 

ring t o  the s t a t i c  perturbation case in Table 4.13, the DPT e r ro r  f o r  

t h i s  case i s  l e s s  t h a n  the GPT er ror  for  a s t a t i c  perturbation of  only 

17.0% o f  1, . 
e r ro r  than generalized perturbation theory fo r  perturbations o f  equal 

magni tude. 

The reason fo r  t h i s  can be found in  Table 

However, the thermal absorption cross section pertur- 

Refer- 

T h u s ,  depletion perturbation theory consistently has l e s s  
2 

The e r ro r  in the semi-direct method i s  l e s s  t h a n  half t h a t  of the 

DPT approximation, and i s  only s l iqh t ly  larger  t h a n  the SD er ror  i n  the 

previous case. If the change in the matrix coupling coeff ic ients  could 

be calculated w i t h o u t  performing a d i r ec t  calculation and without 

s t o r i n g  the en t i r e  matrices in core, the accuracy o f  the depletion 

perturbation theory predictions could be great ly  improved without a 

s ign i f icant  increase in  computing cost .  This would en ta i l  writing a 

code separate from SIMULATE which could calculate  the changes i n  t h e  

coup1 i n g  coeff ic ients  without storing the zero elements o f  the matrices I 

Notice t h a t  the SD e r ro r  for  the change in  the EOC peak exposure 

As previously s ta ted,  the  cross i s  s jgn i f icant ly  l e s s  for t h i s  case. 
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Table 4.'21. 
Control Rod a t  8,000 MWD/l' i n  Fuel Assembly #22 

Removal o f  LBP a t  BOC and Insertion o f  

fo r  a Fuel Cycle of 14,000 MWD/T 

-0.697 gXl O m 2  -0. 555gX1 Op2 - 0 . 4 2 5 ~ 1  O m 2  62 .7  30.7 

[Reference Value: K e f f  = 0.9851761 

...-I__ ___ . EOC Peak Exposure .......... Response 

___I_ 

m / T - )  % Error ........ .m-----* (Direct)  7 DPT)  .... 0 
-2.276 -1.508 -1.351 68.5 11.6 

[Reference Value: E = E ( 1 , 7 , 2 )  = 17.861 GWD/T] 
P 

perturbations prior t o  the end o f  cycle a re  re la t ive ly  small. 

EOC exposure i s  not affected by the s t a t i c  EOC cross section perturba- 

t ions ,  the SD approximation of the change i n  the EOC peak exposure i s  

very good. 

Since the 

The f ina l  perturbation case i s  a simple 5% perturbation of the 

first-group fissijon cross section i n  fuel assembly #13. 

th i s  case i s  t o  demonstrate t h a t  the e r ro r  i n  the DPT calculation 

approaches zero for  r e l a t ive ly  small perturbations. This i s  similar t o  

the example in Table 4 .9 ,  which was performed t o  show t h a t  the e r ro r  i n  

the  GPT calculation approached zero f e r  small perturbations. This 

example does indeed demonstrate t h a t  the e r ro r  approaches zero f o r  

re la t ive ly  mal 1 perturbations, (Table 4 . 2 3 )  when one uses the depletion 

The purpose of 
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Tab le  4.22. Cross Section Perturbations f a r  
Removal of LBP a t  BOC and Insertion o f  

Control Rod i n  Fuel Assembly #22 

BOC 

Perturbed Cross 
Section, 1 A I X  (cm” 1 % A I X  

Fa 1 
.3447x 0-3 -3.52 

Ttr, .1283 4 0 -  -0-57 

Jf 1 0.0 0.0 

1tr2 .2640 ~ 1 0 -  3.18 

- .8262 ~ 1 0 -  -8.13 2. 

c .2763 x l 0 -  2.15 f 2  

8,000 MWD/T 
1 

L, -. 1145 ~ 1 0 - ~  -0.50 

1 - .8742 ~ 1 0 -  -8.48 

Cr1 .1455 x ~ O - ~  9.70 

Jf 1 .5356 ~ 1 0 -  9.08 

7tr2 .5690 x l 0 -  0.67 

Fa2 - . 787O~lO-~  -7.35 

’$ 1 f ,  - . I  026 ~ 1 0 -  -7 .12  
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Table 4.22 (Continued) 

EO c 
...__ .-____ 

Perturbed Cross 
Section, 1 A I X  (cm-? % A I x  

. 4393x1 O q 2  1.93 Ctr, 

. 1 O3OX1 O-’ 9.71  
l a 1  

.l83sx1 0-3  1.24 
I 

.9659x10-2 1.13 tr, 

. 3574x1 0-1 35.8 
Yai? 
7 . 853ZX1 Om2 6.13 

V L  f ,  

equations which have been implemented in to  SIMULATE. 

EOC peak exposure i s  greater t h a n  the e r ro r  fo r  AKIK ,  since the pertur- 

bation does occur in a d i f f e ren t  fuel assembly. However, the e r ro r  i n  

this  case i s  s ignif icant ly  smaller than f o r  the previous cases, t h u s  

demonstrating tha t  the e r r o r  tends toward zero a s  the s i ze  of the 

perturbation decreases. 

The e r ro r  i n  the 

P l o t s  of the f iss ion source density, S - ,  a t  t h e  beginning and the 

end o f  the fuel cyc le  are  shown in  Figs. 4.15 and 4.16, respectively.  

Similar plots  of the adjoint  function z* a r e  given in F i g s .  4.17  and 

4.18. Plots o f  the generalized adjoint  function E* f o r  the K e f f  

response a r e  presented f o r  the beginning of cycle and the next-to-last  

exposure step i n  F i g s .  4 . 1 9  and 4.20, respectively.  Reca l l  t h a t  f o r  the  



Table 4 .23 .  5% Perturbation o f  v z f  f o r  a 
Fuel Cycle o f  14,000 HWD/T 

AK/ K % Error 
( DPT (Direct)  --(mTJ 

0 . 3 9 7 2 ~  1 Q W 3  0 .3999~1  0"3 -0.68 

[Reference ValDe: Kef f  = 0,985176] 

I_ EOC Peak Exposure Response 

% Error AE (GWD/T) 
I I_ 

(DPT) (Direct)  { DPT) 

-0.044 -0.053 -17.0 

= E(l ,7 ,2)  = 17.861 GUD/TJ 
EP 

[Reference Value: 

f ina l  exposure step I r* i s  equal t o  s* for  the Kef f  response. 

f igure i s  a graph o f  the 2-D function a t  the axial center o f  the reactor 

f o r  t ha t  par t icular  case. 

Each 

The f i ss ion  source density - S and the adjoint  function - S* have 

generally similar shapes, both a t  the BOC and a t  the EBC,  indicating a 

tendency o f  

does tend t o  peak nearer the center o f  the reactor than the f i ss ion  

source density a t  the BOC. 

source density a re  l e s s  i n  magnitude a t  the reactor axial center a t  the 

E O C .  This occurs because both d is t r ibu t ions  a re  much f l a t t e r  i n  the 

axial direct ion,  due t o  the  increased b u r n u p  a t  the axial center caused 

by the peak there i n  the f i s s ion  source density t h r o u g h o u t  most o f  t h e  

cycle. 

and $* to  be self-adjoint .  The adjoint  function, however, 

Both the adjoint  function and the f i ss ion  

The f iss ion source density and the adjoint  function a re  bo th  
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QRNL-DWG 80-4 8.1 86 

F i g ,  4.15. BOC F i s s i o n  Source Densi ty  
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Fig. 4.16. EOC F i s s i o n  Source Density 
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F i g .  4.17. BOC A d j o i n t  Funct ion 
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%5 

Fig.  4.18. EOC Ad jo in t  Function 
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F i g .  4.19. BOC Genera l ized A d j o i n t  Func t ion  
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F i g .  4.20. Generalized Adjoint Function a t  Exposure Step (R-1) 
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f l a t t e r  in  the radial direction a t  the E O C ,  a n d  the peaks a re  nearer 

the core periphery, a s  one may observe in Figs. 4.16 and  4.18, respec- 

t ive ly .  Thus, t h r o u g h  the course of the fuel cycle, the f i ss ion  source 

density and the adjoint  f u n c t i o n  tend t o  become more evenly dis t r ibuted 

th roughou t  the core a s  a r e su l t  of the increased b u r n u p  o f  the more 

reactive regions. 

