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I. INTRODUCTION

The objective of this program is the design and development of a
millimeter-wave device to produce 200 kW of continuous~wave power at

60 GHz. The device, which will be a gyvrotron oscillator, will be com~-
patible with power delivery to an electron~cyclotron plasma, Smooth
control of rf power output over a 17 dB range is required, and the device
should be capable of operation into a severe time-varying rf load

mismatch.,

The technical baseline for the gyrotron and the associated power supply
are shown in Table I. In the gyrotron, which is shown schematically in
Figure 1-1, the electrons are formed into a hollow beam by a magnetron~
injection electron gun with a considerable amount of their energy in
rotation. A gradually rising magnetic field compresses the beam in
diameter and at the same time increases the orbital energy according to
the theory of adiabatic invariants until approximately 2/3 of the beam
energy is in rotation and the rotational frequency 1s 60 GHz; at this
point the magnetic field becomes uniform and the beam enters a quasi-
optical open cavity where the spinning electrons interact with the eigen
mode of the cavity. The rf energy builds up at the expense of the rota-
tional energy of the dc beam. The spent beam enters the region of
decreasing magnetic field, undergoes decompression and impinges on the
¢ollector. The latter also functions as the output waveguide, In

order to handle the power in the spent beam and the power dissipation in
the window the output waveguide tapers up from the cavity diameter to

an appropriate value,

The duration of the program 1s 36 months, to encompass the buillding and
test of up to twelve devices. The magnetron injection gun is well
understood and allows the user of the extraction anode (as well as cathode
temperature variation) to vary the rf power out. At least two design
approaches will be taken with respect to the collector, which has to be
able to dissipate over 560 kW in undepressed operation. Fabrication and

processing of prototype devices will proceed in parallel.

1-1



TABLE 1

The Gyrotron

Frequency

Power out

Electronic efficiency
Beam voltage

Beam current
Magnetic field

Transverse to longitudinal
velocity ratio

Cathode Loading

Cathode radius

The Power Supply

Voltage rating
Current rating
Anode supply voltage
Anode supply current
Heater supply voltage
Heater supply current
Operating Modes:

1.

2.

3.

60 GHz
200 kW RF
35%

70 kv

8.0 A
23.0 kG
1.5

4.5 A/c:m2
0.60 cm

100 kV d¢
10 A

0-35 kV dc
<20 mA
0~15 VvV, ac
15 A

10 ps pulse length
1 ms - 100 ms pulse length

30 5 to cw

1-2
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I1. PROGRESS

2.1 GENERAL

Effort for this vreport period has been concentrated in the following

tasks:
® Magnetron Injection Gun
e RF Circuit

e Power Supply

2.2 MAGNETRON INJECTION GUN

The magnetron injection gun was designed and finalized during this
report period. A computer trajectory plot of the gun and acceleration
region is shown in Figure 2.2-1., Salient characteristics of the gun

are tabulated in Table 2,2-1.

This gun design is a further extrapolation of the modified gun design
achieved for 110 GHz gyrotrons.1 The anode voltage provides a sensitive
control of the amount of beam energy which is converted to transverse
energy. This value is selected to convert 67% of the beam energy to

the transverse energy. Depending on the amount of transverse velocity
spread in the beam, more energy could be converted to the transverse

direction to be used for interaction.

The transverse velocity spread due to space charge and geometrical
effects of the gun shown in Figure 2.2-1 is predicted to be 1.77%,
assuming the beam is adiabatically invariant. If this attractively low
spread can actually be achieved, even more than 67% of the beam energy

could be transformed to the transverse direction.

2-1
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TABLE 2.2~1

Cathode Current Density 4.0 A/cm2 (7 amps)
Cathode Radius 0.6 cm

Ra/Re 2.46

T/ Toc 17%

BC 1300 gauss

Anode Voltage 23 kv

The exact shape of the magnetic field required in the region between
the gun and cavity directly affects the adiabatic invariance of the
beam. The required shape has not yet been determined, although it
appears that the cavity must be located approximately 25-30 cm from

this cathode nose.

A superconducting solenoid containing eight separate colls is being
investigated to determine the necessary field shape required. Eight
coils provide sufficient flexibility in field shaping and will also pro-
vide tapering of the field over the cavity for efficiency enhancement,
In a final solenoid design, the number of active coils can be reduced

to three.

