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PRODUCTION CONTROL IN HTGR FUEL ROD FABRICATION

D. J. Downing and Milton Bailey*

ABSTRACT

The purpose of this report is twofold: (1) To determine
which techniques are capable of detecting drift or step changes
earliest in a manufacturing process. The techniques of interest
are the Kalman Filter, weighted least squares, and Shewhart
control chart. (2) What method, or methods, would work well in
maintaining the manufacturing process at an acceptable level of
quality?

To solve part (1) above, simulation studies were performed
for various test cases of interest. These test cases varied the
degree of shift as well as the process and measurement variation.
Step changes were also included in the simulations. No single
technique was superior in all of these cases, but the Kalman
Filter appeared to be more robust to various process changes.

The weighted least squares did a good job when the weight was
near unity (0.9977) and failed when the weight was small (0.63).
The Shewhart control chart is better for detecting step changes
than for trends. Thus, depending on the type of change one would
expect in the process, he might choose any one of the above
methods.

Several methods were compared to try to answer part (2).
Given the target value that one wishes his product to attain
and accurate measuring devices, the deviation from target can
be computed. The object of control theory is to force the devi-
ation from targetas near to zero as possible. The criterion by
which this is done is to minimize the mean square error of fore-
casted future values. If we can forecast what the process will
do, then we can take compensatory action to correct it. Obvi-
ously, the better the forecasting, the better the control will
be. Thus, the first problem is to build a model that will
accurately forecast the deviation from target. In this report
the model building and forecasting was done using the methods
of Box and Jenkins [1]. To illustrate the process employed by
Box and Jenkins, an example of optimal control theory applied
to a papermaking process is given. Following this is the
analysis of fuel rod length data from three fuel rod production
campaigns. These campaigns are indicative of the data that
will be produced when fuel rod production begins. Thus, it was
of interest to see if the data lent itself to time series analysis
and, in particular, to the method of Box and Jenkins. It was
found that all three campaigns could be adequately modeled by
difference equation models which were fit to the data. To show
how control theory would decrease the deviation from target

*Consultant, University of Tennessee, Knoxville, Tennessee



of these campaigns, simulations were run using the models
derived from the real data. (The program for generating the
simulations is given in Appendix A.) The control in the rod
Tength problem is the height of the carbon shim pinch valve
setting. Lowering or raising the pinch valve will decrease

or increase the rod length. The response to this control is
immediate; but since measurement may not be done until later,
two delay values were employed. The values were one time-

unit and 20 time-units. In essence, one has to forecast

ahead the lenqgth of the delay value. Thus, in one control
problem, a one-step-ahead forecast was made, while in another,
a twenty-step-ahead forecast was made. It is clearly shown
that 1ittle control is affected when the delay value is 20.

In fact, this is the most important result of this part of the
study. The control will tend to decrease as the time increases.
For stable process (i.e., ones which vary about some target
value and do not drift away), the control is almost nonexistent
when the delay time is as large as 20 periods. Thus, decreasing
the time to measuring the rod lengths would enhance the control
capabilities considerably. To show more dramatically the
effect a control can have, a non-stationary process was simu-
lated. This process drifted considerably away from target,

but the controlled process stayed very close to the target.
This was especially true when the delay time was one.

A drawback to the Box-Jenkins procedure is that the
process must be modeled before control can be affected. 1In
the three campaigns analyzed, the models were distinct—implying
that the control algorithm is distinct for each campaign. The
campaigns were acceptable in that they produced rods of acceptable
length—thus, the Box-Jenkins approach may be too sensitive for
control in fuel rod production. A method that does not have this
problem is the classical control theory approach. Both approaches
are similar in their effect on the process. The results using
the classical approach are exemplified by simulations obtained
using CSMP (Continuous System Modeling Program). The programs
used in the simulations are contained in Appendix A.

Alternative control methods to the Box-Jenkins and class-
ical control schemes were presented since the processes studied
are stable over time. These control methods are not dynamic in
that they do not change the input to bring the output back to
target. Rather, they are primarily visual and present a chart
that shows the process over time. These charts have control
1imits that indicate when the process is in control or out-of-
control. These methods may be adequate for many processes,
especially if the process is stable over time and changes
gradually. The methods (Shewhart control charts and Cumulative
sum chart) are compared under various conditions to ascertain
which type of control chart is best (best in terms of early
warning of the process going out of control). In general, it is
found that cumulative sum charts (CUSUM) are superior to Shewhart
charts except when large changes in the process occur.



I. INTRODUCTION

Quality control of a process is a necessary and vital part of good
manufacturing. The quality of a product can be monitored by measuring
various characteristics which directly affect its usefulness. These
measurements can be compared to control limits. If the measurements
fall within the control 1imits, the process is said to be "in control"
and manufacturing continues. Once observations fall outside the control
limits, the process is declared "out of control" and manufacturing ceases
until the problem is rectified and the process is back in control.

Good measurement systems and sophisticated estimation techniques
(e.g., least squares, Kalman Filtering) can be used in predicting the
true level of the process. These estimation techniques can be used to
indicate process changes 1ike step changes or drift. Both estimates of
the change (say drift) and tests of hypothesis concerning its true
value can be performed. If a change is observed and detected by the
measurement system, then appropriate modifications can be made to the
process. Thus, good measurement systems serve three purposes: (1)
accurate measure of process level (for example, fuel rod length and fuel
rod fissile assay), (2) early warning of process change, and (3) indicate
process modifications (i.e., control).

Several techniques exist that can be used in estimating process
change. Two well-known techniques are least squares and Kalman Filtering.
It should be pointed out that for a stationary system, a Kalman Filter
model can be constructed to yield the same results as those given by least
squares. The difference is in the algorithm that generates the solution.

Thus, any least squares model can be modeled by Kalman Filtering. In



certain cases where the type of process change is known, a model that
describes that type of change can be estimated using least squares or
Kalman Filtering, and the parameters tested to see if they are significant.

For example, one can hypothesize a linear drift model:

Yy = 2 + bt + ¢

t
where
Yy = measured value at time t
€ = random error associated with the tth measurement
a = intercept (process mean if b=0)
b = slope (or drift parameter).

At each time, t, a test of the hypothesis that the drift is zero (Ho:b=0)
can be made. If we do not reject the hypothesis, we conclude that there
is no drift and the process has not changed.

Some questions of interest concerning these techniques are: (1) How
soon will the Kaiman Filter or least squares detect a drift of given size?
(2) How soon will they detect a step change? (3) Under what circumstances
would one technique be preferred over the other? These questions are the
focus of the next section.

Given that one has a technique to estimate the true level of the
process, how can this estimate be used to control the process? Quality
control charts have been used since the early 1960s. These charts plot
the data and give visual cues as to the quality of the product. Trends,
jumps, or drift away from the target value are easily seen and appropriate
remedies to bring the process back into "control" can be made. In many

cases, key variables can be identified which directly affect the quality



of the product. For example, the amount of carbon shim particles directly
affects the length of fuel rods. If the length of the fuel rod is a
characteristic of interest, it can be controlled by adjusting the amount of
shim particles used, or if fuel rod fissile control is of interest, it

can be controlled by adjustment of the fissile particle volumetric dis-
penser. If the transfer function relating the input variable to the
output variable is known, then a feedback control scheme can be imple-
mented which uses this information to keep the process in control. Figure

1 is a schematic diagram of a control scheme for fuel rod fabrication.
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Fig. 1. Schematic Diagram of Control Scheme for Fuel Rod Fabrication.



Starting at the lower right corner of the diagram, one observes a
measurement (in this case, a measurement of the U235 content) that
includes a noise contribution. The noisy measurement is then filtered
to yield an unbiased estimate of the true U235 content. This estimated
value is subtracted from the target value to obtain an estimate of
deviation from target. This deviation is used together with the control
variable, transfer function, and optimal control Taw to produce an
adjustment to the control variable that will either increase or decrease
the U235 content and attempt to maintain the deviation from target as
close to zero as possible. In this report we shall fnvestigate feedback
control schemes. One scheme is that presented by Box and Jenkins [1]
which uses models that describe the process and indicate how control is
to be exerted. Another approach is given by the '"classical" system
design in which the control algorithm is to be designed by modeling the
system as a first-order linear system and minimizing the system error
consistent with system stability. These techniques exert control after
each sample point. In this sense they may be called continuous control
schemes. If the process is stable and varies 1ittle over time, continuous
control may not be necessary. Other quality control schemes such as
Shewhart control charts or cumulative sum charts (CUSUM) can be used under
these conditions. These control charts serve as early warning systems
and indicate when control may be necessary. Another feature of control
charts is their relative simplicity in comparison to the Box-Jenkins

or classical design approaches.



ITI. METHODS FOR DETECTING CHANGES IN PROCESS OPERATING LEVEL

Early detection of changes in the process operating level afford one
the time to make appropriate compensating changes to control variables
and, thus, bring the operating level back to normal. Several techniques
are available that yield estimates of the true operating level. The use-
fulness of a technique depends on the type of change one expects the
process to make. For example, the Kalman Filter is designed to detect
small constant changes in the process level; the weighted least squares
is appropriate to detect trends in the level of a process; and the Shewhart
control chart will detect large changes best. No one scheme is best in
all cases. Knowing how the process operates and the types of changes most
Tikely to occur will generally guide one to a wise choice.

Simulations were performed using Kalman Filter, weighted linear
least squares, and the Shewhart control chart in order to compare the
methods and in order to then utilize the equations such that operating
parameters such as speed of fissile assay, source size, and number of
rods assayed could be better estimated for equipment in a refabrication
facility. The simulation cases studied are given below in Table 1. The
simulated general problem of concern is shown in Fig. 2. The picture
represents the fissile content of fuel rods on the vertical axis and rod
number along the horizontal axis. As we go from left to right, it is
assumed that the fissile content is increasing linearly with time. The
solid horizontal T1ine extending from the 0.5 gm. mark on the vertical
axis is the "target" value, that is, the fissile content we are trying
to produce. The dashed lines extending from 0.5(1—x) gms. and 0.5(1+x)

gms. are lower and upper control limits, respectively. They are the values



such that, if the process level goes below or above them, rods of infe-
rior quality are being produced. The x's indicate a measured fissile
control and the u's indicate the true fissile content. The straight
line drawn through the points is the least squares line which gives

the best estimate of the true fissile content if the process has a
linear drift. One question of interest is which of the methods of
estimation will detect this trend earliest? The answer to this question
is affected by three factors. The first is the magnitude of the trend.
Does one method perform better if the slope is small compared to another,
or is one method uniformly better regardiess of the magnitude of the
slope? The other factors deal with the variability of the process and
the measuring equipment. Process error is that associated with the true
rod length. In Fig. 2 it is the process error that causes the u's to
vary about the mean drift line. Compounding the problem is the measure-

ment noise caused by the inaccuracy of the measuring device.

Table 1. Simulation Case Studies.

Process Parameters

Simulation Slope/Step Value g2:§¢?§3 Mgiig:?gﬁnt
1 Slope 2.5E-05 0.5 2.0
2 Slope 5.0E-06 0.5 2.0
3 Slope 1.0E-06 0.5 2.0
4 Slope 2.5E-05 0.5 5.0
5 Slope 5.0E-06 0.5 5.0
6 Slope 1.0E-06 0.5 5.0
7 Slope 2.5E-05 1.0 0.1
8 Slope 5.0E-06 1.0 0.1
9 Slope 1.0E-06 1.0 0.1
10 Step 0.01 0.5 2.0
n Step 0.01 0.5 5.0
12 Step 0.01 1.0 0.1
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Fig. 2. Example of Process Drift in Production of Fuel Rods.

