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ELASTIC ENERGY AND METASTABLE PHASE EQUILIBRIA FOR
COHERENT MIXTURES IN CUBIC SYSTEMS

R. 0. Williams

ABSTRACT

Expressions have been derived for the elastic energy due
to coherency for cubic systems for an isotropic structure and
for (100) or (111) habit planes for a lamellar structure. For
the metastable equilibria the usual tangent compositions are
replaced by compositions that are tangent to the elastic
energy curve. For a loss of coherency there is an energy
decrease due to the elastic effects and a further decrease
associated with compositional changes. Information contained
within this treatment permits one to calculate the x-ray
diffraction effects for such structures.

INTRODUCTION

It has been known for many years that when solid solutions precipi-
tate a new phase or decompose to a two-phase mixture in a miscibility
gap, atomic coherency can cause noteworthy effects. Conventionally, the
first process is called precipitation hérdening; the second, spinodal
decomposition. 1In the first place, this coherency leads to strengthening
effects and in the second place it modifies the phase equilibria because
the energy of the system is necessarily increased. Sometimes the new
phases are themselves metastable, but in most cases they are the
equilibrium phases apart from the modification caused by coherency.

Although many aspects of this problem have been considered, there
does not, to our knowledge, exist any treatment that shows how the
metastable phase boundaries are to be calculated. This paper provides a

solution to this problem for cubic phases.
DECOMPOSITION STRUCTURES

Although many different structures are known to occur as a result of
the decomposition of a supersaturated solid solution, we are primarily
concerned with only two. Generally, we are concerned with the possible

structures that result when both structures are cubic.



If the difference in lattice parameter between the equilibrium

phases is small (around 1%) and the interfacial energy is isotropic,

the structure may consist of a more or less random collection of

spherical particles of the minor phase that are coherent with the

matrix. We have represented this structure in Fig. 1, which illustrates

precisely what we mean by coherency — an atom-to-atom matching over

the interface. For this situation, both phases must be isotropically

strained to a common lattice parameter, the smaller phase in tension,

the other in compression. As the volume fractions of the two phases

become similar, the microstructure must be more complex, perhaps an

intermixed Swiss cheese structure. But, as iron—-chromium alloys show,

isotropy can be maintained to a high degree.

Three other systems that

exhibit this structure are Cu-Co, Al-Ag, and Al-Zn.
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Fig. l. Isotropic Structure Consisting of a Collection of Spherical

Particles of the Minor Phase.

LLN



e

M,

The ideal plate or lamellar structure forms on some habit plane for
the simple reason that this drastically reduces the coﬁerency energy, as
we will show. This structure is illustrated in Fig. 2. Within a local
region all the plates are parallel, but in neighboring regions the other
variants will be populated. Although many habit planes may be possible,
we are primarily interested in the one that minimizes the energy; thus, we
need only consider the (100) and (111) habit planes for the cubic systen,
as these will give the extreme values for this morphology.

A third structure, called discontinuous or cellular precipitation, is
of no direct concern here because its coherency energy is essentially
zero., In this structure, phase separation occurs on a relatively coarse
scale at a mobile high angle boundary. The process is very similar to the

pearlite reaction in the iron-carbon system, being in that case a eutectoid

ORNL-DWG 77-12053

Fig. 2. A Lamellar Structure Consisting of Alternating Plates of
the Two Phases., The other variants of the habit plane would be populated
in adjacent regions.



reaction, Cellular decomposition may take place in the two-phase field at
temperatures above which metastable coherent structures are possible.
Cases are also known in which coherent structures are eliminated by this

reaction, the driving force being, in part, coherency energy.
ENERGY CONSIDERATIONS

As a starting point we consider the elastic energy density in terms
of the strains for the two morphologies.
For the isotropic system the three strains are equal, as are the

stresses, such that the stress is given as

g = (Cyp + 2C)p)e (1)
and the energy density is given as

E =% oe = %(C“ + 2Cy9)e? . (2)

For the (100) habit plane the cube axes are also the principal stress
axes. The two stresses in the habit plane are equal, but the stress nor-
mal to the habit plane is zero. This later condition gives the normal

strain €, as

EZ = _2 - EX (3)

such that the habit plane stress, og, is given as
Ox = [Cll + Clz(l —_)]EX (4)
C11
and the energy density as

2C
E = [Cll + Clz(l ——12)]€x2 o (5)
Ci



For the (111) habit plane, the normal direction is again a principal
stress direction (of zero magnitude). Using the set of elastic constants

corresponding to this geometry, the solution is given as

Ci2 — H/3 ,
€2 = 2 g T /s ok o (6)
and
- P t Rl L2
ox = |C11 Cip + H/3 — .. F 2473 Ex (7))

where H, the measure of the elastic anisotropy, is defined as
H= 204 +Cjg—Cjp (8)
The energy density is given as
E =04 € , (9

which can be expressed in terms of the elastic constants and €y similar
to Eq. 5. For H equal to zero, the equations for the (100) and (111)

cases become identical.
TWO—PHASE MIXTURES

Having obtained the required energy density equations in terms of
the elastic constants and the strains, our next problem is that of
obtaining the strains in the two phases such that we can evaluate the
total energy.

