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cction O

0.1 Abstract

DOT IV is designed to allow very large problems to be solved on a
wide range of computers and memory arrangements. New flexibility in both
space-mesh and directional-quadrature specification is allowed. For example,
the radial mesh in an R~Z problem can vary with axial position. The directicnal
quadrature can vary with both space and energy group. Several features
improve performance on both deep penetration and criticality problems. The

program has been checked and used extensively on several types of computers.

0.2 Foreword

In its present state of development, this preliminary report has
been sufficient to guide use of the code at several laboratories. It is
obviously lacking detail regarding theory and solution technique. It is

It is our intention tc publish a more complete document at a later time.

0.3 Acknowledgement: The authors wish to acknowledge the contributions of

F. R. Mynatt, ORNL, who proposed and guided this project; Virginia Glidewell
and Susan Engle for typing early drafts; and to Eddie W. Bryant, who prepared

the manuscript for publication.

0.4 Limitations As of August 1978

All of the features have been insured operable at one time or another
except two, which must not be used:
(1) Criticality searches, and

(2) PL variable by group or material.

Problems using the discrete~ordinates method together with space-

dependent rebalance and either periodic boundary conditions or internal



boundary scurces will find convergence slow and erratic. This is due to
limitations of the rebalance method used, and it may be corrected in
later releases. Internal boundary source problems wmust also have

XNF=0. The group source summary and the balance tables will not be

correct.

Diffusion theory problems must not use internal or external boundary
sources, variable mesh, or variable quadrature. A diffusion iteration
cannot produce internal boundary source output or an "angular flux

tape.'" The Pl module is very limited, and its use is not recommended.

The special geometries, INGEOM>10, have not been completely

checked and are not guaranteed.



Section 1. Program Abstract

1.1. Program: The DOT-IV Two-Dimensional Discrete Ordinates Transport

Code.

1.2. Problem Solved: DOT IV determines the flux or fluence of particles

throughout a two-dimensional geometric system due to sources either

generated as a result of particle interaction with the medium, or

incident upon the system from independent sources. The principal application
is to the deep penetration transport of neutrons and photons. Criticality
(k-type and search) problems can be solved. Numerous printed edits of

the results are available, and results can be transferred to output

files for subsequent analysis.

1.3. Method of Solution: The Boltzmann transport equation is solved

using the method of discrete ordinates, diffusion theory, or a special
"combined Pl" solution. 1In the discrete ordinates method, the primary
mode of operation, balance equations are solved for the flow of particles
moving in a set of discrete directions in each cell of a space mesh, and

in each group of a multigroup energy mesh. Iterations are performed

until all implicitness in the coupling of cells, directions, groups, and
source regeneration has been resolved. Methods are available to accelerate
convergence by space-dependent rebalance and by successive over-relaxation.
Anisotropic cross sections can be expressed in a Legendre expansion of

arbitrary order. Output data sets can be used to provide an accurate

restart of a previous problem.

Special techniques are available to remove the effects of negative
fluxes caused by the finite space and direction meshes, and of negative
scattering due to truncation of the cross~sectlon expansion. The space
mesh can be described such that the number of first-dimension (I) intervals
varies with the second dimension (J). The number of discrete directions
can vary across the space mesh and with energy. The order of Legendre

expansion can vary with cross-section set and with energy group.



Provision is made to treat sources resulting from the first collision
of particles from a point source. In this case, flux due to uncollided

particles is included in the output edits.

Direction sets can bhe biased, with more discrete direction segments

per unit solid angle in some directions than in others.

1.4. Related Material:

Microscopic cross-section input file
Independent source file (optional)
Flux guess input file (optional)
Flux result output file (optional)

Total source output file (optional)

Related Programs

GIP — prepares cross~section input from card or tape input
GRTUNCIL - prepares first-collision source (IBM users only)

RTFLUM -~ edits flux files and converts to/from other file formats

1.5. Restrictions: External force fields or non linear effects cannot

be treated. Flexible dimensioning is used throughout, so that no restrictions
are imposed on individual problem pavameters. Certain options, especially
diffusion and P, theories, are not compatible with variable mesh and

1
quadrature problems.

1.6. Computers: DOT IV is designed to be applicable to most sophisticated
computers which support direct (random) access disk storage or the
equivalent. It has special provisions for efficient use of a large,

slow memory from which data are moved to fast memory in strings. Proper
operation has been demonstrated on the IBM 360/75, 360/91, 360/195,
370/155, 370/168, and 3033 computers, and on the CDC 7600, CYBER 176,

and STAR 100 computers. |



1.7. Running Time: Running time is roughly proportional to:

Flux work units (FWU) = number of space mesh cells x number of
directions x number of energy groups x
number of iterations per group. Depending

on the options chosen, a rate of 1.3 to 2.3 million FWU per minute on
the IBM 360/195 is typical. Thus, a very large problem with 5,000 space
cells, 48 directions, 50 energy groups, and 10 iterations per group

would require roughly 1 to 1.5 hours of 360/195 CPU time.

1.8. Programming Languages: The program 1s operable with 100%Z FORTRAN
1
language. The standard ANS STD. 3~1971 was followed. Machine-dependent

features are localized and flagged with special comment cards. Roughly

10% of the FORTRAN has been translated to IBM assembler language for
optional use, giving more than double the usual execution speed. The

size of the routines which benefit by assembler language has been minimized

to allow similar treatment on other machines.

1.9. Operating System: The IBM version uses 0S5 Version 21. No special

requirements are made of the operating system. Two types of overlay

facility can be used if available.

1.10. Machine Requirements: Memory must be approximately 50,000 words

for a small problem, expanding with problem size. External data storage
must be provided for 8 scratch files, of which 4 must be direct (random)
access. User-supplied input and output data files must be supplied on

sequential~access devices, tapes, or the equivalent.

1.11. Authors: Currently responsible: W. A. Rhoades, Oak Ridge National
Laboratory, P. 0, Box X, Building 6025, Oak Ridge, TN 37830.
Other ORNL authors or major contributors: D. B. Simpson, F. R.

Mynatt, W. W. Engle, Jr., and R. L. Childs.

Questions concerning the RSIC-distributed code package should be
referred to the Radiation Shielding Information Center (RSIC), Oak Ridge

National Laboratory, P. 0. Box X, Oak Ridge, Tennessee 37830.



1.12. Reference:

W. A. Rhoades and F. R. Mynatt, "The DOT-IIT Two-Dimensional
Discrete Ordinates Transport Code," ORNL-TM-4280 (September 1973).

F. R. Mynatt, F. J. Muckenthaler, and P. N. Stevens, ''Development
of a Two-Dimensional Discrete Ordinates Transport Theory for

Radiation Shielding," CTC-INF-952 (August 1969).

1.13. Material Available: The code package is available from the Radiation

Shielding Information Center (RSIC), Oak Ridge National Laboratory,

P. 0. Box X, Oak Ridge, Tennessee 37830. Approximately 43,000 logical
records of information (FORTRAN source programs, optional IBM Assembler-
Language routines, sample problem input and output) and a descriptive
document (follows Standard ANSI N413-1974) are available. From one to three
full reels of magnetic tape, dependent on a given computer installation

environment, are required for transmission of the material.

1.14. Abstract Author: W. A. Rhoades, ORNL.




Section 2. Introduction

The primary objective of the DOT-~IV project was to allow large
shielding problems to be solved as a single unit. The demand for complexity
and detail in analysis of shield systems had forced analysts to a "piecewisge"
approach. Several segments of a problem were solved separately, coupled
at the boundaries in a non-iterative fashion. Changes in space mesh and
directional quadrature were performed during the coupling steps. This
system had many practical difficulties. Solving a problem in several
segments routinely involved weeks of delay, since each segment tied up
an entire computer for many hours, and each depended upon the results of
the previous segment. Problem setup was complicated, as was assembling

the fragmentary results into a single product,

The DOT IV code is designed to solve such problems as a unit. The
long running time is made more acceptable by a reduction in memory
requirement, allowing large problems to share the computer capacity with
other jobs. Flexible storage capabilities, together with certain other
novel features, make the code applicable to a wide range of problems,

and operable on many dissimilar computer types.