Process and measurement error combine to make detection of a change in
process level slower, especially if the change is small in comparison to
the variability. The situation in Table 1 that is not reflected in

Fig. 2 is the step change. A step change occurs when the process jumps
from one level to another instantaneously. This type of change may not
be picked up well by weighted linear Teast squares if the weight is near

one since this tends to estimate the trend as an average of several past
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observations. A smaller weight would discard past observations and
emphasize the most current ones. Thus, the jump would affect the
estimate more in this case and detection would be sooner.

Answers to the question of which method to choose is further compli-
cated by our lack of knowledge of what the process will do. Are we sure
that we will see a linear trend, or might the level changes come from a
series of random jumps? This concern caused us to use the Kalman Filter
to estimate the true level of the process and not specifically estimate
a trend parameter. The Kalman Filter is a state estimation technique
whose power lies in its ability to model systems easily and is computa-
tionally efficient. Thus, it can be used to calculate estimates of the
trend exactly the same as those given by weighted least squares. The
only difference between the two is in the algorithm used to obtain the
answer. Thus, although we used linear least squares as a method of
detection, we could have replaced it by the Kalman Filter specifically
modeled to detect linear drift. The equations describing the Kalman
Filter algorithm is given in Appendix B.

The answers to the above questions are contained in Table 2 which
contains the results of the simulations. The three columns on the left
of Table 2 describe the simulation study parameters (i.e., measurement
error, process error, and slope/step value).

Listed under each of the methods of detection is the average number
of rods plus or minus its standard deviation before the slope/step was
determined to be significant.. Entries not listing a standard deviation
are the results of a single simulation; thus, noestimate could be calcu-

lated. Only one simulation was performed in those cases where the method
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Table 2. Average Number of Rods Before Slope/Step
Was Statistically Significant.

Measurement Process

Method of Detection

Least Squares

Error Error Slope/Step Value o —— Eﬂrg:: Cgu::iﬂ

2.0 0.5 Slope 2.5 E-05 28972 157 + 84 133 + 64 136 + 97 (N=5/10)
2.0 0.5 Slope 5.0 E-06 16172 396 + 284 294 + 195 167 + 141 (N=31/50)
2.0 0.5 Siope 1.0 E-06 5029 2872 + 2014 827 + 668 619 + 421 (N=10/10)
5.0 0.5 Slope 2.5 E-05 >30,000 230 + 195 203 + 134 273 + 198 (N=5/10)
5.0 0.5 Slope 5.0 E-06 14881 391 + 687 442 + 359 352 + 323 (N=8/10)
5.0 0.5 Slope 1.0 E-06 3622 13032 1406 1212

0.1 1.0 Slope 2.5 E-06 8498 85 + 46 80 + 34 69 + 40 (N=4/10)
0.1 1.0 Slope 5.0 E-06 6763 309 + 129 233 + 147 132 + 71 (N=5/10)
0.1 1.0 Slope 1.0 E-06 14461 825 + 622 549 + 290 326 + 237 (N=8/10)
2.0 0.5 Step 0.0% 27 + 2 (N=3/6)3 36 + 19 334 +9 35 + 20 (N=11/11)
5.0 0.5 Step 0.01 2038 (N=1/3)a 71 + 47 74 + 40 207 + 66 (N=2/10)
0.1 1.0 Step 0.01 >10,000 (N=0/3) 28 +2 27 +9 —

3Exceeded 10,000 runs without detecting change

appeared unable to detect the process change rapidly.

In other cases the

number of times a simulation was repeated was 10 unless denoted otherwise.

The expression (N=8/10) represents that 10 simulations were performed,

but only 8 yielded results.

The reason for this is that if detection was

not obtained within 30,000 observations, the simulation was stopped. Thus,

in some cases the slope/step change was not detected within this Timit,

indicating that the method either catches the shift early or not at all.

The mean and standard deviation are based on those simulations that

stopped before the 30,000 observation 1imit.

Conclusions that can be reached from the simulations are:

1) The Kalman Filter detects drift in the process better than

weighted least squares or the Shewhart control chart when

measurement error dominates.
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2) The Shewhart control chart is best for detectiﬁg drift when
measurement error is less than process error.

3) The Kalman Filter and weighted least squares (with weight
o = 0.9977) detect step changes equally well.

4)  The Shewhart control chart is better for detecting step changes
than for trends.

5) The ability of weighted least squares to detect a trend in the
process decreases drastically as the weight decreases (and,
hence, incorporates fewer past observations).

The above conclusions imply that the Kalman Filter may be the best
detector for most cases. Two additional reasons to suggest its use are:
(1) its modeling capability is superior to the weighted least squares, and
(2) it is computationally efficient. As can be seen by the above conclu-
sions, no one method is best for all cases. Thus, it may be necessary to
employ more than one technique.

In addition to the above results, the question of how well the
detection techniques work after the process has been running for a
considerable time must be investigated. A partial answer to the question
is given in Table 3, which describes the times to detection after the
process has been running for various lengths of time. Besides the time
to detection, given various startup times, it was of interest to see what
effect various weights would have on the detection capabilities of
weighted Teast squares using a linear model. It was conjectured that, if
the process ran for a long time, then a small weight might be best for
detecting step changes due to the "lack of memory" induced by the small

weight, i.e., the most present observations would have the Tlargest effect.



Table 3.

ORNL-DWG 79-8921

Total Number of Rods Produced Before Change Was Detected?*

Simulation #

DELAY PERIODS

10 Rods

500 Rods

1000 Rods

10,000 Rods

KF WLS (+0.9999) KF WLS (0.9999) KF WLS(0.9999) KF WLS (0.9999) WLS (0.95) WLS (0.90) WLS {0.85) Shewhart CC
1 12 n 580 534 1088 1024 10045 10049 14215 14599 >15000 10014
2 12 12 552 511 1062 1050 10001 10062 >15000 >15000 >15000 10003
3 12 51 540 521 1040 1038 10207 10091 10014 10006 11529 10018
4 11 85 555 528 1092 1017 10227 10151 >15000 >15000 10006 10021
5 18 26 597 539 1058 1010 10001 10127 10019 10006 >15000 10003
6 24 24 554 521 1075 1028 10168 10108 10013 11007 10005 10085
7 20 1 513 502 1033 1025 10124 10083 10009 10899 >15000 10028
8 21 20 535 536 1069 1026 10116 10097 10014 >15000 13386 10050
9 19 25 536 546 1016 1054 10056 10112 10006 >15000 >15000 10003
10 27 n 549 550 1007 1019 10003 10165 10015 >15000 >15000 10073
Average 17.6 27.6 551.1 528.8 1053.4 1029.1 10094.8 10104.6 10538.1%*  11303.4**  11231.5% 10029.8

* Simulation of a process with mean 10.0, standard deviation of 1.0, and a step decrease of 1 unit at the specified delay period.
+ Value inside the parenthesis is the weight used in the weighted least squares.
** Average is based upon the values that were observed; thus, they are biased downwards and should not be used for comparison.

€l



14

Thus, a rapidly occurring change Tike a step change would be detected
faster since the previous observations would be ignored. Table 3 is

split into two parts; the left section comparing the detection capabilities
given various run times (or delay periods) before the jump occurs, and the
right section comparing the effect of varying the weight given that the
process has produced 10,000 rods.

Investigating the left section of Table 3, if the number of rods
before the jump occurs is important, then we might expect to find either
an increase or decrease in the number of rods to detection. Subtracting
off the delay period gives the number of rods before detection. Thus, for
the Kalman Filter we observe, on the average, 7.6, 51.1, 53.4, and 94.8
rods before we detect the change when the corresponding delay periods are
10, 500, 1000, and 10,000. Similarly, using weighted Teast squares to
estimate the linear model (with weight 0.9999), the average number of rods
until detection was 17.6, 28.8, 29.1, and 104.6 corresponding to delay
periods 10, 500, 1000, and 10,000. This indicates that the detection time
increases as the delay period increases for either method. Intuitively,
this might be expected since past experience indicates no change — the
longer this period lasts, the more reluctant we are to expect or detect
a change. It is consoling to note that the number of rods to detection
is not directly proportional to the delay time; rather, it appears to be
proportional to the logarithm of the delay time.

The right half of Table 3, under the delay period of 10,000 rods,
indicates the effect of decreasing the weight used in the weighted least
squares analysis. The significance of the slope parameter of the linear

model, estimated using weighted least squares, was tested for each new
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rod after the delay period. The average number of rods until detection
for the weights 0.95, 0.90, and 0.85 are not comparable since the step
change was not detected for these weights in one or more of the simulation
runs. The number of simulations in which detection did not occur (within
5,000 rods) increases as the weight decreases. This indicates that
the "lack of memory" induced by the weights either works well or not at
all in detecting a step change. This can be seen most dramatically for
the weight of 0.95. In one simulation, the shift was detected at rod
14,215; in two simulations, the shift was never detected, but in the other
simulations, the detection was much faster than most of the other schemes.
This indicates that there may exist some optimal weight which will detect
a shift in the process faster than, say, the Kalman Filter.
In addition to the weighted least squares and Kalman Filter detection

schemes, the simple Shewhart control chart was employed. The process
was said to be out of control if two consecutive observations exceeded
the two-sigma warning lines. Table 3 shows that this method is clearly
superior to the others, detecting the shift an average of 29.8 rods later.
This suggests that more than one detection technique should be employed in
detecting a shift in the process. As pointed out ear1iér, the Shewhart
control chart is best for detecting step changes, and these simulations

clearly back up that statement. Since we have no a priori knowledge of
| what type of shift (if any) will occur in the manufacturing process, it
would be wise to use two of the detection schemes — one which is best for
detecting drift and one which is best for detecting step changes.

These methods for detection indicate how the process is running.

They can be joined with control algorithms that will enable one to keep
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the process on target. The next section deals with an example that shows

how control of a process can be obtained and maintained.

ITI. A FEEDBACK CONTROL EXAMPLE

An enlightening example is given in a paper by Tee and Wu [2]
concerning the control of a papermaking process. Their goal is to
control the paper basis weight. Figure 3 presents a schematic of the

Fourdrinier papermaking process.

ORNL-DWG 79-7686

Input Fourdrinier
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Screen
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Fig. 3. Schematic of the Fourdrinier Papermaking Process.

The input into the system is controlled by opening or closing the
stock gate located in the mixing box. By increasing the stock gate
opening, the paper basis weight is increased. They assumed that the
system could be described by:

deviation impulse referenced

from = | response | x |regulated | +
target function value

disturbance
effect
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or mathematically,

Yy = (Vo + V{B + V,B? + ... )(Xt-1 —X) + Ny > ‘ (1)
where,
Yt = deviation from target at time t,
Xt = vreferenced stock gate value at time t,
X = mean stock gate value,
B = backward shift operator, e.qg., BYt = Yt—1’ and
Vj = jth impulse response weight.

Nt is the process noise at time t which makes perfect control impossible.
By holding the control variable, Xt’ constant at its steady state value

(the value at which the output should be on target), a realization of the
process noise, Nt’ is obtainable. This noise may be modeled by the
techniques outlined by Box and Jenkins [1]. Tee and Wu found that N

t
satisfied the following model:

Np = oNg g +ag s (2)

where ¢ is an unknown constant, and a_ is an unobservable random variable,

t
generally taken to be white noise (i.e., normally distributed with mean
zero and variance caz).

