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DIFFUSION FROM SOLID CYLINDERS 

C. W. Nestor, Jr. 

ABSTRACT 

The problem considered in this report is the diffusion of material 

from a solid cylinder initially containing a uniform concentration and 

immersed in a well-stirred bath which maintains the external concen

tration at zero. The Fourier-Bessel series form of the fraction of 

the original material removed from the cylinder as a function of time 

converges very slowly for small time. We have obtained an alternate 

form which converges reasonably rapidly for small time and have also 

used the convergence acceleration method of P. Wynn to provide an 

efficient method for computation. Numerical examples and program 

listings are included. 
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ANALYSIS 

The diffusion equation in cylindrical geometry is 

a2C + 1 ac + a
2
cJ - £f. o_<r_<a, _n<z<n (1)O[ ar2 r ar az2 - at ' ~ ~ 

where 

C = the concentration of material inside the cylinder, 

o = the diffusion coefficient,
 

a = the radius of the cylinder, and
 

R, = its half-height.
 

For the problem to be considered in this report, the initial condition 

is 

C(r,z,o) = Co 

(a uniform initial concentration) and the boundary conditions are 

C(a,z,t) =0 

C(r, ~R" t) = 0 

The amount of material leaving the cylinder per unit time is 

t [- D ~~ ] 2.adz+ 2 / [ - D ~~ ] 20rdr • 
-R, a,z,t 0 r,R"t
 

and the fraction of the initial material leaving the cylinder in
 

a

[- D ~;] 2rradz + 2 J [- D ~~ ] 2rrrdr 
a,z,T o r R"T 

2rra 2R,Co 
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Taking Laplace transfonns' [F(S) =[00 e-st f(t)dt J. we obtain 

a2c + 1 a = sc - C
2c]

D [ ar2 r az 2 0 

We assume a separable form for C: 

C (r,z) =G(r) H(z) 

and we can satisfy the boundary conditions by taking 

G (a) = 0, 

H (~t) = o. 

If we substitute 
00 

with Sn = (2n; 1}7r , to satisfy the boundary conditions on the ends, 

into the partial differential equation for C and use the orthogonality 

property 

tf cos Skz cos Snz dz = t , k=n 
-t 

o , kin 

we obtain, for the coefficients An' 

= 4Co (_1)n-ld2 1 d ) A -D -+-- G(r)n ( dr2 r dr 1T 2n - 1[ ] 
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The term in brackets must be independent of r. Let 

- 1 
G (r) = s+B 20 + Q (r) 

n 

with 

"if (a) = 

to satisfy the boundary condition at r = a; we have 

d2 1 d - 2 -+--Q(r)-l1 Q(r)=Odr 2 r dr 

with 

s + OB 2 

11 2 = _-=O:--..:..:..n 

A solution of the differential equation for "if (r), satisfying the 

boundary condition at r = a, is 

Q(r) 

where 1
0 

(z) is the modified Bessel function of the first kind. 3 

The Laplace transform of the concentration profile is 

- _4Co .;, (_1)n-l 1 [ ~Ior]
C (r,z) - -n- ~ 2 n - 1 s + OB2 1 - I 11a COSBnz

n=l n 0 

and, after inserting this into our expression for F(s), performing 

all the differentiations and integrations and collecting terms, we 

have 

00 00 

Since 3 

F(s) = .1!L 
,Il,2s L: 

n=l 
L: 
n=l 
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the denominator of the Bessel function term will vanish for 

l1a = i j om 

where jom is the m-th zero of Jo(x), the Bessel function of the 

first kind. The singularities of F(s) are then all on the negative 

real axis: 

s + Q3 2 = - Dj 2 / a2 n om 

s = - D (8 2 + j 2 / a2 ) n om 

and 

Inversion of F(s) by the method of residues l leads to the 

double series form for f(t): 

f(t) = 1 ..
 

For small time, this expression suffers from two serious 

computational difficulties. Both series converge very slowly for 

small time, so that a large number of terms must be included to 

give even modest accuracy; but also the result is very close to 1 

and most of the significant figures are lost in the subtraction. 