The BOC adjoint  function - S* represents the neutron importance t o  

BOC K e f f .  Neutrons tiear the core center a t  the beginning o f  cycle a re  

more! important to  B O C  K e f f ,  a s  one would expect. The dips in S - and S* 

a t  the center of the core a re  due t o  the control rod which i s  inserted 

there.  

t o  EOC K e f f .  Because of the fuel depletion near the core center a t  the 

end o f  cycle, the neutrons in the highly enriched fuel assemblies along 

the edge o f  the core are  more important to EOC K e f f .  

The E O C  adjoint  function - S* represents the neutron importance 

The generalized a d j o i n t  function - r* i s  qui te  d i f fe ren t  i n  character 

since i t  assumes posit ive and negative values and i s  not normalized. 

The BOC dis t r ibu t ion  has i t s  greatest  values a t  the center of the core 

and  in the high enrichment assemblies on'the core periphery. 

neutrons in these regions would increase E O C  K e f f ,  while adding neutrons 

in the areas where .. r* i s  negative would decrease EOC K e f f .  A t  t h e  next- 

t o - l a s t  exposure step,  the dis t r ibut ion has i t s  greatest  values along 

the edge o f  the core and  i t s  l ea s t  values near the core center .  

end o f  the fc;el cycle i s  approached, adding neutrons t o  the high enrich- 

ment assemblies along the periphery of the core will increase EOC K e f f .  

However, adding neutrons near the center o f  the core would s h i f t  the 

Adding 

As the 
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dist r ibut ion of the f i ss ion  source density away from tbe more reactive 

region near the edge, and would reduce EOC K e f f .  

i n  shape of t h i s  I'* dis t r ibu t ion  and the EOC S* dis t r ibu t ion  ( F i g .  4.18) .  

This i s  expected, since I I?* i s  equal t o  .S_. a t  the end of cycle for  the 

EQC Kef f  response. 

Note the s imi la r i ty  

- I 

The generalized adjoint function i s  much less  a t  the beginning o f  

cycle than a t  the next-to-last  exposure s tep ,  because the importance of 

the f i ss ion  source density t o  EOC Keff decreases as one goes backward 

in time. 

t ions were identical  t o  those f o r  the forward calculations.  

The boundary conditions fo r  the fixed source adjoint calcula- 

The example problems examined in t h i s  section show t h a t  depletion 

perturbation theory has been successfully implemented into SIMULATE. 

These problems a l s o  indicate that  the use of depletion perturbation 

theory in LWR design analysis i s  res t r ic ted  f o r  some problems. I t s  

va l id i ty  i s  limited for problems involving large localized perturbations 

(e.g. i n  one fuel assembly). 

f i s s i o n  source density only i n  a small region surrounding the location 

of the perturbation, and t h u s  a l t e r  the shape o f  the overall f i s s ion  

source d is t r ibu t ion  i n  the v ic in i ty  o f  the perturbation. 

perturbation theory accounts only f o r  the f i r s t  order changes in the 

fission source d is t r ibu t ion .  

perturbations which a l t e r  the f i ss ion  source dis t r ibut ion i n  an 

approximately l inear  manner. 

Such perturbations generally a f f ec t  the 

Depletion 

Thus, the theory i s  only valid for  



V .  SUMMARY 

The goals 0.f this work have been t o  develop a depletion pertur- 

bation theory formulation f o r  a LWR nodal code, t o  iniplement th i s  

foniiulation into the code i n  a iiianner consistent with the solution o f  

the forward nodal equations, and t o  evaluate the accuracy of depletion 

perturbation theory in LWR design analysis.  

achieved, b u t  there remains a considerable amount o f  research which 

needs to  be performed in the application o f  depletion perturbation 

theory t o  l i g h t  water reactors.  This section will summarizes the con- 

clusions o f  t h i s  work,  and makes recornmendations fo r  future  research. 

These objectives have been 

Conclusions 
_I___ ___ 

The depletion adjoint equations developed in Section I1  have been 

successfully implemented i n t o  the 3-D LWR nodal code SIMULATE. The 

solution of these equations by SIMULATE yields  sens i t i v i ty  coeff ic ients  

which a re  space and time-dependent. 

variations i n  the neutron and nuclide f i e l d s  caused by perturbations in 

the i n i t i a l  reactor d e s i g n  a t  BOC in predicting responses a t  EOC. 

These can be used to  account f o r  

A wide variety of numerical calculations have been performed t o  

verify the accuracy of the coding added t o  SIMULATE, and t o  evaluate 

the appl icabi l i ty  o f  depletion perturbation theory t o  LWR design calcu- 

l a t ions .  

a r e a l i s t i c  PWR iiiodel f o r  an e n t i r e  fuel cycle. The r e su l t s  o f  these 

calculations reveal t ha t  depletion perturbation theory i s  accurate f o r  

only sinal1 perturbations. I n  some cases, i t  may give very accurate 

The  t e s t  cases studied varied from simple s t a t i c  problems t o  

100 
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r e su l t s .  

length control rod a t  ROC was estimated with an e r ror  of only 1.05%. 

However, perturbations of greater  than 10% t o  e i the r  1 a2 o r  v l f 2  gen- 

e ra l ly  seem t o  give poor resu l t s  when one uses DPT. 

the types of LWR design changes which can be considered with DPT. 

par t icu lar ,  some perturbations involving the movement of a ful l - length 

control rod o r  the swapping of a high enrichment and a low enrichment 

fuel assembly can be expected t o  produce an e r ror  of greater  than 20% 

in the DPT approximation o f  the response change. 

For example, the change i n  EQC Keff  due to  the removal of a park 

This r e s t r i c t s  

In 

An important aspect of the depletion perturbaton theory calcula- 

t ions i s  the comparative costs.  

solution o f  the forward and backward marches t h r o u g h  time f o r  a specifc 

response i s  approximately s x times the amount required fo r  a conven- 

t ional se r ies  of forward ca culations.  Perturbation theory i s  desirable 

f o r  studying the e f fec ts  of many d i f fe ren t  design variations on only a 

few responses. 

on a large number o f  responses are desired,  using d i r ec t  calculations 

would be more practical  ( i . e . ,  l ess  cos t ly) .  

The computational time required for  the 

Conversely, i f  the e f fec ts  of only a few design changes 

Perturbation theory can also be useful f o r  gaining insight  into the 

physical phenomena which a re  associated with a given response. 

s ens i t i v i ty  coeff ic ients  which a re  obtained from depletion perturbation 

theory can provide a be t te r  understanding o f  the neutronic behavior in 

LWR's, and could lead t o  improved core design and optimization tech- 

n i  ques. 

The 

. . -. . . . 
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Recommendations 

I t  must be emphasized t h a t  a c,onsiderable amount of uncertainty 

remains about the appl icabi l i ty  o f  depletion perturbation theory t o  

LWR design calculations.  

fu r the r  research, especi a1 ly i n  areas which Caul d improve the accuracy 

of depletion perturbation theory. 

These questions can only be answered by 

One item which would improve the DPT accuracy in SIMULATE i s  the 

developnient of a separate code which could calculate  the cross sections 

f o r  perturbed cases using the reference case exposure dis t r ibut ion.  

This code should also calculate  the changes i n  the matrix coupling co- 

e f f i c i e n t s  f o r  each perturbed case without storing the e n t i r e  matrices 

in the computer. T h i s  would eliminate the f i r s t  order Taylor Series 

approximation f o r  the change in the nodal  coupling coeff ic ients ,  and 

should s ignif icant ly  increase the accuracy of the DPT formulation. 

Another possible improvement in the DPT accuracy might be obtained 

by fur ther  modifying SIMULATE t o  solve f o r  higher order eigenfunctions. 

The f iss ion source density and the adjoint  function a re  the fundamental 

eigenfunctions of t h e i r  respective eigenvalue equations. By sweeping 

o u t  the fundamental eigenfunction during the numerical solution of the 

Forward and adjoint  eigenvalue equations, i t  should be possible t o  so 

f o r  higher order eigenfunctions. 

should improve the depletion perturbation theory r e su l t s .  I D  However, 

the gain i n  accuracy may n o t  be worth the increased computational cos 

These higher order eigenfunctions, 

Ve 

s.  

