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FOREWORD 

T h i s  i s  one o f  a s e r i e s  o f  r e p o r t s  t o  be p u b l i s h e d  d e s c r i b i n g  research, 
development, and demonstrat ion a c t i v i t i e s  i n  suppor t  o f  t h e  N a t i o n a l  
Program f o r  B u i l d i n g  Thermal Envelope Systems and I n s u l a t i n g  M a t e r i a l s .  
The N a t i o n a l  Program i n v o l v e s  severa l  f e d e r a l  agencies and many o t h e r  
o r g a n i z a t i o n s  i n  t h e  p u b l i c  and p r i v a t e  s e c t o r s  who a r e  address ing t h e  
n a t i o n a l  o b j e c t i v e  o f  decreas ing energy wastes i n  t h e  h e a t i n g  and 
c o o l i n g  o f  b u i l d i n g s .  
t h e  N a t i o n a l  Program through d e l e g a t i o n  o f  management r e s p o n s i b i l i t i e s  
f o r  t h e  DOE l e a d  r o l e  t o  t h e  Oak Ridge N a t i o n a l  Laboratory .  

Resu l ts  descr ibed i n  t h i s  r e p o r t  a r e  p a r t  of 

Other r e p o r t s  i n  t h i s  s e r i e s  i n c l u d e  t h e  f o l l o w i n g  which a r e  a v a i l a b l e  
f rom NTIS .  
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Abstract 

An exploratory investigation of various air intrusion as 

well as other energy transport effects on porous insulator systems 

has been carried out at SUNY, Stony Brook. 

four-month investigation show quantitatively that there are a 

number of significant, commonly encountered, air intrusion 

situations which can substantially degrade the thermal performance 

of building thermal barriers and the conditioned spaces that they 

serve. 

The results of the 
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I.  INTRODUCTION AND BACKGROUND 

The thermal res i s tance  (R-value) of a permeable in su la t ing  

material is general ly  determined i n  t e s t  apparatuses designed t o  

prohib i t  external  a i r  in t rus ion  i n t o  the  test  sample. Substant ia l  

care is  a l so  taken t o  consider samples subjected t o  one-dimensional 

hea t  t r a n s f e r  processes. Such measured R-values a r e  then general ly  

employed t o  character ize  t h e  e f f ec t ive  thermal res i s tance  of an 

i n  s i t u  in su la t ion  system. Inasmuch as t h e  se l ec t ed  insu la t ing  -- 
material i s  the  major i n su la t ing  component of t he  insu la t ion  system, 

standard ca lcu la t iona l  procedures pred ic t  system thermal 

res i s tances  which are dominated by the  laboratory determined 

R-values. 

I t  is s ign i f i can t  t o  note  t h a t  such laboratory-determined 

R-values are associated with s teady-state  tes t  methods/apparatuses 

which exclude the  following processes: 

(a) forced a i r  in t rus ion  i n t o  o r  about t he  tes t  sample 

(b) 

(c) 

forced a i r  in t rus ion  i n t o  and through the  test  sample 

a i r  flows within the  test  sample which a r e  induced 

by (forced) a i r  flows i n  the  neighborhood of the  

tes t  sample 

(d) d i f fus ive  water vapor flow 

(e) forced convection of moist air .  

Nevertheless, r e a l i s t i c ,  i n s t a l l e d  insu la t ion  systems may sus t a in  one 

o r  more of t he  aforementioned processes. I t  is well-known from the  

es tab l i shed  heat and mass t r a n s f e r  l i t e r a t u r e  (e.g., Ref. 2-5) t h a t  
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processes such as (a)-(e) ,  above, may subs t an t i a l ly  a l ter  t h e  

heat  t r a n s f e r  cha rac t e r i s t i c s  of a permeable thermal ba r r i e r .  

Accordingly, t h e  research reported here in  examines t h e  

app l i cab i l i t y  of (normally given) R-values of permeable in su la t ion  

materials t o  systems wherein a i r  in t rus ion  e f f e c t s  may be physical ly  

possible .  Several kinds of  f indings are inves t iga ted .  

