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ABSTRACT

Perturbation theory for changes in linear and bilinear functionals
of the forward and adjoint fluxes in a critical reactor has been imple-
mented using two-dimensional discrete ordinates transport theory. The
computer program DOT IV was modified to calculate the generalized func-
tions T and T*. Demonstration calculations were performed for changes in
a reaction-rate ratio and a reactivity worth caused by system perturba--
tiqns. The perturbation theory predictions agreed with direct calcula-
tions to within about 2%. AAmethod hasvbeen developed for calculating
higher ) eigenvalues and eigenfunctions using techniques similar to- those
developed for generalized functions. Demonstration calculations have

been performed to obtain these eigenfunctions.
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CHAPTER I
INTRODUCTION

In reactor physics and shielding analysis there are many applications
in which the change in a performance parameter caused by a perturbation
(change) in the calculational model is determined. An extensive method-
ology known as perturbation theory has been developed for this class of.
problems. The first application of perturbation theory in reactor calcu-
lations is attributed to E. P. Wigner.!

Chapters III through VI of this work review several time-independent
perturbation theory formulations. The perturbation equations are derived
using the difference flux method. The difference flux method results in
straightforward derivations in which the same steps are followed for each
case considered. It is also relatively easy to identify the approxima-
tions that are made and to determine the physical significance of the
terms in the perturbation equations using the difference flux method.

The first case considered is the class of problems in which a source
is present and the performance parameters of interest depend upon the
"~ resulting flux. ‘Examples of thjs class of problems are shielding problems
and criticality surveillance applications. Perturbation equations can be
used to predict the changes in thé performance parameters resulting from
perturbations such as a modification to a shield or the addition of a
fuel bundle to a reactor core.

'The second case considered is a class of problems related to a criti-
cal reactor in which no inhomogeneous. source is present. This isvthe A

eigenvalue problem in which the value of A is unity for critical systems,
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less than unity for supercritical systems, and greater than unity for ;
subcritical systems. Perturbation equations can be used to predict the
change in X resulting from modifications to the system.

The third case considered is the class of problems in which the
performance parameter is a ratio of reaction rates based on the flux in a
critical reactor. Examples of these "linear ratios" are breeding ratio
or the ratio of experimentally determined reaction rates. Perturbation
theory can be used to predict the change in linear ratios resulting from
perturbations to the system.

The fourth case considered is the class of problems in which the per-
formance parameter is a ratio of functionals of the forward and adjoint
flux in a critf;a] reactor. The most common example of these "bilinear
ratios" is the worth of a sample to the reactivity of a reactor. Worth is
ordinarily calculated using the perturbation theory for changes in the
eigenvalue A. The change in the worth of a sample caused by a perturba- N
tion can be predicted using perturbation theory.

The perturbation theory for linear or bilinear ratios in a critical
system is often called "genera]iied perturbation theory." Similarly,
V eigenvalue perturbation theory is sometimes called "ordinary perturbation
theory." Generalized perturbation theory requires the calculation of
"genera]ﬁzed functions" which have rather special properties and present
difficulties for numerical solutions which are not present in the eigen-
value or shielding cases.

A chapter describing A eigenfunction expansions is included. Eigen-
function expansions are useful in understanding generalized functions .

and in understanding the convergence of numerical methods.
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| Previous work by a number of peop]e 1n¢1uding Usachev,? Gandini,?®
and Stacey* have developed generalized perturbation theory methods using
diffusion theory. Work at Oak Ridge, lead by Oblow,® applied generalized
perturbation theory to one-dimensional applications using the discrete
ordinates transport theory computer code ANISN.® The purpose of the work
described here is to develop numerical methods for generalized perturba-
tion theory using the two-dimensional discrete ordinates transport pro-
gram DOT-IV.7 Methods are developed for calculating generalized functions
and also hfgher eigenfunctions. Demonstration problems are solved for a

reaction-rate ratio and a worth problem.
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CHAPTER 11

NEUTRCN TRANSPORT THEORY BACKGROUND

In this chapter, a few topics from neutron transport theory are
reviewed. The purpose of this review is to establish notation and to

introduce relationships to be used in the chapteks to follow.

Consider the following time-independent form of the Boltzmann trans-

port equation:

T - To(r.E.R) + z(r,E) ¢ (r.E.0) =
&z(;TET—) ffvzf(F,E’) o(rF,E”,R7) dE“dR” + (2.1)

]fzS(F;E',§'+E,§) o(F.E*,37) dE“d3” + S(¥,E.Q)

A derivation of Eq. (2.1) can be found in a number of textbooks including
those by Bell and Glasstone® and Henry.® The symbols uéed in Eq. (2.1)
have their usual definitions which may be found in Refs. 8 and 9. In

Eq. (2.1), the neutron flux, ¢(r,E,Q), is a function of continuous vari-
ables in space, energy, and direction. In‘the applications to be presented
in later chapters, numerical solutions for the neutron flux will be ob-
tained using the computer program DOT IV.7 DOT IV obtains the solution

to a multigroup form of the transport equation using the method of dis-

758510 The method of discrete ordinates is a numerical

crete ordinates.
technique which obtains an jterative solution for a set of coupled dif-
ference equations. This approximate solution approaches the solution to
the continuous equatioﬁ as the space, energy, and space meshes are

refined. The discrete ordinates equations may be regarded as a matrix

equation in which the size of the matrix is often very large. Actually
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the equations can be written in matrix form only if certain supplementary
equations such as the Tinear model or the step model are used.'®
The following operator notation will be used to represent the trans-
port equation:
Hp =S : (2.2)
or Ap — Bp = S. (2.3)

In Eq. (2.3), the B operator represents the fission process, and the A
operator represents the other terms in the transport equation. The abstract
notation used in Egs. (2.2) and (2.3) allows these equations to represent
the continuous energy form of Eq. (2.1), the discrete ordinates equations,
or any other flux solution method such as diffusion theory or the P; method.
The perturbation equations presented in later chapters may be applied for
each of these different interpretations of Egs. (2.2) and (2.3). The fact
that ¢ is a function of space, energy, and direction is implied but not
shown in the operator notation used here. The deceptively simple operator
notation shortens the derivations of the perturbation equations in later
chapters. Some of the perturbation equations are fairly long even using
this notation.

The concept of an adjoint operator® will be used extensively in later
chapters. (The adjoint operator is not the same as the adjoint matrix,
and these different meanings of the word "adjoint" sometimes cause confu-

sion.) The defining relationship for the adjoint operator is:
<p*Hop> = <¢pH*¢p*> + boundary terms , (2.4)
where H* is the operator adjoint to H and the braces <> represent integra-

tion over space, energy, and angle phase space. For this work, H will

always represent a transport equation operator, although in general H can
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be any linear operator. The functions ¢ and ¢* in Eq. (2.4) héve been
limited to solutions of transport equations, since this is sufficient for
the app]icafions to be considered. Equation (2.4) is also valid under more
general conditions. In Eq. (2.4) ¢ is the solution to equations similar

to Eq. (2.2), while ¢* is the solution to equations similar to
H*¢p* = S* | (2.5)

Equation (2.5) is the adjoint transport equation® and can be derived
directly from physical principles based upon importance or from the defini-
tion of the adjoint operator in Eq. (2.4). The expanded form of the opera-
tor H* may be found in Ref. 8. _

When'Eq. (2.2) represents a form of the transport equation in which ¢
is a continuous function in space (either continuous energy or multigroup),
the Q-V¢ term results in a surface integral in Eq. (2.4) which vanishes
- when boundary conditions are applied.® For the discrete ordinate§ equa- .
tions, Eq. (2.4) is exact only when the supplementary equations mentioned
earlier result in a linear operator.!®

Equation (2.3) is a form of the transport equation which contains
~a source S which is independent of the flux, Another time-independent

form of the transport equation is the eigenvalue equation

Ab — ABp = 0 , (2.6)

where ) - % and k is the effective‘multiplication factor. Equation (2.6)

is known as the A or k eigenvalue equation. When k equals 1, Eq. (2.6)
represenfs a critical reactor, and the eigenfunction ¢ represents the flux

in the critical reactor. If k is greater than 1, the reactor is
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supercritical, while if k is less than 1, the reactor is subcritical.

The equation adjoint to Eq. (2.6) is

A*¢* — AB*¢* = 0 . | (2.7)
where <p*AP> = <pA*P*> ' (2.8)
and <p*Bop> = <pB*¢p*> . (2.9)

Equation (2.6) will be referred to as the "forward" A eigenvalue equation,
and ¢ will be referred to as the forward eigenfunction; while Eq. (2.7)
will be referred to as the adjoint X eigenvalue equation, and ¢* will be
referred to as the adjoint eigenfunction. The topic of eigenfunction

expansions will be discussed in Chapter VII.
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CHAPTER III

PERTURBATION THEORY FOR SOURCE PROBLEMS

The purpose of this chapter is to derive perturbation equafions for
inhomogeneous source problems. Two examples of this class of problems are
shielding and subcriticality surveillance applications.

Using the operator notafion introduced in Chapter II, the transport
equation is

Hp = S . (3.1)
Consider a design parameter R which can be defined by an equation of the
form -

R = <S*¢p> . v _ (3.2)
One example of a physical situation that can be represented by Eq. (3.2) is
a neutron detector. In this case, R would represent the detector reading,
and 5* would be the detector response function. The system describéd by
Eqs. (3.1) and (3.2) will be referred to as the reference state.

Now consider an altered physical system described by

H¢”" = S (3.3)
and R” = <S*¢p*> | (3.4)

This system will be referred to as the perturbed state. The prime symbol
will be used throughout this work to indicate a perturbed state. The con-
vention to be used to relate the reference and perturbed states is illus-

trated by the following example

6" = ¢ + 89 , | (3.5)
HY = H o+ o1 (3.6)
and R =

R+ SR . (3.7)
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This convention will be maintained throughout this work. &¢ in Eq. (3.5)
is known as the difference flux.!!' &H is referred to as the perturbation
operétor. SR is the change in the design parameter of interest and is

given by
SR = R — R = <S*§¢> . (3.8)

In this equation, S* is an importance function which relates changes in
the flux to changes in R.

One method of calculating SR is to obtain ¢ and ¢~ by solving
Egs. (3.1) and (3.3), calculate R and R” using Eqs. (3.2) and (3.4), and
subtract to obtain SR. This method for obtaining SR will be called the
direct calculation method.

In order to develop a perturbation equation for &R, Eq. (3.3) is re-

written as
Hp + HS¢ + SHo" = S . (3.9)

This result is easily verified using Eqs; (3.5) and (3.6) and noting that

H and &H are linear operators. Subtracting Eq. (3.1) from Eq. (3.9) yields
H§¢ = — SHo™ . (3.10)

Equation (3.10) is a transport equation for &¢.

Equation (3.8) can be rewritten as
SR = <SpH*¢*> (3.11)

by making the definition
H*¢* = S* . - (3.12)
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Using the definition of the adjoint operator, Eq. (3.11) becomes
SR = <¢p*H8¢p> . (3.13)

The boundary conditions for Eq. (3.12) are chosen to insure that Eq. (3.13)
contains no boundary term contribution. Substituting Eq. (3.10) into

Eq. (3.13) yields the following exact result

SR = — <¢*cHp™> . ‘ (3.14)

Interchanging the definition of the reference and perturbed states yields

another exact result
SR = — <¢p*“SHop> . : (3.15)

Equation (3.15) is the basis of the adjoint difference method.'?

Equation (3.14) can be written as
SR = — <¢p*SHp> — <dp*SHS¢> . (3.16)

Neglecting the second term (which is second order) yields the linear (or

first order) perturbation equation
SR= — <¢p*SHo> . (3.17)

Equation (3.17) has been used for a wide variety of applications. Note
that only ¢ and ¢* need be obtained and a large number of different per-
turbations SH can be evaluated using Eq. (3.17). In practice, thié is a
relatively simple numerical integration and is much easier than solving
the transport equation for each perturbed state as is required for the

direct calculation method described above.
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The second term in Eq. (3.16) is a correction term for linear pertur-
bation theory and can be utilized to obtain a higher order estimate as

follows. Using the definition of the adjoint operator, Eq. (3.16) becomes
SR = — <¢p*SHp> — <SHSH*Q*> . (3.18)

Note that the second term in Eq. (3.18) 1is similar in form to Eq. (3.8).
Following the same procedure outlined above, a second order result can be

obtained which is

SR = — <¢p*SHp> + <T*SHop> , , (3.19)
where H*T* = gH*gp* | (3.20)

Equation (3.19) does not have the general usefulness as does Eq. (3.17).
The source in Eq. (3.20) depends upon the nature of the perturbation being
considered, although the magnitude of the perturbation can be varied by a-
scale factor. Also the source in Eq. (3.20) can be both positive and nega-
tive which presents some difficulty for discrete ordinates methods. The
source in Eq. (3.12) is non-negative for many applications.