2.3 RF CAVITY DESIGN

The existing Hughes cavity codes have been modified to provide calcula-
tions of Q for tapered cavities. This effort has been incorporated into
Hughes Technical Report No. 58, which is included as an Appendix to

this report.

N
§
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Based on this new design toel, a computer analysis of several attractive
cavities will be undertaken. 1In order to verify these computer

results, cold tests cavities will be fabricated and measured at X-band.

2.4 POWER SUFPLY

As reported in the last report, the MSR high voltage power supply at the
Kwajalein Missile Range has been excessed by the Army. A Hughes EDD

representative and a representative from an international moving company
were sent to Kwajalein to evaluate the condition of the squipment and to

provide an estimate for moving the power supply.

The power supply was found to be in reasonably good condition. Of the
existing transmitter equipment, the entire high voltage power supply is
usable, including the 4160V reactors, ignitron pre-regulators, and cir~
cuit breaker cabinets. It was also determined that a major portion of
the water cooling system would be available, as well as intercoanecting
cable, busses, duct work and a motor control center. The MSR modulator
was determined to be pulse width limited and not realistically usable

without extensive modification.

The disassembly of equipment should be undertaken in a logical and
orderly fashion by competent personnel who will be available to
reassemble it at a later date, and in an efficient manner. Arrange~
ments were therefore made to have personnel from Hughes Ground Systems
Group perform the disassembly and reassembly. It was estimated that two

man-months would be required for disassembly.

The move of MSR equipment to Hughes EDD was estimated to require 17

shipping contailners.

24



ITI. SCHEDULE

The program schedule and current status is attached.
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I. INTRODUCTION

In the discussion that follows, it is assumed that the first phase of
gvrotron design has been completed; a desired transverse mode has been
chosen and an electron beam of known voltage, current, perpendicular
energy and beam position has been designed. One wishes to optimize the
R¥ power that can be extracted from such a beam through appropriate
cavity design; cavity design referring to both the design of the metal
structure as well as the external magnetic profile contained within.
Although optimum efficiency is the primary goal, the final design must

be compatible with the following constraints:

@ RF loading on cavity walls must be kept below the level at
which it would be impossible to cool the surface adequately

(roughly 1000 watts/sqcm).

e The cavity should be adequately isolated from the outside world
80 that loading effects far from the cavity will not greatly

affect gyrotron operation.

8 The cavity operation should exhibit mode selectivity and sta-
bBility. The start threshold currents for the dasired mode
should be lower than those for other nearby modes and there
should be adequate mode separation to prevent unwanted modes

from being excited.

The procedure for design is to first determine theoretically and/or

experimentally the "cold test’ properties of a given cavity namely:

1. external Q
2. unloaded Q

3. mode structure and frequency



This information 1s then used as input for the numerical simulation of
the electron beam interacting with the cavity fields. The results of
these computer simulations are then combined self-consistently with the
"cold test" information to give the RF efficiency of the cavity and the
resulting wall loading. This analysis is repeated for a variety of

design choices until a prefered design {s found.

The parameters which will characterize a cavity design are:

o maximum cavity radius a
o effective cavity length L
¢ ratio of cyclotron frequency to doppler XFACT

shifted operating frequency
e percent taper of axial magnetic field DELTRB

e taper angle of main cavity wall THETA

# external cavity Q QEXT
¢ unloaded cavity @ QWALL
e loss constant defined as the power KLOSS
leaking through the cavity hole for
a normalized field amplitude of one.
All illustrative cavity designs given are for operation in the TEOZL

mode and assume the following beam parameters:



Voltage -——memm—e——— 80 kv

Current === e—————— 2 ~ 8 amps
Beam Position ~~~-~ lst maximum of TEO21 mode
Rotational energy ~--- 70% of total enmergy.



II. THEORETICAL EVALUATION OF THE MODE STRUCTURE, RESONANT
FREQUENCY AND @ FACTCRS FOR AN ARBITRARY
SHAPED CYLINDRICAL SYMMETRIC CAVITY

It is useful to make some rough estimates for the resonant frequency

and external Q of a cavity.

RESONANT FREQUENCY

The resonant frequencies for TE modes in an ideal closed cylindrical

cavity are given by::

. 2
. < 2 Lray”
“mne 7 a‘\/;mn + ( L ) (1)

where
m is azimuthal mode number
n is radial mode number
2 is longitudinal mode number
k is the nth root of the derivative of the mth order

bessel function

m,n,% are integers, a is the cavity radius and L is the cavity

length.