Further research i s  also needed to  develop .the appropriate adjoint 

equations f o r  the thermal -hydraul i c  section of SIMULATE. 

depletion perturbation theory t o  account f o r  thermal-hydraulic feedback 

Extending 
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would add some v e r s a t i l i t y  t o  the DPT capabi l i ty  of SIMULATE. Analysis 

o f  boiling water reactors (BWR's) w i t h  the DPT options i n  SIMULATE also 

needs to  be investigated. 

I f  the DPT accuracy could be improved s igni f icant ly  by implementing 

the previous suggestions, then the DPT capabi l i ty  i n  SIMULATE should be 

extended to handle mu1 t icycle  cases. This would involve  accounting fo r  

fuel s h u f f l i n g ,  removal, and loading between fuel cycles . l l  

F i n a l l y ,  the greatest  potential which DPT possesses i s  the 

possibi l i ty  o f  design optimization. 

loading pattern for  a given LNR core design could be determined, given 

the allowable changes i n  fuel enrichments, control rod posit ions,  and 

burnable poison concentrations. 

program which would use the DPT s ens i t i v i ty  coeff ic ients  and a s e t  of 

constraints to  determine an optimum design could be a very powerful tool 

i n  core design and fuel management analyses o f  l i g h t  water reactors.  

For example, the o p t i m u m  fuel 

The development of such an optimization 
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APPENPIX A. ADJOINT MATRIX OPERATORS 



The purpose o f  t h i s  appendix i s  t o  show how t h e  a d j o i n t  m a t r i x  

opera tors  M* and - F* f o r  t h e  e igenvalue equat ion  so lved  by SIMULATE are  

detert i i ined, and why they  a r e  no t  n e c e s s a r i l y  i d e n t i c a l  t o  the t ranspose 

o f  t h e  m a t r i x  opera tors .  

- I 

U s u a l l y  t h e  a d j o i n t  of a m a t r i x  o p e r a t o r  [e.g., E* o r  - F.:3( i n  

E q a  (2.1313 i s  s imp ly  the  t ranspose o f  a m a t r i x  opera tor .  

a l w a y s  the case i n  SIMULATE. 

undcrs tand t h i s  - 

This i s  n o t  

L e t  us examine two s imp le  problems t o  

Figures A . l  and A . 2  show two s imp le  r e a c t o r  c o n f i g u r a t i o n s .  Both 

are  q u a r t e r  core symmetric, b u t  the  c o n f i g u r a t i o n  i n  F ig .  R . l  conta ins  

h a l f  nodes on t h e  boundary while the  other conta ins  f u l l  nodes. The 

m a t r i x  o f  nodal c o u p l i n g  c o e f f i c i e n t s  can be sepdrated i n t o  two 

mat r ices ,  one c o n t a i n i n g  the boundary c o u p l i n g  c o e f f i c i e n t s  and the  

o t h e r  c o n t a i n i n g  t h e  i n t e r n a l  c o u p l i n g  c o e f f i c i e n t s  

where 

- C = i n t e r n a l  coupl  i ng c o e f f i  c i  en ts  

a u -. -. boundary coupl  i n g  c o e f f i c i e n t s .  
- 

- 

For both c o n f i g u r a t i o n s  d iscussed above 

L O m4+2 m 443 m 1  4+4 
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Fig. A . l .  Half Nodes on Boundary 
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ORNL-DWG 80-18993 

F i g .  A . 2 .  F u l l  Nodes on Boundary 
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The boundary terms for Fig. A . l  are 

B =  2l 

and fo r  F i g .  A.2 a r e  

B =  2 

m 0 
ml+2 le3  

m2+-4 0 0 

0 0 O m  3+4 
0 0 0 

1 0  

:I/ 0 

0 mZ+2 0 

0 O m3+3 

0 0 0 
I 

W.4) 

The ad jo in t  o f  t he  matrix operator i s  obtained by simply reversing 

t h e  coupling. Thus, 

0 m l+l m2+l " 3 ~ 1  

ml+2 m2+2 m4+2 
m 1+3 O m3+3 m4+3 

sll m2+4 m4+-3 4+4 

0 

-1 - B * =  Io 0 

0 

2+l  

0 

0 

0 

m 3+ 1 

0 

0 

m 

0 

0 

m4+-2 

4+3 m 

0 

r 

(A.5)  
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2 y t l  0 0 0  

“2+2 0 0  0 

0 0 

0 0 0 0  

O m3+3 

T 
=2 = B  

From these two examples, we see t h a t  t h e  a d j o i n t  m a t r i x  o p e r a t o r  i s  

i d e n t i c a l  t o  t h e  t ranspose o f  t h e  m a t r i x  i f  the  nodes on t h e  boundar ies 

a r e  f u l l  nodes, b u t  t h a t  t h e  a d j o i n t  and the  t ranspose o f  the m a t r i x  

are  d i f f e r e n t  f o r  p a r t i a l  nodes on t h e  boundar ies.  
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The "fundamental mode contaminat ion"  o f  t h e  s o l u t i o n  o f  a f i x e d  

source a d j o i n t  equat ion  i s  s i n p l y  t h e  component o f  t h e  computed 

s o l u t i o n  which i s  a c t u a l l y  t h e  s o l u t i o n  t o  t h e  corresponding homogeneous 

a d j o i n t  equat ion.  

When t h e  f i x e d  source a d j o i n t  equat ion  

i s  so lved,  t h e  computed s o l u t i o n  w i l l  be 

(B.2) 

where 

- 
- r* = p a r t i c u l a r  s o l u t i o n  t o  E q ,  ( R . 1 )  

- S* = s o l u t i o n  t o  t h e  correspondin? homogeneous a d j o i n t  equat ion  

a = cons tan t  t o  be determined 

The fundamental mode contaminat ion i s  (as*-). ...- 

T 
M u l t i p l y  bo th  s ides  o f  E q .  (€3.2) by (F- 2) 

B u t  .- r";TF - - S = 0 by orthogonal i t : / .  Therefore - 

- r*7'F - -- S 

- S*TF .._- S ' 

.... a =  

...- 

The p a r t i c u l a r  s o l u t i o n  t o  Eq. (6.1) i s  
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Equation (B.3) i s  the  equation f o r  sweeping o u t  the fundamental inode 

contamination. 
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APPENDIX C .  DERIVATION OF DEPLETION 
ADJOINT EQUATIONS 

This appendix contains the complete derivation o f  the depletion 

adjoint equations f o r  SIMULATE. 

which was written by M .  L. Williams and this  author, 

Phis derivation i s  taken from Ref. 12 

In th i s  derivation we will : 

4 )  

* 
Definitions 

-1 S .  

-1 P -  

neglect thermal-hydraulic feedback. 

neglect the constraint  of negative moderator coeff ic ient .  

Neglect c r i  t i  ca 
change i n  the t 
ignored) . 
consider a sing 
fuel shuffl ing) 

i t y  r e se t  (i .e .  , i t  i s  assumed t h a t  the 
me dependent baron concentration can be 

e fuel cycle ( i . e .  no refueling or  

nodal f i s s ion  source density a t  exposure s tep i 

r e l a t ive  nodal power (i . e .  "power peaking f ac to r " )  
a t  exposure step i 

nodal exposure ( G W D / T )  a t  exposure step i 

nodal coupling coeff ic ient  matrices 

diagonal matrix o f  - '1 f, i node f o r  conversion of  

nodal f i s s ion  source t o  r e l a t ive  nodal power 

VV L T y  i 

nodal niacroscnpic crass section o f  type X ,  a t  exposure 
step i 

* 
Vector components r e fe r  t o  nodes. 



h .  
-1 

fission source normalization (h = ( V I y  V 2  . . . 3  '/HI 1 

M r e l a t ive  volume o f  node j 

N 

5c 

magnitude of integrated f i s s ion  source (N = 1 
concentration o f  K- control variable (e.g. boron 
concentration) 

V i )  i = l  t h  

i refers  t o  exposure s tep  number. (0  - _  < i < R )  

x - f (E-J-~, ...I polynomial f o r  1' f i t t e d  against  exposure 
control var iables  5,. . . .Cky.. . 
lambda mode eigenvalue a t  exposure s tep  i ' i  

length (GWD/T) of i th  exposure step Ti  

II t o t a l  number of exposure s t e p s  i n  calculat ion 

and 

power normalization constant f o r  exposure step i 

Governing Equations 

Forward Eigenvalue Equation 

(!& - Ai!$ Lj = o  ( i  = O y l ,  ...,L) 