Another second order equation is

SR — <¢p*SHP> + <p*SHT> (3.21)
where HT = 8H¢ . (3.22)

Equations (3.19) through (3.22) are not considered of central 1mporténce
but are mentioned because they are similar in form to the generalized per-
turbation equations to be derived in Chapter VI.

The adjoint function ¢*(v,E,Q) defined by Eq. (3.12) is an importance
function which gives the expected contribution of a neutron at phase space

point (v,E,7) to the response R.® This result can be demonstrated using
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Eq. (3.17) and a perturbation which is purely absorbing. For this case
aRz — <¢p*SLd> . ' (3.23)

The 8Zz¢ term is a neutron removal rate that is weighted with ¢* in order
to relate the loss of neutrons to changes in R. The minus sign accounts

for the fact that the neutrons are being removed.
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CHAPTER IV

PERTURBATION THEORY FOR THE ETGENVALUE PROBLEM

The purposerf this chapter is to derive perturbation equations for
the change in the X eigenvalue due to a system perturbation. Some of the
equations developed in this chapter will be useful in the development of
the generalized perturbation theory equations in Chapters V and VI.

The equations describing the reference and perturbed states for the

eigenvalue problem are

Ap — ABp = 0 , (4.1)

A“d" — X"B"p” =0 , (4.2)
A*p* — AB*¢p* = 0 , ‘ (4.3)

and A*“¢p*” — A“B*“¢p*” = 0', (4.4)

where the operator form of the forward and adjoint eigenvalue equations

described in Chapter II has been used. Equation (4.2) can be written as
Ao + ASo + SA” — ABo — ABS® — (A"B” — AB)¢o” = 0 , (4.5)

where the convention established in Chapter III for relating the reference

and perturbed states has been used such that

¢" =6 + 8¢ , : (4.6)

A=A+ SA (4.7)

A" = A+ A, (4.8) -~
and B~ =B + 8B . ' (4.9)

Subtracting Eq. (4.1) from Eq. (4.5) yields

(A —AB)8¢ = — (SA — A"B” + AB)o~ . (4.10)
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Equation (4.4) can be rewritten to obtain a result similar in form to
Eq. (4.5). Equation (4.3) can be subtracted from this result to obtain

the following adjoint equation which is similar in form to Eq. (4.10):
(A* — AB*)8¢* = — (SA* — A"B*~ + AB*)¢*” . (4.11)
Multiplying Eq. (4.10) by ¢* and integrating yields
<p*(A — AB)So> = — <p*(SA — A"B” + AB)o”> . - (4.12)

The left-hand side of Eq. (4.12) can be evaluated using the definition

of the adjoint operator and Eq. (4.3) as follows
<¢*(A — AB)§¢> = <8¢(A* — AB*)¢*> =0 , - (4.13)

Uging Eq. (4.13) and the following identity |
A"B” f-xé = A6B + 8XB” | (4.14)

Eq. (4.12) can be solved for X to obtain

_ <g*(sA — A6B)o">
51 = LA A , (4.15)

Another exact result for 8)A can be obtained either by multiplying

Eq. (4.11) by ¢ and jntegrating or by interchanging the reference and

perturbed states in Eq. (4.12). This result is

_ <o*"(8A — A8B)¢> |
R (4.16)

The Tinear (or first order in the perturbation) estimate for S\ is
obtained by considering a very small perturbation. The pertUrbed state

is approximated by the reference state to obtain
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6}\ = <¢*(6A _ )\53)&>
0 ' <¢p*Bo> >

(4.17)

where 8)  is the linear estimate for 61, Equation (4.17) has been used
for a wide variety of applications., Once ¢ and ¢* are obtained, the effect
of a large number of different perturbations can be estimated simply by
performing the indicated integrations.

Second order estimates for &) can also be obtained. Substituting
Eq. (4.6) into Eq. (4.15) and neglecting higher order terms to obtain a

result that is 1§near in 8¢ yields

~ <¢*(8A-AGB)¢> <¢p*(SA-ASB)SH>  <¢*B 89>
AR TR [] 2% (5AAOB) 0> <¢*FBTH> ] . (4.18)

Using the definition of the adjoint operator, Eq. (4.18) becomes

~ <¢0*(SA-AEB) o>

SAR B (1 + <S*6¢>) , | ' | (4.19)
cx - (SA*-A8B*)¢* B*“¢p*

Starting with Eq. (4.16) and neglecting higher order terms to obtain a

~result that is linear in 8¢*, yields another second order estimate

5~ <¢*€3ﬁ;?%£3¢% (1 + <S8¢*>) : (4.21)
. _(sAx8B)p _ B’¢
where S = <o*(SA-ASB) o>  <¢*B 9> (4.22)

Discussion of Eqs. (4.19) through (4.22) is deferred until Chapter VI where
very similar equations are developed.
The physical interpretation of ¢* can be demonstrated using

perturbation equations. Recalling that A = % , the following result is
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obtained for small perturbations

§) = —]f—'; . (4.23)

Using Eq. (4.17) and considering a small perturbation that is purely

absorbing results in

ok L KP<e*SZag>
Sk~ - B> - - (4.24)

¢* is an importance function which relates the loss of neutrons 6Iy ¢ at
any point in phase space to the resulting change in k., The minus sign

indicates that a loss of neutrons decreases k as would be expected.
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CHAPTER 'V

GENERALIZED PERTURBATION THEORY FOR LINEAR RATIOS

The purpose of this chapter is to derive perturbation equations for

the system described by

Ad — ABs = 0 | (5.1)
e
and R = e (5.2)

Equation (5.1) represents a critical or near critical reactor and R is a
linear flux ratio (i.e., the ratio of functionals that contain only ¢).
Examples’of performance parameférs that can be represented by Eq. (5.2)
are breeding ratio and the ratio of experimentally determined reaction
rates.

Using the notation introduced in previous~chaptérs, the perturbed

state is described by

A" —AB"¢” =0 : ‘ (5.3)
L 5.4
and R "-2-2—257-; . ‘ ‘ . ( . )

Using the convention for relating the reference and perturbed states

introduced in Chapter III,

SR = R* —R (5.5)
or

SR _ R~ ;

S (5.6)

Substituting Eqs. (5.2) and (5.4) into Eq. (5.6) and rearranging results

in
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i <Z;¢f>'
SR <Ii¢>
<, 0>

or

<(z,+8%,) (¢p+5¢)>
SR _ <Li¢>

R P P () L (5.8)
<L, 0>

By neglecting any terms that are higher than first order in the perturba-

tion (i.e., <8X,8¢>), Eq. (5.8) becomes

1+ <621¢>'+ <L16¢> _ A
R~ <E.6> -1 . (5.9)

—_—

R 1+ <8Ta0> + <¥o8¢>
<T,0>

The first order form of Eq. (5.9) that is linear in 8¢, 8I,, and 8%, is

SR ., <6Ii¢>  <0Zp¢> | <I16¢> ~<2,8¢>

R~ <tip> <T,0> <T10> <T20> (5.10)

The first two terms on the right-hand side of Eq. (5.10) are called the
direct effect since they result from changes in £, and Z,, while the last
two are called the indirect effect since they result from changes in the
flux.

The indirect effect in Eq. (5.10) can be written as

[ = <S*§¢> (5.11)

where

- I Lo
S* = G55 T S (5.12)

S* is an importance function that relates changes in the flux to changes

in R.
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In order to obtain an equation for the indirect effect I which does

not contain 8¢, it is useful to introduce the function.%* defined by
(A% — AB*)[* = s* | (5.13)

The boundqry conditions for Eq. (5.13) are the same as for the homogeneous

equation
(A* - XB*)(b* =0 . (5-]4)

Equation (5.13) and other similar equations will be referred to as
“generalized" equations. Generalized equations have special properties
that will be discussed in Chapter VIII,

Giveﬁ any particular solution, %* to Eq.r(5.13), a more genera]

solution is

R R - (5.15)

where C is an arbitrary constant. This result is easily verified by sub-
stituting Eq. (5.15) into Eq. (5,13) and using Eq. (5.14); The general

solution is rewritten as

¥ = T* + Co* ’ (5.16)
where | |

<F*B¢} =0 . ' (5.17)

A method for obtaining I'* given any particular solution Ib*‘ will be pre-
sented in Chapter VII. .
Using Egs. (5.13) and (5.15), Eq. (5.11) can be written as

I = <§¢(A* —ABR(T*+Co*)> ' © (5.18)
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Noting Eq. (5.14), Eq. (5.18) reduces to

I = <8¢(A*AB*)T*> . ) (5.19)

The operator (A*—)\B*) acts as a filter to remove ¢*. Applying the defini-

tion of the adjofnt operator to Eq. (5,19) results in
I = <I*(A-AB)S¢> (5.20)
8¢ can be eliminated using Eq. (4.10) which is repeated:
(A-AB)8¢ = — (SA-A"B“+AB)¢p~ . (5.21)
Substituting Eq. (5.21) into Eq. (5.20) yields
I = — <T*(SA-A"B“+AB)¢p"> . (5.22)
Using the identity
A“B” — AB = ASB + SAB + SASB (5.23)
Equation (5.22) becomes
I = — <I*(8A-A5B-6AB-6A6B)o™> . | (5.24)

Considering only small perturbations (i.e., neglecting 6A6B and replacing
¢~ with ¢) and using Eq. (5.17) to eliminate the §X<I'*B¢> term, the fol-

Towing result is obtained:

SR <8Z1¢>  <8Z20> | _rafsp_
R~ <Thr> <T 0> <T (GA }\GB)dJ) . (5.25)

Equation (5.25) is a perturbation equation for SR that is linear in the
perturbation operators 8Z;, &I, SA, and 6B. Note that &8¢ appears in
Eq. (5.10) but not in Eq. (5.25). Once ¢ and T* are obtained, Eq. (5.25)
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can be used to economically estimate the effect of many different pertur-
bations by evaluating the indicated integrations, |
A morévaccurate'result fér R~ can be obtained by retaining sécond
order terms and neg]eéting higher order terms. Equétioh (5.4) can be

written as

+ <¥ ‘6¢>>
(5.26)

R- = <Ii"¢> < <I; ¢>
S <Ty "> <] + <22‘5¢>>

<%, 0>

Equation (5.26) can be expanded in a series to .obtain

R” = 5§1LQ3.[1+a(1“3+32_33+_...)]

e , - (5.27)

_<E176¢>  <Ip 080> (5.28)

where 3765 5765

and - R (5.29)

Equation (5.27) is easily verified using simple algebra and the series

1 . e 22 a3 4 e
Tpc1-B+B -8+

which converges for |B|<I. |
In Eq. (5.27) the first term is a direct effect that does not account
for changes in the flux, and o is a correction term that is first order

in 8¢. Thusly, an equation which retains second order terms in &¢ is

<% 0>

R™m S [4a(1-8)] (5.30)

Equation (5.28) can be written as

o = <S,*6d> _ . (5.31)
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T~ L™

* = — .
where S, 3100 3,00

(5.32)

Note that Eq. (5.32) is very similar to Eq. (5.12). Using the same devel-
opment presented following Eq. (5.12), an equation which is very similar

to Eq. (5.22) is obtained:

a = — <I';i*(SA-A"B +AB)o™> , - (5.33)
where v (A*—AB*)T,* = S, * (5.34)
and <T1*Bp> = 0 . (5.35)

Uéing ¢ = ¢ + 8¢ and Eq. (5.35), Eq. (5.33) becomes

(5.36)

o = — <T'*(8A-A"5B)¢> <1 + <F1*(5A—X'B'+KBE¢>>

<T*(SA-A"SB)o>

Recalling that o and g are each first order terms, the following result
is obtained by retaining terms that are second order in the perturbation

and neglecting higher order terms:
a(1-8) = — <T,*(SA-ASB)d>(1+4<S,*8¢p>) + SAo<T*SBop> (5.37)

w = (SA*ASB*8X,B*)Th* 535

where S2 <T,*(SA-A8B)o>  <I;¢>

(5.38)

~and 8Xpis a first order estimate for §A.