EXTERNAL Q
One begins with the basic definition for QEXT'

(angular frequency) x (stored cavity energy)
(power out)

QEXT

Stored cavity energy = LAe where:

. = cavity length
A = average cross sectional area
e = average energy density
Power out = (1 - R) Vg Ac where:
A = effective area of opening
R = reflection coefficient for wave propagating towards output
v = group velocity of wave propagating toward output.
& \' = r‘2921r/1
. o) Ay
. . . . ckmn .
Substituting and making the approximation wmn2:;~zf-one obtains:
2 2
1
§ L -
By (5) @
(1 - R)rme
For cavities of constant cross section (A = A), the minimum Q occurs
when R = 0 and ¢ = 1, giving the following definition for Qmin:
2 (ura)?
= 3)
Qmin il



The actual Q and resonant frequency of any arbitrary shaped cavity will

EXT
be written as:

L Ta
e 2 EY
Lumll Q = Py k_mn -+ ( .L > ( l*} a )

gy = Y *Qyq = P X T (4b)
where

QF is a correction factor expressing the ratio of the true

Qxr ° Uin

ZEF is the effective longitudinal mode number whose true value will

differ from the integer values for an ideal cavity

a 1is the maximum cavity radius.
The basic assumption in these definitions is that the transverse mode
structure can be described by bessel functions even for cavities whose

dimensions vary in the longitudinal direction.

EIGENVALUE EQUATION FOR DETERMINATION OF FIELD STRUCTURE,
QEXT and wng(TEmn modes)

2

An expression for the transverse electric field amplitude in an arbi-

trary profiled cavity can be written as:

EB = Real EO « E(z) Jé [kmn r/a(z)] cos mBeiwt (5)



where:
a(z) gives the cavity radius as a function of axial position z

w is the complex frequency = We + iwI

E(z) is the complex field profile as a function of z.

E(z) = |E(2)] ei¢(z)

Eo is the maximum field amplitude
%n is the bessel function of order m
QEXT can be related to wy since:

w, ° stored cavity energy

Uy =
EXT power out
power out = §E~(cavity energy) = ZMI (cavity energy)
(1)
R
%exr T T )

w, * 0 and E(z) » sin (4mz/L).

For an ideal closed cavity QEYT + @, I

By substituting expression (5) for E_ into Maxwell's equations, one

8
obtains to lowest order the folleowing complex eigenvalue differential

equation:

2
2 .k

9——*‘?—533-+ w? - S E(z) = 0 (7
dz a“(z)




Solutions of this equatilon which satisfy the proper boundary conditions
will give the axial mode structure, the resonant frequencies (m?) and
r

) ( 24
QEXT (mR/ZwI).

The boundary conditions to be satisfied at each end of the cavity are:
Right hand side of cavity (z = 22)

Outgoing travelling wave to the right

. - ..q..}..i",. - 1 7 == =
E{2) a exp ( ihzz) or == 4 Lhzh(z) 0 at =z z

Left hand side of cavity (z = zl)

exponentially decaying wave to the left in the below cutoff

region.

E(z) a exp (ihlz) or 4 _ ihlE(z) = (0 at z = z

dz 1

where




NUMERICAL SOLUTION

The differential equation is cast into a form convenient for solutiom,

using the following definitions:

i = yreal E(z)
E, = d/dz [real E(z)]
E3 = imaginary E(z)
B, = d/dz [imaginary E(z)]
a = maximum cavity radius
R(z) = cavity profile vs z normalized by a
Q= Qg
-2 2 2 2
g = (o + 8D /(1 - 1/400)
wp T cmk/a = resonant freguency
8 = " QIEF
L

dEl/dz = &

2 2
dEz/dz = hRE1 + hIE3
dEB/dz = E4

2. .2
dEA/dz = ~th3 hIE4

)
=
s

Qi - 1/4 9%
9



B, o= 1
—
2 2 1?2
L (hy + h]) + |11R|
2 2
E; = O
1/2
2, .2
£ = - (hg + 0P - Il
4 2
atz=22
|m|2=l(E- E, - hE) + (E, + E—-hE)ZI = 0
2~ PrEy - BpE) A T LV B

in order to solve the boundary condition at z = Zys @ systematic search-
ing procedure is used to find 8§ and Q which will make Iml = 0, Fig-
ure 1 shows the initial grid which is set up to span the range where
the actual values of Q and 8§ may lie. TFor each value of Q and 6 in the
grid, the differential system is solved, ]m| is then found and a new
smaller grid system is set up surrounding the value of § and Q which led
to minimum |m|. The process is repeated until sufficiently accurate

values for 8 and Q are found which make |m| -+ 0 to the desired accuracy.