Power Equation 

P .  = R.9A.S. 
-1 1 "1-1 

( i  = O y I ,  ..., E) 

( i  = l Y 2 , . . . , t )  

( i  = 0) (C.3) E'. = E 
-1 -0 

Exposure Equation ( i n  terms o f  - S )  

( i  = Oily ..., R )  E = E .  + (Ri-A-i*S-i)*Ti - i -1 -1 

Cross Section F i t t ing  Equation 

(i = Q y l , . . a s ~ ~ )  

(X = l y 2 , - . .  y 9 )  
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where 

f ( E . )  = vector with components of .F evaluated a t  each node. _... - -1 

Source Normalization Equation 

( C . 6 )  ( i  = O y l y . . . y ~ )  i h.S. = N 

(Li i s  normalized t o  an average value o f  1 . O  for  each f u l l  

-1 -1 

node) 

Power Normalization Equation 

1 --1 1 - 1  -1 ---I i ( i  = 0 , l y . .  . , a )  ( C . 7 )  R.h.A.S. = h . P .  = N 

(Ei i s  a l so  normalized t o  an average value o f  1 . O  f o r  each 

f u l l  node) 

_II. Adjoint Equations and Sens i t iv i ty  --- 
Coef f i c i en t s fo r - '  EOC Kef f 

ql_ 

We now proceed t o  derive the  appropriate adjoint  equations f r om 

a variational pr inciple .  The f i r s t  case we will consider i s  t ha t  of 

the response corresponding t o  the X eigenvalue (or Kef.) a t  exposure 

s-tep R (end o f  cycle) .  The development f o r  t h i s  case and the following 

one i s  s imilar  t o  t he  method used t o  derive the original depletion 

perturbation theory (DPP) equations. 

Consider the Functional 

R R 

i=O x = l  

R R 

+ 1 a . (h . -S . -Ni )  + 7 bi(R.*h.A.S.-Ni) 
1 -1 ----1 1 -19-1 

i =O i =O 
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* * x  where the parameters S .  E .  s .  ,a and b .  are  as  y e t  unspecified, and 
-1 '-1 '-7 i *  1 

where the summations a re  over the exposure steps i=O -> z and over 

the two-group cross section types i=f -f 9. 

Note tha t  when S .  ,E.,c! s a t i s f y  the re lat ions in Eqs. (C.l),(C.4),(C.S), 
-1 - a -1 

" " x  (C.6) and ( C . 7 1 ,  then K = 0 regardless of the values o f  S. ,E . , s . , a i ,  or b i .  
-1 -1 -1 

Suppose tha t  some perturbation or combination o f  perturbations 

i s  made t o  Eqs. ( C . l ) - ( C . 7 ) .  T h i s ,  in turn, will cause a cornplex series 

o f  perturbations (due to the coup1 ing between exposure s teps ,  between 

nodes, and between the equations) as 

s.  ----e s. + AS. 
-1 -1 -1 

-+ E. + A E .  E --_ 
-i -1 -1 

---+ X i  +- A A i  , e tc .  'i 

However, the perturbed variables must s t i l l  obey exactly the perturbed 

s e t  o f  equations: 

, , / , . ,  
E = E.  + R.A.S.T .  -i+l -1 lzl-1 1 

I ,  , 
h.*S. = N 
-1 -1 i 

I f  these perturbed equations a re  used i n  Eq. ( 8 ) ,  we see t h a t  
, 

K = 0 exactly and . 
K - K = A K = O .  
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We now proceed t o  o b t a i n  a first-order est imate  f o r  AK, which w i l l  

then d e f i n e  t h e  riecessary a d j o i n t  equat ions f o r  t h e  EOC A .  W r i t i n g  ou t  

t h e  express ion  f o r  AK and n e g l e c t i n g  second o rde r  terms g ives  
R 

* 
AK % ’ -1 s .  ((A!& - + (M. -1 - xF . )aS .  7 -1 - ( ~ x . F . S . ) }  17-1 

i =Q 

9, 

-t 1 ai (ALi*Zi i- Li*ASi - aNi) 
i =O 

R 

+ 1 bi (AR.-h.A.S. -t- R.h.A.AS. i- R.Ah.A.S. 1 -1 -3 ...., 1 -1=1-1 l.-lE1 -1 
i =Q 

-I- R.h.AA.S. - nNi) (C.9) 
1-1 7 - 1  

The m a t r i x  opera tors  Mi 

p e r t u r b a t i o n s  i n  nodal c o u p l i n g  c o e f f i c i e n t s  caused by changing t h e  

va r ious  c ross  sec t i ons .  ‘These can be approximated by a f i r s t - o r d e r  

Pay1 or  Ser i  es expansion 

Fi and Ai a re  imp1 i c i t l y  per tu rbed due t o  t h e  

(C.10) 
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i 

( c .  12) 

f i r s t  order Taylor se r ies  expansion f X ( E .  + A E  -iy...,& + Ah,..') -- 
-1 - 

x -  
- f (Li . - * ,c+ 3. 1 

( c .  1 3 )  

Assunlc t h a t  the normalization vector i s  a constant, i . e . ,  

Ah. = Q 
-1 

Substi tuting Eqs. (c.lo),(c.11),(C.?2),(C.13) and (C.14) i n t o  Eq. (C.9) 
. -  

and redefining the sumation on t he  E * tern] from i = Q  t o  i = a - l  gives -i +l 
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R 
h . * A S .  - A N i  

+ 1 .I =o ai (-1 -1 

I t  i s  convenient t o  separate o u t  the l a s t  tern1 i n  the exposure 

s t e p  summation ( i = a ) :  
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(C.15) 

The f i r s t  f ive terms in Eq. (15)  w h i c h  corresponds t o  the  i-a. 

exposure step can be written 

I- ba 
-1 

( c .  16) 

* *  
Since t h e  values of S ,  E i ,  zy, a i  and bi are completely - 

arb i t ra ry  a t  t h i s  point, we can assign any value t o  them t h a t  i s  useful. 

Let us define them as  follows f o r  t h e  final exposure s tep ( i = i ) :  

* * *  (E;, - & = 0 

(C.19) 
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= o  a, (C.20) 

(C.21) b, = 0 

S u b s t i t u t i n g  Eqs. (C.17)-(C.21) i n t o  t h e  express ion  i n  (C.16) 

reduces i t  t o  

We now examine t h e  remain ing terms i n  Eq. (C.15) which correspond 

t o  a l l  exposure s teps  p r i o r  t o  t h e  l a s t  one a t  i = a .  Again, we a r e  f r ee  .~ 

* x .k t o  choose any va lues f o r  ai, zi, zi, and --1 E..  We d e f i n e  t h e  f o l l o w i n g  

r e l a t i o n s  f o r  exposure s t e p  i :  

* -A * *  * * *  
(Mi - hi$) si = RiTi-&E-i+l - a.h .  - b.R.A.h.  = Qi 

1 1-1.-1 1 -1 

(C.23) 
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S u b s t i t u t i n g  Eq. (C.26) i n t o  Eq.  (C.23) g ives  

We w i l l  d e f i n e  ai such t h a t  t h e  a d j o i n t  source, QY i s  or thogonal  t o  t h e  

fo rward  s o l u t i o n ,  i .e. , 
-1 

* 
S . Q .  = 0 
-1 -1 

(C .28 )  

S u b s t i t u t i n g  these r e l a t i o n s  i n t o  (C.28) gives 

ai = 0 (0  5- i < R )  (c. 29) 
When Eqs. (C.17)-(C.22), (C.24)-(C.27) and (C.29) a r e  s u b s t i t u t e d  

i n t o  Eq. (C.15), we o b t a i n  

9 ( K 3 0 )  

Assume t h a t  t h e  i n i t i a l  exposure d i s t r i b u t i o n  i s  f i x e d  ( i . e . ,  A E ~  = 0 )  v - 

and t h a t  t h e  exposure s t e p  l e n g t h  remains cons tan t  (ATi = 0) .  R e c a l l i n g  

t h a t  A M  = 0, we can solve Eq. (C.30) for AX*,: 