Returning to Eq. (5.30), a second order estimate for R is

R™ % SELO2 {1 <r % (8A-0B) 9> [1— <To(SA-ASB) > J+6Ao<T1*6Be>} ,  (5.39)
2

where

(A*—AB*)T,* = S,* | (5.40)

H
o

and <T,*Bop> (5.41)
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For brevity, several steps were omitted in the development of Eqs. (5.36)
through (5.40). These equations were included to demonstrate a procedure
for obtainfng a second order result. Equation (5.39) reduces to Eq. (5.25)
for small perturbations.
| The physical.interpretation of.I'* can be obtained by considering a

purely absorbing perturbation in Eq. (5.25):
SR — <T*§I30> . (5.42)

I'* is an importance function which relates the loss of neutrons 8I,¢ at any

point in phase space to changes in 6R.
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CHAPTER VI

GENERALIZED PERTURBATION THEORY FOR BILINEAR RATIOS

The purpose of this chapter is to develop perturbation equations for

the system described by

Ad — AB® = 0 (6.1)

A*o* — AB*e* = 0 (6.2)
*

and R = §§;§§%§ . - (6.3)

R is a bilinear ratio (i.e., the ratio of bi}inear functionals of ¢ and ¢*).
Examples of performance parameters that can be represented by Eq. (6.3)
are reactivity worth, Doppler coefficient, prompt-neutron lifetime, effec-
tive delayed-neutron fraction, and the ratio of reactivity worths."

Using the notation introduced in previous chapters, the perturbed

state is described by

A" —ABGT =0 (6.4)

A*“¢* = — A"B*“p*" = 0 , (6.5)
. <O*7H{G™>

and R~ = Sopdt (6.6)

The relative change in R is given by

R _ R _
= & ] (6.7)

R
Substituting Eqs. (6.3) and (6.6) into Eq. (6.7) and using the convention

for relating the reference and perturbed states introduced in Chapter III

results in
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<(o*+8¢*) (H1+8Hy1) (¢+89)>

<¢p*H, 0>
<(¢*+8¢*) (H,+8H, ) (¢+8¢)>
<¢*H20>

_%i 1. .. (6.8)

The 1inearized form of Eq. (6.8) can be written as

SR

TED I+ g s (6.9)

where D = §§E§Fﬁ§?'"'§%§$ﬁi%? : (6.10)
Isp = ii;gfﬁﬁf “iﬂégﬁii? ’ (6.11)

and I, = S¢7Hi¢>  <6¢*Ha¢> O (612)

§o*  <¢*Hi1¢>  <¢*H,. 0>

Equations (6.9) through (6.12) were obtained by neglecting second order
terms such as ¢*8H,8¢, S¢*H,8¢, or S¢*SH 6. In Eq. (6.9), D is the direct
56 is the indirect effect resulting from changes in ¢, and IG¢*
is the indirect effect resulting from changes in ¢*. Equations (6.11)

and (6.12) can be rewritten as

IG¢ = <S*s¢> (6.13)
and _ IG¢* = <S&p*> (6.14)
Hio" H3¢" (6.15)

* = —
WheY‘e S <¢*H 1_¢> <¢*H2¢>

: . Hi¢ Hao
and S = T, 55 —-<¢*§2¢> . . (6.16)

The adjoint operator relationship was used to obtain Eq. (6.15). Notice

that Eqs. (4.20) and (4.22), which were obtained in Chapter IV as second
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order correction terms for 8A, are of the same general form as Eqs. (6.15)
and (6.16).
Equation (6.13) is very similar to Eq. (5.11) that was developed in

Chapter V for linear ratios. Therefore, a result for IG based on the

¢
development in Chapter V [see Eq. (5.25)] is

Igo® — <T*(6AASB)0> | (6.17)

where ‘ (A*—)\B*)T* = S* | (6.18)

and <T*B¢p> = 0 . . (6.19)
In order to obtain an equation for the indirect effect 16¢* that does

not contain &*, it is useful to introduce the "generalized" function FG

defined by

(AAB)T. =S . (6.20)

The boundary conditions for Eq. (6.20) are the same as the boundary condi-
tions for the corresponding homogeneous equation, Eq. (6.1). Equation (6.20)
is a "generalized" equation. Generalized equations are discussed in Chap-

~ter VIII. A solution to Eq. (6.20) is

rG=r+C¢ . (6.21)

where <p*Br> = 0 (6.22)

and C is an arbitrary constant. Equation (6.22) is an orthogonality rela-
tionship which will be discussed in Chapter VII. .Substituting Eq. (6.20)
and (6.21) into Eq. (6.14) yields
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Id¢* = <8¢*(A-AB)(T+Co)> . (6.23)

Using Eq. (6.1), Eq. (6.23) reduces to

Ia¢* = <§¢*(A-AB)I> . (6.24)

Applying the definition of an adjoint operation to Egq. (6.24) results in

Lgr = <T(A*-AB*)§g*> . (6.25)

The 6¢* in Eq, (6.25) can be removed using Eq. (4.11) which i$ repeated
here |

(A*—AB*)8¢* = -~ (SA*-A"B* +AB*)¢p*~ . (6.26)
Substituting Eq. (6.26) into Eq. (6.25) yields

Ia¢* = — <T{SA*—A"B* +AB*)¢* "> . (6.27)

The adjoint operator relationship is used to obtain

Lspx = = <0*"(8A-A"B7AB)T> . (6.28)

Using the identity

A"B” — AB = ASB + GAB + GAGB (6.29)
Eq. (6.28) becomes

Tgge = = <07 (SA-ASB-SAB-SASB)T> . (6.30)

Considering only small perturbations (i.e., neglecting the 8§ASB term and
replacing ¢*~ with ¢*) and using Eq. (6.22) to eliminate the 8X<¢*BI>

term, the following result is obtained:
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Tggn = — <¢*(6A-ASBIT> . (6.31)

Returning to Eq. (6.9), the following result is obtained

SR __ <¢*SH1¢>  <¢*SHo¢>
R ™ <¢*H,¢> <¢*H, >

— <T*(SA-ASB)¢d> — <dp*(SA-ASB)T> . (6.32)

Equation (6.32) is linear in the perturbation operators 8H;, 8H., SA, and
88. If ¢, ¢*, I', and T* are obtained, a large number of perturbations

represented by S8A and 8B can be economically estimated using Eq. (6.32).
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CHAPTER VII

EIGENFUNCTION EXPANSIONS FOR GENERALIZED FUNCTIONS

The purpose of this chapter is to investigate the nature of the
generalized functions T and T'* using the concept of eigenfunction expan-
sions. It will be shown that T and I'* contain no fundamental mode
component.

In previous chapters, the forward and adjoint forms of the homoge-

neous transport were introduced. These were
Ap — ABp = 0. (7.1)
and A*¢* — AB*¢* = 0 (7.2)

¢ represents the neutron flux in a reactor and must be positive at every
point in phase space. Similarly, ¢* represents the relative importance
to criticality of neutrons in a reactor and also must be positive at every

point in phase space. Therefore, it follows that
<¢*Bo> £ 0. , - - (7.3)

since B is a fission operator.

The generalized function I' is defined by
(A —-2B)r =S | | (7.4)
and <¢*BT> = 0 . (7.5)
A general solution for Eq. (7.4) is

Tg=T+Cd , (7.6)
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where C is an arbitrary constant. Equation (7.6) represents a family of
solutions, and any one of these solutions can be used in perturbation
equations.' However, the particu1ar solution defined by Eq. (7.5) simpli-
fies the perturbation equations and is better suited for numerical analy-
sis. Given any solution s it is possible to obtain I' using the fol-
Towing formula
<¢*BFG>
I =Tg ~ <3%B5> ¢ . (7.7)

This result is easily verified by applying the operator B to Eq. (7.7),
multiplying by ¢*, and integrating. Thus Eq. (7.7) provides a method for
obtaining a solution which satisfies Eq. (7.5).

At this point, it is useful to introduce eigenfunction expansions.
-The eigenfunctions ¢ and ¢* represent the all positive or fundamental mode
solutions for Eqs. (7.1) and (7.2).l The concept of eigenfunction expan-
sions is based upon the assumption that there is more than one and possibly
even an infinite number of A's for which solutions to Eqs. (7.1) and (7.2)
exist and also that Eqs. (7.1) and (7.2) have the same eigenvalues. Thus

Egs. (7.1) and (7.2) are written as
Ab, — A,Bo = 0 o (7.8)
— ) B*p* =
and A*¢$ AmB o 0o , (7.9)

where the A's are arranged in numerical order such that Ag<Ai<Ay<Aze<+ and
Xo denotes the fundamental eigenvalue. In order to obtain an orthogonality
relationship, Eq. (7.8) is multiplied by ¢* » and Eq. (7.9) is multiplied

by ¢n. Both equations are then integrated over phase space to obtain
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<¢;A¢n> = Xn<¢;3¢n> (7.10)
%* %k = *
and <¢nA x> Am<¢nB*¢m>_ . (7.11)
Applying the definition of adjoint operators, Eq. (7.11) becomes
<¢;A¢n> = A <o*Bo,> (7.12)
and subtracting Eq. (7.12) from Eq. (7.10) results in
(An—Am) <¢$B¢n> =0 . . (7.13)

Thus, the orthogonality relationship customarily assumed for the eigen-

functions ¢m and ¢$ is
<¢$B¢n> =0 form#n | | (7.14)
and <¢;B¢m> # 0 for all m. - (7.15)

A more thorough discussion of this orthogonality relationship is given by
Henry.°®
It will now be shown that T cannot in general be expanded in the

functions ¢ . To show this, the following expansion is assumed:

r = %;a ¢ . (7.16)

mm o -

The summation over m excludes the fundamental mode ¢ (denoted by ¢o) in
order to satisfy Eq. (7.5). Substituting Eq. (7.16) into Eq. (7.4) results

in
%;amA¢m —'Az;am8¢m =5 - (7.17)

Using Eq. (7.8), Eq. (7.17) becomes
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%a_mxmmm — >‘§am8¢m =S . (7.18)

It is easily shown that Eq. (7.18) cannot be satisfied in every case.

For example, at points in phase space where no fission occurs (such as in

reflectors or control rods), the left-hand side of Eq. (7.18) is zero

while there is no requirement that S be zero at these points. 1In addition,

if a s}ngle fission spectrum X(E) is assumed for all fission neutrons

(DOT IV requires this assumption), then the energy dependence of the left-

hand side of Eq. (7.18) is limited to that of X(E) also. Since S is not

limited to this energy dependence, Eq. (7.18) cannot be satisfied. Thus

the assumption of completeness represented by Eq. (7.16) is not justified.
In order to obtain a function which can be expanded in the eigenfunc-

tions ¢m and avoid the objections noted above, the function T' is split

into two functions as follows

D=y+ye (7.19)
where Ay = S, (7.20) -

Substituting Eq. (7.19) into Eq. (7.4) yields
Ay — By + Ape — ABye =S . (7.21)
Using Eq. (7.20), Eq. (7.21) simplifies to

Ape — ABue = ABY . ' (7.22)

‘The following eigenfunction expansion is now assumed for P

be = Sadn (7.23)

Substituting Eq. (7.23) into Eq. (7.22) results in
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2a pg — A2 Bo = ABY . (7.24)

Using Eq. (7.8), Eq. (7.24) becomes

%; a, () Bo_

. ABy . (7.25)

Since the operator B appears in all terms in Eq. (7.25), the objections
raised above no longer exist. In order to solve for the coefficients ag.,

Eq.. (7.25) is multiplied by ¢y and integrated over phase space to obtain
2ay Oyh)< 8 286, > = A<orBy> . (7.26)

Using the orthogonality relationship given by Eqs. (7.14) and (7.15),

Eq. (7.26) is solved for a. to obtain

_ X <dFBy>
a, = Ti;:;j- Eé%kgi; . (7.27)

Finally substituting Eq. (7.27) into Eq. (7.23) and the resulting equation
into Eq. (7.19), the following expansion for T is obtained:

y  <oxBp>

' = Y +§".:n: ()\m_k) <¢r¢]8¢m> ¢)m

(7.28)

In order for an eigenfunction expansion to be rigorous, a complete-
" ness requirement of some type must be met. It was shown earlier that the
function T cannot always be expanded'in the functions ¢m, and thus that
the functions ¢m are not complete in space, energy, and direction. How-
ever, a possible completeness relationship is that BT can be expanded in
the functions B?m even though T cannot. be expanded in the functions ¢m.
In order to obtain the expansion for BI', By is expanded in the functions

B¢m to obtain

o <OFBU> '
By =§#;j%%é%; Bo, - (7.29)
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Applying the operator B to Eq. (7.28) and using Eq. (7.29) yields the

desired expansion:

A <¢*ByY>
Br =2 M __m " gy (7.30)
) %8s

In order for Eq. (7.5) to be satisfied, the summation in Eq. (7.30) must
not include the fundamental mode. This means that BI' contains no funda-
mental mode component B¢m. |

For the special case of the single fission spectrum X(E), the ortho-
gonality relationship for eigenfunction expansions can be formulated in
terms of functions of space only. In this case, the operator B is given

by

By, = X-‘%E—)ffvzf(F,E') ¢, (FESQT) dEda” . (7.31)
Multiplying Eq. (7.31).by ¢; and integrating over phase space yields:
<¢$ B¢n> =
JUJAE o Fe@ deaaffur, (FE7) o (FEZE) dE“@] oV, (7.32)

- Thus the orthogonality relationship giveh by Eqs. (7.14) and (7.15) may

be written as

* =
<fmfn> 0 for m#n (7.33)
and <f;fm> #0 forallm , - (7.34)
where o = Fo = [ [ v (FE) o) (FE7T) devd (7.35)

- - XE T E.@) dEdT
and £ = Go -ffﬂl% (F,E,8) dEdR . - (7.3)
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Here fn is a fission neutron production density and f; is jits adjoint
counterpart. Bothlfn and f; are functions of space only. The braces in
Egs. (7.33) and (7.34) indicate volume integrations;
Many of the equations developed in this chapter can be formulated
using the notation defined by Egs. (7.35) and (7.36). For example, the

requirement upon the function T'.given by Eq. (7.5) can be written as
<FAFT> = 0 . | (7.37)

Similarly, Eq. (7.7) can be written as

<f*FFG>
e

Fr = FFG - (7.38)

Equation (7.38) removes the fundamental mode component f from any function
FTg to obtain the function FT which obeys Eq. (7.37). Equation (7.38)
will bé used in the numerical computation of generalized functions.