Laboratory determined R-values f o r  several  types 

and thicknesses of permeable in su la to r s ,  under 

conditions of no ex terna l ly  imposed flows 

Laboratory determined heat  t r a n s f e r  rates f o r  

severa l  permeable in su la to r s  under conditions 

of ex te rna l ly  imposed flows ( a i r  intrusion)  

Theoret ical ly  calculated heat t r a n s f e r  rates 

f o r  permeable insu la t ion  systems which sus t a in  

infiltrative-exfiltrative a i r  in t rus ion  effects. 

(a) 

(b) 

(c) 

Additionally,  f o r  some low density,  permeable insu la tors ,  

na tura l  convection within the  volume may be suppressed by impermeable 

boundaries which define a l l thinll  sample of i n su la to r .  

permeable, low densi ty  insu la tors ,  widely-separated impermeable 

boundaries may be ine f f ec t ive  i n  suppressing na tu ra l  convection. 

If such i s  the  case, t h e  R-value pe r  un i t  length of a given l l thickll  

permeable in su la to r  may be smaller than t h a t  of a corresponding 

l1thin1I sample. 

i n  t h e  in f r a red  regime, increasing thickness  tends t o  suppress 

inf ra red  losses ,  thereby counteracting na tura l  convective lo s s  

increases .  Thus, t h e  work reported here in  attempts t o  determine 

For l l thickll ,  

Where the  insu la t ion  sample i s  a l so  transmissive 
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experimentally the existence-nonexistence of natural convection 

in selected permeable insulation systems. 

experimentally, the effect of air intrusion on a permeable 

insulation system that is sealed on all sides but one. 

case of an insulation system which sustains infiltrative-exfiltrative 

flows, an analysis is presented which shows that the classic use 

of R-values, taken in conjunction with a presumably separable 

"infiltrative loss" is generally inadequate to specification of 

the system's heat loss rates. 

It also examines, 

For the 



4 

11. EXPERIMENTAL STUDIES 

A number of d i f f e r e n t  experimental apparatuses were employed 

i n  order  t o  address a series of separate  i ssues .  

(a) Existence/Nonexistence of Free Convection: 

The first apparatus (Figure 1) was employed t o  examine 

t h e  existence/nonexistence of free convective effects within 

the  body of a permeable insu la t ion  system. In  t h i s  experiment, 

a permeable g l a s s  f i b e r  b a t t  was v e r t i c a l l y  s i t u a t e d  between 

p a r a l l e l  w a r m  and cold boundaries. Extensive, f i n e  thermocouple 

a r rays  were employed t o  determine t h e  horizontal  temperature 

p r o f i l e s  within the  body of t he  g l a s s  f i b e r  b a t t  a t  t h ree  

d i f f e r e n t  heights .  

t h e  temperature f i e l d s  shown i n  Figures 2 and 3 are obtained. 

Figure 2 i s  f o r  a t o t a l  temperature difference of 33.3'K. 

Figure 3 i s  for a t o t a l  temperature difference of 73.9'K. In  

each case, t h e  dashed (s t ra ight )  l i n e  corresponds t o  t h e  pure 

3 For a g l a s s  f i b e r  b a t t  densi ty  of  6.41 kg/m 

conductive case. The s o l i d  curve is  drawn through t h e  temperature 

da ta  f o r  t h e  lowest of  t he  three  planes.  

(b) A i r  Intrusion Effec ts  f o r  a Glass Wool Batt :  

A second apparatus (Figure 4) was employed t o  examine t h e  

e f f e c t s  of two d i f f e ren t  kinds of a i r  i n t rus ion  on a sample of 

a permeable in su la to r  which is  sealed on f i v e  of i t s  s i x  s ides .  

Three cases corresponding t o  an i n su la to r  heated from below, and 

open t o  room a i r  a t  i t s  top surface,  were s tudied.  For the  
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apparatus and experiments of Figure 4, observed temperature 

f i e l d s  a r e  shown f o r  t h e  case of no imposed flow-field, 

f o r  t h e  case of a free stream flow of a i r  a t  1 .3  m / s  (4.5 

f t / s )  p a r a l l e l  t o  the open surface, and f o r  t h e  case of a 

free stream flow of a i r  a t  3.0 m / s  (10 f t / s )  a t  45' with 

the horizontal .  