DOT 1V performs all of its computations in a small "working memory"
sufficient to calculate fluxes along a single row of the space mesh.
(Figure 2.1). This corresponds to "SCM" on a CDC-7600. The remaining
memory is used as a "direct-access buffer" area to hold data for as many
rows of the space mesh as will fit. A data-manager subroutine moves row
daf; between buffer and working memory as needed. Thus, the logic of
the problem-solution subroutines does not depend upon the organization
of the buffer. Efficient input—output (I/0) routines move data corresponding
to blocks of the space mesh between buffer and external storage devices.
On CDC computers, this buffer concept makes effective use of the large,
slow memory, "LCM." On IBM computers, it allows 'chained execution" of
the data transfers, so that a very large buffer can be filled while the

CPU is at work on another job.
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Fig. 2.1. DOT IV Split-Memory Storage Example



Section 3. Theoretical Considerations

3.1. Units DOT IV can run either in SI units or in traditional units:
Optional

ST Units Traditional Units
Space Dimensions, R, Z, X : Meters (m) Centimeters (cm)
Time, t Seconds (s)
Rotation Fraction, © : Dimensionless
Spherical Angle Fraction, W : Dimensionless o
Atomic Densities : 1/m3 1/A3 (Atoms per Cubic

Angstrom)

Micro Cross Sections, © : m2 barn (10—24 cmz)
Macro Cross Sections, © : 1/m 1l/cm
Scalar fluxes, N : l/mz' 1/cm2-s
Directional fluxes, n : l/mz-s l/cmz's
Boundary sources : Same as directional

fluxes
Distributed sources : 1/m3's (per unit Z l/cmz‘s

in XZ or R6 geometries)

The directional weights sum to unity:

and directional fluxes are normalized such that, if the flux is isotropic,

then the scalar and directional fluxes are equal in measure:
N=35WN
m m
2 .
The Nm/4 7 = directional flux in units of 1/m :s-Sr; also, %27 = rotational

angle in units of radians (rad). 1If the time unit is dropped from the

sources, then the fluxes become fluences, without the time unit.
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3.2 Positive Solution of the Difference Equations

Development

The two-dimensional discrete-ordinates transport equation can be

written: *

. —-— .. — - N
WA N AiNi) +nB{Nj+1 Nj) j (YnﬂiNm&l YmNm) + ONV = SV

e Known from problem data:

A, B,y: cell boundary geometric parameters
total cross section

cell volume

external source

direction cosines

S < Q

H,
Known from previous boundary results:
Ni, Nj, Nm: past boundary fluxes

Unknown :
N: average cell flux

N N

w1 Nyp Nm+l: new boundary fluxes

The simple step model can be obtained at once from this:

. = N = =
Assume: N hi+l Nj+l Nm+l

SV + pA.N, + nBN, + y N
i1 3 mm

Then: N =
oV + “Ai+l + nB + Yol

*0nly forms for u>0 and n>0 are shown. Other forms are very similar.
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As shown in figure 3.1, the average flux is assumed equal to the final
value at the cell boundary. This model is stable for all sizes of space
cell and is often used as the "fixup' when other models generate negatives.

It is not sufficiently accurate for general application, however.

The "diamond-difference” model can be regarded as equivalent to a
linear variation of flux between boundaries with the average located at

the midpoint (figure 3.2). Accordingly, it is sometimes called the "linear"

model. To obtain dit:

1 R 1, .
Assume: N = E{Ni+l + Ni) = E{LJJ_H + Nj) = 2(Nm+l + am)

=

So that: N = 2N - Ni; N, = 2N - N ;

= — N
i+1 j+1 i’ Nppp = 2 - N

N
SV + U‘Ai 1 + Ai]Ni + ZnBJj + (Y; 1 + v )N
Then: N =

oV + 2{uAi+l + nB + le)
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'
!
!
[ x N
v % i+l
{
|

Figure 3.1. Step model

i+l

Figure 3.2, Diamond-difference (linear model)

i+l

Figure 3.3. Weighted—~difference model
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The weighted-difference model uses three new parameters to Interpolate

between linear and step models (figure 3.3):

Assume:
N - N N - N N ~-N
1 N
a = — 3 b == S ; C = e
Noep =Ny 3+~ Nj Sr ~ N
So that:
1-a 1 1-b 1 l~c
r = TN — — = <N — = - P
Ii+1 N ( a }N ? j+l bq ( b )NJ ? Nm+l N ( c ’Vm
Then:
l-a ... 1-c N
SV + U(T Ai+l + AL) Ni + Ethj + ( p YI‘IH’]. + Ym)ﬂm
N =
1 1 1
A - =
VA AL TRt DY

1 1
Defining: M = 1/(0\1 + ﬁUAiﬂ + EnB + )

EYm+l
Then:
N - M SV + L‘)BN. + ~l:~gy + v IN + JuA., - (1-a)|cV + lnB + 1*{ ]N.
“i41 0 alt b] ¢ ‘mkl m| m it b c'm+l ] i
M l-a 1-c 1
H, . = & == ? 228 N+ - (1-b)|{oV + =pA, o 4+ = N,
NJ—H. b SV + U{ a Ai+l * Ai) qi + ¢ ‘mtl + Ym)\lm [T]B ( o au i+l CYITH'I)} Lq]

g 1-a N L 1 1 N
- L-a : N4 s - (1-c + oA, o+ Laglly
N1 SV o+ “( PECTS I Ai) ot pnB At [Ym a "")(OV A T RN,

e

04
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Non-negativity can be assured by bounding a, b, and c between 1/2 (linear

model) and 1 (step model); and, between those limits, to use:

SVé + [nBN + y N
s (ﬁ 3 T m,en * uAiNi

j
1 -a-~= n
2l~ov + nB +
2 n Ym+1)Ni
sve  + N. A o
s (uAi\Ii F (mNm]en F m%Nj
1-b =
oy + -
2( POV H ALY "m+1)Nj
sve  +{uA.N. + i
. {uAl . nBNj)Gn by N
1l ~-¢c=

1
2( zgv + UA]’_“I"

+ nB2
1 nB) i

In the "super-weighted" mode, an arbitrary multiplier is used to
avoid degeneracy and yet to use the accurate linear model when the
source or flow from adjacent boundary is sufficient to guarantee

positivity:

Values of 8 of 0.5 and 0.9 have been tested with satisfactory
results. Apparently any value near 1, but not so near as to produce
numerical degeneracy, is acceptable. An optimum value which gives best
overall accuracy in the transition from linear to step may exist but has

not been studied. A value of 0.9 is presently used in the code.

The DOT 3.5 code used:

and this is retained as the "weighted" mode in DOT IV. It provides more
rapid convergence than othetr modes, and gives smooth spatial flux
distribution in difficult deep penetration problems, where other modes
may show spatial oscillation in the converged result. It is also better
adapted to vectorization. Unfortunately, experience has shown that it

is inaccurate in eigenvalue calculations.



3.3 Available Quadrature Sets

The direction variable % in a radiation transport calculation is
defined by its direction cosines with respect to the geometrical coordinate
system. The possible orientations cof the angular direction vector
define a unit sphere in (u,n,§) space. 1In a discrete ordinates calculation,
this continuous direction space is represented by a discrete set of vectors
known as the "discrete ordinates directional quadrature set:"

o~ ~

i+ 3 :

L nmJ + §mk
with the constraint

= 1.0

The "weights" of the quadrature set, Pm,are proportional to the areas
subtended by the solid angles associated with the specified directions.
They correspond to fractions of the total surface area of the unit sphere

and are generally positive with the normalization

Proper ordering of the directions is essential. For the DOT code
and certain other codes, all directions with common n must be grouped
together in order of increasing uw. Each such group must haVe, as its
first member, an arbitrary boundary direction for which § = 0. Thus,

for a given n:
Hg = — ¥l -
These directions are assigned weight = 0. All negative n's must precede

all positive n's. 1In a two-dimensional code, only 4 quadrants are

considered, the others being redundant.
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Full Symmetry

Fully symmetric quadrature sets are those exhibiting complete

rotational symmetry; i.e., the discrete (ui, n §i) coordinates chosen

i
to represent the direction vectors are required to be invariant under
all 90 degree rotations about the U, 1, or 8 axis. Hence, each set of
U, N, 8§ coordinates must be symmetric with respect to the origin; and,
further, the set of projected points @i on each axis must be the same,.
These conditions dictate that quadratures weights also be chosen in a

symmetric fashiomn.

All @i except 0 are determined by the complete symmetry requirement

and the fact that uz + n2 4+ §2 = 1. The selection of familiar Gaussian

automatically sets

5, = /1 -u’*-n’

1L 1

which is not a Gaussian set; and therefore, the Gaussian directions are not

fully symmetric.

No Symmetry and Half Symmetry

Complete symmetry is required only in three-dimensional geometries.
In lower dimensional geometries, a relaxation of symmetry requirements

allows additional degrees of freedom.

A simple such relaxation is to keep the point and level arrangement of
complete symmetry while allowing the points on each axis to be chosen from
an independent set; the only requirement being that the points lie on the
unit spherej; i.e.,

U?_+n2+§2::1

This corresponds to a "no symmetry" condition.
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The "half symmetry' condition requires rotational symmetry about one
axis only, so that Ui2 = niz, and §i = i/fwiwﬁgra:_ﬁzz . Thus half symmetric
quadrature sets are those which are invariant for 90° rotations only about
the § axis. (Note the contrast to fully symmetric sets that exhibit

rotational invariance about all three axes).

Unlike fully symmetric sets, the O's of a half symmetric set can be
arbitrarily chosen. TFor an S_ half symmetric set, they are usually chosen
to be the zeros of a Nth degree Legendre polynomial, and such was the case

for the sets available with DOT IV.

Half symmetric quadrature sets available are the S4, S6, S8, and 510
sets and were generated by using the DOQDPscode. The N/2 positive roots
of the Nth order Legendre polynomial (input descending order) were input

as the values for O.