An alternative expression can be obtained using the asymptotic 

expansions of the modified Bessel function l ,3 

1 (z) z [ + _1 +tV _e_ 1 9 75 
0 12nz 8z 2(8z)2 + 2(BZ)f + .. J 

3 15 10511 (z) tV k [1 - 8z - - .. -]2nz 2(8z)2 2(8z)3 
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a I 2 
~a = -=~S+B 0 

~D n 
00 

201F(s) ~~ S+/320 m 
n 

+ 16 ~!j) 1 1 D2 1 ]{S+B2D)3/2 -~ (S+B2D)2  000

7f2la VS+B~D n	 n 

Using the translation property 

F(s+a) = L {e-atf(t) I 
we can invert the series for F(s) term by term to give 

..
 

2 216 [D t D 03/2 2t 3
/ D e ~~ e-8~Dt 

7f2 a 2 IT - 2a2 t - 8a 3 3JIT"' - 8a It 2 - .. 0	 L.J (2n-, )2 
n=l 

By a similar technique l we can obtain two mathematically equivalent 

forms for the finite slab problem and show that 

00 2	 
00 

Dt
8 '" l_e-8n 2 11ft [ ~ m . ml ]1fT ~ (2n-l )2 =.yff '\JI2 1 + 2 fi~ (-1) lerfc lOt 

n=l m=l 
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'where 3 
00 

ierfc (x) =~x erfc(t)dt 

LJ 2 

erfc (x) = e_t dt00 

--{ffx 

The asymptotic expansion for the integrated complementary error function 

has a factor of e-z2 
, so that the sum of terms is negligible with respect 

to 1 for small time; we put 

8 ~ l_e-B~Dt 2 TOt 
7f2 ~ (2n-1)2 ~ Yff'/V 

and 

so that
 

f(t) ~ 2 rot + [1 _L Dt] r~ (Dt_\1/ 2 
_ Dt _ 1 (Dt)3/ 2 _
 

yrr '/F -.rrr 9,2 L-\iTI a2) a2 WTI \a2 

t (~;Y -·..J· (~;)'j, ~ + ~ ~}a) -~; ~ + ~ ~}aj-~;t' 

(~ -~ ~}a) -(~;j' (t - irr ~}a) -... 
For small values of 9,/a, a more useful dimensionless parameter is 

2 
Dt/9, ; our expression for f(t) becomes 

f(t) =(~;)'/' [~ + ~ (~)] - ~; [~ (f) + (~),] + 

(~;)'/' [~ (~), - ~(~) ,] + (~;Y [3~ (f)' ~ ~ (q] + ••• 

which reduces to the "infinite sheet" result for Ua = O. 
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The surface of the cylinder is 

S = 2na 2 + 2na(2~) 

its vo1ume is 

so that the surface-to-volume ratio is 

~ = a':W = ~ ~ + ~}a) 
The first term in the expansion for f(t) is 

= 2 ~ JDt
V n 

the semi-infinite medium result.~ 

Example 

The first four coefficients in the series expansion in (Dt/a2)1/2 

are 

1 2 1C3 = - (~ --)In ~f a 6 

For a cylinder of radius and half-height both 1 cm, the coefficients are 

6Cl T 7IT = 3.38514
 

C2 = - (1 + ~ ) ::: -3.54648
 

C =~:: 1 03435
 3 0 vn •
 

C4 ::: 1n - ~ ::: -0.018897
 



10 

The fraction leached 

is shown in Table I. 

as a function of the dimensionless parameter Dt 
aT 

Table I. Sample Calculation of f(t) 

Dt 
az 10-6 10-4 10-2 

f(t) 3.382 (l 0-3) 3•3498 (l 0- 2) 0.30408 

For Dt/a2 =10-
2

, the eleventh term in the j~m series is 9.73 (10-9 
); 

the sum of the first eleven terms is 0.196132; the eleventh term in 

the (2n-l)2 series is 4.05 (10-
9 

) and the sum is 1.094492; the series 

result for f(t) is then 

f(t) =0.303998 

Our approximate value obtained from four terms agrees reasonably well. 