- c E c p &  
AXK. k 

S"F 'S- (C.31) -k=g-g 
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a 9  a - fX 
where ~1 = 1 1 ji x _ _ _  : s e n s i t i v i t y  c o e f f i c i e n t  f o r  c o n t r o l  va r -  

*k i = O  x = l  

Eq. (C.31)  can be w r i t t e n  

(C.32) 

Suppose t h a t  one i s  i n t e r e s t e d  i n  t h e  e f f e c t  o f  changing t h e  c ross  

s e c t i o n s  of one o r  inore assemblies (e.g., change i n  DOC . fuel  enr ichment 

o r  lumped burnable po isons) .  We will now determine the s e n s i t i v i t y  

c o e f f i c i e n t s  f o r  t h e  cross sec t i ons .  

i n s t e a d  o f  u s i n g  Eys. (C.18) arid (C.27), Eq. (C.32) w i l l  become 

If we s e t  -1 s? = 0 (0 < i - < a )  

I f  we s u b s t i t u t e  t h e  d e f i n i t i o n s  f rom Eqs. (C.18) and (C.27) i n t o  

Eqs. ( C . 3 3 ) ,  we o b t a i n  

(C.33) 

( C .  34) 

Thus 27, as we o r i g i n a l l y  de f i ned  i t ,  i s  t h e  c ross  s e c t i o n  s e n s i t i v i t y  

c o e f f i c i e n t  f o r  c ross  s e c t i o n  t y p e  X p d  exposure s tep  i. 
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Adjoint Equations and Sens i t iv i ty  Coefficients 
f o r  Responses Other than k e y  

For t h i s  case we need a s l i gh t ly  d i f fe ren t  functional than the one 

defined i n  E q .  (8) .  Consider the functional L, given by 

L = R [ S  H N ] - K ,  --R '--R n. 

where R i s  some f ina l  time response (evaluated a t  exposure step R )  which 

may depend on the nodal source Sa. 

and the source normalization N,. 

As discussed e a r l i e r ,  i f  the 

(C.5),(C.6) and (C.7)  are  used t o  

Similar ly ,  i f  the exact perturbed 

K = 0 and L = R . Therefore, 
c , , 

nL = A R ,  

the nodal "real izat ion vector" /-I,, 

exact solutions t o  Eqs. ( C . l ) , ( C n 4 ) 9  

evaluate L, then K = 0 and b -  R .  

values are  used t o  evaluate 1, then 
* 

which i s  exactly t rue ,  i f  the exact perturbed and unperturbed values 

a re  known.  

estimate fo r  A L ,  far which ( A L ) ~ ~ ~ ~ ~  - - - ~  AR . 
Proceeding as before we will attempt t o  obtain a f i r s t  order 

order 

Because we are  only considering a f inal  time response defined a t  som 

arb i t ra ry  exposure s tep E ,  the only difference between t h i s  case and the 

previous one f o r  k 

a t  i=a. ( i . e . 3  t h e  equations derived fo r  irfi a re  s t i l l  va l id) .  

we have the f o l  1 owi n g  expression, negl e c t i  ng second order term : 

a t  2 will be i n  defining the s ta t ionary conditl'on e f f  

A t  i = E  
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( C . 3 5 )  

Rearranging terms gives 

Since the normalization i s  f ixed ,  A N R  = 0.  

The appropriate s ta t ionary  condi t i  ons f o r  i = R ,  corresponding t o  a 

f ina l  time response a t  i = a ,  a r e  

(C .  36) 
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a R  = 0 

S*F S = 0 -p,.=&-p, 

(C.37) 

(C.38) 

( C .  39) 

(C.40) 

b, = 0 (C.41) 

Recalling t h a t  A L  = aR, we obtain the following expression f o r  

the change i n  the response due t o  control variable perturbations: 

where 

The change i n  the f ina l  time response due t o  cross section 

perturbations i s  given by 

(C.42) 

(C.43) 





APPENDIX D. IMPLEMENTATIGN OF DFPLETZON PERTURBATION THEORY 

INTO SIMULATE 
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SIMULATE i s  a FORTRAN-IV program. Version 215, the most recent 

version, consists of approximately 120 subroutines. 

of depletion perturbation theory into SIMULATE has effected modifica- 

t ions t o  more t h a n  ten of the existing subroutines and the creation of 

seven new subroutines. In  t h i s  sect ion,  the important modifications 

arc outlined, and  the functions performed by the new subroutines are  

discussed. 

code performance and the new options which are available t o  the user. 

The implementation 

We a l s o  examine the e f fec ts  of these changes on the 

Modifications __._. ...I__. t u  Existing Suksqt ines  

One of the f i r s t  and most important modifications which had to  be 

made was enabling SIMULATE t o  solve the adjoint o f  the forward eigen- 

value equation, E q .  (2.13).  This involved reversing the coupling 

between nodes f o r  M and E. 

a se r ies  o f  inner and outer i t e ra t ions .  A t  each outer i t e r a t ion ,  the 

subroutine CALSRC calculates - F S ( i ) ,  where - S ( i )  i s  the source guess fo r  

the itt1 outer i t e r a t ion .  Between the i t h  and i+ l th  outer i t e r a t ions ,  a 

s e t  o f  inner i t e ra t ions  i s  performed in the subroutine GUTS t o  

i t e r a t ive ly  invert  - M in order t o  obtain the source guess fo r  the i + l  

outer i t e ra t ion  

SIMULATE solves the eigenvalue equation in - - 

._ 

t h  
- 

A flow chart  for  the inner and outer souce i te ra t ions  i s  i l l u s t r a t ed  i n  

Fig. D . 1 .  The inner and  outer i t e ra t ions  are so named because o f  a s e t  

o f  inner i t e ra t ions  i s  performed between every two outer i t e ra t ions .  
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. 

Enter with a new s e t  o f  coupling 
probabi 1 i t i  es and the source 
d is t r ibu t ion  S from the previous 
void I eve1 i t r a t i o n  

Evaluate the r ight  hand s ide o f  
the  neutron balance equation by 
node. 

So’lve fo r  S using inner i t e ra t ions  
based on t h  l a t e s t  calculation 
o f  - R -- 

Test f o r  convergence o f  the  inner 
source i te ra t ion  level .  Loop 
terminates when NSIzNSIMAX or  
OAX<EPS/lO. _I 

- 

Apply Chebyshev polynomial s t o  
extrapolate S based on values o f  
- s from previous outer source level 
i t e r a t ions ,  

Recalculate the r igh t  hand s ide 
using the new - S. 

Calculate a new value for  kef f .  

Test  fo r  convergence o f  the outer 
source i t e r a t ion  level .  LOOP 
terminates when NS,NSMAX I or  EPScDELSX. - 

Continue t o  calculation o f  power 
d is t r ibu t ion  from source S and 
thermal leakage correct ion a t  the 
void i t e r a t ion  level a 

Fig. D.1. Flow Chart f o r  the . ~ . I n n e r  and Outer Source I terat ion Levels 
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tile 

b u t  

The matr 

r s i ze  ( e  

a re  calcu 

were modi f i ed 

ces M and E are  n o t  stored e x p l i c i t l y  in core due t o  

g . ,  40,000 words of storage each for a 200-node problem), 

ated during each of these i t e r a t ions .  CALSRC and GUTS 

t o  reverse the coupling when solving an adjoint problem 

-- .-.. 

i n  order t o  obtain the adjoint matrices. 

The subroutine NBTCAL determines the core configuration f o r  any 

problem according t o  the given boundary conditions. 

fuel bundle an ident i f icat ion number. This s e t  of I.D. numbers i s  the 

NB'P array.  A typical configuration f o r  a core with 1/8 core symmetry 

i s  shown in F i g .  D.2. The 1/8 core region i s  outlined in the figure.  

On any boundary where there i s  a ref lect ion boundary condition, NBTCAL 

assigns the bundles outside the boundary the same ident i f icat ion number 

as the corresponding fuel bundles inside the boundary. All bundles not 

lying in the region o f  i n t e r e s t  on the boundary are s e t  t o  zero. 