FINAL FIELD EQUATIONS

When the longitudinal mode structure equation has been solved, the com~
plete electromagnetic field can be specified along with QEXT and the

resonant frequency. For TEO modes these are given as

nf

10
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where

)

EF¥

i

il

i

k r
EDJ1 <§%§3> [ER(Z) cos (wt) ~ EI(Z) sin (wt)] (82)

E L 1y {dE_ (z) dE_(z)
9 T.1 ( mn‘) ! i» sin (wt) +~ww%z~—'cos {wt) (8b)

w/e B{z)

~k k r
=7 B, <R2€5> [Bg(2) sin (ut) + B (2) cos (i)l (&)

transverse electric field
radial RF magnetic field
longitudinal RF magnetic field
El(z) = real part E(z)

E3(z) = imaginary part of E(z)

12 nz
. c 2 EF
resonant frequency = 3 kmn F e
(L/a)?
2
1+ /4787 o
(*;) = effective longitudinal mode no.

1 - 1/40°

12



POWER LOSS CONSTANT

& power loss constant kLOSS can be calculated from the known value of
QFXT and the field structure which relates the power drained from the
cavity opening to the square of the peak normalized electric field.

Power loss 1is defined by:

power losg = w » (cavity energy)

QEXT
or
© (Eg + BIZ{ + Bi) 3 2
power loss = g / o d’v = KLOSS. Ey
EXT
where

Substituting the field equations and averaging over time, one obtains

the following expression for KLOSS:

2 -
Jo (kmn> wR(L/a)

KLOSS 16",
EXT
2 L L
k : - 2
L+ / 1£|? dz +-—%—~/ I%E-] dz (9
BoL WL z
i R

13



1t is necessary to know KLOSS5 for self-consistently evaluating cavity

efficiency.

UNLOADED Q AND WALL POWER DISSIPATION

The unloaded  is determined by the wall conductivity and frequency. For

a straight cavity it is given by (for TEonl modes) :

3/2

Q

[ 2]
2 ima
9480.4 V/%i kmn + ( T >

Qwall (10)

where

h
i

frequency in GHz

2
it

relative conductivity = 5.8 for copper.

Since (&ma/L) 1is usually much less than kmn’ the expression for Qwall

becomes:

22832 - k
mn

Qwall = Vﬂg“ (11

The fraction of RF power leaving the cavity which is absorbed by the

and Q

walls can be calculated from a knowledge of Q all’

EXT

14



a - woenergy
EXT power out

W energy

Q .
wall power walls

power out Q7 (12

Thus once the output power has been determined, the power dissipation in
the walls can be found from Equation (12). It should be noted that in

all cases of interest Qwall >> QEXT and, hence, the total cavity Q is

essentially given by QEXT'

CAVITY TAPERING

The above procedure was applied to a variety of cavities with different
wall tapers. Figures 2, 3, and 4 show cavities with field tapers of
00, 0.485o and 70, respectively. It is to be noted that as the taper
angle increases, the external Q decreases and the mode becomes more
sharply peaked, the peak amplitude moving toward the cavity opening.

For large taper angles, QEXT becomes less than Qmin' This can be under-

stood from the approximate expression for Q

EXT"
2 2
o o % S X
EXT ~ (L - R) w A i-RrR " &

In a strongly tapered cavity the average cross section A can become much

less than the output cross section allowing Q to be less than Q min.

EXT
Figure 5 shows a plot of QEXT versus taper angle and sho:s that QEXT
rapidly decreases as the taper angle is increased from 0" to 1 . Cne

may note that for the TE mode at 60 GHz, Q is roughly 1 - 5% of

021
the unloaded wall loss Q.