For smaller values of Dt/a2, many more terms would be required in 

evaluating the series. If we require 

or 

B2Dt> 16.1 , 
n 

t hen, f or -Dt = 10-" and Q, / a = 1 ,a2 

n > 128 

so of the order of 120 to 130 terms would be needed to attain reasonable 

accuracy in the series form. 
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CONVERGENCE ACCELERATION 

For moderate values of time where the error after the first few 

terms of the expansion in (Dt/a2)1/2 would be unacceptably large, the 

convergence of the Fourier-Bessel series form can be considerably 

accelerated by the use of a scheme studied by (among others) P. Wynn. s 

The method is to determi ne a rational function in 1In to match the 

partial sums of the series, and to extrapolate the rational function to 

lin = O. A portion of the calculation for the (2n-l)2 series is shown 

in Table II, using a value of Ot/£2 = 10-~. We have 

£ lOt - 100 

so the additional terms involving integrated complementary error functions 

are negligible, and the value of the sum, correct to six significant 

figures, is 1.21978. Extrapolating as far as possible after nine terms 

in the sum gives 1.21822. The successive columns of the table are 

generated by the "rhombus rul e" 

k k-2 l/ftk-l k-l\ 
t j = t j+l + / \j+l - t j I 

and a convenient FORTRAN subroutine for generating successive upward

sloping diagonals of the table is given in the Appendix. (Subroutine 

EXTRAP. ) 

RESULTS 

Sample calculations for cylinders of various sizes with a wide 

range of diffusion coefficients have been done with the computer program 

and subroutines listed in the Appendix. The results are shown in 

Figs. 1, 2, and 3 and tabulated in Table III. 
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Table II. A Porti on of the Extrapolation Co Icu loti on 

0.99975 
9.02001 

1 . 11062 1.17260 
25.1547 78.6592 

1.15037 1.19129 1.20444 
49.5960 154.685 326.429 

1.17503 1.20080 1.21026 1.21456 
82.6351 260.390 559.308 1025.80 

1.18264 1.20643 1 .21361 1.21670 1 .21822 
124.667 399.666 882.689 1683.26 

1 .19066 1.21006 1 .21658 1 .21795 
176.196 577.796 1323.00 

1 .19633 1.21255 1.21702 
237.844 801.721 

1.20054 1 .21433 
310.361 

1 .20376 
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Table III. Fracti on Leached from Finite Cylinders 

Dt/a 2 tla = 0.3 tla = 0.5 tla = 1.0 tla = 3.0 tla = 5.0 

.0003 .101408 .076360 .057574 .045045 .042545
 

.001 .180772 . 136705 .103534 .081419 .076790
 

.003 .301748 .229279 .174942 . 138664 .131416
 

.01 .510551 .392523 .303998 .244982 .233120
 

.02 .670959 .522430 .410497 .335875 .320950
 

.03 .771965 .610018 .484897 .401478 .384795
 

.04 .840159 .676009 .542837 .454011 .436245
 

.05 .887240 .728300 .590358 .498200 .479768
 

.06 .920116 .770865 .630548 .536468 .517652
 

.07 .943235 .806055 .665235 .570251 .551254
 

.08 .959574 .835428 .695608 .600484 .581459
 

.09 .971162 .860099 .722490 .627813 .608878
 

.10 .979401 .880912 .746475 .652708 .633954
 

.12 .989462 .913467 .787452 .696527 .678341
 

.15 .996127 .946170 .835666 .750653 .733647
 

.20 .999266 .975470 .891964 .818792 .804134
 

.25 .999861 .988796 .928648 .867662 .855401
 

.30 .999973 .994879 .952804 .903111 .893055
 

.40 .999999 .998930 .979326 .947847 .941336
 

.50 1 .00000 .999776 .990941 .971829 .967746
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Figure 1. Fraction Leached vs Dt/a 2 (log-log plot) 
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APPENDIX 

Computer Program and Subroutines 

The computer program listed was used to generate the results shown 

in Table III and to produce the graphs shown in Figs. 1,2, and 3. The 

subroutines called by the main program, except for FCALC and INCMP, are 

contained in the computer graphics package DISSPLA.* The total time 

required to compile, load, and execute the program was 1.2 minutes on 

the IBM 360/75; 7 seconds on the 360/91 • 

•
 

*A proprietary software product of Integrated Software Systems Corporation, 
San Diego, california. 