Notice in Fig. D.2 t ha t  there a re  no bundles assigned the numbers 2-7, 

11-16, 20-24, 29-32, 38-40, 4 7 4 8 ,  or  54-36. These fuel bundles have 

a l l ,  been "zeroed o u t , "  because they d i d  n o t  l i e  w i t h i n  the region o f  

i n t e r e s t .  However, t o  simplify the indexing of the matrices in the 

depletion adjoint equations, we want  t o  number only the fuel bundles 

which a re  no t  "zeroed out." The subroutine NBTCAL has been modified t o  

do t h i s  a l so ,  a s  shown in F i g .  D . 3  f o r  the same configuration as t h a t  in 

Fig. D.2 .  This s e t  of I.D. numbers i s  the NBD array. B o t h  arrays are 

stored in memory and used a t  d i f f e ren t  points throughout the solution 

of a problem. 

I t  assigns t o  each 

The subroutine SOURCE controls the source i t e r a t i o n s ,  and 

natural ly  , con-tai ns several modi fi ca t i  ons e Most of these modi f i  ca t i  ons 
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F i g .  D.2. Fuel Bundle I D  Numbers - Old Method 
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are  concerned with the solution of the fixed source ad jo in t  equation, 

E q .  (2 .17 ) .  T h e  fundamental mode contamination i s  swept out according 

t o  Eq. (2 .19)  in  SOURCE. 

o rd inar i ly  occurs a t  the end of each outer i t e r a t ion  in SOURCE, i s  

bypassed f o r  the fixed source case,  so t h a t  the eigenvalue from the 

forward case i s  used throughout the calculat ion.  

t i on ,  Eq. (2.30),  i s  a l s o  bypassed i n  t h i s  subroutine f o r  the solution 

of the fixed source case,  since multiplying the solution of a non- 

homogeneous equation by a constant will  n o t  necessarily be a solution 

The calculat ion o f  a new keff, which 

T h e  source norma! i z a -  

t o  the equation. 

SOURCE c a l l s  

applies Chebyshev 

l a t e s  the minimum 

the subroutine CHEBY, which t e s t s  fo r  convergence and 

polynomial acceleration. l3 

and maximum ra t io s  of the source solutions from the 

Ordinarily , CHEBY cal cu- 

present and previous i t e r a t ions .  

solut ions,  because the solution can be very small, or even zero, f o r  

some nodes. For such cases, these r a t io s  can approach i n f i n i t y .  There- 

fore ,  CWEBY has been modified t o  calculate  the maximum and minimum 

differences of the solutions from the present and previous i t e r a t ions  

fo r  the fixed source adjoint  case only. 

This  is  not possible f o r  fixed source 

The  subroutine PARTB i s  the la rges t  in SIMULATE and controls a l l  

the nuclear and thermal -hydraul i c cal cul a t i  ons . 
control searches, depletion calculat ions,  and the se t t i ng  of the memory 

pointers.  Most o f  the modifications made t o  the original SIMULATE code 

a re  located in t h i s  subroutine. These modifications are  often in the 

forms o f  f lags  which signal the program a t  the times tha t  i t  i s  t o  

perform various routines in the forward and backward marches t h r o u g h  

I t  al so hand1 es the 
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time, Statements also have been added t o  cal l  the neiJ subroutines 

which have been added t o  the code. 

in time, PARTB writes the forward and adjoint sources and the exposure 

dis t r ibut ion o n t o  1/0 units for  use during the backward march through 

tiiiie. I t  a lso al locates  additional storage for  the new variables t h a t  

appear in the development of the depletion adjoint equations. 

forward and backward marches through time are outlines in the flow- 

charts i n  F i g s ,  D.4 and D.5, respectively. 

During each exposure s tep forward 

The 

PARTB i s  followed by the subroutine DPAK’T, which was or iginal ly  a 

dummy subroutine placed in SIMULATE fo r  possible use by the user. 

the end o f  the forwdrd march th rough  time, DPART prepares for  the back- 

ward march t h r o u g h  time by cal l ing a new subroutine which t ransfers  the 

source and exposure dis t r ibut ions which have been stored sequentially 

on 1/0 units t o  d i rec t  access I/O uni t s ,  so  t h a t  these dis t r ibut ions 

can be recalled into memory a t  the corresponding exposure s tep in the 

backward march t h r o u g h  time. 

A t  

When a fixed source i s  input t o  SIMULATE for a response other t h a n  

the subroutine INPUT1 writes the fixed source onto  disk,  from ke f f ’  

which i t  will be read a t  a l a t e r  point in the program. I t  then s e t s  

the i n i t i a l  source guess for  - r* t o  zero in order t o  minimize the i n i t i a l  

fundamental mode contamination. 

New Subroutines _._____ ._...-....._. ____ 

Seven new subroutines have been created and added t o  SIMULATE for 

DPT calculations.  Three of these subroutines are very simple and 

written t o  perform a par t icular  t a sk  I BUGTAP writes the sensi t i  vi ty 
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ORNL-DWG 81-6058 

1 on 1/0 Unit I I + 
I Solve K-Adjoint Eq'n. I 

? 

EXIT FORWARD MARCH ) 

Fig .  0.4. Forward March Through Time 
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O R N L D W G  81-6059 

L 

Fig .  D.5. Backward March Yhrough Time 
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coeff ic ients  on I/O units for l a t e r  use in perturbation calculations.  

The subroutine REPLAC replaces the present exposure d is t r ibu t ion  with 

the exposure dis t r ibut ion from another exposure s tep which has been 

stored on d i s k .  This subroutine i s  called pr ior  t o  each exposure s tep 

backward i n  time t o  s e t  the exposure dis t r ibut ion equal t o  that  from 

the corresponding exposure s tep i n  the forward calculations.  STACK 

reads a s e t  o f  arrays which have been stored on a sequential I/O unit  

d u r i n g  the end of each forward exposure s tep and writes them on a 

d i rec t  access 1/0 u n i t  f o r  recal l  during the backward march through 

time. STACK i s  called a t  the end of the forward march through time. 

CALMAT is  a new subroutine which uses the same logic as CALSRC and 

GUTS t o  calculate  exp l i c i t l y  and pr in t  the coeff ic ients  o f  M and - F. 

This subroutine can be called when requested by the user. 

- - - 
I t  should 

only be used fo r  debug purposes, since i t  requires a grcat deal o f  

additional storage. 

The new subroutine D E R I V  calculates the par t ia l  derivatives given 
aM 
I 

i n  Eqs. (3.51)-(3.95) and uses these derivatives to  calculate  and 
2F  a x x  -. - 

f o r  x = 1, ..., 7. Note tha t  in the original derivation o f  the - 
_I 

axx 
depletion adjoint equations outlined in Section 11, the variable x took 

~ t - i  the values 1,. . . ,9 ,  where these numbers corresponded t o  the macro- 

scopic cross sections I.D. numbers in Table 2.1.  However, the deriva- 

t ives  of the coeff ic ients  of p1 and with respect to  K C f l  and K C f 2  are - -- 
zero. Therefore, these two cases are  omitted in D E R I V ,  and the cross 

section s e n s i t i v i t i e s  zx, which are  a lso calculated in D E R I V  are  only 

l i s t e d  fo r  seven cross sections using the newly defined macroscopic 

cross section I.D. numbers l i s t e d  i n  Table D . 1 .  I n  addition t o  
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Table D.l. Macroscopic Cross Sections 
wi t h  Sensi t i  v i  t y  Coef f i c i  ents 

Iden ti  f i ca t i on Macroscopic 
Number Cross Section 

calculating the cross section sens i t i v i ty  coefficients s! a t  each 

exposure step i ,  DEKIV calculates the sum of  these coeff ic ients  over 

-1 

L 

i =O 
a l l  exposure s teps ,  1 sx x = 1, ..., 7 .  This subroutine also calcu- 

-1 

la.tes the control variable sens i t i v i ty  coeff ic ients  c1 defined in 

E q .  (2.49), the product zjG,zf, in Eq. ( 2 . 5 0 ) ,  and the exposure impor- 

tance - E* in Eqs. ( 2 . 3 5 ) ,  (2 .41) ,  and (2 .48) .  

*k 

The new subroutine DIREFF i s  called by DERIV a t  the final exposure 

step whenever SIMULATE conducts a backwards march t h r o u g h  time for a 

response other t h a n  k e f f .  