EXT

15
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III. EXPERIMENTAL DETERMINATION OF CAVITY Q, RESONANT
FREQUENCY AND MODE STRUCTURE

The cavity Q can be determined by measuring the effective input impedance
to the cavity versus frequency. An electric circuit analog of an RF
source coupled into a cavity through a coupling port is shown in Fig-

ure 6a. The equivalent transformed circuit is shown in Figure 6b. The

normalized input impedance at a - a is given as:

Zaa wlL B
z = * (7) T 2iQ 8 (13)
where
Qo = mLC/RC = total cavity Q without coupling port
8 = (wM)z/ZRC = coupling coefficient of external coupling
port to cavity
8 = (w - mo)/wo = fractional deviation from resonance

frequency g
o = UVEE

The external QEXT due to the coupling port alone is defined as:

Qgr = QO/B

The total loaded QL is defined as:

Q = Q /(1 +8)

2

20
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The impedance can be transformed to the detuned short position s - s

by moving a distance 2 where:

g = (-1/8) - 1::an“1 (WL/2)

The normalized impedance at s ~ s is approximately given by:

. B
85 1+ 21Q06

One observes the following properties of ZSS/Z

i) zss/Z = B when § = 0

ii) zSS/z = /(1 * i) when 2Q05 = ot ]

111) z_/z = B/[1 * i(1 + 8)] when 20,8 = *1

iv) Zss/z = fA/(1 £ 1i8) when ZQEXTS = % 1
Using the definitions:

R = real (Zss/z)

X = imaginary (ZSS/Z)

G = real (Z/Zss)

Y = imaginary (Z/ZSS)

22
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one obtains:

f
QL = fm—:ggw- where fl’ f, are the frequencies at which
12 Y=t 1 (15a)
fo
QEXT = f;m:wg;‘ where f3’ f[+ are the frequencies at which
Y =% (G+ 1) (15b)
fO
Qo = ?;—:"Eg where fs, E6 are the frequencies at which
R =X (15¢)

=
it

resonant frequency which makes qu pure real; (X = 0)
The function ZNS/Z as a function of frequency is a circle in the com-
=
plex z plane. A conformal mapping is made to the complex I' plane where

T' is the complex reflection coefficient defined by:

Z J7 -1
SS

WS
S8

I' as a function of frequency will also be a circle in the complex T
plane. As a result of the property of conformal mappings which map
circles into circles the complex [ plane becomes a "'Smith Chart"

when lines of constant R, X, Y, G are displaved.

The complex T circle can be measured and displayed using a polar plot
network analyzer. As the frequency is varied about resonance (X = 0),
this circle will intersect the lines R = X, Y = %1, Y = (G + 1). The

intersection frequencies thus allow the determination of QL’ Q and QO,

EXT
using Equations 15a, 15b and 15c¢. The resonant frequency is determined
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from the intersection of the circle with the horizontal axis. Figures 7a
and 7b show the above method of measurement and the test set up. The
signal from the sweep oscillator is split into two equal signals, a
reference and a test. The test signal reflected from the cavity and

the reference signal are made to travel equal paths by adjusting the
eliding short. The two signals are combined in the harmonic converter,
down shifted in frequency and sent to the network analyzer where the
phase and amplitude of the test signal are measured and displayed in

polar form as shown in Figure 7a.

MEASUREMENT OF MODE STRUCTURE

The longitudinal mode structure in the cavity is determined by moving a
small dielectric probe through the cavity and measuring the resonance
frequency shift. Since the frequency shift is proportional to the
square of the electric field at the position of the dielectric, a plot
of the square root of frequency shift versus probe position will repro-
duce the longitudinal profile of the electric field. Such a measurement
is shown in Figure 8 and compares quite favorably with the mode profile

of the same cavity determined numerically in Figure 3 of Section [.
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1V. DETERMINATION OF CAVITY OUTPUT POWER AND EFFICIENCY

To calculate the efficiency of a gyrotron eoscillator, the self-consistent
steady state peak electric field amplitude in the cavity must be found
which will require the RF power supplied by the beam to be equal to the
RF power drained from the cavity due to the external Q. A large signal
program 1s used to calculate the output power by computing the trajec—
tories of random ensemble of test electrons passing through the RF and
DC fields of the cavity calculated in Section I. The trajectories are

determined from the relativistic equations of motion given in normalized

form by:
U
dR R
i (16a)
)
de 179
i TR (16v)
U
dz Tz
Tl (l6c)
4u UeBz Ug
it = Y + ?R-"Y” (16(21)
dUB _ e URB2 . UZBR ) UGUR (L6e)
dt 0 Y Y YR e
dU U.B
z 87R
Tl Ez - (161)
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where:

"'k R
_ oz mn B PR
Ee = Ean !Z?ET} [ER(z) cos wt EI(z) sin wt] (17a)
R

E o k R dEp (2) dE;
B T we TN R | [T s e T () cos et

. BO(Z)R

3 {(17t)
1'rm::tﬁe kmnR

Bz = -z Jo e [ER(Z) sin wt + EI(z) cos wt]

+ B_(2) (17¢)

ER(z) and EI(Z) are the axial field profiles obtained numerically from
the differential equation of Section I or experimentally, if preferred.
E. is the peak field in the cavity. Bo(z) is the profile of the

8
external magnetic field and is given by:

B (z) = 'B'O [1+(sz/2)-DEL’1’B/T] (18)

ﬁo is the average magnetic field and DELTB is the percent variation of

the magnetic field. The cavity profile is given by a(z).