•
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C 
C FPLOT.FOR (29 JAN. 1979) 
C 

REAL*8 DTOASQ(20), XLOA(5), FL{20,5) 
REAL*4 XP(20), YP(20) 
DATA DTOASQ 13.D-4, 1.D-3, 3.D-3, 1.D-2, 2.D-2, 3.D-2, 4.D-2, 

1 5.0-2,6.0-2,7.0-2, 8.D-2, .1DO, .12DO, .15DO, .2DO, .2500, 
2 .300, .400, .500, 0.001 

DATA XLOA 1.3DO, .5DO, 1.00, 3.00, 5.DOI 
DATA NDT 1191 
DO 95 N=1,NDT 

XP{N) = DTOASQ(N) 
95 CONTINUE 

CALL FCALC (DTOASQ, NDT, XLOA, 5, FL, 20) 
WRITE (6, 1) (XLOA{K), K=1,5) 
FORMAT (1H1, 20X, 'FRACTION LEACHEO FROM FINITE CYLINDERS'I 

1 1HO, 18X, 50X, 'LIA =', F4.1, 2X)1 
2 1HO, 10X, 'DTlA**2'/1X) 

DO 97 N=1,NOT 
WRITE (6, 2) DTOASQ{N), (FL(N,K), K=1,5) 

2 FORMAT (10X, 1PE8.1, 5E14.5) 
IF {MOD (N, 5) .EQ. 0) WRITE (6, 3) 

3 FORMAT (1X) 
97 CONTINUE 

WRITE (6, 4) 
4 FORMAT (1H 1) 

CALL INCMP 
CALL PSPLIN 
CALL SIMPLX 
CALL YAXANG (O.) 
CALL TITLE (O, 0, '*0&T/AIEH.6&2$', 100, '*F&RACTION *L&EACHED$', 

1 100, 10.,8.) 
CALL LOGLOG (1.E-4, 2.5, .01, 4.) 
CALL MSHIFT (0.1, -0.1) 
CALL RLMESS ('IA.5M5&L/IMXA-.5&A$', 100, 1.2E-4, .15) 
00 105 K=1,4 

DO 100 N=1,NDT 
YP{N) = FL(N, K) 

100 CONTINUE 
CALL CURVE (XP, YP, 1, 1) 
CALL RLREAL (XLOA(K), 1, 1.E-4, YP(1» 
CALL CURVE (XP, YP, NOT, 0) 

105 CONTINUE 
CALL ENDPL (1) 
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CALL RETITL
 
CALL XTICKS (2)
 
CALL GRAF (0., . 1, . 5, 0., . 1, 1.)
 
CALL MSHIFT (-0.6, 0.1)
 
CALL RLMESS ('IA.5M5&L/IMXA-.5&A$', 100, .12, 1.05)
 
DO 115 K=l,5
 

IF (K .EQ. 5) CALL MSHIFT (-0.1, -0.3)
 
MKNO = K + K - 2
 
CALL MARKER (MKNO)
 
DO 11 0 N=1,NDT
 

YP(N) = FL(N,K)
 
110	 CONTINUE
 

CALL CURVE (XP(13), YP(13), 1, 1)
 
CALL RLREAL (XLOA(K), 1, XP(13), YP(13»
 
CALL CURVE (XP, YP, NDT, 0)
 

115	 CONTINUE 
CALL RESET ('MSHIFT')
CALL ENDPL (2) 
CALL TITLE (0, 0, '(*D&T/AIEH.6&2IEXHX&)IEH.6&1/2$', 100, 

1 '*F&RACTION *L&EACHED$', 100, 10., 8.)
 
CALL XTICKS (2)
 
CALL GRAF (0., .1, .5, 0., .1, 1.)
 
NKP = 0 
DO 130 N=1,NDT
 

TEST = DSQRT (DTOASQ(N»
 
IF (TEST .GT. 0.5) GO TO 130
 
NKP = NKP + 1
 
XP(NKP) = TEST
 

C 
130	 CONTINUE 

CALL MSHIFT (-0.5, 0.15) 
CALL RLMESS (' IA.5M5&L/IMXA-.5&A$', 100, XP(7) + .01, .95) 
DO 140 K=1,5 

MKNO = K + K - 2
 
CALL MARKER (MKNO)
 
DO 135 N=l,NDT
 

YP (N ) = FL(N , K) 
135	 CONTINUE
 

CALL CURVE (XP(7), YP(7), 1, 1)
 