(c) R-values f o r  Several Permeable Insulators:  

A t h i r d  apparatus was employed t o  examine the R-values 

of several  f u l l y  sealed samples of permeable insulators ,  i n  

order t o  determine possible  na tura l  convective/radiative 

e f f e c t s  f o r  the case where outside a i r  intrusion is  not 

possible.  This apparatus employs a 0.610 m by 0.610 m 

heat  t r a n s f e r  gauge, i n  series with a test  sample of similar 

s i z e .  Both heat t r a n s f e r  gauge and t e s t  sample a r e  s i t u a t e d  

between steady, warm and cold boundaries and v i r t u a l l y  

thermally i s o l a t e d  i n  the  t ransverse direct ion.  This 

apparatus has been previously described and was employed 

i n  t h e  s tud ies  of reference (6).  Figure 5 shows the  measured 

R-value per  u n i t  thickness f o r  two d i f f e r e n t  types of sealed, 

permeable, o p t i c a l l y  thick insu la tors .  Figure 6 shows the 

measured R-value per  u n i t  thickness f o r  a se lec ted  sealed, 

permeable, o p t i c a l l y  non-thick insu la tor .  

Discussion of Experimental Results 

Data obtained and shown i n  Figures 2 - 5 ,  inclusive,  
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c l e a r l y  ind ica t e  t h a t  na tura l  convection i n  sealed,  permeable 

in su la to r s  can occur and t h a t  na tura l  convection as well as air-  

in t rus ion  i n t o  par t ia l ly-sea led ,  permeable in su la to r s  can degrade 

the  e f f e c t i v e  R-value of a permeable in su la to r .  

the  nonlinear temperature p r o f i l e s  i n  Figures 2 and 3 i l l u s t r a t e  

t h e  c h a r a c t e r i s t i c  occurrence of free convection i n  a sealed 

permeable in su la to r  system. 

Thus, f o r  example, 

Figure 4 data  show t h e  manner i n  which hea t  loss rates through 

p a r t i a l l y  sealed permeable in su la to r s  can occur, even f o r  very low 

a i r  in t rus ion  r a t e s .  

t o  note  t h a t  t he  steady s t a t e  temperature of t h e  heated copper p l a t e  

va r i e s  from 50.1 C f o r  t he  "no imposed flow1! case t o  48.3OC for t h e  

l lhorizontal  flowt1 case t o  45.1°C f o r  t he  llflow a t  45°11 case. 

as  t h e  rate of heat ing of t he  copper p l a t e  i s  t h e  same for a l l  three  

cases, it follows t h a t  t h e  hea t  losses  from t h e  copper p l a t e ,  through 

the  permeable in su la to r  above it i s  g rea t e s t  f o r  case (d) and least 

f o r  case (a). 

is  l e a s t  f o r  case (d) and g rea t e s t  f o r  case (a ) .  

i l l u s t r a t e d  by an examination of t h e  cont inui ty  condition a t  t h e  copper 

p l a t e .  

i n su la to r  below t h e  copper p l a t e  and (k2) t he  e f f e c t i v e  conductivity 

of t h e  permeable in su la to r  above the  copper p l a t e .  

copper p l a t e  

In the  experiment of Figure 4 it i s  i n t e r e s t i n g  

0 

Inasmuch 

This can be seen t o  imply that the "ef fec t ive  R-value" 

This can be f u r t h e r  

Let (kl) be the  e f f ec t ive  conductivity of t h e  impermeable 

Then, a t  t h e  
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dT 1 
kl dx 

where q" is t h e  steady, per  un i t  area heat d i s s ipa t ion  r a t e  of t h e  

copper p l a t e  and t h e  subscr ipt  i corresponds t o  the  cases (a ) ,  (b),  