"d i rec t  e f fec t"  t o  the sens i t i v i ty  coeff ic ients  a t  the f inal  exposure 

DIREFF calculates the contribution of the 

s tep ,  which i s  the expression 
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in E q .  (2 .40) .  Recall t h a t  R i s  defined as 

so t h a t  

The expression in Eq. (D.2) can be writ ten 

Since t-ll and fi2 will d i f f e r  for  each response o f  i n t e re s t ,  general 

equations for  each term on the RHS o f  E q .  ( D . 5 )  cannot be programmed 

into SIMULATE. 

by the XSBP whenver such depletion perturbation theory reference cases 

are t o  be solved. 

ordinar i ly  a dummy subroutine which se t s  a l l  these terms equal t o  zero. 

When the user supplies the proper equations t o  DIREFF, the subroutine 

D E R I V  t h e n  uses the solutions o f  these equations to  solve Eq. (0.5) 

which i s  subst i tuted in to  Eq. (2 .40 ) .  

The specif ic  equations fo r  these terms must be suppZied 

T h i s  i s  done in the subroutine DIREFF, which i s  

EXPOSE i s  a new subroutine w h i c h  uses logic  based on t h a t  o f  

SIGDAT, the subroutine in SIMULATE which evaluates the macroscopic 

cross sections a t  each exposure s tep.  

the derivatives o f  the cross section polynomial f i t t i n g  function w i t h  

respect t o  exposure and  control variable K ,  respectively. 

possible ident i f icat ion numbers are l i s t e d  in Table D.2. 

a f x  - arx 
-1 a% 

EXPOSE calculates E- and - , 

The 
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Table 0.2. Identification Numbers o f  Available Control Variables 

- -.._- 

ID Number Variable Comments 
.-___I- II__.-- ~ . . . .  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 - 20 

21 

22 

23 

24 

E i j k  

j k  

'*i j k  

" i j k  

" i j k  

6 i J k  

c B  

'Sui j k  
h 

Spares 

N I  

NXe 

NPIIl 

NSm 

Nodal Exposure, G W D / I  

Control F1 ag , 
= 1 for uncontrolled 
= -1 f o r  controlled 

Node power r e l a t ive  t o  core average 
rated Val ue 

R e l a t i v e  Water Density 

Void History 

Square raot o f  fuel temperature, O K  

Boron number density related variable 
( C B  i s  i n p u t  on Card 1)  

Boron concentration related variable 

Axial position i n  cm from bottom 
sur face  o f  core 

Nuclide concentrations, atorns/bn-cm 
Iodine, 1 1 3 5  

Xenon, Xe135 

Promethium, Pm149 

Samarium, Sm149 
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EXPOSE i s  only programmed t o  handle a maximum o f  two control 

variables fo r  each reference case. This should be su f f i c i en t  f o r  most 

users,  b u t  the l imi t  can be eas i ly  expanded by the user, i f  necessary. 

The polynomial f i t t i n g  function may be a function of up  t o  three 

var iables ,  b u t  EXPOSE can calculate  the derivatives of any par t icu lar  

polynomial with respect t o  only one control variable. T h u s ,  i f  a 

polynomial i s  a function of exposure and any other variable,  the 

der ivat ive of t ha t  polynomi a1 with respect t o  t ha t  second variable 

cannot be calculated by EXPOSE because the derivative with respect t o  

exposure i s  required f o r  the solution of the depletion adjoint  

equations. 

nomials are  generally a function o f  one variable each. 

This i s  n o t  viewed as a serious r e s t r i c t ion  s ince the poly- 

The subroutine FIXSRC calculates  the fixed source for  the fixed 

source adjoint  equation. I f  the fixed source Q* was input t o  SIMULATE 

f o r  a response other than keff (Eq.  ( 2 . 3 8 ) ) ,  FIXSRC reads I Q* f r w  disk 

(where i t  was placed by INPUT1) anti s tores  i t  in memory. 

solution of E q .  (2.44), which i s  fo r  exposure s teps  pr ior  t o  the f inal  

s tep  ( i  < L ) ,  the fixed source I Q* i s  calculated by FIXSRC for each 

exposure s tep.  

For the 

The new subroutines which have been added t o  SIMULATE are  l i s t e d  

in Table D.3 with a br ief  description. 

each one are writ ten i n  parentheses. 

The subroutine(s) which ca l l  

The names a n d  numbers assigned t o  the various I/O units used f o r  

s tor ing  data during the forward and backward marches through time are  

l i s t e d  in Table D.4. 

backward march t h r o u g h  time. 

Units 21-32 are  required f o r  any forward and 

Units 33 and 34 are  required i f  the 
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Table D.3. New Subroutines Added t o  SIMULATE 

Name Purpose 

BUGTAP Writes s e n s i t i v i t y  coeff ic ients  on 
calculations external to  SIMULATE. 

CALMAT Calculates the coeff ic ients  of & 
(SOURCE) 

DERIV Calculates the par t ia l  derivatives 
coupling coeff ic ients  and the sens 
coeff i c i  en t s  . 

DIREFF Calculates the d i r e c t  e f f e c t  contr 

( PARTB ) 

EXPOSE 

F I XSRC 

R E P L A C  

STACK 

1/0 u n i t  for 
(DERIV) 

-. - F exp l i c i t l y .  

of the nodal 
t i v i  t y  

bution to  the 
s e n s i t i v i t y  coeff ic ients  for responses other 
than k e f f .  (DERIV) 

Evaluates the derivatives of the cross section 
f i t t i n g  functions w i t h  respect t o  exposure and 
other control variables.  (PARTB)  

Calculates the fixed source f o r  the depletion 
adjoint  equations. ( P A R T B )  

Replaces the present exposure dis t r ibut ion w i t h  
t h a t  o f  the previous exposure s tep.  (DPART, 
PARTB) 

Transfers source and exposure dis t r ibut ions 
of a l l  forward exposure steps from sequential 
t o  d i r ec t  access 1/0 uni t s .  (DPART, DERIV) 
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Table D.4. 1/0 Units for Forward and Backward March Through Time 

-- 

1/0 Name Variable Speed Type 110 
I/O Ivo. 

---LII_I_-_ -- 

S .  Sequential 21 ITAPAA -1 

22 

23 

24 

25 

26 

27 

28 

29 

30 

ITAPBB 

ITAPCC 

ITAPDD 

ITAPEE 

ITAPFF 

ITAPGG 

ITAPHH 

ITAP I I 

ITAPJJ 

31 ITAPKK 

32 ITAPLL 

33 ITAPMM 

34 ITAPNN 

35 I TAP00 

36 ITAPPP 

* 
S .  
-1 

F.S. -, 
-1 Q: 
E .  
-1 * s .  
-1 

F.S. 

E.  

S. 

7 --1 

-1 

-1 * 
-1 
E .  

Sequent i a 1 

Sequential 

Sequent i a 1 

Sequential 

Direct Access 

Direct Access 

Direct Access 

Direct Access 

Sequenti a1 

Sequential 

S e q u e n t i a 1 

Sequential % 
Sequential 

-c2 (Y. Sequential 

af 
TG 

Sequential 
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sens i t i v i ty  coeff ic ients  for  a single control variable are desired. 

I f  s ens i t i v i ty  coeff ic ients  for  a second control variable arc desired, 

units 35 and 36 will a lso be required. 

User Options 

SIMULATE can be used t o  solve any number of  d i f fe ren t  variations 

on a problem. 

f i r s t .  This d a t a  has t o  contain a l l  necessary information f o r  SIMULATE 

The d a t a  for  an "independent case" must be submitted 

t o  solve the i n i t i a l  problem, whether s t a t i c  or burnup-dependent. This 

case can be followed by any number of "dependent cases," where only  the 

data which the user wishes t o  change must be submitted. 

A user will submit an independent case t o  begin a forward march 

t h r o u g h  time f o r  a par t icular  fuel cycle fo r  a given reactor design. 

She forward march may be executed en t i re ly  from the independent case, 

b u t  usually i t  will require several dependent cases since many input 

parameters may change during the course of a fuel cycle (e .g . ,  boron 

concentration). 

Once the forward march has been completed, a dependent case must 

be submitted t o  begin the backward march t h r o u g h  time. 

number of cases required t o  execute the backward march will equal the 

number of cases for  the forward march, because the input parameters 

changed during the forward march must be changed in reverse order during 

the backward march. 

Usually the 

SIMULATE reads i t s  input from numbered cards with free  format 

input. 