Having identified the form of the noise model, the next step was to
jdentify the transfer function relating the input (stock gate value) to

the output (paper basis weight). Their analysis revealed the following

transfer function model:

e — X N (3)
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The other weights, V;, V,, ..., given in Equation (1) are zero, and we
see that the deviation from target is directly related to the deviation
of the regulated value from its mean. If the difference between X, ,
and X were unity for all time, then V, may be interpreted as the gain of
the system. Combining the noise model (Equation (2)) and the transfer

function model (Equation (3)), one obtains the combined dynamic-disturbance

model :

: 1
)+ gy - (4)

Y, = Vo(x

t t-1

Using 160 data points, they estimated the unknown parameters V, and ¢
to be U, = 1.0991 and ¢ = 0.8511.

A control plan was set up which required that the output deviations
be kept to a minimum. The theoretical objective is to keep the output

deviations at zero, i.e., Y, = 0 for all t. Since the model is

t
Y, = VolX,qg = X) + N,
when Yt = 0, then
Vo(Xg g —X) = =N, .
Shifting ahead one time period, we see that
X, =K = — = N... . (5)
t Vo 't

lLet AXt represent the adjustment in the control variable at time t, i.e.,

Ak, = X, — X
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At time (t-1) we need to estimate Nt’ and at time t, we need to estimate
Nt+1' Using these forecasts, we can estimate AXt, our change in the

control variable at time t. We choose the forecasts of Nt and Nt+1 SO

as to minimize the mean square forecast error. Any linear combination of
these optimal forecasts will also be optimal in the sense of mean square
error. Thus, AXt is an optimal control. It can be shown that the optimal

one-step-ahead forecast of Nt is

\ = 2 3 =
Nt-l(]) by ) heta, et g .. ?T—£?$§7'at-1 ‘ (7)

Similarly, at time t, the optimal one-step-ahead forecast of Nt+1 is

&t(n = TT‘—LM a, - (8)

Thus, the change in the control variable at time t is

My = -y (Ntm - ﬁt_ln)) . (9)

If one substitutes the optimal one-step-ahead forecast Nt_1(1) into
Equation (5) and then uses this to estimate the error in the output, we

find
_ 1 _
Y, = Vo ( T Nt_l(l)) N = N =N (1) (10)

Thus, the error in the output at time t is simply the forecast error at

lead time 1 for the Nt process. That is,

and, hence,
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Using Equations (7), (8), (9), and (11), we find that

- _ ] -
B¢ = _'V3‘<%7:£$§> (ap —ay ) = -'VE'<Tf:i$§> We =Y - (02)

Substituting ¢ = 0.8511 and V,

1.0991, the control Equation (12)

becomes

AXy = 0.85AXt_1 -0.77(Yt - Y (13)

t t-l) ’

To see how the control equation works, we proceed as follows. Assume

06Xy and Yy = 0, then the control action aX, can be easily calculated

t
whenever Yt is observed. Following Tee and Wu [2], if we observe

Y, =—0.4,
then we adjust the stock gate opening upward by
AXy = —0.77Y; = 0.308 .
Continuing, if we observe
Y, =—0.1,
then we again increase the opening by
AXy = 0.85aX; — 0.77(Y, — Y;) = 0.0308 ,

and so on. This model building and feedback control scheme is summa-
rized in Fig. 4. Studying Fig. 4 will be important for later discussion.
The schematic clearly shows the different parts needed in designing a

feedback control scheme.
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IV. DATA ANALYSIS

In this section, we discuss the identification of the noise model
for the fuel rod lengths. Data on three separate campaigns is analyzed,
and an appropriate model that describes the stochastic process is chosen
for each campaign. These models are used later in the simulation study.
Since many changes in the fuel rod fabrication process were made between
campaigns, the models representing these campaigns were expected to
change, and no comparison is made between them.

In each of these campaigns, the pinch valve setting was kept at a
constant level, thought to produce rods of length 1.94 inches. Keeping
the pinch valve at a constant level allows one to investigate the noise

process, N We assume that the noise process Nt will follow an auto-

£
regressive-integrated-moving average (ARIMA) model. These models are
amply described in [1]. The results of our analyses shall simply be
reported for each campaign without rederiving the work of Box and Jenkins.
In what follows, let Nt denote the tth observed rod length minus the

target value 1.94, a, an unobservable white noise random variabie, and B

t
the backward shift operator (equivalent to Z-! in sampled-data control

theory). Then the ARIMA (p,d,q) model is written as:

(1 — ¢1B — ¢,B2 — ... —-¢po)de€ = (1 —6;B—06,B2—... -8 8%, (14)

q t

where v = (1 — B) and N{ = (N, — u) if d = 0; otherwise N* = N_. For

t t t

example, and ARIMA (1,1,1) model could be written as

(1 = ¢:8)(1 = BN, = (1 —¢;Bla; . (15)



23
Expanding the above, we have
[T—=(1+ ¢,)B+ ¢182]Nt = (1 —-elB)at ,
or
Ne = (B 0N+ N, = ap —e1ag | (16)

The methods of Box and Jenkins in analyzing time series follows three
basic steps in an iterative fashion. Step 1 identifies what ARIMA model
(or models) best describes the data. There may be more than one tentative
model. The second step is to estimate the parameters of the tentative
model(s). The third step is to test the adequacy of the model. If the
model is adequate, the analysis may stop, but if the model is inadequate,
we go back to Step 1 and reiterate the process.

A fourth step could be the use of the ARIMA model to forecast and/
or control the process. Table 4 gives the simple descriptive statistics
for each campaign. The mean rod lengths are very close to the target
value (1.94) for all three campaigns. The standard deviations are
comparable for all campaigns, and their magnitude indicates the precision
of the process. The coefficients of variation indicate that the campaigns
are nearly identical in their precision. The autocorrelations indicate
the degree of internal association as well as a means to identifying
the appropriate ARIMA model.

Several tentative models were explored. In this report, we‘shall
simply list the ARIMA models that best fit the data. The models below
are the best in the sense of minimum mean square error. Additionally,
the assumption that the errors {at} are independent was tested and found

to be satisfied in each case.
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Table 4. Descriptive Statistics for Campaigns Two, Three, and Four.

ORNL-DWG 79-7688

Table 3. Descriptive Statistics for Campaigns Two, Three, and Four.

Campaign Two  Campaign Three Campaign Four

Sample Size 176 300 187
Mean 1.958 1.950 1.968
Standard Deviation 0.00774 0.01023 0.01015
Coefficient of Variation 0.40% 0.52% 0.52%
Autocorrelations
Tag 1 0.16 0.38 0.31
lag 2 0.2t 0.30 0.29
lag 3 0.09 0.35 0.24
lag 4 0.23 0.34 0.20
lag 5 0.12 0.31 0.21
lag 6 0.18 0.30 0.18
lag 7 0.05 0.33 0.12
lag 8 0.19 0.34 G.17
lag 9 0.03 0.34 0.06
lag 10 0.20 0.34 0.13

Campaign Two

The model chosen for campaign two is ARIMA(4,0,18) with several of

the parameters constrained to be zero. The model is:
(] - ¢282 - ¢L+Bl+)(Nt - “) = (] - 6].7Bl7 - e18818)31: ’ (]7)

and the parameter estimates (with their standard errors beneath them in

parenthesis) are:
(1 —0.193B2 —-O.2068”)(Nt —0.0177) = (1 —0.142B17 + 0.2]2318)at (18)
(+0.076) (+0.076) (+0.001) (+0.080)  (+0.080) .
Writing Equation (18) out explicitly, we have:

Ny = 0.011 + 0.193N, _, + 0.206N,_, +a, —0.142a,_ +0.212a,_ . (19)

t
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The standard deviation associated with the residuals {at} is 8a = 0.0072.
A plot of the campaign two series and the one-step-ahead predicted values
using Equation (19) is given in Fig. 5.

Campaign Three

The model chosen for campaign three is ARIMA(17,0,0) with several of
the parameters constrained to be zero. The model is:
(1 —¢1B — ¢3B% — ¢4,B* — 6B} — ¢17Bl7)(Nt —u) = a (20)

with parameter estimates,

(1 —0.201B — 0.145B3 — 0.11158% — 0.137B!! —-0.123817)(Nt —0.0117) = ay

(+0.059) (+0.059) (+0.061)  (+0.059)  (+0.056) (+0.002) . (21)
Rewriting the above, we have:

Ny = 0.003 + 0.20IN,_ + 0.145N, __ + 0.115N

+0.137N,_, | + 0.123N,_, + a (22)

11 t -

The estimated standard deviation of the residuals {at} is Ga = 0.0088.
A plot of this series and those predicted by the model given by Equation
(22) is given in Fig. 6.

Campaign Four

The model that best fits the campaign four series is the ARIMA(2,0,0)

model given by:

(1= 618 = 02B2) (N, — ) = a; . (23)
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The parameter estimates and their standard errors are:

(1 —0.252B — 0.227B2)(Ny — 0.028) = ay (24)
(+0.073) (£0.074) (£0.001)

or equivalently,

Ny = 0.015 + 0.252N¢_; + 0.227Ny_, + ap . (25)

The estimated standard error of the residual series is 8a = 0.0094. A
plot of the campaign four series and the one-step-ahead predictions
obtained by Equation (25) are given in Fig. 7.

The three models chosen for the three campaigns differ significantly
in their form. This is probably due to changes in the process instituted
between campaigns. In order to have an effective control system using the
techniques presented by Box and Jenkins [1], the process cannot change over
time as much as we have witnessed in these campaigns. These three
campaigns allow us to model realistic simulations and show how feedback
control can aid in keeping the process "in control".

In order to complete the control algorithm, we need to know the
transfer function relating the pinch valve setting and the rod length.
This data is not available in the campaigns discussed above. Additional
experiments need to be performed in which the control variable is changed
frequently so that its effect on the output can be determined. We will

assume the simple transfer function identical to Tee and Wu's

Ve = Vo(XgZpX) (26)
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Y, = deviation of rod length from target at time t,
X, = pinch valve setting at time t,

X = mean pinch valve setting,

b = delay time,
and

Vo = the impulse response weight.
The value of b indicates the amount of time that is required before a
change in the control causes a change in the output. In the simulations
studied, b was given the values 1 and 20. Although the effect of changing
the pinch valve setting is immediate, there is the possibility of a long
delay in the measuring of the rod length, thus the delay value b = 20.
The value of V, was taken to be unity for the simulations and X was set

at zero for simplicity. Thus we were simulating the following process:

Y, = X + N

where Ny is described by one of the following equations (19, 22, or 25).

For example, using Equation (25) we have:

N, = 0.015 + 0.252Nt + 0.227N + a
-1 t-o

t t-

In simulating this process we randomly selected the value of a, from a

t
normal population with mean zero and variance equal to unity. Further,

the at‘s were chosen independently of each other. To obtain a realization

of the process, we had to give starting values to Nt—1 and Nt-z' Setting

t=1 to start the process, we gave N; and N_. the value zero. The reason

1

for this is that Nt has mean zero and this would be our best guess of the
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values of Nj and N_.- These initial values only affect the process for
the first few time points. One would not notice any difference between

a process initialized with N, = N_, = 0 or one initialized with

Ng = N_1 = 10 after the initial 20 or 30 observations. To be sure of no
startup effect, we dropped the first 100 observations from each simulation.
The simulation runs are given in Figs. 8-13. Since the processes are
stable, the control is minimal and large differences between the controlled
processes are not apparent. A measure of the effectiveness of the control
is the mean square error. The smaller the mean square error, the better
the process is running; that is, the smaller the deviation of the process
from its target value. Table 5 below indicates the mean square error for
the uncontroiled and controlled processes and the percent decrease in the
error for the controlled process. As can be seen from Table 5, the
reduction in MSE is always greatest when the delay value is 1. No
reduction is seen for the controlled process when the delay is 20, but
this is an artifact of a short stable series. The control is slight

when a delay of 20 periods is used and, thus, the controlled and
uncontrolled processes appear the same. This does not mean that the
control is ineffective. If the process drifts from target, the control
will bring it back. No drift was employed in simulating the campaigns.
To simulate a process with drift, we employed a simple nonstationary
process given by

(1—0.6B)(1—B)Nt = Qs

where a, is normally distributed with mean zero and variance 1, and

t

a, and a, are independent for t # k. This process is one which has no

t
mean value and may wander off indefinitely in either direction.
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Table 5. Comparison of Mean Square Errors for
Controlled and Uncontrolled Processes.

