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ABSTRACT

The objective of this program is to develop a microwave oscillator
capable of producing 200 kW of CW output power at 60 GHz. The use of

cyclotron resonance interaction 1is being pursued.

The design, procurement and early construction phases of this program

are discussed.



I. INTRODUCTION

The objective of this program is to develop a microwave oscillator
designed to produce 200 kW of CW output power at 60 GHz. Nelther tunability
nor bandwidth are considered important parameters in the design but
efficiency is. Mode purity in the output waveguide is not a requirement for
the device, but the circular electric mode is considered desirable because

of its low loss properties.

With these objectives in mind, an approach based on cyclotron resonance
interaction between an electron beam and microwave fields is being pursued.
The detailed arguments leading to this approach are contained in the final
report of a preceding study program1. The device configurations of
particular interest, called gyrotrons, have been discussed in recent
1iteraturez-6. They employ a hollow electron beam interacting with
cylindrical resonators of the TEOM1 class.,

The optimum beam for the cyclotron resonance interaction is one in
which the electrons have most of their energy in velocities perpendicular to
the axial magnetic field. Another requirement is that the spread in the
axial components of the electron velocities be as small as possible.
Electrons which have different axial velocities will not interact

efficiently.

The approach chosen to generate the beam is a magnetron type of gun as
is used on the 28 GHz gyrotron, also developed for QOak Ridge National
Laboratory7’8. With this type of gun the shaping of the magnetic field in

the gun region becomes quite Important.

Construction of the experimental pulsed 60 GHz gyrotron is continuing.
Electron gun parts have been received and construction will begin next
quarter. A successful superconducting solenoid magnet design review was
held at Magnetic Corporation of America. Coil winding has begun. Collector
construction is nearly complete. Nearly all of the window parts have been
received and a braze Jig for the window is being machined. At present, the

limiting item appears to be modificatlon of the test set.



II. ELECTRON GUN

The 60 GHz gun design was subjected to computer analysis this quarter
for the purpose of calculating the magnitudes of the DC electric field
normal to the surfaces of the negatively-biased electrodes. This work was
done to ensure that surface gradients would contribute minimally to the

generation of an arc in the gun region.

The calculations were done using a Varian computer program which solves
Laplace's equation in ecylindrical coordinates (by finite element methods)
for the potential in a given two-dimensional region. The fields were then
determined by calculating the gradient of the potential distribution in a
desired direction. Surface gradients were then obtained by matching a power
dependence on radius of the field to calculated values near the electrode,

and extrapolating to the electrode surface.

Figure 1 depicts a computer-generated plot of the electrical geometry
in the gun region, showing the cathode support and focusing structure, the
gun anode, and the body of the tube. It also includes the presence of the
gun ceramlc and the solenoid dewar, The gun ceramic is modeled as a finite
thickness cylinder in the computer program. The figure shows the potential
distribution when the tube is turned on (i.e., with the gun anode at 25 kV
and the body at 80 kV with respect to the cathode potential). The surface
gradient was calculated both for this configuration (turned-on) and the
turned-off case, with the gun anode biased 2 kV below cathode. In general,
the surface gradient was higher for the turned-off case at the gun anode
surface, and was higher in the turned-on case at the tip of the cathode

structure (front focus electrode),

Attention was focused on finding the location of the maximum surface
gradients of the gun anode and cathode front focus electrode. These two
areas are shown in Figure 1. Figure 2 is a magnified view of these two
locations, indicating where the surface gradient was calculated to be

maximum.
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A decision was made to attempt improvement of the gradient off of the
gun anode. The most stralghtforward approach to this would be to increase
the radius of curvature of the gun anode piece that had the maximum
calculated surface gradient. If the maximum outside diameter and length of
the gun anode were to remain constant (to preserve beam optics and ceramic
gradients) a larger radius of curvature could easily be accommodated. This
change in the shape of the gun anode is shown in the computer-generated plot
of Figure 3, which shows the change in potential distribution when the new
shape is used. The calculated maximum surface gradient was in the same
direction as for the previous design, but the magnitude of the maximum
gradient decreased by 20%. This relatively small change in gun design
geometry accompanied by a very significant decrease in the maximum surface

gradient should lessen the chances of arc formation in the gun.

For the case shown in Figure 3, the maximum voltage gradients at the
gun anode and the tip of the cathode focus electrode are given in Table I

for the on and off conditions.