The eigenfunction expansions discussed up to this point have been for

the function I'. Similarly, the function I'* defined by
(A*—AB*) T* = S* (7.39)
and <T*B¢> = 0 (7.40)

can be expanded using adjoint eigenfunctions. This result is

_ 2 A <y*Bép>
R T gy <¢m*8$m> s (7.41)

where A*y* = S*, (7.42)

Notice that Eq. (7.41) is very similar to Eq. (7.28).
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CHAPTER VIII

. DISCUSSION OF GENERALIZED PERTURBATION THEORY

The purpose of this chapter is to explore some of the properties of
the generalized perturbation theory equations developed in Chapters V and
VI. Particular attention is given to the generalized sources S and S*
and the physical requirement that criticality must be maintained.

The generalized equations developed in Chapter V and VI involve the

functions T and T'* defined by

(AB) T =5, (8.1)
<¢*BI> =0 , - (8.2)
(A*—\B*) I'* = S* | _ (8.3)
and <I'*B¢> = 0 . (8.4)

More general solutions to Egs. (8.1) and (8.3) are

I'.=T+ C¢ (8.5)

G

and rG* = T* + Co* , (8.6)

where C is an arbitrary constant. When the operator (A-AB) represents a
matrix, its determinant is zero which means Eq. (8.1) has no unique solu-
tion. The arbitrary constant C in Eq. (8.5) also indicates that there is
no unique solution but rather a family of solutions. Equations (8.1)

and (8.2) have a unique solution while Eq. (8.1) alone does not,
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There are restrictions upon S and S* which are necessary in order
for Eqs. (8.1) and (8.3) to have solutions. The restriction upon S is

found by multiplying Eq. (8.1) by ¢* and integrating to obtain
<¢*(A-AB)T> = <¢p*S> . - (8.7)‘
The definition of an adjoint operator is used to obtain
<F(A*¥AB*)¢*> = <p*S> (8.8)
Since the defining equation for ¢* is
(A*-AB*)¢* = 0 , (8.9)
Eq. (8.8) becomes
<¢*S> =0 . | (8.105

Thus S must satisfy Eq. (8.10) in order for Eq. (8.1) to have a solution.
By multiplying Eq. (8.3) by ¢ and following a procedure similar to that
used in Eqs. (8.7) through (8.10), the requirement which S* must satisfy

for Eq. (8.3) to have a solution is found to be

<pS*> = 0 . (8.11)

A11 of the generalized sources S and S* which appear in Chapters V
and VI meet the requirements given by Eqs. (8.10) and (8.11). To demon-
strate this, Eq. (5.12) is repeated here

z1 Y

S* = <T19>  <Tpp> : (8.12)




38
It is easily seen that S* in Eq. (8.12) satisfies the requirement given
by Eq. (8.11).

Physically Eq. (8.1) represents a source in a critical system.
Therefore, if S is a positive source, no time-independent solution is pos-
sible. However, since ¢* is a positive function, S must be positive at
some points in phase space and negative at others in order to satisfy
Eq. (8.10). Since ¢* is the importance of neutrons to criticality,

Eq. (8.10) requires that the importance weighted positive source exactly
counteract the importance weighted negative source. This cancellation
"permits" a time-independent solution to exist. Ordinarily, superposition
would allow one to separately solve the transport equation with the posi-
tive and negative sources and then add these partial solutions to obtain
the desired result. This cannot be done with Eq. (8.1), however, since
neither the positive nor the negative source satisfies Eq. (8.10).

Generalized perturbation theory can be used to predict the change in
a performance parameter R caused by the introduction of a perturbation in
a critical reactor. Recall that the generalized perturbation theory
equations developed in Chapters V and VI allowed the perturbation to change
- the system eigenvalue. This formulation is valid in a mathematical sense,
but it can Tead to incorrect physical interpretations. For example,
these equations would predict that the breeding ratio of a reactor could
be made as large as desired by removing fissile material and adding fer-
tile material. This result is correct mathematically but of little prac-
tical use since the reactor would be subcritical. Therefore, only per-

turbations that do not affect the eigenvalue are physically significant.
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One way to maintain criticality is to introduce a criticality reset
mechanism. Consider the reset perturbation rep}esented by GAR and GBR
that can be introduced along with any other perturbation represented by
SA and 8B in order to maintain criticality. An example of a reset mecha-
nismAis the change in the amount of fissile material in the fuel. Substi-
tuting both of these perturbations into the equation for the first order
estimate for 8\ (see Chapter IV) results in

. <¢*[SAASB+C (SAR—ASBR) Jo>

TS , (8.13)

SA

where C is a factor which adjusts the magnitude of the reset perturbation
such that 8\ is zero. Setting the numerator of Eq. (8.13) to zero and

solving for C yields

_ _ _<¢*(8A-ASB)¢>
C = RSB (8.14)

The change in a linear ratio resulting from the introduction of a pertur-

bation along with the corresponding criticality reset perturbation is

O
”ho

~ <I*[ (SA—\6B) + C (aAR—xaBR)]¢> ; (8.15)

Only indirect effects are considered in Eq. (8.15). Substituting
Eq. (8.14) into Eq. (8.15) results in

%§-==<F*+CR¢*)(6A—AGB)¢> , o (8.16)

<T*(5AR—ASBR)¢>

where Cp = _'<¢*(6AR—AGBR)¢> (8.17)
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Notice that C, does not depend upon the perturbation represented by SA

R
and 8B but only on the reset perturbation represented by 6AR and SBR.
Thus, once the reset mechanisn is chosen, Eq. (8.16) can be used to calcu-
late the effect of a large number of perturbations. Note that adding a

fundamental mode component to the generalized function I'* corresponds to

a criticality reset correction for generalized perturbation theory.
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CHAPTER IX

AN ANALYTIC EXAMPLE USING GENERALIZED PERTURBATION THEORY

The pﬁrpose of this chapter is to demonstrate the use of generalized
perturbation theory equations by solving a simple analytic example. Many
of the properties discussed. in Chaptérs V through VIII can be illustrated
in this manner.

The system chosen for consideration is a two-group infinite homoge-
neous medium, For this case, the transport operators'afe 2 by 2 matrices.
The parameters for the first group are arbitrarily assiéned as I, = 3,
TfF=1,I1» =1,V =4, and X = (0.75, 0.25), where the symbols have their
usual definitions. Similarly, the parameters for the second group are
assigned as I - 1, Zg =1, .1 =0,V =2, and X = (0.5, 0.5). Notice
that séparate fission Spectra were assigned for the two groups. The rea-
son for choosing separate fission spectra for this example is that the
resulting system has two nonzero eigenfunctions. Also notice that for
each group the absorption (z. + Zf) equals the neutron production (vif);
therefore, the system is cfitical.

The system just defined is described by the following matrix equation

(A—-2B)p =0 , ‘ (9.1)
where ‘ A= 5 0 , ©(9.2)
BNy . .
- n
and B = 31 . (9.3)
—] ]-

The notation used in previous chapters has been retained with the under-

standing that A and B are matrices and ¢ is a vector. The characteristic
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equation for this problem is
(5-31) —A

‘ =0 . : (9.4)
(12) - (22) |
The fundamental mode solution is A =1 and ¢ = (1, 2). MNote that the
normalization of the vector ¢ has been arbitrarily chosen. There also
exists another mode given by A; =5 and ¢, = (1, -2).

The adjoint criticality equation is

(A*AB*)¢* = 0 , | (9.5)
where _ A* = AT- . (9.6)
and B* = B! (9.7)

The "T" superscfipt indicates a matrix transpose.: The fundamental mode

solution for Eq. (9.5) is A = 1 and ¢* = (1, 1). The second mode is given
by x; = 5 and ¢,* = (3, -5). Note that thé eigehva]ues of the forward and
adjoint equations are the same. Also, the orthogonality relationships

given by

<¢p*Bo1>

i
o

(9.8)

and <¢1*Bop>

u
[aw)

(9.9)

are easily verified since B¢, = (1, —1) and B¢ = (5,3). The notation used

“in previous chapters has been retained in Eq. (9.8) and is interpreted as
<p*Bo;> = o*1Bo; . (9.10)

The perturbation equation for 6\ which was developed in Chapter IV

is illustrated by considering the perturbation given by



sA = | . - (9.11)

This perturbation represents a change in the capture cross section for the
first group. The first order estimate for the change in X which results

from the perturbation is

sh. = SO*SA®> _ a (9.12)
07 <¢*Bp> 8 - .

The characteristic equation for the perturbed system can be solved to ob-
‘tain the following exact result for the change in X resulting from the

perturbation a:

5x=2+%-\[(%>2+%+4 . (9-'1‘3.)"

A comparison of numerical results obtained using Egs.  (9.12) and (9.13)
‘;éfé shown in Table IX-1. The linear estimate ), agrees very well with
the exact result S\ for the small perturbation a = 0.01. -However, the

| linear estimate is about 10% high for the larger perturbation a = 1.

Table IX-1. Exact and Linear Results for &\

o A SAo MCD

1.0 0.1139991 0.1250000 0.1257288
-1.0 —0.1374586 —0.1250000

0.10 0.0123835 0.0125000  0.0125007
-0.10 —0.0126179 —0.0125000

0.01 0.0012488 0.0012500 0.0012500

—0.01 0.0012512 —0.0012500
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The linear estimate 6\, may be interpreted as (%%)(6a), where the
derivative is evaluated at o = 0 (the reference state). Therefore, using
the central difference equation for %é-, the following central difference

estimate for 68X, is obtained

SAep = Aa) - M=) (9.19)

In Table IX-1, &x differs from 8\, by less than 1% for a = 1 where 6

CD
differs from &X, by roughly 10%. Thus, the comparison of GACD and 8X,

is a good method of testing whether a value for &) obtained by perturba-
tion theory is consistent with GXCD obtained using direct calculations of
perturbed states. The central difference formula .is exact for quadratic
functions and is thus a higher order approximation than linear perturba-
tion theory which corresponds to a forward difference approximation. This
method of comparison will be used in later chapters to verify the accuracy
of Tinear predictions.

Generalized perturbation theory can be used to estimate the.change-

in linear ratios given by

b = <Li1¢> .
R = T o | (9.15)

For this example, the following special case of Eq. (9.15) is chosen:

e
|
-O-
—

(9.16)

=
N
-

where £, = (1,0) and z, = (0,1). The generalized source for a linear

ratio is given by

_ I Lo
S* = T T o (9.17)
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Using ¢ = (1,2), it is found that <I;¢> = 1, <Z,¢> = 2, and S* = (1, -0.5).

The vector S* obeys the source requirement
<¢pS*> = 0.

The genéra]ized adjoint T'* is defined by the equations

(A*ABH)T* = 5% (9.18)
and <*B¢> = 0 . (9.19)
The equationé can'be written as
2 Th* =2 T* =1 ’, (9.20)
—T1* + T,* = 0.5 , : (9.21)
and 5 Th'* + 3 T,*=0 . ' (9.22)

Note that Eq. (9.21) is a multiple of Eq. (9.20). Solving for T'i;* and Ip*
int* = (3 _5
results in T (16’ 16)'
A second way of obtaining I'* is an eigenfunction expansion given for

the two group case by

- A <Y*Bd,>
r* \U* + >\1_>\ <¢1*B¢1> ¢1* ] (923)
where A*y* = S* ' (9.24)

). The coefficient for ¢,°

-

Solving Eq. (9.24) results in y* = (é%—, —
can be evaluated by using
A=1, A,y =5, <¢*Bgr> = %-and <$1*B¢,> = 8.

Equation (9.23) then becomes
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3

Using ¢,* = (3, -5), it is found that I'* = (16’

-—%%) which is the same
result obtained above.