. . Delay Uncontrolied Controlled Process Percen?**
Simulation Value Process MSE* MSE ?educt1on
n MSE
Campaign 2 1 1.11 1.04 6.3
Campaign 2 20 1.1 1.13 -1.8
Campaign 3 1 1.07 0.92 14.0
Campaign 3 20 1.07 1.07 0.0
Campaign 4 1 1.17 0.92 21.4
Campaign 4 20 1.17 1.17 0.0
Nonstationary 1 437.93 0.92 99.8
Nonstationary 20 437.93 165.78 62.1

*MSE - Mean square error.
**Percent Reduction = (MSE Uncontrolled - MSE Controlled)/MSE Uncontrolled.

An indication of the effectiveness of the control algorithm in this
unstable system is given in Figs. 14 and 15. The reduction in MSE is
given at the bottom of Table 5. Note that, even with a delay of 20, the
reduction in MSE is substantial. In Fig. 14 the delay time was b = 1,
while in Fig. 15 the delay time was b = 20. The simulation with the long
delay shows vividly that the control is sluggish while a short delay
allows for rapid control of the process.

In summary, the following conclusions can be made:

1) The campaigns can be analyzed by the methods of Box and Jenkins.

2) To have an effective control system using the methods of Box

and Jenkins, the models describing the process cannot chance
over time as much as we have witnessed in these campaigns.

3) The campaigns analyzed are stable and require very little control.

This implies that not every item needs to be measured to insure
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good quality since the process does not change radically in a
short time span.

4) The amount of control decreases rapidly as the delay value (the
amount of time between a change in the input is observed in the

output) increases.

V. CLASSICAL DESIGN

Some control techniques have the disadvantage that the transfer
function relating the input variable to the output variable must be known.
Classical techniques are available, however, that allow the effects of
disturbances and modeling errors to be minimized, and in this section
such a design procedure is outlined.

In designing the control scheme for the Fuel Rod Fabrication systems,
we will consider it is characterized by the block diagram shown in Fig. 16.
The classical control algorithm is to be designed from the viewpoint of a
first-order process whose function is to minimize the system error consis-
tent with system stability. We first consider the system as being contin-
uous, i.e., the output variable and input variable are velated by an

ordinary linear differential equation. Defining the variables

y = fuel rod length

X = process disturbance

d = desired fuel rod Tength
e = system error = d — y,

the differential equation characterizing a first-order system can be

expressed as
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where

a A process time constant

g

K

>

p process gain.

As the production process changes, both "a" and "Kp“ change, and
any practical feedback control scheme must be relatively insensitive to
the values of these parameters.

To illustrate, consider now a proportional controller whose action

is described by the equation

where e, A output of the controller.

Disturbance

Fuel Rod Length
or

+ Particle U235 Content

E'<i> = Dispenser

Control —
L_j Algorithms { Measurement e
System
Error
Desired
Content

Fig. 16. Deterministic Block Diagram of the System.
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Considering the desired fuel rod length as zero, the system differ-

ential equation becomes

) 4 ay(e) = Kx(t) — K y(t) . (30)
Rearranging terms
IAEL 4 (arke)y(t) = Kpx(t) . (31)

For a process disturbance characterized by a Tinear function of the form

x(t) = Kdt .

the process diffefentiai equation has the solution:

y(t) = KpKd[(a+KC)t'“ <}’e-(a+KC)t) . (32)

(a+K¢)?

For a process in control, the disturbance x(t) is a "slow" increase
on drift with time and, hence, Kd is a small number. We can also adjust
the controller gain Kc such that K.>>a and Kc+a>>1. The process differ-

ential equation now becomes approximately
y(t) = KK, | = (33)
= Kfa v | -

Since we have assumed a zero desired fuel rod length, y(t) is now the

K
system error which is essentially zero since KE <<1. (We have tacitly
C

assumed that this "drift" will not be maintained for a long period even

with the uncertainty in the system parameters a, K , and K

pr 21 Kg-)
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Another control scheme is termed "proportional plus integral" or

"PI" control and is characterized by the equation

- t
e (t) = K [e(t) + bj; e(t)dt], . (34)
The process differential equation becomes

dy(t - t
L 1 ay(e) = kx(t) — K [y(t) + b fTy(e)dt] . (35)

Taking the first derivative of each side of the above equation and

rearranging terms, we obtain

d2d}t((—2t) b (arke) L 4 bk (e) - Kpd_xa(tt_) - (36)

Again assuming a disturbance of the form x(t) = Kdt, the response of the

process differential equation becomes

bKC (a+Kc)t

(t)— 1—\/bK < > € Sm<\/bl<—_'2*—_ t+e> . (37)

where

and
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To find the steady-state error e__, we allow time to approach infinity,

s$S
or mathematically

- _limy(t) _ Xd
€ss ~ Yss troo T bK. (38)

Like the proportional controller, this steady-state error does not contain
the system time constant "a". While this relationship does not require
that the controller gain be much larger than the system time constant, the
controller gain cannot be increased indefinitely without appropriately
adjusting fhe controller parameter "b".

The controller constants are usually chosen by means of a Bode plot.
To illustrate, we obtain the open loop transfer function (without feedback)

of the process and controller in Laplace Transform notations as

KpKc[s+b]
i‘%': J’—[——J—s §+a . (39)

The Laplace variable "s" is now replaced with the imaginary quantity juw

to obtain

bKpke 1 (1+3g)

a  Jw <]+J%) (40)

L (Ju) =

For each value of w this transfer function becomes a complex number with

a magnitude and phase varying with w. The magnitude of this transfer

b Bioke [N7(). (a1)
a w ’
Vi)

function becomes

Mag. A
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and the phase relationship

¢ A tan'l(%>—-tan'l(§)—-9o° , (42)

In the Bode plot these two quantities are plotted on semi-log paper. We
plot decibels (abbreviated db) against log w rather than Mag against w

where
decibel p db A 20 log(Mag.) (43)

The characteristic to note from these Bode plots is the respective
phase marqins. Phase margin is defined as 180°- ¢ where ¢ is evaluated
at the frequency w where Mag = 1.0 (note that an absolute value of unity
is equivalent to zero‘db). For systems such as the fuel rod length

controller, a gain margin of 45° will allow an acceptable transient

response while allowing some variation in "Kp“ and "a" (a gain margin of
zero degrees produces an unstable system).

With these preliminary remarks we now recognize that the system is
truly discrete in nature and, thus, make use of the Z transform. The

backward operator B of Box and Jenkins is related to this Z transform

variable by
Z =B. (44)

The Fuel Rod Fabrication system of Fig. 1 consisting of a 20-sample delay
between control variable input and the measurement of fuel rod length can

be expressed in transfer function form as shown in Fig. 17a.
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Fuel Rod Length or
Control Variable U235 Measurement
Input —= 1720 S

a) Transfer Function In The "Z" Notation

1-W 20
e

b) Transfer Function In The "W" Notation

Fig. 17. Open Loop Transfer Function of the System.

We now make the transformation

where W is a complex parameter
W=U+ jv. (46)

This transformation plots the interior of the unit circle in the "Z"
domain into the left-hand portion of the "W" domain. If the real portion

of the W variable is zero,

Vi =.l;i_i! . (47)
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With this transformation, we can now utilize the Bode plot. The relation-

ship between the variable "v" and frequency w in radians per second then

becomes
o =2 tan"(v) . (48)

The open Toop block diagram in the "w" domain is shown in Fig. 17b.
The Bode ﬁ]ots for the open loop system and the compensation (control
algorithm) are shown in Fig. 18. In general, proportional control is not
suitable for a system consisting of pure time delays as illustrated
in Fig. 19. The constant magnitude and increasing phase lag limit the
allowable low frequency gain of the system and, hence, the steady-state
error.

To obtain the desired phase margin of 45°, the controller transfer

function must be

K

GC(jV) = Ez‘;j:iﬁz (49)
b a
where
K=28
a = 0.01
b = 0.001.

Performing the inverse W transformation, the compensation algorithm

becomes

6(7) = o 19X 107% [72 + 27 + 1]
[ZZ = 1.980146Z + 0.98019802]

c (50)
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Fig. 18. The Bode Plot.

The system was simulated using IBM's Continuous System Modeling
Program (CSMP). The simulation diagram is shown in Fig. 20, and the
actual program is indicated in Appendix A. In the notation of Box and

Jenkins, the linear filter characterizes the noise process as

[1 —0.2378B — 0.086B2 — 0.1898B3 —-0.1588"‘]Nt = a,

=
1}
o
=

[=})
1}
™
—
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Fig. 19.

Step Function Response For Proportional Control.
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Ul = Control |

Fig. 20. The Simulations Diagram (Classical Design).
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The step function response of the system is shown in Fig. 21. It is
seen that the closed Toop system is stable. The process error will
eventually be driven to a zero value. While more sophisticated algorithms
could be derived to improve the transient response, they will all be
limited by the type of transfer function characterizing this system.

The Box-dJdenkins algorithm was also simulated as shown in Fig. 22.

In their notation

L, M (B) =1
Lo(B) =1
f=19
i i
No= T+, ¥B A (52)

=1
We have chosen to truncate the infinite series to 40 terms. Thus, the

algorithm becomes

L Yoo + WoqB + ... ¥4oBY0 + ... ¥,0B20 .
Lz = 2120 21 30 53
Ly (B) 1T+ vy,B+ ‘Ysz + ... \{;19819 (53)

In the simulation diagram we utilize the standard control theory

representation

The step function response is now shown in Fig. 23.

In comparing the two design approaches, it is seen that both designs
insure a stable system. For a deterministic upset, the classical design
system will eventually obtain a zero process error as compared to a
reduction of 4% for the Box-Jenkins system. However, the Box-Jenkins

filter is designed to minimize the output mean square error; with
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the large number of delays in the system, one would intuitively expect a
"sTuggish" control system.

The applicability of the Box-Jenkins approach depends upon the
ability to determine a discrete time model which neither varies over time
nor with different campaigns. If such a model cannot be found, the
Box-Jenkins approach should not be used. The classical design approach
is rather insensitive to process model and campaign. The magnitude of
gains can be adjusted by trial and error to achieve satisfactory control.
The independence of the classical design approach from the process model

and campaigns makes it a viable candidate for the control mechanism used.

VI. OTHER QUALITY CONTROL METHODS

The previous methods were devised to control the process by automatic
feedback. Other methods are available to detect shifts in process charac-
teristics. Two of these are the Shewhart control chart and the CUSUM
control chart. These methods provide no automatic feedback into the
system, but they can give early warning so that adjustments can be made.
The general theory surrounding control charts is based on the assumption
that the variations (or departures from target) of quality are random.