(d), respectively.  q" is the  same f o r  a l l  t h ree  cases. Inasmuch as 

(k) i s  t h e  same f o r  a l l  t h ree  cases, it follows t h a t  

and it follows t h a t  

Thus, t he  e f f ec t ive  R-value i s  least f o r  case (d) and g rea t e s t  f o r  

case ( a ) .  Further, t he  shape of the  temperature p r o f i l e  f o r  case 

(d) shows t h a t  k is  s p a t i a l l y  nonuniform and t h a t  k i s  l a rge r  

i n  the neighborhood of the  permeable boundary than i n  the  neighborhood 

of t h e  copper p l a t e .  

2,d - 2, d 

The experiments employing the  heat  t r a n s f e r  gauge t e s t  apparatus 

have been useful  i n  ident i fy ing  na tura l  convective e f f e c t s  i n  several  

permeable insu la tors ,  f o r  both o p t i c a l l y  th ick  and op t i ca l ly  non-thick 

materials. 
3 3 ce l lu lose  and f o r  96 kg/m Results f o r  a sample of 70 kg/m 

vermiculite are shown i n  Figure 5. These two, sealed,  permeable 
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i n s u l a t o r s  are o p t i c a l l y  thick and increasing t h e  thickness of 

a sample under t e s t  does not s i g n i f i c a n t l y  change t h e  r a d i a t i v e  

contribution t o  t h e  heat t r a n s f e r  r a t e .  

thickness is  degraded s i g n i f i c a n t l y  as sample thickness is var ied 

from 2.54 cm and t o  15.24 cm; a six-fold change. Further, t h e  

r e s u l t s  appear t o  ind ica te  t h a t  thinner-than-tested samples would 

have higher R-values per  unit thickness than those shown i n  Figure 5 .  

The R-value per u n i t  

Results f o r  a sample of loose g lass  f i b e r  wool are shown 

This low density material shows a minimum R-value i n  Figure 6 .  

i n  the  neighborhood of 5 cms thickness.  

correspond t o  the complex in te rp lay  of a na tura l  convective heat 

t r a n s f e r  component t h a t  increases, i n  going from less than 1 cm 

thickness t o  some 10 cm of thickness and a r a d i a t i v e  t ransport  

component t h a t  decays exponentially as thickness is  var ied between 

1 cm and some 10 a. 

These observed data  
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111. ANALYSIS OF HEAT TRANSFER RATES FOR A SYSTEM OF INSULATORS 

WHICH SUSTAINS INFILTRATIVE-EXFILTRATIVE FLOWS 

It is well known that a residential structure whose conditioned 

space sustains infiltrative-exfiltrative flows suffers heat losses 

over and above those assignable to conduction through its thermal 

barrier. 

Where the thermal barrier itself is permeable and subject to 

infiltrative-exfiltrative flows, the effective R-values of the 

barrier are modified and the heat losses for the overall system 

have to be reconsidered. 

insulating material has a cold boundary temperature T 

and a hot boundary temperature T6 at x = 6. 

slab to sustain steady infiltrative (cold) flow from the cold boundary 

Thus, consider the case where a permeable 

= 0 and x = 0 0 

Take this permeable 

to the hot boundary. The governing energy conservation equation with 

flow is 
dT d2T pcu-= p d x  k7F 

where p = density of air, u = velocity of air, c = specific heat 
P 

capacity, k = thermal conductivity of the medium. 

Equation (1) has the solution 
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The heat  transfer rates t o  t h e  cold boundary are suppressed 

by t h i s  (counterflow) i n f i l t r a t i v e  flow. The effect of various 

flow rates has been calculated f o r  the  t y p i c a l  case where 

c = 0.25 BTU/lb/'F (4183 j/kg*K), 
P 
k = 0.014 BTU/h*ft*'F (0.024 W/m*K), 

p = 0.0807 l b s / f t  

6 = 0.333 f t  (0.101 m),  

3 3 (1.294 kg/m ), 

= 68'F (2OoC), to = O°F (-17.78OC). t6 
The heat loss  rate a t  x = 0 is  proportional t o  (dT/dx) a t  x = 0 and 

is l i s t e d  below f o r  several  flow r a t e s  (Figure 7) .  