TABLE I
Voltage Gradients

ON QFF
Gun Anode 60 kV/cm 90.5 kV/cm
Cathode Tip 119 kV/cm 42 kxV/cm
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IIT. SUPERCONDUCTING SOLENQID MAGNET

The superconducting solenoid magnet is on order from Magnetic

Corporation of America. Five milestones were established as follows:

1. Final design and review by Varian engineers
2. Receipt of conductor

3. Completion of magnet testing

4, Final testing of system

5. Delivery

The first two milestones are complete., The colls are being wound. The

power supplies are complete and available for coil tests.

The gun coil and one half of the split pair have been wound. The
remainder of the coils are now scheduled to be completed by October 3. Coil
testing is now scheduled to be completed by October 10. The major dewar

parts are complete with the exception of the top plate.

Final system tests are scheduled for the first week of November.

The pertinent cryogenic data for the superconducting solenoid magnet

dewar are gliven in Table II.



TABLE II

Superconducting Solenoid Magnet Dewar Cryogenic Data

Guaranteed Lalculated

Liquid Nitrogen Boiloff/Liters per Hour 0.17 0.13
Liquid Nitrogen Holdtime/Hours 120 160
Liquid Nitrogen/Total Volume in Liters 21 21
Liquid Helium Boiloff/Liters per Hour, 0.70 0.56
Coil on*

Liquid Helium Boiloff/Liters per Hour, 0.42 0.33
Coil on¥**

Liquid Helium Holdtime/Coil on#* 32 41
Liquid Helium Holdtime/Coil off#%# 135 172
Liquid Helium Holdtime/Above the Coil 23 23
Liters

Total Helium Volume/Liters 57 57

¥Calculated with liquid helium above the coil only.
#%Calculated with entire liquid helium volume.



IV. OQUTIPUT/COLLECTOR

The work described in Section IV of Reference 9 has been extended to
calculate mode power ratios, Pmn(K), where the transductance parameter
Kz - wa@o/k, for values of K £ 1, Here, the parameter, a, is the
cylindrical waveguide radius, Bo is the taper angle, and A is the free space
wavelength. For a cylindrical-conical junction the sign of K is reversed.
However, as we will see below, the sign of K affects only the phase of the
transduced modes and does not affect the amplitudes of the mode power
ratios, The ratic of power converted into the TEom mode from a pure
incident TEon mode was previously found to be

64 X2 x2
im

n 2
B0 = 1218 i, sor [x] < 1. (1)

2
(x1m - X1n)

where X1n is the nth positive root of J1(X) = 0. In order to generalize (1)

for lKl > 1 we use Equation (2) in Reference 9,

2 2
J° (X,) T (X)
P (K) = —o 1m I Lo ! , for |K| £ 2.5, (2)
mn x|, ®] 2
o} in nn
where
1 2
2 ‘f ikt
Tmn(K) R te J1(X1mt) J1(X1nt)dt (3)
I, (x1m)0

The integral in Equation (3) has been evaluated numerically for various

(m, n) and K. The results are shown in Figures 4 - 9 where only the
absolute values, len(K)l Vs !KI , as required1gy Equation (2) are given.
The results agree with those quoted by Solymar and those calculations have
been extended to include m or n = 5, 6 and values of K in the range

2.5 - 10.

Using Equation (2) and the results for len(K)L the mode conversion,

Pmn(K), has also been computed as shown in Figures 10 - 15. For values of
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IKI2 4 these calculations yield physically meaningless results (Pmn > 1).
Apparently, for[K'z 2.5 the theoretical analysis of the problem is no longer
correct, As the symptoms of this error in analysis are values of Pmn which
exceed unity, one suspects that the boundary condition applied at the
conical-cylindrical junction (see the Appendix in Reference 9) does not
properly account for depletion of the pure incident TEon wave during the
mode conversion process. For this reason the region of validity of
Equation (2) is limited to |&| £ 2.5.

B. R ECTORY

A computer simulation of the electron beam was done for the CW tube

collector design.

Twenty-four trajectories were calculated starting from the interaction
ecircuit with eight electrons arranged about each of three orbit centers.
Because of program size limitations, four axial collector segments were

required in the calculation to reach the area where interception occurs.

The calculations were made using the fringing field of the
superconducting magnet system with one additional coil in the collector

region for field shaping.

It was necessary to use extremely high precision (35 digits) to
calculate the off-axis vector potential from which the magnetic field is
derived. The vector potential at each point was calculated by a Gaussian
quadrature of the contributions from each coil. Each contribution was
calculated by means of complete elliptic integrals obtained by the method of
converging arithmetic-geometrical means. The extremely high precision was
required in order to retain a few significant figures when two very nearly
equal contributions of opposite sign are added.