If these random variations are observed across time, they will show no
cycles or runs or any other defined pattern. The conditions which pro-
duced this chance variation are said to be "under control". They are
under control in the sense that, if chance causes are alone at work, then
the amount and character of the variation may be predicted for large
numbers, and it is not possible to trace the variation of a specific

instance to a particular cause. If variations in the data follow some
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defined pattern (e.g., increasing or decreasing with time), then it is
concluded that one or more assignable causes are at work. In this case
the conditions producing the variation are said to be "out of control".

Suppose samples of a given size are taken from a process at regular
intervals and some statistic, x, is computed. This might be the sample
mean, percent defective, or sample range. Being a sample result, x will
be subject to sampling fluctuations. If only random variations are
present, the sampling fluctuations in x will be distributed in a definite
statistical pattern such as that pictured in Fig. 24. This sampling
distribution describes the probability that x lies in some interval. If
enough samples are taken, it is possible to estimate the mean and certain
extreme points of this distribution. Often we can assume that the sampling
distribution of x is normal. In this case we can estimate the mean of x
from the mean of the samples. Also, the within-sample variation can be
used to estimate the standard deviation of x. Using these two estimates,
we can determine probability points. For example, the points U and L
marked on Fig. 24 might indicate the ubper (U) and lower (L) 0.001 proba-
bility points. That is, only one in a thousand samples will exceed the
upper (or lower) point if only chance variations are at work. If we take
Fig. 24 and rotate it 90°, extend horizontal lines through the estimated
mean of x and through an extreme value on the upper and lower tail of the
distribution of x (see Fig. 25), the result is a control chart for x.

If sample values of x are plotted on the control chart and they
remain within the control 1imits with no nonrandom runs up or down, then
it can be said that the process is in statistical control at the desig-

nated level with respect to the given measure of quality.
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Fig. 24. Distribution of Chance Variations (x) in a
Sample Measure of Quality.

S

Upper Control Limit

Average

Lower Control Limit

N3 1 1 'l [} 1 (4 1 1

Time Order of Production
Fig. 25. Control Chart for x .
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The control 1imits shown in Fig. 25 are 0.001 probability limits.

If a sample falls outside these 1imits, then a search is begun for an
assignable cause. The probability that such a search is performed when
chance causes are at work is the sum of the upper and lower probability
Timits. In the example this is 0.002 or 2 out of a thousand. Thus, if
a point falls outside the control 1imits, there is 1ittle chance that it
occurred by random fluctuations.

Control 1imits can also be chosen as multiples of the standard devi-
ation, o. If the probability distribution is normal, then the 0.001
probability limits are practically equivalent to 3¢ limits; for under a
normal curve, the probability that the deviation from the mean will exceed
30 in one direction is 0.00135. Generally, the 30 1imit is used with a
20 1imit incorporated as a warning 1imit. Briefly, the following scheme is

generally employed:

Lvent Action

Deviation from target less than 2¢. None—process is in control.

One observation deviates from tar- Watch process closely—indication
get by 20, but less than 3o. of nonrandom behavior.

Two observations, in succession, Stop process—search for an assign-
deviate from target by 2o. able cause.

One observation deviates from target Stop process—search for an assign-
by 3o. able cause.

Alternatively, control limits can be set by management. The Timits set

by management impose the type of quality that is acceptable and may be

wider or narrower than the standard 3o limits. Regardless of how the

control limits are formed, the above "event-action" scenario is applicable.
Attempts to run together the information from several successive

results have resulted in charts based on some form of weighted mean of
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past results. In particular, the Arithmetic Running Mean has been used
in some instances. The mean of the last K results is calculated and
plotted. When a new result is obtained, the mean of the most recent K
results is redetermined and plotted. Lack of control is indicated by
the running mean falling outside a single control limit.

The Geometric Mean chart (also called an Exponentially Weighted Mean)
uses weights which get progressively smaller as the results become more
distant in time. The weights change progressively by the factor "1-R"
(R<1). In this form, lack of control is indicated by the geometric mean
falling outside a single control limit.

Another type of control chart is the CUSUM control chart. The name
CUSUM comes from the fact that what is plotted in this control chart is
the cumulative sum. Its advantage over the Shewhart control chart is that
it will detect sudden and persistent change in the process average more
rapidly than a comparable Shewhart chart. The Shewhart chart is more

effective at picking up single large changes in the process.

The Cumulative Sum chart (CUSUM) plots at time t (or for the tth
sample) the statistic
t
S(t) = D_ (Observed Sample Value at time i — Target Value)
i=1
t
= 2 (xk) . (55)
i=]

Thus, it cumulates the deviations from target. If chance causes are pro-
ducing the deviations, then some of them will be positive and some negative,

thus canceling each other, and S(t) will remain near zero. On the other
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hand, if assignable causes are in effect, these may cause trends up (or
down) which will tend to keep the deviations consistently positive (or
negative) and, thus, increasing S(t) in magnitude. Typically, the CUSU!
chart looks Tike the Shewhart control chart, but the upper and lower limits
are constructed differently.

For the CUSUM chart, the easiest form of test is one in which the
chart goes in one direction at good quality (say downwards) and in the
opposite direction at bad quality. On this type of chart, the mean value
corresponding to zero slope is generally called the reference value. A
rise from the lowest point of the chart, by more than some known amount, h,
called the decision interval, provides the criterion for a change. Alge-
braically, if the reference value is k and the decision interval is h, a

n

decision that a change has taken place is made if E: (x{—k)zh; where

i=n—r+]
r is any integer less than or equal to n.

If we wish to detect chénges in éither direction with a CUSUM chart,
a simple two-sided test is required, and a V-mask is employed. This is
equivalent to the simultaneous application of two of the one-sided tests
described above. The V-mask and its parameters are shown in Fig. 26.
The relationship between the V-mask parameters (half-angle = 6 and lead
distance = d horizontal plotting intervals) and the reference value (k)

and decision interval (h) used in the one-sided test is
k = o tan 6 v (56)
and

h=uwdtan 8 (57)
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where w equals vertical scale distance per horizontal plotting interval

(called the scale factor).

CUSUM

Number of Samples

Fig. 26. Cumulative Sum of (x—k) Plotted Against Number
of Samples Us1ﬂg a V-mask.

Figure 26 shows a mask with 1imbs inclined at an angle 6 to the

horizontal. The cumulative sum at A, which is the last plotted point,
is S{n) and at C is S{n-r). The point 0 is the vertex of the V-mask.

Extend OA and let the perpendicular from C meet it at B. Then,

CB

BA

The path of the plotted points will cross the lower Timb of the V when

S(n) — S(n-r) (58)

re . (59)

BC > BO tan o , (60)

that is, when

[S(n)—S(n-r)]/w > (r+d) tan 6 (61)
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or

n
. (X{-w tan 6) > wd tan 6 . (62)
i=n-r+]
This is equivalent to cumulating deviations of X; from a reference value
k = w tan 6 and using a decision interval h = wd tan 6.

This decision procedure implies an initial choice of an Acceptable
Quality Level (A.Q.L.), whichwould have an average slope less than that
of the Timb of the V-mask, and of a Rejectable Quality Level (R.Q.L.), which
would have an average slope steeper than the V-mask. Definition of these
two quality levels and the length of time at each level before reaching
a decision will define a unique optimum decision scheme. The expected
Tength of time until detection is called the Average Run Length (ARL).

A nomogram from which ARL values can be calculated when X; is normally
distributed can be found in a paper by Kemp [3].

In summary, the advantages of CUSUM charts over Shewhart control
charts are:

1)  Changes in mean level can be detected visually by a change in

slope of the chart.

2) The point of change can be located visually.

3) Changes of between 0.5c and 2.0c are detected about twice as
quickly using the CUSUM, Alternatively, the change can be
detected at the same time, but with smaller samples.

The advantages of the Shewhart control chart over the CUSUM are:
1)  The Shewhart control chart is extremely simple to set up.
2) If only large deviations in the process (>20) are of concern,

then the Shewhart chart will detect it faster than the CUSUM.
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An example will help clarify the previous methods. In addition to the
CUSUM and Shewhart control charts, we shall include the Kalman Filter.

For this example we assume that the variance of the process is known and
equal to unity. The process will be declared out of control if two
consecutive points exceed the two-sigma 1imits or if one point exceeds the
three-sigma 1imits. Thus, for the Shewhart control chart we examine x(t),
the observation at time t. If u denotes the target value and o denotes
the process standard deviation, then we declare the process out of control

at time t if
|x(t-1)=| > 20 and Ix(t)—=| > 20
or

|x(t)—u| > 30 .

Since we have chosen o=1 for convenience, the above inequalities reduce

to
Ix(t-1)-u] > 2 and  [x(t)-u] > 2
or
|x(t)-ul > 3.

Given that o is known, the CUSUM can be set up in a manner similar to
the Shewhart control chart. Two- and three-sigma limits for the CUSUM

can be calculated using
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t
Var(s(t)) = Var 2% x{i)
'I:
t t-1 t
= ) Var(x(i)) + 22, 2 Cov(x(i),x(3)) . (63)
i i1 5=
i<j

Since the measurements are assumed independent, then the covariance will

be zero, and the variance of S(t) is

t
Var(s(t)) = 2. Var(x(1))

o
—

]
'Mg—f-
Q
N

—
1
—t

to? (64)

Instead of using the CUSUM directly, we shall use the average CUSUM (ACUSUM)
defined by

t
A(t) = S(t)/t = Z] x(i)/t . (65)
'|=

The variance of A(t) is

2

Var(A(t)) = gz Var(s(t)) = & . (66)
Thus, the variance of A(t) decreases with time—this is in contrast with
the Shewhart control chart where the variance remains constant over time.

The process is said to be out of control at time t by the ACUSUM chart if
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29 20
[A(t—1 u]| > and |A(t)—u] > =
Vt=1 vt
or
A(t)—] > 32,
vt

As a basis of comparison, the Kalman Filter is performed sequentially as
follows:

) Initialization: wu(0) = Y(0), G(O)
) Gain: k(t) = G(t1)/[G(t1) + o?]
)
)

n
Q

1

G(t—1)/[G(t—1) + 1]

w N

State Update: wu(t) = u(t=1) + k(t)[x(t) —u(t-1)]

2G(t G(t-1
Error variance for (t): G(t) = g(t£§)+gz = G(§—4§%4

4
Steps 24 are repeated after receipt of each observation. The Kalman

Filter declares the process out of control if

| (t=1)—| > 2/G(t-T) and lu(t)—u] > 2/G(%)

or

lu(t)—| > 3/G(t) .

The following 20 numbers were randomly selected from a normal population
with variance equal to 1. The first 10 numbers have a true mean value
u=10 while the last 10 have a true mean value equal to 9. The value
u=10 is considered to be the target value. The process has a step
change at time t=11 to a new mean level of 9. It is this change in the

process that we wish to detect.
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x(t) = 8.9 101 8.8 10.2 0.9 10.8 7.9 9.8 8.9 10.4 79 83 10.0 9.3 80 11.3 8.6 7.5 8.7 10.8

Table 6 shows that the Shewhart control chart technique does not detect
the change in level over the time span while both the Kalman Filter and

the ACUSUM detect it by period 15.
ORNL-DAG  79-7705

Table 6. Comparison of Control Chart Methods.