Clearly, the suppression o f  the  i n f i l t r a t i v e  heat l o s s  rate t e l l s  an 

incomplete s tory .  Within the heated space, there  e x i s t s  a heat 

release rate f o r  t h e  system. In prac t ice  t h i s  heat re lease  rate i s  

of such a magnitude as t o  provide a steady state f o r  the  overa l l  

infiltrative-exfiltrative system. 

the  conditioned space i s  t h e  e x f i l t r a t i v e  wall and t h a t  i t  i s  permeable 

Consider t h a t  t h e  flwarm wallff of  

t o  t h e  same flow as t h a t  previously examined. 

of t h e  warm wall which i s  located a t  x = s.  

of the  warm wall which i s  located a t  x = s + 6. Then, i n  a similar 

Let Ti = i n s i d e  temperature 

Let T* = outside temperature 

manner, we f i n d  t h e  temperature f i e l d  within the  e x f i l t r a t i v e  wall t o  be 
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= Ti - (Ti - T*) Texf. 

where G = pu = mass flow rate. 

losses  f o r  the  e x f i l t r a t i v e  wall and f o r  t h e  i n f i l t r a t i v e  wall are 

given by 

The corresponding conductive heat 

(3) 

The ne t  convective loss  for t h e  system can be shown t o  be 

given by [c G(Ti - To]. 
P 

the  system (0 < x < s + 6) is  given by 

Accordingly, the  t o t a l  heat  loss  through 

- -  

-62 = [-*I (T6 - To) + (Ti - T? 

(6)  

In general, t h e  system heat loss  rate is increased as G = pu 

var ies  from zero t o  large pos i t ive  values. I t  can be shown t h a t  

equation (6) implies a purely convective heat loss rate as G = pu 

becomes very large.  That is, f o r  large G-values: 

Q: -+ c G(Ti - To) 
P 
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The generalized permeable in su la to r  problem which includes 

the  thermal coupling of an i n f i l t r a t i v e  regime (say regime A - B ) ,  

a conditioned space which contains a heat  source, q'", and sus t a ins  

t ransverse losses  (say regime B-C) ,  and an e x f i l t r a t i v e  regime 

(say regime C-D) is t o  be t r ea t ed  elsewhere. 

i n  terms of t h e  coupled d i f f e r e n t i a l  equations: 

I t  may be character ized 

subjec t  t o  t h e  appropriate  boundary and cont inui ty  conditions.  

I t  is  in s t ruc t ive  t o  note  the  s e n s i t i v i t y  of t h e  "ef fec t ive  

R-value" of an in su la to r  when subjected t o  in t rus ive  flow d i r e c t l y  

through i ts  permeable i n t e r i o r .  

p r o f i l e s  [equation (2)] associated with i n f i l t r a t i v e  flow i n t o  a 

heated space, through a permeable in su la to r .  

conditions, t h e  i n f i l t r a t i v e  flow g r e a t l y  suppresses the  llconductivell 

l o s s  t o  the  cold, upstream boundary. O f  course, t h e  increased 

enthalpy of  t he  i n f i l t r a t i v e  a i r  has been supplied by t h e  heated 

i n t e r i o r .  Similar ly ,  one may employ equation (3) t o  describe t h e  

temperature p r o f i l e s  on t h e  e x f i l t r a t i v e  s i d e  of t h e  heated space. 

Figure 7 shows the  temperature 

For invar ian t  boundary 
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For f ixed boundary conditions on the exf i l t ra t ive 

Figure 8 shows t h e  temperature p r o f i l e s  associated with 

insulator ,  

flow rates of 
5 4 

u = 0, u = 8.47 x 10- m/s (1 f t / h r ) ,  and u = 8.47 x 10- m / s  (10 f t / h r ) ,  

respectively.  

increased by t h e  imposed flow. 

of equation (6) t h a t  Q; has a minimum. 