Calculations of the trajectories in the region 20.5 to 67.5 inches from
the center of the interaction eircuit were made. The first trajectory

intercepted approximately 20 inches beyond the lower collector seal. The

ire

22



beam loading is spread over an axial length of approximately 2 feet. Table
III shows the region of the collector impinged by each group of eight

trajectories:

TABLE III

Collector Trajectory Landing Sites

Trajectory Group Z (inches)
Outer 38.55 - 60.33
Middle 34.91 - 57.98
Inner 36.75 - 53.08

The tendency is for the outermost electrons at the beginning of this

particular calculation to travel the furthest before impingement on the
collector surface.

An estimate of the peak power density on the collector walls will

require more detailed trajectory simulation runs.

23



V. WINDOW

The piece parts for the single disc BeO window have been received. The
window braze fixture is due in mid~October at which time the assembly of the

window for the experimental pulsed tube can be started.

24



VI. COMPONENTS

A variety of waveguide components is being developed for use with the
60 GHz gyrotron including waterloads, a frequency sampler and arc detector,

and mode filters.

A. TER

A modification to the flange design used on the 28 GHz waterload is
being made to prevent flange arcing and heating anticipated at high CW
powers in multimode waveguide systems. This flange design utilizes a

disposable copper gasket captured by stainless steel flanges.

Both a pulsed and CW load are being designed. The pulsed waterload
design allows more turbulent flow at lower water flow rates and has a

smaller thermal mass.

Construction of the first pulsed waterload is scheduled to start in

October.

B. AMPLER AND R

A combination frequency sampler and arc detector has been designed.
The frequency sampler portion is designed to monitor all TE modes. The
light sensing portion is designed to cut off up to the third harmonic of the
design operating frequency of the gyrotron to prevent rf leakage into the
fiber optics light guides. An improvement in the test lamp portion of the

arc detector is being made to ensure a more reliable test function.

Check prints of the frequency sampler and arc detector are completed

and are being reviewed for engineering approval.

C. MODE FILTERS

Two types of mode filters are being designed. The first type is a

water-cooled stainless steel waveguide, which utilizes the differential in

25



loss between non-circular electric modes and circular electric modes for
filtering. Check prints for this first type of mode filter have just been
completed. The second type of mode filter consists of alternating stainless
steel rings and gaps backed up by a waterloaded ceramic cylinder. In
addition to the mode filtering mechanism of the first type of mode filter
the second type creates breaks in the conducting wall for non-ecircular
electric modes but not for circular electric modes. Some of the cold test

parts have been received for this design.
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VIi. TUBE ASSEMBLY

A. VGE-8060 S/N X-1 (FIRST EXPERIMENTAL PULSED TUBE)

Essentially all of the piece parts for S/N X-1 have been recelved and
construction is well under way. Construction is expected to be completed by
the end of October.

The collector assembly i1s ready for its final braze.

The collector extension assembly, the 2.5 inches inside diameter

waveguide between the collector and window, is in process.
A braze fixture is being made for the collector ceramic assemblies.

A braze fixture for the single disc beryllia window will be complete in

mid-October.

The output taper assembly, the taper loading from the output cavity to
the collector has been brazed. A fixture is being made to accomplish the

final machine operation.
A braze fixture for the final brazes of the beam shaver and output
assembly, the assembly consisting of the anode and output cavity, is being

made.

The final cathode assembly is under construction and is expected to be

completed by October 10.
B. GE-8060 S/N 1 T_ 100 ms PULSE DURATION TUBE

Ninety percent of the piece parts for the first 100 ms pulse duration
gyrotron have been received. Construction has started and is expected to be

completed by the end of December.

The collector assembly is ready for its final braze.

27



The output taper assembly has been brazed.

C. VGE-8060 S/N 2 (SECOND 100 ms PULSE DURATION TUBE)

Ninety percent of the piece parts for the second 100 ms pulse duration
gyrotron have been received. Construction is scheduled to begin in

November.
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VIII. PROGRAM SCHEDULE AND PLANS
The milestone chart and status report is shown in Figure 16.

For the first experimental pulsed gyrotron, model number VGE-8060
serial number X-1, all gun parts have been received, assembly has started

and the first gun is expected by October 10,

The superconducting solenoid magnet 1s being wound at Magnetic
Corporation of America following a successful design review in July.

Delivery is expected as early as mid-November,

Piece parts for the interaction circuit portion of the tube have been
received. Assembly has started. A braze jig is being made for the final

assembly brazes.

Piece parts for the window are available. A braze jig is being made

for the window braze.

Assembly of the first experimental pulsed gyrotron is scheduled for
completion by the end of October.

Ninety percent of the piece parts for the first 100 ms pulse duration
gyrotron have been received. Assembly has started and is scheduled to be

completed by the end of December.

Building of the pulsed waterload and frequency sampler and arc detector

will start in October.