Considering first the lamellar structure, if we define the parameter

Z in terms of the lattice parameters as

2(32 - al)
ST TR (o



where subscripts 1 and 2 identify the two phases, it follows that

€] — €2 =2, (11)

for the strains in the habit plane where for example, if phase 2 has the

larger parameter, Z is positive, phase 1 is extended (a positive strain),
and phase 2 is compressed so as to obtain the common lattice parameter in
the habit plane. Further, the sum of the normal forces across a cut nor-

mal to the habit plane is zero, that is,

v10] + vo0y = o , (12)

where v is the volume fraction of the subscribed phase. If we represent

the dependence on the elastic constants as w, that is,

g =we , (13)

the values of the habit plane strains for the two phases are given as

VowoZ

TR (e
and
- =71—;VI—I%W—Z : (15)
The energy density is given as
E = viw €12 + vowgey? (16)
which results in
g o Yavav 2t (17)

Viwi + VoWy

when the substitution is made.
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For the isotropic case, the above equations remain unchanged provided
that the value of w is increased by a factor of 3/2.

We show in Fig. 3 the construction which now gives the metastable
equilibrium. The free energy curve corresponds to immiscibility and the
composition of the equilibrium phases is given as A and B by the common
tangent. For the coherent state the equilibrium is determined by the com-
mon tangent to the elastic energy curve. Specifically, the elastic energy
as given by Eq. 17 is just the height of the shaded area in Fig. 3. That
this is the correct construction for the coherent equilibrium results from
the fact that no other pair of compositions can result in a lower total

free energy. This has been demonstrated analytically.
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Fig. 3. Construction for Determining the Equilibrium for Coherent
Structures. The true equilibrium is given as points A and B determined by
the common tangent. The metastable equilibrium is given by the tangents
to the elastic energy curve, points X; and X;. The height of the
shaded region represents the elastic energy.



Figure 3 further shows that there are two energy changes when
coherency is lost. There is the loss of elastic energy and a further free
energy decrease that occurs as the equilibrium compositions are obtained.

Analytically, the condition of equilibrium is given as

—y—=-2_ (18)

which applies at compositions X] and X; and where V is the atomic

volume. The value of dE/dX may be obtained froﬁ Eq. 17, and when valuated

at X gives

dE WZZ2 (19)
dx Xz — Xl
and at X,
dXx X0 — X
when we use
vy = (X—=X)/(X—X1) (21)

and vyp = 1 — vj. Thus, the evaluation of the metastable equilibrium
is not materially more difficult than the general case where one must use
an iterative approach to establish the common tangent.

For binary cases where Vegard's law holds, Z may be expressed in terms
of Xy and Xy such that the evaluation of Eqs. 19 and 20.is somewhat
simplified.

The case which we illustrated corresponds to a common free energy
curve but nothing in the treatment is changed if the free energy curves
are distinct. This occurs, for example, when one of the phases 1is

ordered.



DISCUSSION

What this analysis shows, when applied to a system showing a miscibil-
ity gap, is that there are three coherent miscibility gaps which divide
the equilibrium gap intd four regions as in Fig. 4. Only discontinuous
precipitation is possible in region I, precipitation on the (100) and
(111) habit planes is only possible within the respective gaps, and the
isotropic structure is only possible within the lowest gap. Taking the
elastic constants as composition independent, the relative position of the
(100) and (111) gaps are determined by the anisotropy factor; for the
isotropic materials they coincide. Based upon the data of Simmons and
Wwangl all cubic metals favor the (100) habit plane except V, Cr, Nb, and

Mo, all of which are bcc and occur together in the periodic table.

ORNL-DWG 77-120S5
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Fig. 4. The Three Coherent Miscibility Gaps. The drawing is scaled
to correspond to the elastic constants of copper, but the results are
reasonably typical.
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The energy of either the (100) or (1lll1) structures relative to the
isotropic case is somewhat more complicated. Specifically, this ratio is
between 0,15 and 0.18 for Ag, Au, Cu, Pd, and Pt for Ejggp/Ejgo. A
value of 0.19 was calculated for Ej};/Ejgo for niobium. Chromium
exhibits near extremes for both ratios, 0.54 and 0.45, respectively. 1In
terms of isotropic elasticity, a small ratio corresponds to a low Poisson's
ratio.