A third way to obtain I'* is to use the Neumann series

* = *

rr= 2 Uk, (9.25)
where A*po* = S* (9.26)
and V A*wn* = 7\3*111;_] for n:] to . (9.27)
It was previously determined that Vo = (é%—, —-%) . The source in
'Eq. (9.27) for n=1 is AB*y,* = (%—, —-%6> . Noting that this source is
the original S* divided by 5, Eq. (9.25) becomes

i A A4 AR I
efe b @@ edie . o

Thus the same result, T* = (16’_'%%>’ is obtained using each of the
three methods.
The first order estimate for the %;-resulting from the perturbation

given by Eq. (9.11) is

SR\ _ 3
(T>o = — <I*$Ap> = —jp o . (9.29)

The transport equation for the second group [from Eq. (9.1)] is
— 1+ 2 ¢d2 — A1 — A2 =0 . (9.30)

Since the perturbation given by Eq. (9.11) occurs only in.the first group,

the perturbed equation for the second group is

— 07+ 2 b5 —A0T —A"ds =0 . (9.31)
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Solving for R” results in

e 01 22" _1 -6 ‘
RT = 2= T = ot - (9.32)
Using R = 8R
sing >, an exact result for R s
(SR = R‘ - - _ _36X
Rerol=R 1= (9.33)

where S\ is given by Eq. (9.13).
A comparison of numerical results obtained using Eqs. (9.29) and

(9.33) are shown in Table IX-2. The linear estimate agrees very well for

the small perturbation a = 0.01. However, the linear estimate is in

error by about 15% for o = 1. The central difference approximation

differs from the linear result by about 2% for a = 1.

Table IX-2. Exact and Linear Results for &R/R

a g (%), COm

1.0 -0.1617774 —0.1875000 ~0.1915911
1.0 0.2214049  0.1875000

0.10  -0.0184610 —0.0187500 0.0187540
-0.10 0.0190470  0.0187500

0.01  -0.0018721 —0.0018750 ~0.0018750
0.01 0.0018779  0.0018750

The problem defined by Eqs. (9.1), (9.2), and (9.3) can be modified
by using the same fission spectrum for both groups. If the fission spec-

trum is x = (0.5, 0.5), then, Eq. (9.3) becomes

B = . | (9.34)
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For this prob]ém, there is only one eigenva]ue_(x = 1), and the
eigenfunctions are ¢ = (1, 3) and ¢* = (1, 1), This problem will not be
‘discussed further except to note that the Neumann series for T* termi-

nates after the first term sﬁch that

1'-* = w* . . (9.35)
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CHAPTER X

COMPUTATIONAL PROCEDURES FOR GENERALIZED FUNCTIONS

The purpose of this chapter is to describe the procedure that has
been implemented for calculating the generalized functions T and I'*. The
modifications that were made.in the computer program DOT IV’ in order to
perform these calculations are described. |

One equation normally solved by DOT IV may be written as

(AB) ¢ =S , (10.1)
where S is a non-negative source. The equations describing the generalized

function T are

(AAB) T =S (10.2)
and <¢*BIr> =0 , (10.3)
where <¢*S> = 0 (10.4)

Equation (10,1) is solved in DOT IV using an outer iteration procedure

which may be written as
A" = Bo" T 4 s (10.5)

where the superscript refers to the outer iteration number. A similar

outer iteration procedure for Eq. (10.2) is

—1

Aar" = ™ + s . ‘ (10.6)

Equation (10.6) is mathematically equivalent to the Neumann series solution
for T used by Usachev,? Gandini,® and Stacey" provided the initial guess

for T is zero at all points in.phase space.
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Comparing Eq. (10.5) and (10.6) reveals that the two equations are
of the same form except for the presence of the A in Eq. (10.6). There-
fore an option was added to DOT IV which accounts for the ) in Eq. (10.6)
by multiplying the fission spectrum X by A. The numerical value for A
must be supplied to DOT IV as an input parameter.

Another consideration in the numerical calculation of T is to insure
that the requirement given by Eq. (10.3) is satisfied. Equation (10.3)
requires that BT contain no fundamental mode component. In order to
investigate this requirement, Eq. (10.6) is multiplied by ¢* and inte-

grated to obtain
<¢*AFn> =3 <-¢‘*Bl‘n_]> + <¢*S>. . (10.7)
Using Eq. (10.4) and the result
<¢*Ar"> = <F"A*¢*> = A <F"B*¢*> ; A <§*BF"> . (10.8)
Eq. (10.7) becomes
<¢*Bl‘n> = <¢*Br"_]> . (10.9)

Therefore, in principle, if the initial guess for I' obeys Eq. (10.3), then
" obeys Eq. (10.3) for all n. Notice that the Neumann series solution
for T always obeys Eq. (10.3).

In computer calculations there are a numbér of factors which tend
to introduce some fundamental mode component into BI" even if the initial
guess contains no fundamental mode. For example, the source S will not
exactly satiéfy Eq. (10.4). Also, the discrete ordinates difference

equations do not necessarily obey the adjoint operator relationships
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assumed in Eq. (10.8). In addition, DOT IV solves Eq. (10.6) for any
outer iteration n by performing inner iterations, and it is often con-
venient to allow the outer and inner iterations to converge together rather
than to converge the inners very tightly for each outer. For these rea-
sons, a "sweeping" procedure was added to a special purpose version of
the subroutine FISCON in DOT IV in order to remove any fundamental mode
from the fission. source ABI™ in Eq. (10.6). A similar sweeping proce-
‘dure is presently used in the version of ANISN® which calculates general-
ized functions.!3® In order to describe this sweeping procedure, the
neutron production density notation defined in Chapter VII is introduced

in Eqs. (10.6) and (10.3) to obtain

A" = aFr™ ks - (10.10)
and <f*FT> =0 . (10.11)

- The equation developed in Chapter VII for obtaining a fission neutron

production density which obeys Eq. (10.11) is
1

<f*FI >

- me (10.12)

FT = Fr”

In the present application, the fission source in Eq. (10.10) is calcu-
lated using the generalized flux from the previous iteration rn—J_ Then
Eq. (10.12) is used to remove any fundamental mode from this source.

Thus the fission source in Eq. (10.10) is forced to obey Eq. (10.11) for
each outer. As the outer iterations converge, the amount of fundamental
mode removed by the sweeping procedure should become small. The functions
f and f* which are obtained from eigenvalue calculations are part of the

input required for the generalized function calculation.
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It can be seen from Egs. (10.3) and (10.4) that the functions T and
and S are positive in some parts of phase space and negative in others.
Since the difference equations ordinarily solved by discrete ordinates
codes such as DOT IV are based on the assumption of positive fluxes and
non-negative sources,'®’!"* the presence of positive and negative sources
presents a considerable problem. This is not true for diffusion theory
calculations since the difference equations for diffusion theory are not
based upon a positive flux assumption. The method chosen by Oblow® to
calculate generalized fluxes using the one-dimensional discrete ordinates
computer program ANISN is to use the linear model!® supp]ementary differ-
ence equations which do not depend upon the sign of the fluxes. However,
several difficulties have been encountered with this approach. The 1inear
equations require a very fine space mesh which makes it difficult to
choose an adequate space mesh. Also, the acceleration of inner iteration
convergence was adversely affected. These limitations cannot be toler-
ated for two-dimensional calculations where an economical space mesh and
rapid convergence of the inner iterations are essential. Therefore, the
method implemented in DOT IV is to partition the source in Eq. (10.10)
into a positive source and a negative source and perform the flux calcu-
lation for one outer .iteration using these sources separately. By
changing the sign of the negative source, this partitioning results in
all positive flux calculations. Thus the highly developed inner itera-
tion acceleration methods utilized in DOT IV may be used. Also relatively
coarse space meshes are acceptable. The fluxes from the positive and
negative calculations are used to calculate the fission source for the

next outer iteration. The partitioning of sources is merely a mechanism

~
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for avoiding the hegative flux problem. The fission source calculated

by each outer iteration still obeys Eq. (10.11) and thus avoids the prob-
lem which would occur if ihe fission sources were not combined and then
partitioned for each outer iteration. In this case the positive fission
source would approach plus infinity and the negative fission source would
approach minus infinity and significance problems would render any com-
puter calculation worthless.

In order to implement the source partitioning method of solution,
DOT IV was modified to accept a flux guess T and the source S in parti-
tioned form. The fission source calculation was modified to calculate
the fission neutron source resulting from the partitioned flux guess and
to remove any fundamental mode component as described earlier. The fis-
sion source is then partitioned into positive and negative parts and an
outer iteration performed to obtain the next iteration fluxes in parti-
tioned form; Several modifications were required to implement this pro-
cedure. The fluxes in partitioned form provide the flux guess for the
next outer itefation. The procedure outlined above is repéated for each
outer unti1 satisfactory convergence is obtained. Although the procedure
implemented has been described for the forward function I, the modifica-
tions are also applicable to the adjoint function I'*. The sweeping pro-
cedure rémoves * fﬁndamenta] mode in the adjoint case.

The use of partitioned fluxes presents a minor roundoff problem when
the fluxes are combined for use in perturbation calculations. The parti-
tioning also requires twb flux calculations for each group. However, the
use of standard flux calculation techniques and relatively coarse space
meshes are significant advantages which much more than counterbalance

these difficulties.
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CHAPTER XI

. NUMERICAL EVALUATION OF PERTURBATION EQUATIONS

In Chapter IV a first order perturbation theory equation for changes

in 8A was derived. This result is

= <¢*(6A—A68)¢>
<¢p*Bo>

SAo (11.1)

In Chapters V and VI, generalized perturbation theory equations were ob-
tained for indirect effects resulting from changes in the forward and

adjoint. flux. These results are

Idcbz — <I*(SA-ASB) o> (11.2)
and 16¢*iz — <¢p*(SA-ASB)I> . (11.3)

The numerator of Eq. (11.1) and Eqs. (11.2) and (11.3) all involve the
same perturbation operators but different forward and adjoint functions.
Also, the denominator of Eq. (11;1) is similar to the second term in the
numerator of Eq. (11.1). Therefore, the discussion of numerical evalua-
~ tion of perturbation theory equations in this chapter can be limited to
the numerator of Eq. (11.1) without loss of generality.

The fission term in Eq. (11.1) requires the evaluation of the fol-

lTowing integral
Ig = <¢*SBo> . (11.4)

Writing Eq. (11.4) in more detail yields

Ig = fffé[x(E)vo]‘c(F_,E‘)]¢(F,E‘)¢*(r,s)d5*dsdv . - (n.s)



55
The terms in Eq. (11.5) have their usual definitions except that the Los
Alamos convention of using the lower case "o" to represent macroscopic
cross sections and reserving the upper casé "n" to indicate summation has
been adopted. Equation (11.5) can be evaluated numerically using the
results from a DOT IV calculation. The integrals over energy become sum-
mations over groups, and the integral over space becomes a summation over

the space mesh to obtain

Ig = 2 Z 2.8 [x(9)voe (z,97)] Z 6(1,97)6*(1,9)V, , (11.6)

g g z iez
where
g and g© = group indices,
Z = a.zone index, and

i a spacé mesh index.
The summations over the space meshes within a zone can be computed and
saved, while the other summations must be performed after the perturbation
is determined. | |

- Another integral which must be evaluated in order fo obtain 8X, using

Eq. (11.1) is

I, = <o*sA¢> . (11.7)

When A represents a transport theory operator, the perturbation operator

SA consists of a total cross-section term and a scattering term such that

where

IT=]]]cSot(F,E)¢(F,E,§)¢*(F,E,§)d5d§dv | ©(11.8)
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and
1o = [[[[[ 60, (FiE*0-E.Do(F,E,07)6*(F,E,D)ddE"dE®AV . (11.9)

For isotropic scattering, Eq. (11.9) reduces to an equation very
similar to Eq. (11.5). However, anisotropic scattering presents addi-
tional problems which may be adequately discussed by dropping the energy

and space dependence to obtain
= Jfso(@a)ex@e (@) e (11.10)

In Eq. (11.10) it has been assumed that the scattering cross section
depends only on the angle of scattering and not on the direction of travel.
In DOT IV, anisotropic scattering is represented by the following

Legendre series!?

(22 4“20 J@a) (11.11)

where the series is truncated at L. Typical values of L are 1 and 3.