SHEWHART ACUSUM KALMAN FILTER
1m N N .
B i A A e}
1 -1 2 -1.10 2.00 -0.55 1.41
2 0.1 2 -0.50 1.41 -0.33 1.15
3 -1.2 2 -0.73 1.1% -0.55 1.00
4 0.2 2 -0.50 1.00 -0.40 0.89
5 0.9 2 -0.22 0.89 -0.18 0.82
6 0.8 2 -0.05 0.82 - -0.04 0.76
7 -2.0* 2 -0.34 0.76 -0.30 0.71
8 -0.2 2 -0.33 0.71 -0.29 0.67
9 -1.1 2 -0.41 0.67 -0.37 0.63
10 0.4 2 -0.33 0.63 -0.30 0.60
n -2.1* 2 ~0.49 0.60 -0.45 0.58
12 -1.7 2 -0.59*% 0.58 -0.55 0.55
13 0.0 2 -0.546 0.555 -0.51 0.54
14 -0.7 2 -0.56* 0.53 -0.520* 0.52
15 -2.0* 2 -0.65%¢ 0.52 -0.61%+ 0.50
16 1.3 2 -0.53% 0.50 -0.50% 0.49
17 -1.4 2 -0.58* 0.49 ~-0.55* 0.47
18 -2.5*% 2 -0.69* G.47 ~0.65* 0.46
19 -1.3 2 -0.72*% 0.46 ~0.69* 0.45
20 0.8 2 -0.65* 0.45 -0.61* 0.44

* Qutside of control limits
+ Process said to be out of control at this time
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SUMMARY

Several results were obtained in this report. In summarizing the
report, a difficulty appears since no one method was always better than
another; réther, for certain situations one method did better, but for
~ another situation a different method was best. This indicates that perhaps
more than one method should be employed to give the best results possible.

The following shows the areas this report discussed and the methods
compared:

Kalman Filter

I. Process Measurement and

Detection of Shift in Level Weighted Least Squares

Shewhart Control Chart

Box-Jenkins
Classical Design
II. Process Control
Shewhart Control Chart

Cuhu]ative Sum Chart

Under I, it is our view that the Kalman Filter does the best job overall.
The reasons for this are: (1) information about the system can be in-
corporated into the system model improving detection; (2) assumptions

as to whether the process has a linear drift or whether it changes by

a series of jumps is not important; (3) it yields a minimum variance
unbiased estimator of the process level, and (4) it can supply a good
estimate of the process level to use in feedback control. Again, it
should be pointed out that if the process is known to drift in a linear

fashion, then weighted linear least squares may be better.
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Under I1, the Box-Jenkins methods appear too sensitive to be applicable
to fuel rod production. The classical design obviates the problems found
using the Box-Jenkins procedures and is the recommended choice if dynamic
(i.e., continuous) control is desired. In the case where continuous
control of the process is not necessary (for example, a process that
drifts very slowly over time), then either the Shewhart control chart or
the CUSUM are the methods of choice. Again, this author feels that the
CUSUM (or ACUSUM) is better in most cases. The Shewhart control chart

is effective for large jumps because the observations are not averaged
or lumped together, but it is extremely poor for slow drifts. The
simplicity of these procedures certainly makes them attractive and using
both in tandem would present no problems.

Incorporating both I and II together, the choice would be the Kalman
Filter and fhe classical control theory if continuous control is desired.
If continuous control is not important, then the Kalman Filter can be
useq as a control charting device itself, and it has been shown to be
as sensitive or more sensitive than the CUSUM or Shewhart control charts

(see [4]) for detecting material Tosses.
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CSMP PROGRAM TO GENERATE STEP FUNCTION RESPONSE

INITIAL

PARAM A1=0.237,A2=0.
PARAM CS%=1.(,C7=0.0

B1=0.237
B2=0.14217
B3=0.24308
B4=0.27263
BS=C.149€3
B6=0.12736€
B7=0.133
B8=0.113€7
B9=0.0€614
B10=0.C7548
B11=0.(06788
BF12=0.05€84
B13=0.C4719
B14=0.0uC82
B15=0.03519
P16=0.C2S7¢
B17=0.02525
B18=0.C2164
B19=0.C1848
B20=0.01571
B21=0.01339
R22=0.01144
B23=0.00975
B24=0.(CCE€31
B25=0.00709
B26=0.00604
B27=0.C0515
B28=0.00439
B29=0.C0375
B30=0.C€0319
B31=0.00272
B32=0.€0232
B33=0.00198
B34=0,C0169
B35=0,C0144
B36=0.00123
B37=0.00105
B38=0.C0C89
B39=0.00076
B4C=0.00C65

FOR THE BOX-JENKINS DESIGN

ORNL-DWG

036,A3=0.189,Au=.158,B=.001,SAHTIH=1-O.T=1-0

79-7709
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DYNANIC

E1=STFP (0.0)
TX=IMPULIS(0.0,SANTIN)
EZ=TX*E1
X1=DELAY (100, SAMTIN,EZ)
X2=DELAY(100,SAMTIN,X1)
X3=DELAY (100, SANTIN,X2)
XU=DELAY(100,SAMTIN,X3)
P1=DELAY (100, SAMTIN,P2)
PU=FEZ~R1#X1-A2#FX2-A3®Y3-AU%XY
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PROCEDURE E2,U1=BOX (P4)

E2=PU-Y20
U1=-B1#Z1-B2¥Z2-B3*723-BU*Z4-B5%Z5-B6% Z26-BT7*Z7-B8* Z8-BI*Z1
-B10»Z10-B11*211-P12%Z12-B13%Z13-B14#»Z14-B16*¥216-B17%217
~B18%#7218-B1922194B21%E3+B22%E4+B23%ES5+B2U*E6 +B25% E7+B 26* E8
+B27¥EG4B2E8%E1C+B29%*E11+B30%*E124B31%F13+B32*E14+B33¥E15
+B3UXET1E+R35*E17+B36*E184B37*E19+B38* E20+B39%E21+B40* E22
719=718

218=217

217=216

216=Z1°¢

Z15=Z14

214=7113

213=212

212=211

Z11=210

210=29

79=28

28=27

27=26

26=25

25=74

724=213

23=22

22=271

z21=01

E22=E21

E21=E2C

_ E20=F1¢

E19=E18
F18=E17
E17=E16
E16=E1E
E15=E1U
E14=E12
E13=E12
E12=E11
F11=E10
E10=E9
E9=E8
E8=E7
E7=E6
E6=E5
ES5=EU
E4=E3
E3=E2
Y20=DFILAY(20,20.0,U1)
ENDFRO

PRTPLT U1,E2

TIMER FINTIN=1000.,00TDEL=10.0,DELT=1.0
LABFL LCR. BAILEY FOR

END

S
ENCJOB

TOP

79-7692
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CSMP PROGRAM TO GENERATE STEP FUNCTION RESPONSE
FOR THE CLASSICAL DESIGN
ORNL-DWG 79-7695

INITIAL
PARAM A1=0.237,A2=0.086,A3=0.189,Al=.158,B=.001, SAMTIN=1.0,T=1.0
PARAM C5=1.C,C7=0.0
P2=0.0
Y20=0.0
P1=0.0
DYNAMIC
£1=1.0
TX=IMPULS (0.0,SAMTIN)
EZ=TX* E1
X1=DELAY (100, SAMTIN,P4)
X2=DELAY (109,SANMTIN,X1)
X3=CELAY (100, SAMTINM,X2)
X4=DELAY (100, SAMTIN,X3)
PU=EZ+ATRX14A2* X2+AI& X3 +AURXY
PRCCEDURF Y20,F2,P3, U1=DUMMY (P4)
E2=P4-Y20
P3=F2+41.9€0198¥P2-.98019802¢ P1
U1=E2
Y20=TELAY (20,20.,01)
P1=P2
pP2=P3
ENDERO
PRTPLT EZ,PU
TIMER FINTIN=500.,00TDEL=10.,DELT=1.0
LABFL [FK. BAILEY FOR

END
STOP
ENDJOB
CSMP PROGRAM TO GENERATE STEP FUNCTION RESPONSE
FOR THE PROPORTIONAL CONTROL
INITIAL ORNL-DUG  75-7701

PARAM A1=0.237,A2=0.086,A3=0.189,A6=_158,8=.001,SANTIN=1.0,T=1.0
PARAR C5=1.(,C7=0.0

81=0.2327
B2=0.104217
B3=0.243208
B4=0.27263
B5=C.14983
B6=0.12736
B7=0.123
B8=0.11387
B9=0.CE€€14
B10=0.C7548
B11=0.C6788
B12=0.0568u
B13=0.C4719
B14=0.04082
B15=0.03519
B16=0.C2975
B17=0.C0252¢
B18=0,02164
B19=0.01848
B20=0.C1571
B21=0.01339
B22=0.01144
B23=0.0097¢%
B24=0.C0831
£25=0.C0709
B26=0.00604
B27=0.C0815
B28=0,C0439
B29=0.€0375
B30=0.00319
B31=0.€0272



79

ORNL-DWG 79-7691

832=0.00232
B23=0.CC198
B3u=0.C0169
B35=0.CC144
B36=0.00123
B37=0.C010¢
B38=0.00C89
B39=0.CC076
B40=0.C0065
71=0.0
722=0.C
23=0.C
Zu=0.0
725=0.C
26=0.0
27=0.C
28=0.0
29=0.0
710=0.0
711=0.C
212=0.0
213=0.C
214=0.0
Z215=C.C
216=0.0
217=0.C

DYNAMTC
®1=1.0
TX=IMPULS(0.0,SAMTIN)
EZ=TX*E1
X1=DELAY(100,SAMTINM,PU)
X2=DELAY(100,SAMTIM, XN
X3=DELAY(100,SAMTIM,X2)
Xu4=DELAY (100, SAMTIN,X3)
P1=DELAY(100,SAMTIN,P2)
PU=EZ+A1* X 1+A 2% X2+A 3 X3+A4* XU
PROCEDURE E2,U01=POX (P4)

E2=PU4-120

U1=-B1%#21-B2*72-B3#73-BUr ZU-B5¢ 25-B6*726-B7*727-BB8* 28-BI+Z 1 e
-B10*210-B11*Z11-B12%7212-B13%Z13-B14#*Z214-B16*216-B17%217 e
-B18*Z18-B192Z2194B21*E3+B22# EU+B23%ES+R2U E6+B25* E7+B26* E8 “en

+B27%FO4E28% F104B29%E11+4B30*E12+B31*E13+B32%F14+B33*%E15 e



+B3U™ET€+B35S*E174B36*E184B37#E194 838" E204+ B39% E2 1+ BUOR E22+B20%E2

219=218
218=217
217=216
216=Z1°¢
215=214
214=7213
213=7212
212=711
Z211=210
Z210=29
729=28
28=27
27=26
26=75
25=74
Z4=23
23=72
22=21
21=01
E22=E21
E21=E20
E20=E19
F19=E1&
E18=E17
E17=E16
E16=E1E
E15=E14
E14=E13
E13=%12
E12=FE11
E11=E10
E10=E9
E9=E8
E8=E7
E7=E6
E6=ES
ES=EU
E4=%3
E3=E2

Y20=DELAY(20,20.0,01)

ENDERC

PRTPLT E2,PU4,E1

TIMER FINTIM=100.,0UTDEL=1.0,DELT=1.0
LABEL [F.

E
S
ENLJOB

NT
TOP

BATILEY FCR

80
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MAIN PEOGRAM - FILE DIFTST.FOR

WRITTEN TO SOLVE DIFFERENCE FQUATIONS AND SIMULATE
CONTKOL SYSTEM FOR L[R. D.J. DOWNING BY D.B.NEEDHANM,
SEPTEMBER, 1€78.