Biased Quadrature Sets

Biased quadrature sets are those quadrature sets which do not have
an equal number of directions in the positive and negative domain of one
of the variables; i.e., they are "biased" by having a larger number of

directions in some portion of the unit sphere.

These sets are used when the neutron flow is highly anistropic in some
preferred direction. The biased quadrature sets available are the 100, 166,
and 210 direction downward biased sets and the 100, 166, and 210 direction

upward biased sets.

100-Direction Biased Sets. The 100 direction sets contain 65 directions

in the biased hemisphere and 35 directions in the unbiased hemisphere.
The directions in the unbiased hemisphere were taken from the S10 half
symmetric set. The directions in the biased hemisphers are also from the
S10 half symmetric set; however, the first eta level, containing three
points, has been replaced by 11 new levels, each containing three points.
These 11 replacement levels were taken from a high order one-dimensional

quadrature set.
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166~-Direction Biased Sets. The 166 direction sets contain 131

directions in the biased hemisphere and 35 directions in the unbiased
hemisphere. The directions in the unbiased hemisphere were again taken
from the S10 half symmetric set. The directions in the biased hemisphere

are from a S10 half symmetric set, in which the first eta level, con-

nine points. These 11 new levels are again taken from a high order one-

dimensional quadrature set.

210-Direction Biased Sets. The 210 direction sets contain 153

directions in the biased hemisphere and 57 directions in the unbiased
hemisphere. They are found exactly like the 166 direction sets with one
addition: the last eta level of both the biased and unbiased hemispheres,
containing 11 points, is replaced by three new levels, each containing 11

points.

R~-Theta Quadrature Sets

The sets available also contain the $2, S4, S6, S8, S10, S12, S14,

and S16 R-8 quadrature sets.

An R-6 quadrature set is a set where the | and § angles are specified
instead of the u and n angles; i.e., it corresponds to a slice through an

infinite cylinder.

Since u? + n? + §% = 1, given any two of the angles, the third one
can be found. An R-0 quadrature set refers Lo the same directions as its
counterpart R-Z quadrature set, but p and § are used to specify the direction
vector instead of U and n. The direction ordering is not changed. The value
of § is stored in the position normally occupied by 1 in data files and

listings, and given the sign of the correspounding n.



1%

The R~0 sets available with DOT 1V were generated from the S2, S4,
S6, S8, S10, $12, Sl4, and 516 fully symmetric B~Z quadrature sets. Note
that the §'s for the zero-weight points are equal to + 0.00001, rather than

0, to maintain the significance of the attached sign.
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Section 4. Programmer's Information

4.1, Programming Language: The DOT-IV program is intended to be easily

adaptable to various computers, and yet, to take advantage of high-
performance structural features. The guidelines of ANS-STD.3-1971! are
followed, in that the very simple FORTRAN language of ANST X3.9-1966

is followed except where deviations:

(1) Provide important improvement in capability, and

(2) Can be localized and documented in some way.

The recommended procedures of the US DOE/DRRT Reactor Physics Branch Committee on
Computer Code Coordination (CCCC), as reported in LA-5486-MS?, have been

heeded where applicable.

Where a few statements of machine-dependent or system—dependent
coding are required, these are indicated by enclosing the statements in
a pair of 3-character flags. The local adaptation programmer is then
to choose the sets of statements which apply to his case and '"comment out"
the rest (hopefully by machine), e.g., if the code is set up for IBM

operation, it wmight contain:

CIB
ENTRY IBCDC(H,E,L,P)
CIR
CDC
C ENTRY IBCDC
CDC

The CDC programmer should change this to:
CIB
C ENTRY IBCDC(H,E,L,P)
CIB
CDC
ENTRY IBCDC
CDC



21

Some rather complicated structural differences can be accommodated in
this way. A list of flags used in DOT IV and a suggested list of choices

for several applications are given in Table 4.1.

Table 4.1. Language Flags

Application
A B C D
CIiB IBM~-S5tyle Language X X
CbC CDC-Style Language X X
Csw IBM-Style Word Size and System Features b4
CLW Non IBM-Style Word Size and System Features X X X
CSG  CDC~-Style Segment Loader is Used X
COV  CDC-Style Overlay Loader is Used X
CNO CDC-Style Overlay Loader is Not Used X X X
CSM A Split Fast/Slow Memory is Used X x
CNS The Memory is Not Split X X

NOTF: A check means the feature is implemented on that type of application.

Applications are:

IBM

CDC -~ Segment Loader Available
CDC - No Segment Loader Available
UNIVAC -~ No Overlay Used

o O w >

No special demands are made of the system hardware or software
environment other than the allocation of devices for input, output, and
scratch data sets, and the support of a few system—oriented subroutines.
These subroutines, specified or under review by CCCC, are to be supplied
by the using installation. The corresponding routines are supplied with
the code ONLY for the guidance of the programmer. Extensive comments in
the routines, together with the discussions of LA~6941~MS3, should enable
most expert programmers to fulfill this requirement. The routines to

which these comments apply are:
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TIMER Provides timing and job identification data

REED
]~ Provide sequential access to data files
RITE

DRED ]~ Provide random access to data files

DRIT

DOPC Provides initiating, closing, and certain repositioning
of data files

CRED }_ Provide block transfer of data between fast and slow

CRIT memory.

Subroutines called by the CCCC routines listed above may or may not
be supplied for information only. Such subroutines include:

FBSAM, ITIME, IFTIME, ERRTRA, JOBNUM, and subroutines called by
FRSAM.”

4.2 Overlay Arrangements

Two overlay arrangements are available with the code. The first, called

the "segment structure,"

is applicable to TBM systems or to CDC systems
which support the segmentation features of SCOPE 2.1. This structure

is shown in Fig. 4.1.

The second arrangement is intended to allow operation on a CDC
system which supports only the CALL OVERLAY statemeunt. In this system,
each program unit begins with a main program which has no arguments.

The appropriate subprogram grouping is shown in Figure 4.2. This much
simpler arrangement can also be used on IBM systems by choosing the
second set of overlay cards, and this may have some advantage on certain

systems.

Non—-IBM, non~CDC systems can probably adapt to one of these two

systems, but we have no applicable guidelines at this time.
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Root Segment

Main Program and All Subroutines
Not Named Below

—_—— L

H
B1lA B1B | B1C
FIDOS WORK OUTPUT
FIDAS SOURCE ACTVY
FFREAD WRBNDT ! VLCAL
I— FLXPRT
BALCAL
FFPUN
r’“‘*’“*‘**w J FLTFX6
‘ ‘ , | WRFOF
ClA C1B C2A C2B | c2c { 2D T
L0CO INPUT SBABDO FLUX 1SODIF, i DIFF
MESAGE ANFTT PLANE COEF L pack
LETTER CLUGE ANFOUT SWEEP $2P1
FHLPR FSCON CMSCLR SWEEQ UNPK
HEADER SORSUM WWESOL ZLEAK i REGBAL
JOBNUM MACMX CSETDM ‘
JEOM MESH
WRFOG MESHR
b SORFX
f~~~»~wmm—1 SORX
BTFLO
D1A DlB T
MAXI QUAD
MAXTJ PCON ] "'”1
MSUM GEOM
MSUMD CSUMA D24 | D2RB D2C
SFLXIN - — —— e
MAPR ROW ROV SDIS0
NDXR ! WRDSO
MINSA WRBNDI
SBSRIN
SDISIN
NQUADR
NNZRO
CVRS
CSUMR
WRDSI

Figure 4,1. Segment Structure
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OVERLAY (0, 0)

Contents of Root Segment in Previous Figure

Con

BlA

OVERLAY (1,0)

tents of Segment

OVE

Con
Se

Cla

RLAY (1,1); OVERLAY (1,2)
tents of Contents of
gment Segments

C1B

D1A

D1B

OVERLAY (2,0)
Contents of Segments

B1B
C2A
C2B
Cc2C
D2A
D2ZB
D2C
C2D

OVERLAY (3,0)
Contents of Segment

B1C

Figure 4.2. Overlay Structure

(Refer to previous figure for contents of segments)
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4.3. Storage Allocation

Several labeled common blocks are used to contain individual data items

and a few small arrays:

CMLOC The locators specifying array origins in the container array.
The first word isthe BCD message "LOCL," while the second

word is the length of the container array.

CMDOT Input and code-generated problem parameters of general
significance.

CMFLX Parameters used primarily during the flux calculation.

IOREC Data set status information.

COMIN Standard input-output devices, error processing, titles,

word length.
COMSAM Status information for the random access routines. This
is used only by the CCCC routines and may be removed during

local adaptation.

All arrays of other than trivial length are assigned space in the
container array at execution time; their lengths determined by the input
data. In general, arrays are passed through an argument list before use.
Dimensions not essential to execution are set to 1 to help in holding the

number of arguments within limits.