The two-dimensional discrete ordinates result for a scattering source is'®

L 2
Jo@ae@)dar = L3 0, >0, @) (11.12)
=0 “m=o0 7’
where
= _ 2 (8—=m)!1% ,m
y " (@) = P cosmy , (11.13

=[¢(§) Y@e o, (11.14)

P,M is an associated Legendre Polynomial, n is a polar direction cosine,

¥ is an azimuthal angle, and S, m is the Kronecker delta function. ng

is a spherical harmonic which can be used to expand functions of angle
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which are even functions of ¢. Equation (11.]2) is derived using the
addition theorem for Legendre polynomials, A detailed discussion of
Eqs. (11.12), (11.13), and (11.14) is given by Mynatt et al.!®

The spherical harmonics Y m obey the orthogonality relationship

m
Jrn@vi@d = s, 6y (11.15)

This orthogonality relationship can be used to obtqin the following-

spherical harmonic expansion:

o L
6@ = 2, 2 o, V@ (11.16)

A similar expansion for the adjoint flux is

o) 2 )
20+1)0* YM@) (11.17)
;g; 2;; L.m 2
where
¥ = {—Jf JORWOIE e

Equation (11.17) is very similar to Eq. (11.16) except for a 4w term
which arises because ¢(Q) has units of neutrons/cm?/sec/steradian while

~is the average importance of

¢* is a dimensionless quantity. Thus ¢fo’p

neutrons from an isotropic source.

Using Eqs. (11.12) and (11.17), Eq. (11.10) becomes
. l_ LA .
o 2

§0;

~J
/Z Z (20+1) 9% ¥ (Q)Zo yre ;o ¢35 J(Q)dQ . (11.19)
2=0 m=0 .

Using the orthogonality relationship given by Eq. (11.15), Eq. (11.19)

reduces to

L [ :
= )60, D0, ¢F . (11.20)
=0 L — L£,m"%,m
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In order to evaluate Eq. (11.14) numerically, DOT IV uses an angular

quadrature such that!®
by = 2o SV, (@00, (1.21)

where the d index indicates the discrete angles in the angular quadrature.
A similar equation app]iés for the adjoint flux except that DOT IV solves
for ¢*(—R). In terms of the polar direction cosine n and azimuthal angle

¥, ¢*(R) is ¢*(—,P+m). Using the relationships

PO(=n) = (1) ¥ P(r) ) (_11.22)

~and cos m (Ytr) = (1) cosmy (11.23)
it follows that

@ = )y (@ (11.24)

Therefore the flux moments ¢E m calculated by DOT IV are multiplied by
(_—-1)2 before they are used in Eq. (11.20).
Returning to Eq. (11.9), the equation evaluated numerically for the

scattering term is

Ig= 2200 2, 0,(2.9%9) 2o 2oy n(3.97085 (gl . (11.25)

g g z 270 jez m=o0 ’ ?

where the notation established for the fission term has been used. The
summations over i and m may be precomputed and saved while the g, g~, z,
and 2 summations must be performed after the perturbation is determined.
The computer program VIP'® has been developed to perform the i and m summa-
tions, reverse the adjoint energy groups, and include the (—-1)2 term dis-

cussed earlier. "VIP" is an acronym which stands for Volume Integrated



59
Product. Once the i summation is performed, the remaining sums do not
depend upon the~geometry being considered except through the zone
dependence. |
The final integral which must be evaluated for the perturbation equa-
tions is the total cross-section term given by Eq. (11.8) which includes

an angular integration of the form

I =f¢(§)¢*(§)dsz_ . (11.26)

In the one-dimension program SWANLAKE!® this integration is performed using

angular fluxes such that

o - ;q;(ﬁd)q;*(ﬁd)md . (11.27)

For two-dimensional applications, the number of angular fluxes is aften
large, and they are not routinely saved. An alternate way to evaluate

Eq. (11.26) is to use the moment expansions given by Eqs. (11.16) and (11.17)

to obtain
29+1 k = =
ZZ 2041) Z;——ﬁ Y¥@da . (11.28)
./; =0 m=0 2 m 2 — 4T Tj,k' ]
‘Using the orthogonality relationship of Eq. (11.15), Eq. (11.28) reduces to
3P
= (22+1)d, _o* . (11.29)
- %=0 m=0 2mL,m

If the series in Eq. (11.29) can be truncated at a relatively low value of
%, then the moments which are required for the scattering term can be used
to obtain the total cross-section term without saving angular fluxes.

Returning to Eq. (11.8), the equation evaluated in VIP for the total cross-

section term is
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L

tp = 20 3L dop (2.9) 2 (2041) 22 D0, (159063 (1,00, . (11.30)

M-

e
|1}

0 * 1iez m=0

The summatibns over %, i, and m are computed and saved by VIP.

Three different computer codes are available to read the tape written
by VIP and perform the sums over g,9”, z, and % which must be performed
after the perturbation is determined in Eqs; (11;6), (11.25), and (11.30).
These are SWANLAKE,!® JULIET,!7 and TPERT.'® SWANLAKE was originally
written for shielding sensitivity analysis and ca]cu]atés'only the numera-
tor of Eq. (11.1). JULIET is a ver;ion of SWANLAKE which uses a differ-

"~ ent cross-section file and also calculates generalized sources for one-
dimensional cases. TPERT is a perturbation code which calculates both

the numerator and denominator of Eq. (11.1).
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CHAPTER XII

THE DEMONSTRATION PROBLEM

In order to obtain reactor physics information, the Applied Physics
Division at Argonne National Laboratory has recently performed a number of
critical assembly experiments. Measurements performed in these assemblies
are compared with calculations in order to determine the adequacy of the
nuclear data and calculational methods used for reactor design. The Car-
bide Benchmark!® is the first of several planned critical assemblies
designed to study the physics propert%es of advanced LMFBR fuels. This
first assembly has a relatively simple, uniform composition which facili-
tates the testfng of nucTear data and design anaiysis methods. Generalized
perturbation theory is a useful tool for interpreting comparisons between
calculations and measurements in critical assemblies since the sensitivity
of the meésurement to changes in nuclear data may be determined. The Car-
bide Benchmark is a good assembly for testing two-dimensional generalized
perturbation theory calculations and will be used for all the demonstration
calculations in this work.

The Carbide Benchmark experiment was performed at the ZPR-9 facility
at Argonne, Il1linois in 1977, This facility contains a movable half-core
and a stationary half-core. Each half core consists of a matrix of drawers
which are loaded with platelets containing plutonium, uranium, sodium, and
other reactor materials. A detailed geometrical description of‘the Carbide
Benchmark is found in Ref, 19. The Carbide Benchmark was constructed as
nearly cylindrical as possible using the square matrix of drawers. The

R-Z model!® for the Carbide Benchmark is shown in Fig. XII-1. This model
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represents one-half of the assembly, and the bottom boundary is reflected
to account for the_presence of fhe other half. The total core height is
36 in., the axial blanket is 12 in. thick, and the axial reflector is
6 in. thick. The critical mass'® is 534,1 + 5.4 kg of plutonium. The R-Z,
diffusion)theory calculations. of the Carbide Benchmark performed at Argonne
used 29. groups. However, for methods development and verification work,
it is more economical to use fewer groups. Thus, a four-group cross sec-
tionvset was selected for this work. This cross-section library is a
composition dependent, four-group, Po-transport-corrected library developed
by General Electric.2® This library was prepared for use by the Large
Core Code Evaluation Work Group2® for the purpose of investigating methods
and codes relevant to the design of a commercial size LMFBR. While this
115rary is not fully applicable to the Carbide Benchmark and four groups
are probably not adequate for reactor physics calculations to be compared
with experiments, this library should be adequate for calculational methods
verification. The use of an existing 1ibrary saves the considerable effort
required to obtain a cross-section library. The energy boundaries for this
1ibrary are given in Table XII-1. Much additional information concerning

~ this library is found in Ref. 20.

Table XII-1. Energy Boundaries for the
Four-Group Library

Energy Boundary Energy in eV

1.649 E+7
8.208 E+5
4.087 E+4
2.035 E+3
1.000 E-5

NnHwn —
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A detailed description of the composition of the Carbide Benchmark
is found in Ref. 19. This description includes a number of trace elements
not found in the four-group cross section set and slight differences be-
tween the compositions of the axial and radial blankets and reflectors.

For the four-group calculations, the trace elements weré not used and the
axial blanket and reflector compositions were used for both the axial and
radial blankets and reflectors. These compositions are shown in Table XII-2.
The four-group library contains separate core, blanket, and reflector
weighted cross sections for some elements  and these were used in the corre-
sponding zones for the Carbide Benchmark whenever possible.

Three VENTURE?! diffusion theory calculations were performed for the
Carbide Benchmark using the four-group cross section set and the calcula-
tion model described in this chapter. The mesh'spacing was varied to
study the effect of mesh size upon the calculated value of the k eigen-
value. These results are shown in Table XII-3. The 3-cm-mesh spacing is
a relatively coarse space mesh. However, the calculated value of k
obtained using this mesh differs by less than 0.1% from the result obtained
for the 1.5 cm mesh. The’3-cm mesh was chosen for the DOT IV calculations
to follow since this is a typical mesh for discrete ordinates calculations.
In the radial direction, 20 equally spaced intervals are used in the cofe,
10 in the blanket, and 5 in the reflector. In the axial direction, 15 in-
tervals are used in the core, 10 in the blanket, and 5 in the reflector.

A series of DOT IV ca]cu]ation§ were performed using this space mesh to
study the effect of varying the angular quadrature. These results are
shown in Tab]é XIT-4 and indicate that S, is adequate for calculating k.

However, S was chosen for the perturbation theory calculations to be
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Table XII-2. Compositions for the Calculational Model

[l

Number Densitijes in atoms/barn-cm

Element . Core Blanket Reflector
Fe 1.02432 E-2 8.4404 E-3 5.52268 E-2
Ni 1.3522 E-3 1.0892 E-3 6.9675 E-3
Cr 2.9309 E-3 2.4080 E-3 1.57707 E-2
Mo 3.500 E-4 9,7 E-6 9.7 E-6
C 1.08325 E-2 1.26111 E-2 2.456 E-4
Na 9.0842 E-3 9.3053 E-3
U-235 2.14 E-5 2.59 E-5
U-238 9.8203 E-3 1.20815 E-2
Pu-239 1.3320 E-3
Pu-240 1.766 E-4
Pu-241 1.76 E-5
Pu-242 2.7 E-6

Table XII-3. Diffusion Calculations for k

Mesh Intervals Mesh
(R x Z) k Spacing
35 x 30 0.98175 "3 cm
53 x 46 0.98139 2 cm
70 x 60 - 0.98127 1,5 cm

‘Table XII1-4. DOT IV Calculations for k

Calculation : : k
diffusion 0,98158
S, 0,98875
Su 0.98566

Se | 0.98536
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described in the next few chapters since generalized flux calculations
might require higher angular resolution. The zone map, cross section
set, space mesh, and angular quadrature described in this chapter are

used for all the perturbation theory calculations to follow.
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CHAPTER XIII

DEMONSTRATION PERTURBATION CALCULATIONS FOR
CHANGES IN THE EIGENVALUE
In this chapter, the perturbation equation‘for‘changes in ) derived
in Chapter IV is evaluated using the numerical techniques described in
Chapter XI in order to demonstrate the usefulness of the numerical tech-
niques. The first 6rder result for the reactivity worth of a perturba-
tion is

_ <¢*(8A-\EB) >

W= —68)= S¥B6s

(13.1)

The central (peak) values of ¢ and ¢* for each group in the Carbide Bench-
mark demonstration problem are shown in Table XIII-1, and plots of ¢ and.

¢* are shown in Figs. XIII-1 through XIII-4. The spatial shape of the

Table XIII-1. Fluxes at the Center of the Core

Group ¢ ¢*
1 6.73E-5 6.82E-5
2 2.40E-4 5.40E-5
3 '7.89E-5 4.31E-5
4 8.54E-6 4.67E-5

forward and adjoint fluxes are similar for the first three groups. For
the fourth group, the adjoint flux is smooth while the forward flux has
local peaks in the blanket and the reflector. The largest forward flux
occurs in the second group. The forward flux in group 4 is much Tower
than the flux in group 2 (a factor of 28 lower in the center). The

adjoint flux peaks in the first group and is fairly constant with energy.
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Fig. XIII-2.

Plots of ¢ and ¢* for Group 2.
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Fig. XIII-3.

Plots of ¢ and ¢* for Group 3.
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Two perturbations were selected for the demonstration calculations.
These were changing the carbon and ?3°Pu number densities in the core. A
number of DOT IV calculations were performed in order to evaluate the
worth of these perturbations directly. These results are summarized in

Table XIII-2.

Table XIII-2. DOT-IV Eigenvalue Calculations

Core Number Calculation
Density Perturbation Mode k
+10% for C Forward 0.98322
+10% for C Adjoint 0.98324
—-10% for C Forward 0.98751
—-10% for C Adjoint 0.98754
+10% for 23°pu Forward 1.03466
—10% for 23%py Forward 0.93317
no perturbation Forward 0.98536

These calculations were performed using single precision arithmetic on an
IBM computer which uses only 24 binary bits to represent the mantissa of
floating point numbers as a binary fraction. The first four significant
figures in the values of k given in Table XIII-2 are probably not affected
'by loss of significance while the fifth significant figure is questionable.
In Chapter IX, two methods for comparing first order perturbation

theory results with direct calculations were described. The first method
is to compare the first order estimate of the effect of the perturbation.
The results obtained in Chapter IX indicate that this method is accurate
for small perturbations but not for larger perturbations. The worths of
the C and Pu number density perturbations were calculated using the per-
turbation equation given by Eq. (13.1) and also using the direct calcula-

tion method given by
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At =L _ 1
W= =2 K- | (13.2)
This comparison is shown in Table XIII-3.