Free format input does n o t  have fixed f i e lds  as do normal input. 

The card number ident i f ies  the d a t a  which appear on t h e  card. 

The 
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input d a t a  are assigned t o  the proper variable names according t o  the 

order in which they appear on the card. 

Card Type 25 i s  an extra card type available fo r  the user in the 

original version o f  SIMULATE. The data from th is  card are assigned t o  

the MODEF array,  which can s tore  a maximum of twenty values. SIMULATE 

has been modified t o  use the MODEF a r ray  as input user options fo r  the 

solution o f  the depletion adjoint equations. 

the user are l i s t e d  in Table D.5. The default  value for  a l l  members o f  

the MODEF array i s  zero. The user should  never submit i n p u t  values fo r  

M O D E F ( 5 ) 4 0 D E F ( l O ) ,  which are  used internal ly  by SIMULATE during the 

forward and the backward marches t h r o u g h  time. 

internal f lags are l i s t e d  in Table D.6. 

The options available t o  

The purposes o f  these 

I f  Card 25 i s  n o t  submitted by the user, t h i s  new version of 

SIMULATE will operate l i ke  the original version o f  the code. Executing 

a forward and backward march th rough  time will use approximately six 

t imes( the CPU time and will cost  approximately s ix  times as much a s  

the same forward r u n  using the original version of SIMULATE. This is  

expected, since the forward and backward march solves three equations 

(forward, k - a d j o i n t ,  and fixed source adjoint)  fo r  every equation tha t  

the original code solves. The CPU time i s  also increased by the calcu- 

la t ion o f  the par t ia l  derivatives and the increased use o f  I/O devices. 

The fixed source adjoint solution generally takes s ign i f icant ly  

more i te ra t ions  t o  converge t h a n  the solutions o f  the other two 

equations. Several methods o f  convergence acceleration were tes ted 

(including overrelaxation, Chebyshev polynomial, a n d  no acceleration) 

t o  see i f  the ra te  of convergence could be improved. I t  was determined 
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Table D.5. Control Options for  Depletion Adjoint Equations 
Card Type 25, Array MODEF 

M O D E F ( 1 )  = 0 Solve only the forward equation. 

= 1  Solve the k-adjoint and the forward 
equations. 

= 2  Solve the fixed source adjoint equatian. 
Use t h i s  for  response other than  k 
f o r  s ta t ic ,  case and for  a11 respongzf 
for backward march through time. 

MODEF(2)  = 0 All cases except the following: 

= 1  Set t o  t h i s  value when M O D E F ( I )  = 2 fo r  
s t a t i c  case. 

= 2  Set t o  t h i s  value when M O D E F ( 1 )  = 2 and 
g* i s  __ n o t  being input ( i . e . ,  for  i f a )  
fo r  burnup-dependent case. 

= 3  

MODEF(3) = 0 

= l  

M O D E F ( 4 )  = 0 

= 1  

MODEF(5) - (10) 

MODEF(II) = o 

= m  

Set t o  t h i s  value when M O D E F ( 1 )  = 2 a n d  
Q* i s  being input ( i . e . ,  for  i = a )  for  
burnup-dependent case, 

Exposure dis t r ibut ion i s  s e t  t o  E+--, 
a t  end o f  forward march in 
preparation for  backward march t h r o u g h  
time ( k e f f  response). 

Exposure dis t r ibut ion i s  l e f t  a t  La 
a t  end o f  forward march in 
preparation fo r  backward march t h r o u g h  
time (response other t h a n  k e f f ) .  

Bypass calculation of M&E - 

Calculate M&r exp l i c i t l y .  
debug I- requires large amount of storage. 

Use only for  

Reserved f o r  internal f lags .  

Do not write cross section sens i t i v i ty  
coeff ic ients  s x  on I / O  uni t  f o r  l a t e r  use. 

Write cross section sens i t i v i ty  
coeff ic ients  on I/O unit  number m for  
l a t e r  use. 

-1 
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Table D.5 (Continued) 

MODEF(12) = 0 

= n  

MODEF(13) = 0 

= p  

MODEF(14) = 0 

= 9  

MODEF(15) = 8 

= r  

MODEF ( 16)  

MODEF(17)  = 0 

= 1  

Do not write macroscopic cross sections 
on 110 u n i t  for l a t e r  use. 

Write macroscopic cross sections on 1/0 
u n i t  number n for l a t e r  use. 

Do n o t  calculate  any control variable 
sens i t i v i ty  c o e f f i c j e n t s .  

Calculate s ens i t i v i ty  coeff ic ients  ~1 

Table 4 . 2 ) .  

Do n o t  calculate  s ens i t i v i ty  Coefficients 
for  a second contro l  variable.  

Calculate s ens i t i v i ty  coeff ic ients  ~1 

Do not w r i t e  sens i t i v i ty  coeff ic ients  a 
1/0 u n i t  for la ter  use. -c1 

Write sens i t i v i ty  coeff ic ients  t~ on 1/0 
u n i t  number r for l a t e r  use. 

Same a s  M O D E F ( l 5 )  f o r  ~1 

All cases except the following: 

This i s  the  f ina l  case (independent o r  
dependent) i n  the forward march t h r o u g h  
time. 
MODEF( 1 7 )  = 1,  too).  

fo r  control variable p (see *1 

f o r  control variable q.  * 2  

on 

IC1 

. 
-2 

( I f  t h i s  i s  a s t a t i c  case, 
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Table D.6. Internal Flags f o r  Depletion Adjoint Equations 

MODEF(5) = NSTEP = Exposure step i 

MODE F ( 6 )  1, i f  MOOEF(1)  = 1 i n i t i a l l y  

MODEF(7) = NREC = T o t a l  number of  records for  each o f  
the source and the exposure d i s t r i -  
but ions  

MODEF(8) = IREC = location on d i r e c t  access 1/0 u n i t  
where array f o r  s t ep  i i s  stored 
= p , - i + l  

MODEF(9) = LSREC = number o f  records per time s t ep  
f o r  each ar ray  
= [ID ..-__I_-.- *lJsio* KD] + -, 

M Q O E F ( ~ O )  = o Calculate the NBT array i n  NBTCAL 

= l  Calculate the NBD array in NBTCAL 

tha-t the Chebyshev acceleration already in SIMULATE was the best method 

o f  convergence accelerat ion.  

The pr int ing o f  the output e d i t s  a re  controlled by Card Type 19,  

the IEDIT array.  Several of the new arrays developed i n  the depletion 

adjoint: equations have been p u t  under user control i n  th i s  array.  

are  printed and some are  suppressed by defaul t ,  b u t  any array can be 

printed i f  the user desires .  A value of 0 s ignals  the code t o  print 

the o u t p u t  e d i t ,  and a value o f  1 suppresses the pr int ing o f  t h a t  e d i t .  

The new variables which can be controlled by the IEDIT array a re  l i s t e d  

Some 

in Table D.7 with t h e i r  control f l ag  numbers and t h e i r  defaul t  values. 
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Table D . 7 .  Edits o f  New Arrays 

DPT FORTRAN 
Vari ab1 e Array Control Default 

Name Name F1 ag Value 

sx IEDIT( 35) 0 (ON) 

SXSUM IEDIT( 36) 0 (ON) 

ALPHCl IEDIT( 37) 0 (ON) 

ALPHCZ IEDIT( 38) 0 (ON) 

QSTAR IEDIT( 39) 0 (ON) 
X 

IEDIT (96) 1 ( O F F )  
a-f 
aE DFDE - 

DFDl 1 (OFF) IEDIT (97)  acx - 
aC 

- a f DFD2 IEDIT( 98) 1 ( O F F )  

-1 

as 
A* ... ASTAR IEDIT( 99)  1 ( O F F )  

- ..- E* ESTAR IEDIT (99 ) 1 (OFF)  

- F F I E D  IT ( 1 00 ) 1 (OFF) 

- M AM IEDIT( 100) 1 (OFF) 

- 

In th i s  sec t ion ,  we have presented the major modifications which 

have been made t o  SIMULATE i n  order t o  solve the depletion ad jo in t  

equations. Information concerning the use of t h i s  modified version o f  

SIMULATE has a l so  been presented. This information is  supplemental t o  

2 t h a t  g i v e n  in the SIMULATE manual. 
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