On 1BM systems, the length of the container array is adjusted at
execution time to the space available (if the assembler-language ALOCAT
routine is used). Space for system buffers to be used with the external
data sets must be reserved by the parameter NBUF in the parameter input
read by subroutine LOCO. Then ALOCAT acquires the necessary storage using
a GETMAIN MACRO-instruction, and passes it as an argument to lower sub-

programs.

On other systems, the container array is located in blank common, and

its size must be set at compilation time.
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If the "split-memory" option is chosen, as in a CDC 7600 application,
a large block of slow memory is assumed to be accessible through the CRED
and CRIT routines. The length of this block is declared in subroutine
ALOCAT. Following CCCC procedures,adata are transferred to and from slow
memory only through the block move routines CRED and CRIT, providing top

efficiency.

On some systems, slow memory is used as an extension of fast memory,
accessed by ordinary FORTRAN statements. On such systems, the split-memory
option should not be chosen. The split-memory option may reduce the maximum

problem size in some cases.

4.4, Internal Data Management

The data storage is managed with only two major operating modes, a
considerable simplification over some systems. The first mode, "problem
stored," presumes that all flux moments and source moments, together with
problem description arrays, will be stored in "working mewory.'" Only
incidental data arrays such as boundary sources and fluxes, cross sections,

and scalar fluxes are kept on external devices, and "slow memory' 1s not

used.

The second mode, '"row stored," stores fluxes and source moments for only
one row of space mesh cells in the working memory at a time. Flux and
source moments for several rows or for the entire space mesh are stored in

"user buffers."

On split-memotry systems, these are located in slow memory.
On non~split systems, the user buffers are located in the container array
beyond the "working memory'" arrays. Data for each row are moved into
working memory as required. The moving is managed by subroutine VARIO, and

is accomplished by CRIT and CRED.

Best efficiency is obtained when an entire space mesh is contained in
the user buffers, but as little as a few rows can be contained if required.
Two storage criteria must be met. The first, and most stringent, is that

the "working memory" arrays must fit the container array. The
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second is that the buffer data must fit the user buffer space. The code
automatically reblocks the space mesh to meet the latter criterion, and

is usually successful in doing so. The volume of data transmission to

the external devices is increased by storing less than the entire space
mesh, but does not otherwise depend upon the number of blocks. The logical
records become smaller as the number of blocks increases, and this may

be important on some systems.

4.5. External Data Management

Data are stored externally on large-scale storage devices in units

called "data sets" or "files."

Fach file is assigned a "logical
unit number" less than 100, and is accessed by a "logical name" in the
program into which is set the logical unit number. As a matter of

convenience, user-supplied input files and result files may be spoken

of as '"'tapes,' while scratch files may be spoken of as "disks," although

other equivalent storage can be used,

All data communication with tapes is sequential in nature, managed
by the SEQIO routine, and accomplished by REED and RITE. The sequential
routines supplied with the code should be directly applicable to all
systems. Coplous comment cards identify the function of these and other

data~handling routines.

Scratch file data communication is channeled through VARIO and falls
into three classes. The "sequential’ files, numbered 81-903, can be pro-
cessed adequately by SEQIO, REED, and RITE; and cards for this operation
are included in VARIO. On IBM systems, a performance advantage is gained

by routing such data through BLKIO, DOPC, DRED, and DRIT.

The "quasi-sequential™ class could be processed adequately by SEQIO
if it were possible to rewrite a record without destroyving subsequent
records. The boundary directional flux file is an example of such

application. On IBM systems, this must be routed to BLKIO, and the
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program supplied will do this. Such files are numbered 94-99. On other
systems, it may be possible and advantageous to route quasi-sequential

files to SEQIO by modifying VARIO.

The third class of scratch access, "blocked random'" access, is also
managed by VARIO. It is called to access all moments of flux or source
for a row. When the first row of a block is read or the last block
written, VARIO, if appropriate, transfers the block between the user
buffer and disk, accomplishing this through BLKIO, DOPC, DRED, and DRIT.
For each row, VARIO calculates the origin of the required data, and moves
the data to the working-memory space required. A special flag indicates
whether the rows are being read in ascending or descending order. Such

files are numbered 91-93.

While the task of VARIO is complicated, the result is that the rest
of the code knows nothing of the details of the blocked storage, and ouly
two indexing schemes are required. The cost of the data moving between

fast core and user buffer has proven to be almost unmeasurably small.

4.6, Programming Style

The programming style is greatly affected by the irregular mesh
requirements. As an example, the simple task of finding the zone number

for space cell (I,J) is normally:

DIMENSTON IJZN(IM,JM)
K = TJZN(I,J)

If IM depends upon J, however, this is not adequate. Instead, we assemble

"indexing pivot" arrays:

J-1

IBJ(J) = E : IM(I); MOy =20

I=0

whereupon, in ANST FORTRAN:
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CALL SUBA(D(LIJZN),D(LIBJ),JM)

SUBROUTINE SUBA(IJZN,TBJ,JM)
DIMENSION TJZN(1)
1J=T+IBJ(J)

K=TJZN(IJ)

RETURN

END

Although cumbersome, this optimizes into code nearly as efficient as
normal FORTRAN., Most of the data arrays are singly dimensioned because

of the irregular mesh features.

A set of "scratch parameters,” Il through 120 and El through E9,
are located in CMDOT for general use. These provide some space savings
and help to distinguish parameters whose use is only over the span of a
few statements from parameters of real significance to which mnemonic

names are attached.

4.7. Special Language Requirements

It is essential to operation of the code that dimensions not needed,
i.e., the length of singly dimensioned arrays and the last dimension of
multiply dimensioned arrays, can be set to 1 if the arrays are only pseudonyms
for space in the container array and if they are not used in READ or WRITE

statements,

It is essential that a given area of the container can be referred
to as either real or integer in various places, so long as the type is
consistent with the data being stored, e.g., in the example above, the

real array D contains integer data TJZN.
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In a few areas, real-type statements such as A(I)=B(I) may be used to move

integer data, or vice versa. But A(L)=~B(I) is never used im such a case.

In FIDAS, for example, the same array may be given two or more names
in the argument list and either name may be used to update the information,
according to type. Non-subscripted data items are never treated in this

manner, however.

4.8. Code Structure

The code is arranged in four essentially independent units, as
indicated in the overlay structure. These units, together with the

"control subprogram" applicable, are:

(1) Parameter Input (LOCO) - input and edit of single parameters
controlling problem size and logic path; printing of header
messages.

(2) Array Input (INPUT) - input of primary dimension~-setting arrays
describing mesh, variation of directional quadrature over the
mesh, and extent of moment expansion; secondary dimension setting
arrays describing the direction sets and various coarse meshes;
general arrays describing other problem conditions; and optional
arrays for internal generation of flux and source data input
files.

(3) Computation (WORK) ~ solution of the transport problem and
gathering of certain data to be edited. Certain output data
files are generated here if necessary.

(4) Output (OUTPUT) ~ provides final normalizing and editing of
results. Writes output data files not handled by WORK.
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Section 5. User's Information

5.1. Caxd Input Data

The card input data for a problem consist of a title card followed
by a variable number of blocks of data separated by a "T" delimiter.
Within each block, a variable number of data arrays are specified, keyed

according to an array number, and identified as to real or integer type.

A separator card must be placed between successive problem decks.
1f it contains the word "DIAG" in the first four columns, a non-fatal
diagnostic will be given by ERRO. If the word "DUMP" appears, a full
fatal dump is given. Otherwise, the next problem begins immediately.
No data are retained in memory between problems. No further execution

is possible after a problem encounters a fatal error.

5.2. Space Mesh Grouping

Several groupings of space mesh cells are used. The most familiar
is the assignment of each space mesh cell to a "material zone." Cross-~

section sets and buckling are then specified by material zone.

One or more zones may be assigned to a "region'" for balance table and

activity output.

An arbitrary "coarse mesh" is specified for the spatial rebalance
operation, A minimum of five storage locations are required for each
space mesh cell and a ratio of three or more fine-mesh intervals per
coarse mesh provides important space savings. The coarse mesh designation
can be relatively arbitrary, since only the convergence speed is affected.

Experience on a given class of problems is the best guide in this matter.
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Ancther arbitrary mesh, the "super mesh" is similarly defined for
search specifications and for specifying various directional quadrature
sets. '"Super groups'" can also be defined, so that guadrature can depend

upon both space and energy.

5.3. Irregular Dimensioning Specifications

The space mesh can be specified such that the I mesh depends upon J.
To accomplish this, several "I-sets" are specified, with differeat numbers
of intervals and different interval boundaries. The ISET(J) array then
relates the proper set of boundaries to the J-level. Prudent use of this
feature can save computation time and storage by concentrating work in

areas requivring a fine mesh, but too-frequent changes can waste time.

The directional quadratures, '"M-sets," are specified by super—zone and
super—-group, as discussed earlier. This allows the user to, for example,
specify a highly biased quadrature in the area of a streaming crack without
wasting such detail elsewhere in the problem. A certain amount of work is
required to perform the translation between sets, however, and so the

number of switches in the mesh should be minimal.