Table XIII-3. Comparison of Worths from Direct
Calculations and Linear Perturbation Theory

Core Number Direct Linear Percent
Density Perturbation Calculation Perturbation Theory Difference

+ 10% for C —0.00221 —0.00215 - =2.7%
— 10% for C 0.00221 0.00215 ~2.7%
+ 10% for 23°Py 0.04836 0.05235 8.3%
— 10% for 23°Py —0.05676 -0.05235 —7.8%

The agreement between the direct calculation and the perturbation theory
result for the carbon perturbation must be cbnsidered good since the dif-
ference occurs in the fifth decimal place which is not known very well.
The agreement for the plutonium number density perturbation is not as good
because the perturbation is outside the linear range. The second method
introduced in Chapter IX for comparing direct calculations with first
order perturbation theory is to apply a central difference approximation
.to the direct calculations to obtain an estimate of.the 1inear perturba-
tion theory result. In Chapter IX, it was found that good agreement was
obtained using the central difference method for relatively large pertur-
bations because of the cancellation of second order terms. A comparison
of Tinear perturbation theory and the central differenbe method is shown
in Table XIII-4. The 23°Pu perturbation theory prediction agrees with the

central difference direct method to within 0.5% which is very good

agreement.
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Table XIII-4., Comparison of Worths from Linear Perturbation
Theory and Central Difference Direct Calculations

Core Number Central Linear Percent
Density Perturbation Difference Method Perturbation Theory Difference

10% for C —0.00221 —0.00215 —2.7%
10% for 239Pu 0.05256 0.05235 -0.4%

A better understanding of the perturbation theory results can be
obtained by examining the individual terms in the perturbation equation.

This is done in Table XIII-5.

. Table XIII-5. Contributions to the Perturbation
Results for Worth

C Perturbation 233py Perturbation
Total Cross-

Section Term —0.32071 -0.10269
Scattering Term - 0.31856 0.07700
Fission Term 0 0.07804

Sum of Above -0.00215 0.05235

The total cross section term and the scattering term for the carbon number
density perturbation are roughly equal but opposite in sign. Thus, a
great deal of cancellation occurs in the perturbation theory calculation.
Calculations with large amounts of cancellation are difficult for pertur-
bation theory methods. Since good results were obtained for the carbon
perturbation which has considerable cancellation, the numerical proce-

dures used in this chapter are probably adequate for most perturbation
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cancellations. The plutonium perturbation has much less cancellation and
is therefore better suijted for perturbation methods.

The total cross section term in the perturbation equation was evalu-
ated using the truncated Legendre series described in Chapter XI. The
first order perturbation theory results for the perturbations considered
in this chapter are shown in Table XIII-6 as a function of the order of

the Legendre expansion for the total cross section term.

Table XIII-6. Variation of the Perturbation
Prediction With Legendre Order

Legendre Order

for the Total Cross- Worth of the Worth of the
Section Term C Perturbation  23°Pu Perturbation
0 —0.00438 0.05166
1 -0.00216 0.05234
2 -0.00218 0.05234
3 -0.00215 0.05235

It appears that an expansion order of one (1) or greater is sufficient

for these perturbations.

| The methods used in this chapter are apparently adequate to perform
eigenvalue perturbation calculations. The differences between perturba-
tion theory results and direct calculations occurred in the fourth or fifth
significant figure. These same methods will be applied to generalized per-

turbation theory calculations in Chapters XIV and XV.
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CHAPTER XIV

DEMONSTRATION GENERALIZED PERTURBATION CALCULATIONS FOR LINEAR RATIOS

The Tinear ratio chosen for the demonstration calculations described
in this chapter is the 238U absorption to 23°Pu fission reaction rate ratio
in the centér of the Carbide Benchmark. This ratio was measured for the
Carbide Benchmark, and Argonne's calculation disagreed with the measurement
by more than 5%. Thus central reaction rate measurements of this type are
of current interest in reactor physics. The four-group calculations per-
formed here are not suitable for comparison with experimental measurements
but are useful to verify methods which could be applied to more detailed
physics calculations.

The generalized source for this problem is given by

-1 L2
S* = <T10> . <Ip¢> (14-1)

where I; is the 238U absorption cross section and I, is the 23%Pu fission
cross section. I; and I, are zero outside the small region in the center
of the reactor where the measurement was made. This source is well repre-
sented by a point source in space. The four-group source for the reaction-

rate ratio is shown in Table XIV-1.

Table XIV-1. The Generalized Source for the
Reaction-Rate Ratio '

Group Generalized Source
1 4.5056 E+4
2 -6.5157 E+4
3 1.5992 E+5
4 2.3061 E+5
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Point sources in two-dimensional discrete ordinates transport calculations
are best calculated using an analytic first-collision source which prevents
ray effects.!® 1In practice, the first-collision source method is imple-
mented by calculating the uncollided flux in the cenfer of each space mesh
and using this value for the average flux in the mesh.!® For generalized
flux calculations, this approkimation is not satisfactory since it does not
preserve neutrons, and neutron conservation is necéssary in order for the

first collision source to obey the requirement
<S*¢> =0 ’. : (]4'2)

which must be obeyed by all generalized sources. The first—Co]]isioh
source program GRTUNCL?2 (pronounced Great Uncle) was modified in order to

calculate the uncollided flux using the following equation:

b1 =yr [ et v, (14-3)
i
which obtains the average uncollided flux for each mesh in a rigorous
manner. The integral in Eq. (14-3) is calculated in spherical coordinates
for each R-Z space mesh using a numerical integration.

GRTUNCL was further modified to prepare a partitioned generalized
source for .use in DOT IV. The modified version of DOT IV described in
Chapter X was used to calculate T* for the reaction-rate ratio. Discus-
sion of the convergence of generalized flux calculations is deferred until
Chapter XVII. Plots of I'* for each group are shown in Figs. XIV-1 through
XIV-4. Two plots are shown for each group. Since the average flux is
large in mesh intervals near the point source, the scaling of the vertical

axis required to plot I'* tends to emphasize only the flux near the source
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Plots of the Reaction-Rate Ratio I'* for Group 1.

Fig. XIV-1.
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Plots of the Reaction-Rate Ratio I'* for Group 2.

Fig. XIV-2.



(expanded scale)

80

Plots of the Reaction-Rate Ratio I'* for Group 3.

Fig. XIV-3.
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Plots of the Reaction-Rate Ratio I'* for Group 4.

Fig. XIV-4.
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which is dominated by the uncollided. Therefore, a second plot using a
scale suitable for viewing fluxes farther away from the source is also
shown. These plots are included to indicate the general features of I'*.
For example, I'* for the first group displays a positive-negative-positive
sign pattern, while I'* for group 2 has a negative-positive sign pattern.
r'* for groups 3 and 4 are all positive. This sign pattern may be inter-
preted by recalling that T'* is an importance function for neutrons removed
or added at any point and that S* is an importance function for changes in
flux. Since S* is positive for groups 1, 3, and 4 and negative for group
2, it is not surprising that I'* is positive for groups 3 and 4. For neu-
trons introduced in group 2, the flux in group 2 is increased (which lowers"
the response R) while the fluxes in the other groups are also increased
(which increases R). If the group 2 flux effect dominates (which is more
likely for neutrons introduced near the center of the reactor), I'* for
group 2 is negative; if the flux change in the other groups dominate,
then T* will be positive. The sign of the flux in group 1 can be inter-
preted in a similar manner.

VIP and JULIET were used to calculate the effect of the number density
perturbations for carbon and 23°Pu. The generalized perturbation equation
used is

SR

T R—<T*(6A — A8B)¢> . (14-4)

In order to check the perturbation theory results, the direct calculation
method was also used to obtain values for S8R/R. The calculated values of

R for several different perturbed states are shown in Table XIV-2.
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Table XIV-2. Direct Calculations of the Reaction-Rate Ratio

Core Number

Density Perturbation R (238U absorption/23°pu fission)
+10% for C 0.18128
-10% for C 0.17843
+10% for 23°pu 0.17908
-10% for 23°py ' 0.18072

no perturbation 0.17987

The Tlinear perturbation theory predictions for SR/R are compared with

direct calculations in Table XIV-3.

Table XIV-3. Changes in Reaction-Rate Ratios Calculated
Using Perturbation Theory and Direct Calculations

Core Number Direct Linear Percent
Density Perturbation Calculation Perturbation Theory Difference
+10% for C 0.00784 0.00794 1.3%
-10% for C -0.00801 -0.00794 -0.9%
+10% for 23%py -0.00439 ~0.00462 5.2%
-10% for 23%py 0.00473 0.00462 -2.3%

The central difference method described in Chapter IX is a better
test of the accuracy of linear perturbation theory results for perturba-

tions outside the linear range. This comparison is shown in Table XIV-4.

Table XIV-4. Changes in Reaction-Rate Ratios Calculated Using
Perturbation Theory and Central Difference Direct Calculations

Core Number Central Difference Linear Percent
Density Perturbation Direct Calculation Perturbation Theory Difference

10% for C 0.00792 0.00794 0.3%
10% for 23°Pu -0.00456 , -0.00462 1.3%
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The agreement between the central difference direct calculations and the
generalized perturbation theory results are quite good. This indicates
that the procedures described in Chapter X for calculating generalized
functions are satisfactory for the class of problems considered here.
The results for generalized perturbation theory are comparable and perhaps

slightly better than the eigenvalue perturbation theory results described

in Chapter XIII.
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CHAPTER XV
DEMONSTRATION GENERALIZED PERTURBATION CALCULATIONS FOR BILINEAR RATIOS

The bilinear ratio chosen for the demonstration calculations described
in this chapter is the worth of a small sample of 23°Pu in the center of
the carbide benchmark. Central reactivity worths are of considerable
interest in reactor physics.

There are th indirect effects associated with bilinear fatios; one
for changes in the forward flux, and one for changes in the adjoint flux.

The generalized sources for the central worth problem are given by

. (AA — AAB)® xf
5= <o*(AA — AMBYo>  <ff*> (]5_'])
and
S* = LAA* - )\AB*)q)* \)fo* (]5.2)

~ <¢*(AA — AMB)>  <ffF>

where AA and AB refer to the 23°Py sample. The fission neutron production
densities f and f* provide a convenient way to calculate the second term in
each of Egqs. (15.1) and (15.2). The first term in each of these source
equations is located in a small volume and can be represented by a point
source. The second term in each of these equations is a volume distributed
source which appears at all points where fission bccurs; The féur—group

point sources for the worth problem are shown in Table XV-1,

Table XV-1. The Point Generalized Sources for Central 23°Pu Worth

Group Forward Adjoint
1 3.1883 E+4 5.2566 E+3
2 1.9657 E+3 : 4.2565 E+3
3 -4.5172 E+3 4.9663 E+3
4 -1.8212 E+3 1.2073 E+4
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The computer program GRTUNCL was used to calculate a first-collision
source for DOT IV for each of these sources. The volume distributed source
given by the second term in each of the source equations was added to the
first-collision source. The generalized functions T and T'™* were calculated
using DOT IV. Plots of I and I'* are shown in Figs. XV-1 through XV-4.
I' has a positive-negative spatial sign pattern for groups 1 and 2 and a
negative-positive-negative sign pattern for groups 3 and 4. T* has a
positive-negative sign pattern for each of the groups. Large values near
the point source dare not shown in these figures in order to show more detail
in the flux shapes,

The indirect effect due to changes in the forward flux is given by
16¢z—<1“*(6A — A8B)o> . (15-3)

VIP and TPERT were used to evaluate this equation for a perturbation con-
sisting of a 10% change in the carbon number density. The indirect effect

-due to changes in the adjoint flux is given by
Tgpn = —<¢p*(SA — ASB)T> . (15-4)

Equatioﬁ (15-4) was evaluated to obtain Igyx*.

Another way to obtain changes in worth is to calculate the worth of
the 2%%Pu sample using various combinations of perturbed and unperturbed
fluxes. The equation for central plutonium worth is

* —
W= — %Q*Bq)ﬁABW . | (15-5)

This is the same equation evaluated in Chapter XIII except now the integra-

tion in the numerator is limited to the central interval in the DOT IV
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space mesh. The worth of a 10% increase in the ?3°Pu number density in
the central interval evaluated using Eq. (15-5) and various combinations

of pertyrbed'and unperturbed fluxes are shown in Table XV-2.