For a miscibility gap for metals for which the sign of the anisotropy
differs, the (100) and (111) curves will cross such that the predicted
habit plane differs on the two ends of the diagram. Because it contains a
disproportionate fraction of the energy, the minor phase determines the
habit plane. Specifically for the uranium—-niobium system that exhibits a
miscibility gap in the bec phase, the uranium-rich alloys should exhibit a
(111) habit and the (100) habit should be favored for niobium-rich alloys.2

The method which we have given is applicable to higher order systems
provided that the composition differences are now recognized as being tie
line lengths. Specifically, one picks two compositions definidg a tie
line which passes through a fixed point in the two-phase regioﬁ which
minimizes the free energy at that point when the elastic energy is
included. If one has a program which determines tie lines in this manner,
the inclusion of the elastic energy is a very minor complication.

Phase equilibria studies for the bcc phase in the ternary system
U-Zr-Nb have been conducted.? Each binary contains an assymetric
miscibility gap and the elastic energy is of importance in each case,
particularly for the zirconium—niobium system. Calculations in the ter-
nary system.which include the elastic energy have been carried out. It is
interesting that in ternary and higher order systems, thermodynamic stabil-
ity can be investigated along tie lines of constant lattice parameter
where the elastic energy is zero. Such tie lines must always exist. Such
calculations for the U-Zr-Nb system indicated a large central region in the
ternary system where decomposition is possible.

Earlier, Cahn3 had considered the importance of elastic anisotropy
on the nature of spinodal decomposition. The elastic density equations

that can be obtained from his work are exactly the same as ours but for a
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factor of 1/2. This factor arises from his considering the average energy
density for a sine composition fluctuation in terms of the maximum strain.
Cahn's treatment provided the expression which gave the spinodal
compositions.

As already indicated, there are a few systems known that give the
isotropic structure. Such systems are limited to those having a small
difference in lattice parameter (less than two percent). There are a
number of systems, including Au-Pt, Cu-Ni-Co, and Cu—Ni—Fe, that appear to
closely approximate the ideal (100) structure. There are many systems
that form plates, but the tendency for adjacent plates to be parallel is
not too great. Such structures must have an elastic energy higher than
for the ideal plate structure, but the difference may be modest. 1In par-
ticular, the importance of parallelism decreases as the volume fraction of
the minor phase decreases. The simplé cubic arrays of cubes which is com-
monly, seen in nickel-base alloys which form NijAl must also have an
elastic energy greater than predicted for the (100) habit plane. Cahn
considered this to be the structure that his analysis predicts for the
(100) softness or habit plane.3

We have not included the thermoelastic effect in our calculations.

To a first approximation this effect cancels, being of similar magnitude
but of opposite sign in the two phases. Further, this effect is linear
with stress and becomes relatively less important at high stresses com-—
pared to elastic energy which is quadratic with stress.

In our derivation we have given the expressions required to calcuate
strains normal to the habit planes. These are important for calculating
the x-ray diffraction effects from such structures. X-ray calculations
can be done rather simply by considering a large unit cell of the usual
dimensions in the habit plane but extending through one or more periods of
the structure normal to the habit plane. The normal strains are used to
position the atoms in this structure and the average scattering power is
determined by the compositions. Possible ordering in one of the phases is
easily accommodated. The intensity is calculated by standard methods.
However, the final intensity results from averaging the intensities for

all’variants of the habit plane.
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One can translate such structures into sets of parameters that
describe the short-range order and the displacements and can calculate
the intens}ty using the standard expression for the diffuse scattering for
alloys. There is nothing wrong with this approach, but the above method
is much easier. In particular, the first method does not suffer from
termination effects which will surely be encountered using diffuse scat-
tering calculations. For the isotropic structure, the later method is
more attractive because, ideally, the displacements are zero.

Tien and Copley4 have considered the effect of stress on changing
the morphology of the Ni-NijAl structure at elevated temperatures. The
anologous predictions for the plate structures ére made in terms of the

parameter

(vez) + (vez)o (23)
t
The size of this term will be very small compared to the magnitude of its
components, but it need not be zero. If, for example, this parameter is
negative, a normal compressive stress would enhance the amount of material
populating this particular habit plane among its variants. The effect

should operate during decomposition or during subsequent annealing.
SUMMARY AND CONCLUSIONS

1. Equations for calculating the elastic energy due to coherency
have been derived for cubic phases.

2. Cases considered are the isotropic structure, and the (100) and
(111) habit planes for plate structures.

3. The plate structures will always be of lowest energy, the par-
ticular habit plane being determined by the anisotropy factor in agreement

with the work of Cahn.3

4. Because of the compositional dependence of the elastic constants, -

it is possible that in some systems the habit plane will change with
composition.
5. When the lattice parameter difference is sufficiently small,

the isotropic structure can form.

\f
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6. For the metastable equilibria the common tangent construction is

replaced by the anologuous construction using the elastic energy curve.

This calculation is not materially more difficult than the standard calcu-

lation. It also applies to systems of higher order.

7. From the parameters used in this formulation it is possible to

carry out calculations of x-ray diffraction using a unit cell sufficiently

large to represent the structure.

8. Loss of coherency is accompanied by an elastic energy decrease

plus a free energy change resulting from compositional changes.
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