Ninety percent of the piece parts for the second 100 ms pulse duration

gyrotron have been received. Assembly is planned to start in November.

Modification of the Nike Zeus test set, funded by a separate contract
is planned to be completed, at least for short pulse capability, by the
first of January. At present, test set modification appears to be the
limiting item.
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Assembly Drawing

1.2 Final Assembly Drawing

20 Make Parts

2.1  Assemble

2.2 Test

23 Modify & Reassemble )
2.4 Retest |

25 Modify & Reassemble 1}
26 Retest H

C. DELIVERABLE SOLENOID
MAGNET

1.0 Build

D. 60 GHz COMPONENTS
1.0 Build Pulsed Waterioad

2.0 Power Sampler and
Arc Detector

2.1  Assembly Drawing
2.2 Build
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Page 3 of §

MILESTONE CHART AND STATUS REPORT

(Q URIGINAL START [(JRevisen sTauT O\MAJOR MILESTONE

O INTE RMEDIATE OR DECISION POINT PROPOSED SCHEDULED DEVIATION

FOR A MAJOR MILESTONE
,’imgus REPORT  ___ ACTIVITY SCHEGULED wemew ACTIVITY COMPLETED

PROGRAM

60 GHz DEVELOPMENT

J08 NO.

STATUS HEPURT DATE
SEPTEMBER 1980

DESCRIPTION

FY 1980

Fy 1981 FY 1982

J

AlS |0

DiJ

F

MIA[M]JI}]IIA]S | OINI{DIJIFIMIAIMIJ

*G.

GYROTRON 100 ms 2

1.0 Make Parts

1.1  Assemble

1.2 Test

1.3 Modify & Reassemble |
1.4 Retest |

1.5 Modify & Reassemble 1|
1.6 Retest I

GYROTRON 30 s 1

1.0  Oscillator Cavity
Assembly Drawing

1.1  Output/Coltector
Assembly Drawing

1.2 Final Assembly Drawing

2.0 Make Parts

2.1  Assemble

2.2 Test

2.3 Modify & Reassemblie |
2.4 Retest |

285 Modify & Reassemble 1|
2.6 Retest il

TEST SET MODIFICATION
1.0 Short Puise

1.1 Long Pulse

1.2 Debug

*Funded by separate contract
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MILESTONE CHART AND STATUS REPORT

(O ORIGINAL START [Jrevisen sTant \MAIOR MILESTONE
. G PHOPOSED SCHEDULED DEVIATION
U INTERMEDIATE OR DECISION POINT FOR A MAJOR MILESTONE

%T“‘:ETUS REPORT ___ ACTIVITY SCHEDULED weemm ACTIVITY COMPLETED

PROGRAM

680 GHz DEVELOPMENT

JOB NO.

STATUS REPURT DATE
SEPTEMBER 1980

DESCRIPTION

FY 1981

FY 1982 FYy 1983

AlMm|J

plJd]lFrimMmiAalMm]d|I |AIS |O|INIDIJ |F [ M

H. GYROTRON 30 s 2

10
1.1
1.2
1.3
1.4
15
1.6

Make Parts

Assemble

Test

Modify & Reassemble |
Retest

Modify & Reassemble ii
Retest 1)

1. GYROTRON CW 1

1.0
1.1
1.2
13
1.4
15
1.6
1.7

Make Parts

Assemble

Test

Modify & Reassemble |
Retest |

Modify & Reassembie {1
Retest il

Ship

J. 60 GHz COMPONENTS

1.0

20

30

Build CW Load

Build Deliverable
Power Sampler
Arc Detecror

Buiid Deliverable CW Load
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MILESTONE CHART AND STATUS REPORT

Q) ORIGINAL START [JnevisepsTART O\ MAJOR MILESTONE

O INTERMEDIATE OR DECISION POINT  FROPOSED SCHE BULE e~ A T1ON

?T':EYUS REPORT __ ACTIVITY SCHEDULED wam ACTIVITY COMPLETED

PROGRAM

60 GHz DEVELOPMENT

JOB8 NO.

STATUS REPURT DATE
SEPTEMBER 1980

DESCRIPTION

FY 1982

Fy 1983 FY 1984

m

A

™M

SONDJFMAMJJASOND

XK. GYROTRON CW 2
1.0 Make Parts
1.1  Assemble
1.2 Test
1.3 Modify & Resssemble |
1.4 Retest |
15 Modify & Reassembie I}
1.6 Retest Il
1.7 Ship

L. WINDOW 1
1.0 Make Parts
1.1 Assemble

M. WINDOW 2
1.0 Make Parts
1.1 Assemble

N. WINDOW3
1.0 Make Parts
1.1  Assemble
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