The I1conductivefl heat loss a t  t h e  cold boundary is 

I t  can be shown by d i f f e r e n t i a t i o n  

For t h e  more real is t ic  case of a heated (conditioned) space 

which separates two permeable insu la tors - -a l l  of which sus ta ins  

infiltrative-exfiltrative flow, Figure 9 shows t h e  ana ly t ic  model 

schematics which corresponds t o  equations (8)-(10). The nature of 

t h e  temperature f i e l d  i s  such as t o  r e f l e c t  the  r e l a t i v e l y  warm 

i n t e r i o r  temperature on the  e x f i l t r a t i v e  wall and a r e l a t i v e l y  cool 

i n t e r i o r  temperature on the i n f i l t r a t i v e  wall. 

t h e  general fea tures  of t h e  Figure 9 model f o r  the  cases of Itno forced 

convectiont1 and with forced convection. Inasmuch as (q'") is  the  

same f o r  both cases, t h e  systems heat losses  a r e  t h e  same. However, 

t h e  maximum temperature achieved f o r  the  "no forced convection" case 

is  s u b s t a n t i a l l y  higher. That is, the  Itconditioned spacev1 may be 

considered t o  be more comfortable. 

Figure 10 compares 

I t  a l s o  follows t h a t  solut ion of equations (8)-(10) f o r  t h e  

constraint  t h a t  the  conditioned space temperature maximum be the  

same f o r  (ul = 0) and f o r  (u2 >>O) implies the temperature s t ruc tures  

of Figure 11. 

requires t h a t  qyd > qY1, i n  order f o r  Tmax t o  be the  same f o r  both 

That is, the IIdraftyII condition associated with u2 >> 0 
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cases, 

(ul=O) case corresponds to a more comfortable interior than that 

for (u2 >> 0 ) .  

Even for  the same Tmax, however, it is  clear that the 
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I V .  CONCLUSIONS 

In t rus ive  a i r  flows of several  kinds can serve t o  degrade 

the  insu la t ing  value of various permeable in su la to r  systems. 

permeable insu la tor  which is  sealed on a l l  s ides  but one can have 

i t s  e f f ec t ive  R-value degraded by a forced convective coupling 

a t  i ts  unsealed surface.  Further, a system of two permeable 

insu la tors  which bound a llconditioned space" and which sus ta ins  

infiltrative/exfiltrative flow sus t a ins  heat  loss rates which are 

not derivable from simple R-value considerations.  

such heat  l o s s  rates be determined from the  addi t ion of a simply 

calculated lfconductive loss t1  t o  an estimated " i n f i l t r a t i v e  loss". 

Final ly ,  it is a l s o  seen t h a t  pe r f ec t ly  sealed permeable in su la to r s  

can have t h e i r  e f f ec t ive  R-values degraded by na tura l  convective 

processes. 

A 

Neither can - 
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Figure Captions 

Glass Fiber Batt Heated Along a Vertical Surface. Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5 .  

Figure 6.  

Figure 7. 

Figure 8. 

Figure 9. 

Measured Temperature P ro f i l e s  (Figure 1 Experiment). 

AT = 33.3'K. 

Measured Temperature P ro f i l e s  (Figure 1 Experiment). 

AT = 73.9'K. 

A i r  Intrusion Effec ts  on Heat Transfer  f o r  a Glass 

Wool Batt. 

Free Convective Effects on R-values of Several Permeable 

Insu la tors  (op t i ca l ly  th ick  case).  

Free Convective Effects  on R-values of a Permeable 

Insu la tor  (op t i ca l ly  non-thick case).  

I n f i l t r a t i v e  Temperature P ro f i l e s .  

E x f i l t r a t i v e  Temperature P ro f i l e s .  

Schematic of I n f i l t r a t i o n  + Heating + E x f i l t r a t i o n  Sequence. 

Figure 10. Comparative Heat Loss Mechanisms. 

Figure 11. Temperature P ro f i l e s  f o r  a Fixed Maximum I n t e r i o r  

Temperature, with and without Infiltrative/Exfiltrative 

Flow. 
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