Solving the above system for up toc 1000 test electrons allows one to
determine the energy lost by the beam to the RF fields giving the RF

power produced. For each value of peak electric field amplitude (Figure?9),
the power is optimized with respect to the external magnetic field. One thus

generates numerically a function relating the optimum RF power supplied
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by the besm to the peak electric fileld amplitude squared ﬁ@

. For a given

fixed current I, this function is symbolically written as:

P5upplied = RF (Eg.1) (19)

From Section I, the power drained from the cavity through the coupling

hole is written as:

PLOSS = KLOSS . ES (20)

with KLOSS being determined by either theoretical or experimental

Yeold tests'.

Since the steady state demands that the power produced P equals

supplied

the power lost P the following equation for the peak electric

Lgss®
field amplitude Eé is obtained:

=2 =2
= 55 - E
PRF (EG’ ) KLOSS FG (21)

-2
The above equation is solved graphically for Eg by determining the inter-
section of the cavity loss line P

¥

LOSS with the power production curve

TE The solution determines the self~consistent value of Ee, giving

the actual output power and efficiency of the cavity.
The cavities described in Section I were analyzed for efficiency. The

straight cavity (Figures 2 and 10) showed an efficieuncy of 32% at 8 amps.

The cavity Q was much too high to allow optimum efficiency although
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threshold currents were as low as 2 amps. Figure 11 shows the effect

. o . , e e
of putting a 0.485 taper on the cavity wall (cavity shown in. Figure 3).
The taper not only allows the basic power production to increase, but it

creates a much lower Q which allows the optimum power solution to be

EXT
realized. 1In this case, the efficiency was 4Z2%.

Figure 12 shows the solution for the tapered cavity at different cur-
rents. No solution exists below & amps. Thus, although the tapered
cavity has higher efficiency, it requires higher start oscillation cur-
rents than a nontapered éavity (4 amps compared to 2 amps). TFigure 13
shows a plot of efficiency and external Q as a function of taper angle.

One notes the optimum taper at ~0.5° and the optimum Q at 440.

EXT
Instead of tapering the cavity wall, one may slope the magnetic field
profile. Figure 14 shows a plot of efficiency versus percent magnetic
taper in a straight cavity, assuming that the optimum Q is always pos-
sible to achieve in each case. A field taper of 117 would allow an effi~
ciency of 47%. However, it is not obvious that this is attainable since
the straight cavity has a Q of 900, much higher than required here

(QEXT ~ 350 to realize 47% efficiency). One might try magnetic taper-
ing with cavity tapering in order to bring down the Q and thus realize
the high efficiencies. Figure 15 shows the increase in efficiency with

magnetic tapering for an actual realizable QEXT of 559.
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V. RF POWER DISSIPATION

Assuming operation in the TE mode at 60 CHz, the wall loss § is

021
given as:

22832 + &
Qg =~ = 20,000,
) /60

The power dissipated on the walls is thus given as:

power (walls) = m?§§2~ + power out
ShAMTES © 20,000 ¥ ’

Using the results of Figure 13, the power dissipated per square centi-

meter as a function of Q can be calculated and is displaved in

EXT
Figure 16. To keep wall loading below 1000 watts per square centimeter,
it is required to keep QEXT below 800. Ixternal loading which causes

reflections could vioclate this requirement.
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YI. CONCLUSIONS AND FUTURE STUDY

It has been shown that cavity tapering and magnetic field tapering can
enhance gyrotvon efficiency by uvp to 50%. In both cases the physical
mechanism involived is to force the beam to first undergo strong trans-
verse pre bunching. The subseguent RF interaction is then greatly
enhanced. Cavity tapering also allows the required QEXT to be real~
ized. For purposes of having cavity isolation mode stability and low
threshold currvents, high values of QEXT are desirable. However for
high efficiency and low RF wall dissipation, low Q wvalues are required.
Future design work, apart from making improvements in efficiency must

find a proper compromise among these conflicting criteria.
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