LANGUAGE - FORTRAN IV
HOST PROCESSOR - CECSYSTEM-10
OTHER ROUTINES NEEDED :

ARIMA -~ SOLVES ARIMA MODEL

FCST - FORCASTS AHEAD FOR POINTS FROM
PREVIOUS ARIMA MODEL

RANDLC - GENERATES N RANDOM NUMBERS

WITH NORMAL(O,1) DISTRIBUTION

INITIALIZES RANDOM NUMBER

SEQUENCE

EANDOM

TO EXECUTE :
FX DIPTST,ARIMA,FCST,RANDD,RANDOM

REAL* 4 NT,NHAT,NTSQ, NTMSE

DCUBLE PRECISICN FNAMFE

COMMON NT{1000) ,PHI (20) , THETA (20) ,NHAT(1000) ,RAND(1020)
DIMENSION WA (1020) ,START (100)

DIMENSION X(1000),0MG (10),GAM(10),E(1000)

CATA START/100%0.0/

DATA NC/'N'/

VALUE OF BRCCT INITIALIZES RANDOM NUMBER GENERATOR.
VALUE MUST BE IN OCTAL -I.E. NO DIGITS GREATER THAN 7.

DATA ROOTI/"3¢S412362773/
GET ALL NECESSARY PARAMETERS FROM USER.

TYPE 150

FCRMAT (' BACKSHIFT VALUE ?')

ACCEET *,1B

TYPE 185

FORMAT (* NUMBER OF PHI VALUES ?')

ACCEPT #* NPHI

IF(NEHI.FQ.0)GO TO 164

TYPE 160

FORMAT (* INPUT THE PHI VALUES, SEFARATED BY COMMAS Y)
ACCEET *, (EHI(I),I=1,NPHI)

TYDE 165

FORMAT(' NUMBER OF THETA VALUES 2')

ACCFET *,NTHETA

IF(NTHETA.EQ.0)GO TO 174

TYPE 170

FORMAT(* INPUT THE THETA VALUES, SEPARATED BY COMMAS )
ACCEET *, (THETA (I} ,I=1,NTHETA)

TYPE 175

FORMAT (* INPUT NUMBER OF POINTS<= 1000 TO SIMULATE ')
ACCEET *,NPTS

TYPE 180

FORMAT (* INPUT MEAN AND VARIANCE, SEPARATED BY COMMAS')
ACCEFT * ,AMFEAN, WNV

GENEPATE NPTIS+NPHI RANDOM NORMAL NUMBERS.

79-7702
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CALL RANDD (®ROOT,NPTS+NPHI,RAND)

RANDOM NUMBERS INTO WORKING AREA AND

GENERATE ARIMA SERIES.

CALL

REATL

C LOAt

288
3ac

aQa

875
o

o
C

CRLL

DO 3 I=1,NPTS+NPHI
RA(I)=RAND(I)
CALL ARINA (PHI,THETA,AMEAN,1.0,START,WNV,NPHI, NTHETA,
NPTS,NT,®RM)

FOPCASTING ROUTINE TO FORCAST B POINTS AHEAD.
CALL ¥CSTI(IB,NPTS,NPHI,NTHETA)
OMEGAR ANL GAMMA VALOES

TYPE 300

FORMAT (' HOW MANY OMEGA VALUES, INCLUDING OMEGA (0) ?')
ACCETT ®,NOMG

TYPE 205 ,

FORMAT (' INPUT THE OMEGA VALUES, SEPARATED BY COMMAS')
%08=C.0

NOMG=NCHG~1

IF (NCMG.EQ.0)GO TO 308

IF (NCMG. EQ.-1) GO TO 309

ACCEPT *,ZOM, (OMG(I) ,I=1,NOMG)

GO TC 309

ACCEET #,20M

TYPE 310

FORMAT(' HOW MANY GAMMA VALUES ?')

ACCEET # ,NGAM

IF(NGAM.FQ.0)GO TO 288

TYPE 315

FORMAT (' INPUT THE GAMMA VALUES, SEPARATED BY CCMMAS')
ACCFPT #, (GAM(I) ,I=1,NGAM)

VORKING AREA WITH NEGATIVE OF FORCASTED ARRAY.

DO 34C I=1,NPTS
WA (I)=-NHAT(I)

ARIMA ROUTINE TO GENERATE CONTROL ARRAY.

CALL ABRIMA (OMG,GAM,0.0,2Z0M,START,1.0,NOMG,NGAM,NPTS, X,WA)

GENFRATE FRROR ARRAY FRCM LCIFPFERENCE OF QBSFRVED AND
FORCASTEL VALUES. '

DO 87% I=1,NPTS
E(I)=NT(I)-NHAT(Y)

CALCULATE MSE FCR N(T) AND E(T)

NTSQ=0.0

ET50=0.0

DO 880 I=1,NETS
NTSQ=NTSQ + NT(I)*NT(I)
ETSC=ETSC + E(I)*E(I)
CONTINUE

AP=NETS

NTMSE=NTSQ/AP
EMSE=ETSQ/AP

79-7700
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PRINT ALL PARAMETERS AND RESULTS

WRITE(36,5) (PHI(I),T=1,NPHI)

FORMAT (* PHI VALUES ', 10{1X,F8.4 ))

WRITE (36,10) (THETA (I),I=1,NTHETA)

FORMAT(* THETA VALUES *, 10(1%X,F8.4 ))

WRITE (36,12) ZOM

FORMAT (' OMEGA (0) ',F8.4)

WRITE(26,13) (OMG(I) ,I=1, NOMG)

FORMAT (' OMEGA VALUES ',10(1X,F8.4))

WRITE (36,18) (GAM(I),I=1,NGAM)

FORMAT (* GAMMA VALUES ',10(1X,FP8.4))

WRITE (36,15) IB

FORMAT (5X,'B ',12,/)

WRITEF (36,5€0)

FORMAT (6X, "N (T) *,8%, 'A(T) ', 7X, "N (T) HAT' ,6X,'X(T) ",
*  BX,'E(T)',6X,'TIME',//)

po 8C0 I=1,NPTS

WRITE (36,570)NT(I) ,RAND (I) , NHAT (T),X(I) ,E(I),I

FORMAT (5 {(U4X,F8.4) ,U4X,T4)

CONTINUE

WRITE (36,575) NTMSE, EMSE

FORMAT (/,' MEAN SQUARE ERRORS :',/,10X,'N(T) :*,
* £15.5,/,10X,*E(T) :',E15.5)

OUPUT NT & ET TC FLOT FLIE

TYPE 200
FORMAT (* DO YOU WANT A PLOT FILE OF N(T) & E(T) ? (Y{,N)")
ACCEET 205,IANS
FORMAT (A1)
IF (IANS.EQ.NO) STOP
TYEE 210
FORMAT (' FILE NAME?Y)
ACCEET 215,FNAME
FORMAT (A10)
OPEN (UNIT=4C,ACCESS="SEQOUT' ,FILE=FNAME)
DO 216 I=1,NETS
WA{(I)=1
WRITE (40,218) (WA (I),I=1,NPTS)
WRITE (40,218) (WA (I}, I=1, NPTS)
FORMAT (10 (1X ,F6. 1))
WRITE(40,225) (NT(I),I=1,NPTS)
WRITE (40,225) (E(I) ,I=1, NPTS)
FORMAT (5 (1X,F13.5))
CALL EXIT
END
SUBROUTINE ARIMA (ARPS,PMAS,PMAC,ZOM,START,WNV,IP,IQ,LW,W,WA)

PUNCTION - GENERATE A TIME SERIES FOR A GIVEN ARIMA
STOCHASTIC MODEL.
USAGE - CALL ARIMA (ARPS,PMAS,PHMAC,ZOM,START,WNV,
1Ip,10,1L¥,¥,WA)
PARAMETERS ARPS - INPUT VECTOR OF LENGTH IP CONTAINING THE
AUTOREGRESSIVE PARAMETERS OF THE MODEL.
PMAS - INPUT VECTOR OFP LENGTH IQ, CONTAINING

THE MOVING AVERAGE PARAMETERS OF THE MODEL.

PMAC ~ INPUT OVERALL MOVING AVERAGE PARAMETER.

START - INPUT VECTOR OF LENGTH IP CONTAINING STARTING

VALUES WITH WHICH TO GENERATE THE TIME
SERIES.
WNY - INPUT WHITE NOISE VARIANCE.

79-7698
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IP - INPUT NUMBER OF AUTOREGRESSIVE PARAMETERS
IN THE MODEL.

IQ - INPUT NUMBER OF MOVING AVERAGE PARAMETERS IN
THE MODEL.

Lw - INPUT LENGTH OF THE TIME SERIES TO BE
GENERATED.

W - OUTPUT VECTOR OF LENGTH LW CONTAINING THE
GENERATED TIME SERIES.

WA - SERVES AS A WORKSPACE. LENGTH

EQUAL TO LW+MAX(IP,IQ).

LANGUAGE -~ FORTRAN

10
15

20

25

30
35

40
38

SUBROUTINE ARIMA (ARPS,PMAS,PMAC,ZOM,START,WNV,IP,IQ,LW,W,WA)

DIMENSICN ARPS (IP),PMAS (IQ),START (IP), W (LW) ,WA (1)
GENERATE WHITE NOISE SERIES
LZ=LW+1IQ
SWNV=SCERT (WNV)
ro 5 1=1,LZ
WA(I)=WA(I) #SHNV
CONTINUE
Do 15 I=1,1W
I1Q0=1+1Q
W(I)=FEMAC+WA(IIQ)
IF (IQ.EQ.0) GO TO 15
COMPUTE MOVING AVERAGE CONTRIBUTIONS
po 10 J=1,I¢
W(I)=W({I)-PMAS(J)*WA (11Q-J)
CCNTINUE
CONTINUE
IF (IP.EGC.0) GO TO 35
DO 20 1I=1,1P
WA (I)=START (1)
CONTINUE
COMPUTE AUTOREGRESSIVE CONTRIBUTIONS
DO 25 I=1,1LW
IIp=1+1P
WA(IIE)=W(I)
DO Zt J=1,1IP
RA(TIIP)=WA (TIP)*ZOM4ARPS (J)*WA (1IIP~-J)
CONTINUE
£Cc 30 I=1,Lw
W(I)=WA(I+IP)
CONTINUE
GO TC 38
Lo 40 I=1,LW
W(I)=W(I)*ZQN
CONTINUE
RETURN
END
SUBRCUTIINE FCST

USED TO FCFCAST AHEAL B PCINTS GIVEN PHI AND
THETA PARAMETERS AND NUMBER OF POINTS REQUIRED.
ALSC RECUIRED IS ARRAY OF ORIGINAL DATA TO FORCAST FRON.

SUBRCUTINE FCST(IB,NETS, NPHI,NTHETA)

REAL?U4 NT,NHAT,NTEMP

CCMMON NT(1000) ,PHT (20), THETA (20) ,NHAT (1000) , RAND (1020)
DIMENSION NTEMP (1000)

ZFRO OUTFUT ARRAY FOR FIRST B POINTS.

79-7697
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C
Do 1€0 I=1,IB
100 NHAT (I)=0.0
C
C COPY FIPST E-1 POINTS INTO WORKING BUFFER
C
DO 5CC II=1,NPHI-1
500 NTEME(II)=NT (II)
o

C OUTER LOCF 505 CONTROLS NUMBER OF HISTORICAL DATA POINTS
C UOSEL TO FORECAST FROM
C

DO 5CS I=1,NPTS-IB

C
C ADD NEXT N(T) TO TEMPORARY BUFFER
(o}
NTEMP (I)=NT (I)
Cc
C LOOP 510 CALCULATES ALL TEMPORARY TERMS NECESSARY TO FORECAST
C IB POINTS AHEAD
C
pc 510 J=1,IB.