Table XV-2. Central Worths for 23°py

Perturbed State
Fluxes for the

Worth Calculation +105¢  -10% C
0% 3.1169 E-5  3.1169 E-5
¢»0p* 3.1285 E-5  3.1049 E-5
dps9* 3.1354 E-5  3.0992 E-5
$psdp* 3.1471 E-5  3.0873 E-5

The calculation of worth using the unperturbed forward and perturbed
adjoint (¢,¢p*) corresponds to Igy*, while the worth calculated using ¢
and ¢* corresponds to Igg. The worth ca]qu]ated using dp and ¢p* corre-
sponds to the sum of Igg and Igg*.

A comparison of values of SW/W calculated using the values in
Table XV-2 and generalized perturbation theory results is shown in
Table XV-3. |
| The difference between the central difference direct calculation and
the generalized perturbation theory calculation for changes in central
239py worth is about 2%. This is considered excellent agreement., These
results indicate that the numerical methods described in Chapter X for

calculating I and T* can be used for engineering calculations.
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Table XV-3. A Comparison of Calculated Values for Changes in Worth

Calculation Isp* 15 SW/W
Direct caiculation for -10% C
perturbation -0.00383 -0.00567 -0.00948
Direct calculation for +10% C
perturbation 0.00373 0.00595 0.00969
Central difference result '

using the direct calculations 0.00378 0.00581 0.00959

Generalized Perturbation Theory
result for the +10% C perturba-
tion 0.00386 0.00591 0.00976

Percent difference between the

central difference and perturba-
tion results 2.1% 1.7% 1.8%
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CHAPTER XVI

CALCULATION OF HIGHER EIGENFUNCTIONS

After DOT IV was modified to calculate generalized functioﬁs, it was
noted that higher eigenfunctions (i.e., eigenfunctions other than the
fundamental) are similar to generalized functions and that the same com-
puter program could be used to calculate both. The fact that higher
eigenfunctions are posjtive at some points and negative at others was not
a problem because of the partitioning of positive and negative sources
described in Chapter X. ‘

In order to explain how higher eigenfunctions'may be calculated, the
method commonly used to éa]cu]ate the fundamental mode eigenvalue and
eigenfunction is first described. The outer iteration procedure used in

DOT IV can be written as

n._ x n—I
Ap" = T f , (16.1)

where K s the funda-

is the fundamental mode k eigenvalue and f
mental mode fission neutron production. The superscripts refer to the
outer iteration number. The source given by the right-hand side of

Eq. (16.1) is normalized such that
n=l_ _ 4 : ’ :
<kn__ fr> =1 . (16.2)

The outer iteration represented by Eq. (16.1) is performed to obtain ¢n
which is used to calculate al using the definition given in Chapter VII.

The next estimate of the eigenvalue is calculated using

K" = <an> ) (16.3)
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This outer iteration procedure converges as the higher modes die away
while the normalization of the source prevents the fundamental mode from
either dying away or growing very large. However, if no fundamental mode
is present in the flux guess, the normalization will preserve the largest
k eigenfunction present while the other eigenfunctions will die away. It
was found that the version of DOT IV used to calculate generalized func-
tions could also calculate the eigenfunction k; since the fundamental mode
removal (sweeping) discussed in Chapter X removed the fundamental mode.
The only restriction was that the multiplier applied to the initial flux
guess to obtain the normalization given by Eq. (16.2) be positive, since
a negative multiplier would make the positive f]uxes negative and the
negative fluxes positive and thus transform the all-positive problem into
-an all-negative problem. This minor difficulty is easily overcome. Addi-
fiona] modes may also be swept from the initial fission guess using the

sweeping equations

. <fRg~>
g=g —<—fn;-fn—> fn (]64)
<g*’fn>
‘and v g* = g* —-Z‘an* . (]6.5)

Here g~ and g*~ are forward and adjoint fission guesses containing the
nth mode, and g and g* contain no nth mode. These sweeping equations are
similar to the sweeping equations discussed in Chapter VII for the funda-
mental mode. |

DOT IV was modified in an ad hoc manner to sweep several hodes after

each outer iteration. The first few modes for the Carbide Benchmark were
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then calculated. Diffusion theory was uséd for these calculations as an
economy measure. The functions fn and fn* must be calculated for each
mode before'proceeding to the next in order to have the functions required
to perform the sweeping. The eigenvalues for the fundamental mode and

four higher modes are given in Table XVI-1. For each eigenvalue, the two

Table XVI-1. The First Few
k Eigenvalues

n Kn
0 0.98
1 0.56
2 0.52
3 0.36
4 0.31

numerical values from the forward and adjoint calculations agreed well
although not exactly (probably because of roundoff and less than perfect
convergence). Plots of the functions fn and fn* are shown in Figs. XVI-1
thrpugh XVI-5. Comparing these plots indicates thaf fn and fn* are simi-
lar but not identical. fn is discontinuous betwegn the core and blanket
(because the macroscobic fission cross section is discontinuous), while
fn* is continuous. However fn and fn* have the same sign as a function

of position. This implies that
<fnfn*> £ 0 . (16.6)

The pair of eigenfunctions corresponding to k, = 0.56 and k, = 0.52
are similar in that each has one positive stripe and one negative

stripe separated by a roughly constant radius line for ki and a roughly
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Plots of f and f*.
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Fig. XVI-2.

Plots of f1 and fi*.
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Fig. XVI-3.

Plots of f, and fa*.
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Fig. XVI-4.

Plots of f3 and f3*.
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Fig. XVI-5.

Plots of fy and fu*.
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constant height 1ine for k.. Note that the normalization of k. was
changed (from 1 to —1) for plotting purposes. TheAeigenfunctions cor-
responding to ks = 0.36 and k, = 0.31 have a more complicated positive-
>negat1ve-positive spatial sign pattern. f, and f.* have vertical
stripes as do f, and f;*.

The calculation of higher eigenfunctions is an interesting corol-
lary to the calculation of generalized functions. Higher eigenfunctions
are often discussed in nuclear engineering applications even though

little is known about them.
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CHAPTER XVII
OUTER ITERATION CONVERGENCE FOR GENERALIZED FUNCTIONS

The rate of convergence of the outer iteration procedure used to
calculate generalized functions can be predicted if the second eigenfunc-

tion A, is known. This can be illustrated using the Neumann series for T

re >, | (17-1)
n=0
where Ay, =S (17-2)
and , A b, = XBWn_q . (17-3)

Using the eigenfunction expansions discussed in Chapter VII, it can be

shown that

; AN <OmBy>
¥n - Z;:(X_) ZE_;EET;7¢m (nfo) . (17-4)

m m m

The summation over eigenfunctions excludes the fundamental mode. The

eigenfunction expansion for I' can be written as
I = gy + ; a g . (17-5)

Using Egs. (17-1) and (17-4), the coefficfents a are found to be

a = ;iﬁﬂ?hii. . <2L)n (17-6)
“m T <o BUm> £ N/
The convergence of the Neumann series is determined by the rate of conver-
gence of the series in Eq. (17-6). After many terms in the Neumann series,

the eigenfunction ¢, will dominate and each successive term in the Neumann

series will decrease by the factor A/);.
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The partial sum for N terms of the series in Eq. (17-6) is

A _ (AN
_ N A\n _ XﬁiD (Am) ] ‘
S\ = /) X (17-7)
n=] \"M 1T -5
Am
The truncationAerror RN is given by
( A>N+1
- - Vim/ :
RN =S, ——SN : X (17-8)
_ e
The rate of convergence for each a, may be characterized by
RN+l _ A
Y, = = — 17-9

Thus the truncation error for any a, decreases by the factor A/Am for each
outer iteration or each term in the Neumann:series.

Acceleration of outer iterations can be accomplished in a number of
ways. A particularly simple method is to use a constant overrelaxation

factor. The overrelaxation method for accelerating a fission density f

is

(fn+'|) = fn+] +q (fn+] —_ fn) . . (]7-]0)

acc
~ where the superscripts indicate the outér jteration number and a is the
acceleration constant.
The rate of convergence for each aj when acceleration is used is
characterized by
_ Ryep * olRyq — Ry

(v Dace = Ry =y —all —vy,) . (17-11)

Equation (17-11) indicates that (v )

. non-
m’ace can be decreased by using a non

zero o. In fact, if only one mode is present, the exact resu]ts.can be
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obtained after one accelerated iteration provided the proper o is chosen.

For some values of o, (y._)

m)acc MY be negative. A negative value indicates

that the acceleration has caused the accelerated value to overshoot the
converged value. When many modes are present, a criterion for choosing a
is to minimize the magnitude of (Ym)acc over all m. If YL is the largest
y for a system and Yg is the smai]est, a should be chosen such that |

(YL) = - (Ys) (]7-]2)

acc acc

In this case, the largest mode undershoots by the same fractional amount

as the smallest mode overshoots. Using Eq. (17-11), Eq. (17-12) becomes
Y~ a{l — YL) = — [YS —al(l - YS)] . (17-13)

The "optimum" value for a is

YL + Ys

o= 7= (17-14)
2 (YL + Ys)
If yg is much smaller than vy, , then the optimum value for a is
. Y :
@573 el (17-15)
T

The first few eigenfunctions for the Carbide Benchmark sample problem

were determined in Chapter XVI. For this problem

o

A .56

k,
= A = Mg oy -
YL . K 0.98 0.57 , (17-16)
and
0.57 ~ 0.40 . (17-17)

o ®30.57
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These results indicate that errors for the sample problem should decrease
by a factor of .0.57 per outer for an unaccelerated calculation and by a
factof of 0.4 per outer for an accelerated calculation. Therefore, ten
outer iterations should reduce the error by factdrs of 0.0035 and 0.0001,
respectively, for the unaccelerated and accelerated cases. Table XVII-1
shows the convergence of the calculation for T (see Chapter XV) as a
function of the outer iteration. The values of T shown are for a point
in phase space corresponding to the first group and the space mesh at
radial interval number 20 and axial interval number 15 (the upper right-
hand interval in the core as shown in Fig. XII-1 on page 62). The cal-
culation for T was performed using a flux guess obtained using diffusion
theory. The accelerated case (using o = 0.4) converges after about
eight outers, while the convergence of the unaccelerated case is slower.
Only four outers were performed for the unacceierated case as ah economy

measure. The convergence of the accelerated case is quite acceptable.

Table XVII-1. Cdnvergence of T with Outer Iteration Number

Outer Iteration Value of T at a point?
Number Accelerated Unaccelerated

1 0.626 - —0.625
2 -0.634 -0.629
3 —0.643 -0.631
4 —.650 —0.634
5 —0.651 b
6 —0.652 b
7 —0.653 b
8 —0.654 b
9 -0.654 b
10 —0.654 b

AThe point is for group 1 and at the top and outside
of the core.

bNot calculated.
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CHAPTER XVIII
SUMMARY AND CONCLUSIONS

Perturbation theory equations have been derived for four cases:
(1) source problems, |
(2) eigenvalue problems,
(3) 1linear ratios in critica]hsystems, and
(4) bilinear ratios in critical systems.

The difference flux formulation was used for each case. A pdssib]e
advantage of the difference flux method when tompared'with variational
methods is that the terms neglected are easily identified. The versa-
tility of the difference flux method was demonstrated by deriving a per-
turbation equation for linear ratios in which second order terms were
'retained. It was shown that the genera]iied functions T and I'* contqin
no fundamental mode component. It was also shown that adding a fundamen-
tal mode component to I' or I'* corresponds to a criticality reset.

The computer program DOT IV was modified to cé]cu]ate generalized
functions. The generalized sources were partitioned into positive and
negative parts in order to avoid the problem discrete ordinates computer
programs have with negative fluxes. A sweeping procedure was used to
remove fundamental mode from the generalized functions. Overrelaxation
of the fission source was used to accelerate the outer iteration
procedure. |

The Carbide Benchmark critical experiment was chosen as the model to
be used for demonstration ﬁrob]ems. The accuracy of the numerical methods

developed was demonstrated by calculating the changes in the eigenvalue,

'Y
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a central reaction-rate ratio, and a central worth. The perturbation
theory results were verified by comparing with direct calculations. The
calculated changes obtained using these two methods agreed to within
about 2% which is very good for this type of calculation.

Several higher A eigenfunctions and eigenvalues were calculated using
many of the same techniques developed to calculate generalized functions.
This subject was only briefly explored. Further work could possibly
result in the development of practical applications involving eigenfunc-
tion.expansions.

The generalized perturbation theory calculational methods can be used
in nuclear analysis applications which require a two-dimensional geometry
and transport theory. Recent LMFBR core designs are highly heterogeneous
with internal blankets placed inside the core in order to increase the
breeding ratio. The methods developed in this work could be applied to

complicated configurations of this type.
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