IF (K .EQ. 5) CALL MSHIFT (-0.3, -0.3)
 
CALL RLREAL (XLOA(K), 1, XP(7), YP(7»
 
CALL CURVE (XP, YP, NKP, 0)
 

140	 CONTINUE
 
CALL ENDPL (3)
 
CALL DONEPL
 
STOP
 
END
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SUBROUTINE FCALC (DTOASQ, NDT, XLOA, NXL, FRAC, IFD)
 
IMPLICIT REAL*8 (A-H, O-Z)
 
DIMENSION DTOASQ(1), XLOA(1), FRAC(IFD, 1)
 
DATA RSRP 1.564189583548DOI
 
DATA FOROP 11.2732395447DOI, SMAX /1.D-41
 
DATA R6PI /5.3051647697D-2/
 
DO 105 K=1,NXL
 

TQ = 2.DO/XLOA(K)
 
C1 = RSRP*(4.DO + TQ)
 
C2 = -1.DO - FOROP*TQ
 
C3 = RSRP*(TQ - .166666666667DO)
 
C4 = R6PI*TQ - .125DO
 
DO 100 N=1,NDT
 

PSQ = DTOASQ(N)
 
P = DSQRT (PSQ)
 
SMT = DABS(C4*PSQ)
 
IF (SMT .LE. SMAX) FRAC(N,K) = «(C4*P + C3)*P + C2)*P + 
IF (SMT .GT. SMAX) CALL SERSUM (PSQ, XLOA(K), FRAC(N,K» 

100 CONTINUE 
105 CONTINUE 

RETURN
 
END
 
SUBROUTINE SERSUM (A, B, ANS)
 
IMPLICIT REAL*8 (A-H, O-Z)
 
DIMENSION U(31), V(30)
 
DATA CONST 13.242277876DOI, PI02 /1.5707963268DOI
 
EXTERNAL ATERM, BTERM
 
CALL EXTRAP (A, ATERM, 15, 1.D-8, U, V, ASUM, INDA)
 
IF (INDA .NE. 0) WRITE (6, 1)
 
FORMAT ('OA SERIES NOT CONVERGED')
 
BT1 = A*(PI02/B)*.2
 
CALL EXTRAP (BT1, BTERM, 15, 1.D-8, U, V, BSUM, INDB)
 
IF (INDB .NE. 0) WRITE (6, 2)
 

2	 FORMAT ('DB SERIES NOT CONVERGED') 
ANS = 1.DO - CONST*ASUM*BSUM 
RETURN 
END 

C1)*P
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C 
C ATERM.FOR (30 AUGUST 1978) 
C 

FUNCTION ATERM (N, A) 
IMPLICIT REAL I 8 (A-H, O-Z) 
DIMENSION XJZT(20) 
DATA XJZT / 

1 2.4048255577DO, 5.520078110300, 8.653727912900, 
2 11.7915344391DO, 14.930917708600, 18.071063967900, 
3 21.2116366299DO, 24.3524715308DO, 27.4934791320DO, 
4 30.634606468400, 33.775820213600, 36.9170983537DO, 
5 40.058425764600, 43.199791713200, 46.341188371700, 
6 49.4826098974DO, 52.624051841100, 55.765510755000, 
7 58.9069839261DO, 62.0484691902DO/ 

IF (N .LE. 20) XJZ = XJZT(N) 
IF (N .GT. 20) XJZ = XJZM(N) 
ANS = O.DO 
ARG = AI(XJZ'12) 
IF (ARG .LT. 170.00) ANS = DEXP(-ARG)/(XJZI'2) 
ATERM = ANS 
RETURN • 
END 
FUNCTION 
IMPLICIT 

XJZM(N) 
REAL I8 (A-H, O-Z) 

DATA 
ATEB 

PI /3.14159265359DO/ 
= PIIDFLOAT(8I N  2) 

R8BT = 1.00/ATEB 
T = R8BT I12 
XJZM = • 12500 l ATEB + «6046.400'T - 31.DO)IT I 4.DO/3.00 + 1.00) 