In addition, the order of moment expansion for each cross section
is specified by material, and the order of flux expansion is specified by
group, The cross-section expansion is largely a matter of user convenience
when using data of mixed expansion or in testing the effect of wvarious
expansions, but the flux expansion specification can save 1/0 charges and
storage. The expansion required at intermediate and lower energies is
generally lower than the maximum. The cost of these two features is

trivial.

There are certain restrictions on the mesh sets. The largest I-set
and the largest M-set must fall within the input limits \IMl and IMMI.
Likewise, the maximum cross-section expansion and the maximum flux expansion
order must each be no more than |ISCTM|. Outer boundaries of I-sets must
match, and coarse-mesh and super-mesh boundaries must be contained in alil

I-sets.
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"Strandard" I-sets and M-sets are gpecified in which the boundary
sources and fluxes are kept. The use of a small "Standard M-set' with
a problem using a very large M-set in the interior could eventually save
much space for certain problems. For now, a restrictive set of rules

prevents this until the restrictions are removed. The rules are:

(1) Standard set must have as many directions up and as many down
as any set.

(2) Standard set must have lMMI directions.

(3) Standard set must have as many levels as any set.

{(4) Standard set must be set ##1 (first set) for maximum computing

speed.

5.4. Card Input Format

With the exception of the title card, all data are read in the FIDO

system also used in ANISN,” DOT III,S and other codes.

The FIDO input method is especially devised to allow the entering
or modifying of large data arrays with minimum effort. Special advantage
is taken of patterns of repetition or symmetry wherever possible. The
FIDO system was patterned after the input method used with the FLOCO
coding system at Los Alamos, and was first applied by Atomics International
to the DIF-II® code. Since that time, numerous features requested by users
have been added, a free-field option has been developed, and the application
of FIDO has spread to innumerable codes.

' An array comprises a

The data are entered in units called "arrays.’
group of contiguous storage locations which are to be filled with data at
one time. These arrays usually correspond on a one~to-one basis with
FORTRAN arrays used in the program. A group of one or more arrays read
with a single call to the FIDO package forms a "block," and a special
delimiter is required to signify the end of each block., Arrays within a
block may be read in any order with respect to each other, but an array

belonging to one block must not be shifted to another. The same array

can be entered repeatedly within the same block. For example, an array
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could be filled with "0" using a special option, and then a few scattered
locations could be changed by reading in a new set of data for that array.
If no entries to the arrays in a block are required but the condition
requiring the block is met, the delimiter alone satisfies the input

requirement.

Three major types of input are available: fixed-field input, free-

field input, and user-field input.

Fixed Field Input - Each card is divided into six 1Z2-column data

fields, each of which is divided into three subfields. The following
sketch illustrates a typical data field. The three subfields always

comprise 2, 1, and 9 columns, respectively.

Subfield Subfield Subfield
1 2 3

| [ T A I I

To begin the first array of a block, an array originator field is

placed in any field on a card:

Subfield 1: An integer array identifier < 100 specifying the data

array to read.

Subfield 2: An array-type indicator -

“$" 1if the array is integer data
"%" if the array is real data

Subfield 3: Blank

Data are then placed in successive fields until the required number
of entries has been accounted for. A sample data sheet shown below

illustrates this input.

In entering data, it is convenient to think of an "index'" or "pointer"
which is under control of the user, and which specifies the position in

the array into which the next data entry is to go. The pointer is always
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positioned at array location #1* by entering the array originator field.
The pointer subsequently moves according to the data operator chosen.
Blank fields are a special case, in that they do not cause any data

modification and do not move the pointer.

A data field has the following form:

Subfield 1: The data numerator, an integer < 100. We refer to this

entry as N, in the following discussion.

1
Subfield 2: One of the special data operators listed below.

Subfield 3: A nine-character data entry, to be read in F9.0 format.
It will be converted to an integer if the array is a
"$" array or if a special array operator such as "Q"
is being used. ©Note that an exponent is permissible
but not required. If no decimal is supplied, it is
assumed to be immediately to the left of the exponent,
if any; and otherwise to the right of the last column.

This entry is referred to as N, in the following discussion.

3

A list of data operators and their effect on the array being input follows:

"Blank" indicates a single entry of data. The data entry in
the third subfield is entered in the location indicated by the
pointer, and the pointer is advanced by one. However, an entirely

blank field is dgnored.

"+" or "-" indicates exponentiation. The data entry in the

Ny

third field is entered and multiplied by 10 , where N, is the

1

data numerator in the first subfield, given the sign indicated

by the data operator itself. The pointer is advanced by one. 1In
cases where an exponent is needed, this option allows the entering

of more significant figures than the blank option.

"&'" has the same effect as "+" on IBM systems.

*NOTE: The symbol "#" denotes the word "number."
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"R" indicates that the data entry is to be repeated Ny times. The

pointer is advanced by Nl.

"I" indicates linear interpolation. The data numerator, Nl’
indicates the number of interpolated points to be supplied. The data

entry in the third subfield is entered, followed by N. interpolated

entries equally spaced between that value and the dati entry found

in the third subfield of the next non-blank field. The pointer is

advanced by N1 + 1. The field following an "I" field is then processed
normally, according to its own data operator. The "I'" entry is especially
valuable for specifying a spatial mesh. 1In "$" arrays, interpolated values

will be rounded to the nearest integer.

"L" indicates logarithmic interpolation. The effect is the same
as that of "I" except that the resulting data are evenly separated in

log-space. This is especially convenient for specifying an energy mesh.

"Q" is used to repeat sequences of numbers. The length of the

sequence is given by the third subfield, N The sequence of N entries

3° 3

is to be repeated N] times. The pointer is advanced by NI*N3' If either

Nl or N3 is 0, then a sequence of Nl + N3 is repeated one time only, and

the pointer is advanced by Nl + N3. This feature is especially valuable

for geometry specification.

"G" has the same effect as Q, except that the sign of the sequence
is changed each time it is entered.

The "N" option has the same effect as "Q"

, except that the order of
the sequence is reversed each time it is entered. This is valuable for

the type of symmetry possessed by quadrature coefficients.

'"M" has the same effect as "N except that the sign of each entry
in the sequence is reversed each time the sequence is entered. For
example, the entries:

123 2M2
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would be equivalent to:
123-3-223

This option is also useful in entering quadrature coefficients.

"Z" causes N1 + N3 locations to be set to 0. The pointer is

advanced by N1 + N3.
"C" causes the position of the last array item entered to be printed.

This is the position of the pointer, less 1. The pointer is not moved.

"0" causes the print trigger to be turned on. The trigger is
originally off. When the trigger is on, each card image is listed as it

is read.

"P" causes the print trigger to be turned off.

"S" indicates that the pointer is to skip N, positions leaving

1
those array positions unchanged. If the third subfield is non-blank, that
data entry is entered following the skip, and the pointer is advanced by
+ 1.
Nl 1
"A" moves the pointer to the position N

subfield.

3s specified in the third

"F" fills the remainder of the array with the datum entered in the

third subfield.

"E" skips over the remainder of the array. The array length criterion
is always satisfied by an "E", no matter how many entries have been specified.
No more entries to an array may be given following an "E'", except that data

entry may be restarted with an "A".
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The reading of data to an array is terminated when a new array
origin field is supplied, or when the block is terminated. If an incorrect
number of positions has been filled, an error edit is given, and a flag
is set which will later abort execution of the problem. FIDO then continues
with the next array if an array origin was read. Otherwise, it returns

control to the calling program.

A block termination consists of a field having "T" in the second

subfield. All entries following "T" on a card are ignored, and control

is returned from FIDO to the calling program.

Comment cards can be entered within a2 block by placing a slash (/)

in column 1. Then columns 2-80 will be listed, with column 2 being used
for printer carriage control. Such cards have no effect on the data array

or pointer.

Free~field Input ~ With free-field input, data are written without

fixed restrictions as to field and subfield size and positioning on the
card. The options used with fixed-field input are available, although

some are slightly restricted in form. In general, fewer data cards are
required for a problem, the interpreting print is easier to read, a card
listing is more intelligible, the cards are easier to keypunch, and certain
common keypunch errors are tolerated without affecting the problem. Data
arrays using fixed- and free-field input can be intermingled at will within

a given block.
The concept of three subfields per field is still applicable to
free-field input, but if no entry for a field is required, no space for

it need be left. Only columns 1-72 may be used, as with fixed-~field input.

The array originator field can begin in any position. The array

identifiers and type indicators are used as in fixed-field input. The
type indicator is entered twice, to designate free-field input (i.e., "$s"
or "**"), The blank third subfield required in fixed-field input is not
required. For example: 31%% indicates that array 31, a real-data array,

will follow in free-field format.
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Data fields may follow the array origin field immediately. The data
field entries are identical to the fixed-field entries with the following

restrictions:

(1) Any number of blanks may separate fields, but at least one blank
must follow a third subfield entry if one is used.

(2) 1If both first and second subfield entries are used, no blanks
may separate them, i.e., 24S, but not 24 §S.