1J=14J

IST=1J-1

SUM1=0.0

IF (NPHI.FQ.0)GO TO 522
C
C LOOF 520 MAKES PHI*N(T) OR PHI*N(T) HAT CALCULATIONS
C FOR EACH TEMPORARY TERM
C

CO 520 K=1,NPHI

IF(IST.LE.0)GO TO 520
SUM1=SUM1+PHI (K) *NTEMP (IST)

520 IST=1ST-1
C

C TIF MORE THAN NTHETA+1 TEMPORARY TERMS HAVE BEEN CALCULATED,
C THE THETA*RANLC TERMS NO LONGER HAVE ANY EFFECT AND ARE NOT
C CALCULATEL

C

522 IF (NTHETA. EQ.0) GO TO 550
IP(J.GT. NTHETA+1)GO TO 550

c

C LOOF 530 CAICULATES THE SUM OF THE THETA®RAND TERMS
C
SUM2=0.0
ITST=IJ-1
LO 530 L=1,NTHETA
IF(ITST.GT.I)GO TO 530
IF(ITST.LE.0)GO TO 530
SUM2=SUM2+THETA (L)® RAND (ITST)

53¢C ITST=ITST-1
C
C COMPUTE N (T)HAT FOR THIS TEMPORARY STEP
C
NTEMP(IJ)=SUM1-50M2
GO TC 510
550 NTEME(IJ)=SUN1

C
C ESTIMATE AT FOINT TINME ¢ IE HAS BFEN CALCULATED; STORE AND
C
51C CCNIINUE
505 NHAT (IJ) =NTEMP (IJ)
RETUEN

79-7699
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SUBROUTINE RANDD

CALCOULATES UP TO 1000 RANDOM NORMAL NUMBERS, NORMALLY DISTRIBUTED
WITH MEAN O AND VARIANCE 1. THE SEQUENCE GENERATED DEPENDS

ON THE VALUE OF 'ROOT* WHICH SHOULD BE SUPPLIED IN OCTAL.

VFCTOR RAND IS RETURNED CALCOLATED THROUGH NPTS

NUMBER CF ECINTS.

SUBRCUTINE RANDD (ROCT,NPTS,RAND)
DIMENSION RAND (1000)

CALL RANCIN(ROOT)

DO 1C0 I=1,NETS

PANC (I) =RANX (DUNMY)

RETUEN

FNT

FUNCTION EANX (CUMMY)

R = FLIRN(R)

IF(R .GT. 0.8638) GO TO 10

RANX = 2.% (FLTRN (X) + PLTRN(Y) + FLTRN(Z) - 1.5)
RETOUFN

IFP( F.GT. 0.9745) GO TO 20

FANX = 1.5% (FLTRN(X) ¢ FLTRN(Y) - 1.0)
RETUEN

IP(R .GT. 0.997302039) GO TO 100

X = €. *FLTRN(X) - 3.0

Y = C.358%PLTRN (X)

XSQ = Xex

GX = 17.4931196%EXP (-XSQ*0.5)
AX = ABS(X)

IF(AX .GT. 1.0) GO TO 30
TF(Y.GT. (GX-17.644392294+4.73570326¢XSQ+2.15787544%AX)) GOT025
RANX = X
RETUFN
AX3 = 2.36785163% (3-AK) *%2
IF(AX .GT. 1.5) GO TO 40
TP(Y .GT. (GX-AX3-2.15787544%(1.5-AX))) GO TO 25
RANY = X
RETUEN
IF(Y .GT. (GX-AX3)) GO TO025
PANX = X
PETUEN
X = SQRT(9-ALOG(FLTRN (X)))
IF(FITEN(X) .GT. 3/X) GO TO 100
IF(PLTRN(X) .GT. 0.5) X = ~-X
RANX = X
RETUEN
END
TITLE FEANDOM
TO==
Ti==
==16
p==17
ENTRY RANDIN
SET? 10,
MOVE TO0,20 (L)
MOVEN TO,ARG
PORJ E,
FNTRY FLIRW

MOVE 710, ARG
MUL 10,ARGC

MOVEM T1,ARG

LSH 11,11

LSH T1,-11

?SC 11,200

MOVE 10, T

POPJ E,

EXP (C20517578125

ARG: EXP 383277244615

END

ORNL -DWG
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KALMAN FILTER

One is motivated to seek the "best" estimate of the level of the
manufacturing process. In a manufacturing process the available infor-
mation at some period, t, is 1) the history of measurements,

{Y(i): i=0,1,...,t}, and 2) measurement errors on the measure of interest.
In the typical manufacturing process, this is the maximum amount of data
that is available. From this data, one must devise a technique to extract
as much information as possible about the true level of the process.

One could attempt to estimate the mean level of the process by

forming a linear function of the available measurements:

t
u(t) = ‘fb a; (ty(i) . (8.1)
'I:

By specifying the coefficients gd(t) in (B.1), one has the optimal
estimate. One way of choosing the coefficients in (B.1) is to form an
expression for the variance of the error of the state estimate and choose
the gi(t) to minimize this error variance. This approach would utilize
all available information about the process to produce an optimal estimate
of the variable of interest. If the additional constraint that the esti-
mate be unbiased is imposed, the minimum variance estimate is equivalent
to a least squares estimate.

Note that, to implement the estimation technique in (B.1), one has
to calculate the optimal coefficients. One must maintain the entire
history of measurements and measurement variances. Thus, to implement
the optimal policy, one must perform some formidable calculations and

maintain a rather large data file.
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Fortunately, there is an alternate way of implementing the policy
defined by (B.1). This is by means of the Kalman Filter. The Kalman
Filter approach has several advantages over the policy defined by (B.1):

1) The iterative equations are somewhat easier to implement.

2) The iterative procedure produces an error covariance matrix
as a by-product.

3) The entire history need not be maintained. Rather, one maintains
the most recent state estimate and the associated error covari-
ance matrix which contain all relevant information about the
process history.

There are four key elements in the Kalman Filter:

1) A system state vector: the state vector at time t, X(t)

includes as a minimum the mean of the process.

2) A system model: a linearized set of equations of the form:
X(t+1) = A(t)X(t) + u(t) + c(t) . (B.2)

There is one equation for each state variable. One equation

is a mass balance equation which describes how the process
evolves in time. U(t) is a known "control vector". The
vector C(t) is a zero mean random vector which is used to
account for imperfect knowledge of U(t) and/or modeling errors.
To account for process measurement errors, the following

equation is used:
Y(t) = H(2)x(t) + v(t) , (B.3)

where V(t) is a zero mean random vector, and H(t) = [1].
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Measurements: process level (e.g., U235 content).

Variances: process and measurement.

The Kalman Filter produces state estimates which minimize a sum of

terms, each term being the error variance of a component of the state

vector.

In summary, the Kalman Filter is applicable to a linear system of

the form of Equations (B.2) and (B.3) with known transition matrix A(t).

The measurement covariance matrix of Y(t), R(t), as well as the process

covariance matrix for X(t), Q(t), must be known. The random vectors

C(t) and V(t) in the model have zero cross correlation.

The Tisting below constitutes the iterative procedure known as the

Kalman Filter:

1)

2)

3)

5)

Choose.X(O), an unbiased estimate of X(0), and G(0), a positive
definite symmetric error covariance matrix. Set t=1.

State Prediction:

(t) = A(t-1)X(t-1) + U(t-1) . (B.4)

|>< 2

Calculate error covariance matrix for state estimate in last

step:
P(t) = A(t-1)G(t-1)A(t-1)T + q(t-1) . (8.5)

Calculate gain:

T

K(t) = P(OH(E) TTH(EP(E)H(E)T + R(E)1) . (B.6)

Update state estimate:

X(t) = X(t) + K(£)[Y(t) — H(t)X(t)] . (B.7)
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6) Calculate error covariance matrix for the state estimate in the

last step:
G(t) = [I — K(t)H(t)IP(t) . (B.8)

Figure B.1 shows the flow chart for implementing the Kalman Filter.
Using E( ) to denote the expectation operator and e(t) to denote
the error, X(t) —-th), the choice of K(t) is such that E[g(t)Tg(t)],
the trace of G(t), is minimized. Matrices P(t) and G(t) are error
covariance matrices. P(t) is the error covariance matrix of e(t) given

{Y(3): 3=1,2,...,t}:

P(t) = Ede(t)e(t)T/¥(1),...¥(t-1)} . (B.9)
The matrix G(t) is the error covariance matrix given {Y(j): j=1,2,...,t}:

G(t) = E[e(t)e(t)T/¥(1),....Y(t)] . (B.10)

Thus, P(t) is the error-covariance matrix before receipt of the observation
at time t, while G(t) is the error-covariance matrix after receipt of the
observation at time t.

The approach taken in deriving the Kalman Filter is that of minimizing
the trace of G(t). The same results, however, can be obtained from a
number of approaches including:

1) Minimizing Bayesian Decision Theory

2) Minimizing the length of the error vector squared

3) Maximum Likelihood estimation.
The Tatter two methods require the assumption of normality for the

measurement and process errors. The approaches which minimize the trace
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ESTIMATE
GO}, X(0)

Y

CALCULATE Pit}

— P(t) = Aft — N)Glt — 1){A{t — 1)) + Q{1 - 1)

3

l

CALCULATE GAIN VECTOR

K{t) = P({H{O} [HOP({H() + R{t)] ~!

'

OBSERVE Y(1), U(1)

-

UPDATE ESTIMATE OF STATE
X(t) = [Alt— 1) X(1 = 1} + Ult — 1]

+ K {Y(T ~ H [Alt— 1) X(t— 1) + Ult = 1]}

6

i

G(t) = P(t) — K(t) H(t) P(t)

UPDATE ERROR COVARIANCE MATRIX

Fig. B.1. Flow Chart of the Kalman Filter.
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of G(t) or which minimize the length of the error vector (which is, in
fact, the same as the trace of G(t)) do not require the assumption of
normality. It should be noted that when the assumption of normality
holds, the Kalman Filter 1) minimizes the trace of G(t), 2) is the
maximum 1ikelihood estimate, and 3) is the optimum Bayesian estimate.

It has also been shown that under the assumption of normality, no other
estimate (neither linear nor nonlinear) is superior to the Kalman Filter.
If the assumption of normality does not hold, the optimal linear estimate
is the Kalman Filter, but there may be a nonlinear estimate which is
superior.

Kalman Filter Applied to Estimating Mean Process Level
in Fuel Rod Fabrication

As an example of the use of the Kalman Filter, consider the problem

of improving the assay measurements by filtering. The system model is:
u(t+1) = u(t) (B.11)

where u(t) = system state variable = mean U?35 content at start of period t.
Equation (B.11) is a mass balance equation which must hold in the absence
of process changes in level. It simply states that the process level

does not change with time. The measurement equation is:
Y(t) = u(t) + V(t) (B.12)

where V(t) = measurement error for U235 content.
In this case, the Kalman Filter reduces to:

1) Initialization: u(0) = Y(0). G(0) = R(0). That is, we are

setting the initial state estimate equal to the initial
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measurement of the U235 content. The error covariance matriyx

is the measurement error.

2) Gain:
K(t) = G(t1)/[G(t—1) + R(t)] (B.13)

where R(t) equals process error plus measurement error at time t.

3) State Update:
u(t) = w(t) + KE)IY(t) — ()] (B.14)
4)  Error Covariance Matrix for u(t):

G(t) = G?éf])%(i";)(t) (B.15)

Equations (B.13—B.15) constitute the Kalman Filter for producing the
estimate of U%35 content. The filter acts so as to produce minimum

variance estimates; i.e., the error variance, G(t), is minimized.
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