1 'R8BT 
RETURN 
END 

C 
C BTERM.FOR (30 AUGUST 1978) 
C 

FUNCTION BTERM (N, B) 
IMPLICIT REAL'8 (A-H, O-Z) 
OODSQ = OFLOAT «N + N  1)112) 
ANS = 0.00 
ARG = ODDSQIB 
IF (ARG .LE. 170.DO) ANS = DEXP(-ARG)/ODDSQ 
BTERM = ANS 
RETURN 
END 
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C 
C EXTRAP.FOR (30 NOV. 1978) 
C 

SUBROUTINE EXTRAP (T, TRAT, NHAX, EPS, U, V, ANS, IND) 
C 
C P. WYNN'S EPSILON ALGORITHM (SEE HART ET AL., 
C "COMPUTER APPROXIMATIONS", WILEY, NEW YORK, 1968, PG. 38 
C 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
EXTERNAL TRAT 

C 
C THE FUNCTION TRAT (N, T) COMPUTES THE N-TH TERM OF THE 
C SERIES TO BE SUMMED: 
C 
C INF 
C 
C SUM F (T) 
C N 
C N=1 

• C 
DIMENSION U(2), V(2) 

C 
C THE ARRAYS U AND V MUST BE DIMENSIONED IN THE CALLING 
C PROGRAM WITH AT LEAST 2*NMAX AND 2*NMAX + 1 
C ELEMENTS, RESPECTIVELY. THEY WILL CONTAIN SUCCESSIVE 
C UPWARD-SLOPING DIAGONALS OF THE PADE' TABLE. 
C 
C NHAX IS HALF THE MAXIMUM NUMBER OF TERMS, 
C ANS IS THE ESTIMATE OF THE SUM, AND 
C IND IS RETURNED AS ZERO IF THE EXTRAPOLATION CONVERGED, 
C WITH A RELATIVE ERROR OF EPS, BUT IS RETURNED AS -1 
C OTHERWISE. 
C 

IND = 0 
TEMP = TRAT (1, T) 
U(1) = TEMP 
IF (DABS(TEMP) .LE. EPS) GO TO 120 
NV = 0 . 
NU = 1 
NN = 2 
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DO 115 N=1,NMAX 
TNEW = TRAT (NN, T) 
V(l) = U(l) + TNEW 
TEMP = V( 1) 
IF (DABS(TNEW/TEMP) .LT. EPS) GO TO 120 
V(2) = 1.DO/TNEW 
NN = NN + 1 
IF (NV .LT. 1) GO TO 105 
IQ = 1 
DO 100 KV=l,NV 

V(KV+2) = U(KV) + 1.DO/(V(KV+1) - U(KV+1» 
IF (IQ .EQ. 0) GO TO 100 
TEMP = V(KV+2) 
IF (DABS (V(KV)/TEMP - 1.DO) .LT. EPS) GO TO 120 

C 
100 IQ = 1 - IQ 

C 
105 TNEW = TRAT(NN, T) 

U(l) 
TEMP 

= V(1) 
= U( 1) 

+ TNEW 

IF (DABS (TNEW/TEMP) .LT. EPS) GO TO 120 
U(2) = 1.DO/TNEW 
NN 
IQ 

= NN 
= 1 

+ 1 • 
DO 11 0 KU =1,NU 

U(KU+2) = V(KU) + 1.DO/(U(KU+1) - V(KU+l» 
IF (IQ .EO. 0) GO TO 110 
TEMP = U(KU+2) 
IF (DABS (U(KU)/TEMP - 1.DO) .LT. EPS) GO TO 120 

C 
110 IQ = 1 - 1Q 

NV = NU + 

NU = NV + 
C 

115 CONTINUE 
IND = -1 

C 
120 ANS = TEMP 

RETURN 
END 

•
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• 

C 
C INCMP.FOR (15 DEC. 1978) 
C 

SUBROUTINE INCMP 
C 
C INITIALIZES DISSPLA FOR 14 BY 11 INCH PLOTS IN 
C A COMPRESSED DATA SET 
C 

CALL COMPRS 
CALL BGNPL (1) 
CALL PAGE (14., 11.) 
CALL HEIGHT 
CALL MX1ALF 

(0.2) 
('L/CSTD', '&') 

CALL MX2ALF ('STANDA', '.') 
CALL MX3ALF ('INSTRU', 'I') 
RETURN 
END 



•
 

•
 

•
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