(3) Numbers written with exponents must not have imbedded blanks,
i.e., 1.0E+4, 1.0E4, 1.0+4, or even 1l+4, but not 1.0 E4.

(4) 1In third-subfield data entries, only 9 digits, including the
decimal but not including the exponent field, can be used, i.e.,
123456.89E07, but not 123456.789E07.

(5) The Z entry must be of the form: 738Z, not Z738 or 738 Z.

(6) The + or -~ data operators are not needed and are not available.

(7) The Q, N, and M entries are restricted: 3Q4, 1N4, or M4, but
not 4Q, 4N, or 4M. G is similarly restricted.

(8) A field must not span two cards.

(9) All items on a card entered after a slash in any column except

the first are ignored.

User-Field Input - If the user follows the array identifier in the

array originator field with the character "U" or "V'", the input format is
to be specified by the user. If "U" is specified, the FORTRAN format Lo
be used must be supplied in columns 1-72 of the next card. The format
must be enclosed by the usual parentheses. Then the data for the entire
array must follow on successive cards. The rules of ordinary FORTRAN
input as to exponents, blanks, etc., apply. If the array data do not

fill the last card, the remainder must be left blank.

"V'" has the same effect as "U" except that the format read in the

last preceding "U" array is used.
P y



Mems  Oemeral Exzple of Fido Input

Charge Dete Pope
ICENTIFICATION REMARKS (DO NOT PUNCH)
' 1,3 ' L Begin the 1§ array, fixed-field, integral
TN BN R Enter 1.
N , , F RN P12 Fill array with 2.
* (2, ° Ly _ |Begin the 2% array, fixed-field, real.
C o 1, .,2,3,8, Ly e e |Enter 1.234.
N Lt i L1314 1ol R SRS LN N N
LS -102)3,4 4 %402 . . "
C 3 ¢ oo 1132,3,4 v
" 1 1 i i 1 i ) 7 " 7.0
i L L4 by A blank field is always ignored.
* . 7 N L L 1m e {TeTminate this block.
L Lt L1 L+ 1 420 |No entries may follow T on a card.
R o L ' Begin 3* array, fixed-field real.
e L - Enter 0,1,2,3,4,5,6,7,8,9,10,10,10.
" 3 R 44 1,0 as real numbers.
Vs r? (1,0, 1 1,0, Repeat 3* in free-field, skip
" Jl, 1,2, Ly i s i | to 1lth entry, correct segquence to
3 U 1 A 1 { 1 1 1 1 3 { 3 1 0 "“‘9,10, 1,12.
"4 LA, 10, .10 Begin 4% array, free-field, real.
72,04 L - Enter 1,2,3,4, 1,2,3,4, 1,2,3,4.
" L E, L End reading this array; remainder of array unchange
N L T, (| 1 \ Terminate this block.
o
S, N N S R 20
o ;
e Lt [T S DN WS S SUS B S L. 2 I
R REPEAT 3. INTERPOLATE $.8KIP T - TERMINATE

0%
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5.5. Card Input Specifications

A. Title Card (72 alphameric characters).

B. Parameter Input (Description on Output Edit)

618

NTFLX
NTFOG
NTSIG
NTBSI
(5) NTDSI

NTFCI
NTIBI
NTIBO
NTNPR

(10) NIDIR

NTDSO

623

IADJ
1SCT™
1ZM
M

(5) M

Data Set Logical Unit Reference Numbers

Flux Guess Input Unit (Not Used if = 0)

Flux Output Unit (Not Used if = 0)
Cross~Section Unit

Boundary Source Input Unit (Not Used if = 0)
Distributed Source Input Unit (Not Used if = 0)
(Must be supplied if INPSRM.GT.O)

First-Collision Source Input Unit (Not Used if = 0
Internal Boundary Source Input Unit (Not Used if =
Internal Boundary Flux Output Unit (Not Used if =
Large~Scale Print Unit (All print on standard
output unit if NTNPR = 0)

Directional Flux Output Unit (Not Used if = 0)

Distributed Source Output Unit (Not Used if = 0)
(Terminate Array with "E")

Integer Control Parameters (RV=Recommended Value)

0/1 = Forward/Adjoint Calculation
Maximum Order of Scattering
Number of Material Zones

Maximum Number of lst-Dimension Spatial Interwvals

0)

(Negative Indicates Number of Intervals Varies with

2nd Dimension)

Number of 2nd-Dimension Spatial Intervals
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IGM Number of Energy Groups

IHT Position of Total Cross Section in Cross—Section Table
(See Note 3)

1HS Position of Self-Scatter Cross Sections in Cross—-Section

Table (See Note 3)

THM Length of Cross—Section Table for Each Group
(10) MIXL Mixing Table lLength (See Note 3)

MCR Spare - No Effect

MTP Number of Material Cross—-Section Sets From NTSIG

(0 Implies MTP=MTM)

MTM Total Number of Materials, Including Mixtures
IDFAC 0/1 = No Density Factors/D(1,J) Input as 3%
(15) MM Maximum Number of Directions in Quadrature

(Negative Indicates Quadrature Specified Locally

as 87%)

INGEOM 0/1/2/3/4/5/6 = Geometry Option ~ X-Z, R-Z, R-0,
180°-360° Triangular, 60° Triangular, 90°

Triangular, 120° Triangular (Also See Data

Note 1)
IBL Left Boundary Condition C=Void 4=Fixed Boundary Source
IBR Right Boundary Conditionf Yl=Reflected 5=Albedo
IBB Batom Boundary Condition 2=Periodic
(20) IBT Top Boundary Condition 3=Cylindrical
ISCM Outer Iteration Maxiwmuun
TFXMI Initial Inner Iteration Maximum Per Group

(Negative Indicates Maximum Given as 28%)
TFXMF Find Inner Iteration Maximum Per Group

(IFXMI Used if IFXMF=0)



(25)

(30)

MODE

KTYPE

IACC

KALF

IGTYPE

INPFXM

INPSRM

NJINTSR

NINTSR

NJINTFX

NINTFX
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0/1/2/3/4/5 = Flux Extrapolation Model - Linear
with Step Fixup of Negatives/Linear with Negatives
Allowed/Step/Ordinary Weighted Difference/ Linear
with Super-Weighted Fixup/Super- or 6-Weighted
Difference (RV=0If KTYPE=1, Otherwise 3)
0/1/2/3/4 = Calculation Type -~

Fixed Source/k-Eigenvalue/DB**2 Search/

Concentration Search/Dimension Search

0/1/2 = Rebalance Method -

Groupwise/Source Correction Method*/Space-Dependent
Scalar Method (RV=2)

0/1 = Rebalance Methocd ~ J Method/¢ Method

(RV=0)

0/N = Discrete Ordinates Calculation/Alternate
Theory Specified by Group (7$) For N Outers

(See Note 2)

0/1/2/3 = Flux O or on NTFLX if NTFLX>0/

Flux Specified as FIJ (I,J) For each Group/FIJ(I,J)
*FG(G) /FI(1)*FJ(J) *FG(G)

(See 93%, 94%*, 95% Arrays)

0/1/2/3 = Distributed Source Input Options
Separable as for INPFXM (See 96%, 97%, 98% Arrays)

Interior Boundary Source at NJIJNTSR J-Boundaries
Input From NTIBI (May be 0)

Interior Boundary Source at NINTSR I-Boundaries
Input From NTIBI (May be 0) |

Interior Boundary Flux at NJNT¥FX J-Boundaries
Written on NTIBO (May be 0)

Interior Boundary Flux at NINTFX I-Boundaries
Written on NTIBO {(May be 0)



(35) TIACT

IRED
IPDB2

IFXPRT

ICSPRT
(40) IDIRF

JDIRF
JDIRL
NBUF

TEPSBZ

(45) MINBLK

MAXBLK
LSBT
MSBT
MSDM
(50) IBFSCL

INTSCL
ITMSCL
NOFIS

IFDB27Z

(55) 1SwP

A

Number of Region and Pointwise Activities Calculated
(Negative Indicates Region Activities Only)

(See Data Note 4)

Number of Regions For Activity and Balance Table Output
0/1/2/3=No Effect/Punch 1 DB2 Value/IGM Values

TGM*IRED Values (Negative Suppresses Balance Table Print)
0/1/2=Scalar Flux Printed/Not Printed/Printed

After the Calculation of Each Group

0/1=Cross~Section Data Printed/Not Printed
0/1/2=Directional Flux Not Saved/Saved and Printed/
Saved But Not Printed (Will be Written on NTDIR if
NTDIR>0 and IDIRF>0)

First J-Interval For Directional Flux Output

Last J-Interval For Directional Flux Output

Number of K-Bytes Allowed For Buffer Area

(Default=60) (RV=9 on CDC)

0/1/11/21=No Effect/Use Zone Importance Convergence
(24*% array)/Use and Print Convergence After Last Inner/
Use and Print Convergence on Every Inner

Minimum J-Blocking (0=A1l Groups In Memory Allowed)
(RV=0)

Maximum J-Blocking (Default=8)

I-Set For Boundary Fluxes (Default=1)

M-Set For Boundary Fluxes (Default=1)

M-Set For Dimensioning (Default=1)

Number of Flux Iterations Before First Rebalance
(RV=1 or 2)

Number of Flux Tterations Between Rescaling (RV=1)
Maximum Number of Rebalance Iterations (Default=100)
0/1/2=Fission with x Normalized/Fission With

Input y¥/No Fission

0/1=No DB2/DB2 Supplied by Group, Then Region

Type of Diffusion Theory Sweep(RV=0) (See Data Note 1)
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KEYJN J-Interval For Key Flux Print (Ignored if 0)
KEYIN I-Interval For Key Flux Print (Ignored if 0)
NSIGTP 0/1=NTSIG IS GIP Format/ORDOSW Format
NORPOS Normalize OUTPUT To Table Position NORPOS*FLUX*VOL
(0 ignored)
(60) NORMAT Material Number to be Used in Normalization
(0 Implies Use Macro Cross Section Set, Neg Implies

Do Not Use Density Factor)

MSTMAX Maximum Number of M-Sets (0 Implies JM Sets Allowed)
NEGFIX 0/1=No Effect/Negative Sources Repaired (RV=0)
(Terminate Array With "E")

63% Real Control Parameters
TMAX Maximum Minutes of CPU Time For This Problem (0 Ignored)
XNF Value to Which Source Is Normalized (0 Ignored; Problems
With KTYPE=1 MUST NOT USE 0)
EPS Eigenvalue Convergence Criterion on Outer Iterations
EPP Pointwise Flux Convergence Criterion on Inner Iterations
(5) EPV Volumetric Flux Convergence Criterion on Inner Iterations
EPF Pointwise Fission Convergence Criterion on Outer Iterations
EKOBJ k-Effective Sought in Search
EVTH k~Effective Convergence Ratio
EVCHM Maximum EV Change Per Iteration
(10) EVMAX Maximum Allowed EV or 1/EV
EVKMX Maximum Allowed K-Effective -1
EVI Initial Eigenvalue

DEVDKI Initial Eigenvalue Slope
EVDELK Initial Eigenvalue Increment
(15) SORMIN Maximum Relatlve Fission Extrapolation
(RV=0.5 If KTYPE=1, Otherwise 0)
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CONACC Rebalance Acceptance Criterion (Default=1.0E-3)

CONSCL Rebalance Convergence Objective (Defauli=1.0E~-4)

CONFIX Relative Flux Threshold (RV=0)

WSOLOI Rebhalance Outer Iteration Coefficient (RV=0)
(20) WSOLII Rebalance Inner Iteration Coefficient (RV=0)

WSOLCN Rebalance Constant (RV=1)

ORF Diffusion Theory Flux Acceleration (RV=0.6)

FSNACC Fission Density Acceleration Factor (RV=0)

FLXMIN Minimum Flux For Convergence Tests (RV=0)
(Terminate Array With "E")

Lengths of 61, 62, 63 arrays are subject Lo

change from time to time.

C. Primary Dimension-Setting Arrays (Omit arrays not needed).
NOTE: The symbol "#" denotes the word "number."
718 ISET(J) (#=IM) [1M<0]

Index of radial mesh set to use at each J level.

Default = Set 1

725 IMS (ISET) (#=JM) {IM<0]

Number of intervals in each I set; then fill array with 0's.

738 MMS (MSET) (#=MSTMAX) [MM<O]

Number of directions in each M set; then fill array with 0's.
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74$ ISZNG(IG) (#=1GM) [MM<0]
Super Group Number by Group
Default = Supergroup 1

75% SZNBZ(JSZ) (#=IM) [MM<0]
J Super Mesh Boundaries
Enter as many boundaries as desired. Then f£ill with O.

Default = 1. Super Zone.

76% SZNBR(ISZ) (#={1M|) [MM<0]
I Super Mesh Boundaries

Enter as in 75%.

778 ISCTG(IG) (F=1GM) [ISCTM<0]
Order of scattering by group (Default = 0).

788 NSIG{MT) (#=MTM) [1SCTM<0]

Order of scattering by material (Default=0)

From these, the following are determined:

MGSZN = largest super group number [1 if MM>0]
NJSZN = number of J super zone boundaries {1 if MM>0]
NISZN = number of I super zone boundaries 1 if MM>0]
ISM = # non-zero entries in 71$% [1 if IM>0]
MSM = # non-zero entries in 728 [1 if MM>O]
IMSISM = sum of IMS, all T sets [IM if IM>0]
MMSMSM = sum of MMS, all M sets [MM if MM>OQ]
IMSJM = sum of IMS(ISET(J)), all J [IM*JM if MM>0]
IMA = |TM]
MMA = |MM|

MMSIMS = MMA*IMA
MMSJIM = MMA*JM
IHP = IHBM+1 if IHS>IHT+1, otherwise = IHM



D. Seco
NOTE

81#*

82%*

83%

84$

85%

86%*

878

From these, t

JCM
ICM
NREG
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ndary Dimension-Setting Arrays
: The symbol "#" denotes the word 'number."

W(M,MSET) (#=MMSMSM)

Directional weights

EMU (M, MSET) (#=MMSMSM)

N, cosine of angle with X or R direction.

ETA(M,MSET) (# = MMSMSM)

n, cosine of angle with Y, Z, or @ direction.

TZNRG(IZ) (#=1zM) [IRED>0 or IACT#0]

Region number by zone (Default = 1 region per zone)

ZCMEB (JC) (#=J11)

Enter as many boundaries as desired. Then £ill with O.

Default = 1 course mesh for each interval. Only upper

boundaries are entered; i.e., do not enter 0.0 if the

ZIN array starts with 0.0.

RCMB (IC) (#=IMA)

I coarse mesh boundaries, as in 85%.

1JGSZ (152,357 ,IGSZ) (#=NISZN*NJSZN*NGSZN)

M set by I super mesh, then by J

super mesh, then by super group.

he following are determined:

= ## of coarse mesh boundaries entered in the ZCMB array

= # of coarse mesh boundaries entered in the RCMB array.

i

maximum of IZNRG(IZ) array if entered. Otherwise 1ZM.

[MM<0]
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Data Arrays (Omit arrays not needed)

NOTE:
IR
2%
3%
4%

5%

6%

7%

8%

9

10%

11$

12%

13$

14%

15%

16%

17%

18%

19%

The symbol "#" denotes the word "number."

CHT(IG) fission fractioms, ¥, by group (#=IGM)
ZIN(J) Y, Z, or O space-mesh boundaries (#=JM)
DNIJ(I,J) density factor (#=IMSIM) [IDFAC>0]

(Default=1.0)
RIN(I,ISET) X or R space-mesh boundaries (#=TIMSTISM+ISM)
ENER(IG) Top energy group boundaries + bottom energy of
last group + bottom energy of last neutron group, or 0
if all groups are gammas. (IGM+2) [NTFOG>0]
DBR2Z(12) DB2 by group, then by region (#=IGM*NREG) [IFDB22>0]
ITHYG(IG) theory by group (#=IGM) [IGTYPE>0] (See Note 2)
IJZN(I,J) material zone by fine space mesh (#f=IMSIM)
TZMT(IJZN) material number by material zone (#=17ZM)
(Negative signs have no effect on this array)
MIXT(MIX) mixture ID (#=MIXL) (See Note 3)
NUCL(MIX) nuclide ID (#=MIXL)
DENS (MIX) number density (#=MIXL)
MATL(MT) ID number for material (#=MTM)
(Negative for all PL components means use successive ID's for
1L>0) (Default MATL(MT)=MT)
ZNTSR(JNTSR) Y, Z, or © boundary positions for J-boundary
source input (#=NINTSR)
RNTSR(INTSR) X or R boundary positions for I-boundary source
input (#=NINTSR)
ZNTFX(JINTFX) Y, Z, or O boundary positions for J-boundary
flux output (#=NINTFX)
RNTFX(INTFX) X or R boundary positions for I-boundary flux
output (#=NINTFX)
FJISRZ(JSZN) J-Super zone search fraction (#=NJSZN)

[KTYPE=4]
FISRZ(ISZN) I-~Super zone search fraction (#=NISZN)
[KTYPE=4]
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20% ABDOL(IG,J) left boundary albedo (#=IGM*JM) [IBL~51]

21* ABDOR(IG,J) right boundary albedo (#=IGM*JM) [IBR=5]

22% ABDOB(IG,I) bottom boundary albedo (#=TGM*IMA) [IBB=5]

23%  ABDOT(IG,1) top boundary albedo (#=IGM*IMA) [IBT=5]

24% EPSBZ(IZ) flux error importance by material zone (#=1ZM)
[if TEPSBZ>0]

258 ICMAT(IAC) material to be used in activity calculations
(#=|TACT|) (See Data Note 4)

265 TICPOS(IAC) cross section table position for activity (#:]IACTl)

27*% ACMUL(IAC) activity multiplier (#=|IACT|)

28% TITMBG(IGM) initial iteration limit by group (#=IGM) [if IFXMI<O0]

External Boundary Source Input [INGEOM<10 and IBL,IBR,IBB, or
IBT=4 ]

NOTE: The symbol "#" denotes the word 'number."

91*% SII(M,J) ({=MMA*JIM) [IBL=4 or IBR=4]
T boundary source for a group

92% SJI(M,I) (#=MMA*IMA) [IBB=4 or IBT=4]

T

Left and right sources are intermingled in the same array according to

direction. If p>0, the source applies to the left boundavry; if p<0, to

the right. Likewise, if n>0, a J-boundary source applies to the bottom; if

n<0, the source applies to the top boundary.

1f TADJ>0, the group of lowest energy must be entered first. Omit

block and delimiter if INGEOM>10, or if no arrays are required.

G.

Flux Guess Input [INPFXM 0]
93*% FIJ(I,J), FLI(I,J) or FI(I) as INPFXM=1l, 2, or 3 ({f<=IMSJM,IMSIM, or
IM) [INPFXM>0]
94% FI(J) (#=1M) [INPFXM=3]
95% FG(IG) (#=1IGM) [INPFXM>1]
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Each array of this block must be followed by "T". If no arrays
are required, no "T" is required. If TADJ>0, the group of lowest

energy must be specified first.

H. Distributed Source Input [INPSRM>0]

96*% as 93%
97% as 94%*
98% as 95%

Notes:
(1) Special Geometry Features

If INGEOM>10, a one-dimensional prcblem will be solved with vertical
flow suppressed. Use void boundary condition at top and bottom. No vertical

leakage will result.

If INGEOM=10 or 11, slab or cylindrical geometry will resulr, with
sources specified in the normal way. If JM>1, the effect is, in general,
to run several independent one-dimensional problems. A k-calculation of

this type would be difficult to interpret, however.

If INGEOM=20, KTYPE=0, and IBR=4, a combined reflection/transmission
problem is solved. Omit the 91% and 92% array blocks, and supply the input
spectrum as CHI. The code will generate a boundary source in the leftmost
direction of non-zero weight of each downward n level. The value of JM
must be the number of downward N levels. In this case, J corresponds to
the incident n level, not to a Y-direction mesh. The 2% array should be
filled with the values 0.0, 1.0, 2.0, ... JM. The first n level will
correspond to the last J level. |CHI(IGM)| particles will enter each
level in each group. If CHI{I)<0, the emerging flux is printed by direction,

then by space interval.

If INGEOM=30, emerging flux will be calculated for a source entering
each group JDIRFSIGISJDIRL and leaving all groups IGISIGH<IGM. The total



n2

source per group in each J-level is ICHI(IGI)\. If CHI<O, the flux from
sources entering that group will be printed. The problem is "double
differential," in that the flux leaving each group corresponding to a

source in each input group is calculated.

If 3<INGEOM<6, and if all iterations are to be performed in diffusion
theory, equilateral-triangular geometry is available. Geometry optiouns,

together with the required value of M, are:

INGEOM TRIANGULAR GEOMETRY OPTION  VALUE OF IM
3 180°-360° Symmetry User's option
4 60° Symmetry 2%IM-1
5 (not oper) 90° Symmetry 2% JM+1
6 120° Symmetry 2%JIM

The resulting geometry is illustrated in Figure 5.1.

The mesh input data involve certain unusual requirements. In most
cases, the value of IM is a function of JM as shown above. Also, the
radial dimensions used for input do not correspond directly to fhe
actual dimensions of the mesh. For all but 90° symmetry, every mesh

interval is an equilateral triangle with sides having a length s.

JM+1 J-interval boundaries are entered, beginning with 0, and with
spacing v3 $/2. With 120°, 180°, or 360° symmetry, IM+l I-interval
boundaries are entered, beginning with 0, and with spacing S$/2. With
60° symmetry, the code will automatically set IM to negative, and arrange
for the entry of JM I-sets. The jth I-set has 2j boundaries with spacing

S/2. The description applicable to 90° symmetry is not available.

For all cases, the (1,1) mesh interval is a triangle with vertex
down. Example meshes are shown for the various triangular geometry

options.
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For 60° symmetry, the parameter I3BT should be set equal to JM, and
the bottom boundary condition must be reflected. For 120° symmetry, the
left and bottom boundaries must be periodic if periodic boundary

conditions are selected.
(2) Special Theory Options

If IGTYPE>O, then the first IGTYPE outer iterations may be performed us-
ing alternate theories, specified by group in the 7$ array. 1If the gth
entry is Ng’ then the first ‘Ng‘ inner iterations of the first IGTYPE outer
iterations on group g will be performed using diffusion theory if Ng>0 and
combined Pl theory if Ng<0' If lNg‘ is less than the applicable maximum
number of iterations, the iterations will be completed in transport theory,

even though the alternate theory may have achieved convergence.

If diffusion theory is chosen, values for ISWP and ORF must be entered:

Iswp METHOD OF SWEEP
0 Line inversion in direction of largest number of mesh intervals
1 Alternating direction (line-column) on consecutive ocuter iterations
2 Line inversion
3 Column inversion
4 Alternating direction (line-column) on consecutive inner iterations
5 Alternating direction (column—line) on consecutive inner iterations
6 Line inversion outward from center .J interval

ORF Flux acceleration parameter 0 < ORF < 1 (RV = 0.5)

If combined Pl theory is chosen, the code will automatically revert to

row-stored mode if MAXBLK>0. Otherwise, an error stop will result. Also,

ISCT must be 1 if P] is chosen.
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(3) Cross Section Input and Mixing

The internal cross section storage comprises MIM sets of cross sections
for each energy group. The first MIP sets are read from logical unit NTSIG,
which is always required. The remainder are prepared using a "mixing table,"
described below. It is intended that the first MTP "materials” will be
microscopic nuclide data, and the remainder will be macroscopic mixtures,
although other uses are possible. The material numbers entered in the

IZMT array (9%) must be integers between 1 and MTM, corresponding to the

appropriate data.

Each set of data consists of THP cross sections as indicated in the
description of the ORDOSW input file. If ISCTM>0, then ISCTM sets of
Legendre expansion data must follow each set designated in the IZMT array.
If 1SCTM<0, then the required number of expansion sets is indicated in the

NSIG array (78%).

If MIXL>0, cross sections are to be modified by a mixing table, specified
by the MIXT, NUCL, DENS, and MATL arrays (10$, 11§, 12*, and 13$). The MATL
array assigns an arbitrary ID number to each material. If it is not entered,
the ID's 1,2,. . . ., MTM are assumed. Fach integer entered in the MIXT

and NUCL arrays must be one of these ID's, or 0. In the following:

m=number of the material having ID ]p} if |pl > 0, else O

n=number of the material having ID |q| if lq| > 0, else 0
and the interpretation of the table is as follows:

MIXT NUCL DENS

P q d

(a) If q=0, then the data of material m will be multiplied by d.

(b) If gq>0, then the data of material n, multiplied by d, will be
added to that of material m.

(e) If q=p, the data material m will be multiplied by the eigenvalue

in concentration searches.
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{(d) 1If p<0, the appropriate Legendre expansion components will be

treated as was the principal set.

Each set of entries is executed in sequence. Tn searches, the table may

be executed repeatedly. As an example, with MIXL=6, MIM=11, and ISCTM=3.

1 MIXT NUCL DENS MATL
1 1000 0 0 10
2 1000 10 .1 20
3 1000 20 .2 30
4 1000 1000 0 40
5 -2000 0 0 50
6  -2000 30 .3 60
7 1000
8 2000
9 3000

10 4000

11 5000

Material 7 will consist of:

Material 1 * .1 + material 2 * .2 and will be multiplied by the

eigenvalue. Material 8, 9, 10, 11 will be material 3, 4, 5, and 6 * .3,

A
Although the value of 0 does not affect the flux in a calculation
directly, it must be used Lo obtain correct balance tables. It should

meet the condition:

-l

g87g

o ™7

T | . .
If Qg is replaced by a "transport cross section" in reactor core problems,
. . A
Og*g must be reduced such as to maintain ¢ constant.
It may be important to note that many standard cross section files
such as ISOTXS and MATXS have Legendre expansion data which must be

multiplied by 28+1, where £ is the expansion index, for use in DOT IV. Tt
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is intended that this be done in the code which prepares the ORDOSW (or

optional GIP imput file).
(4) Activicy Edits
A very general provision for obtaining energy-integrated reaction

rates is provided. The arrays ICMAT, ICPOS, and ACMUL define an "activity

table," interpreted as follows:

TICMAT ICPOS ACMUL
r s o
Loz ) 0]
A T oty 1 Y45 Cigrs g¢g,j,i g.T, 5
Bz = E X g2 Mg Ve
where:
i,j = space mesh indices
g = energy group index
|| = material number
[s[ = cross section table position number
t = arbitrary multiplier
d = density factor if used, else 1
d = flux
0 = cross section
C = the "number density" of material [r[ in space cell 1i,j
X =1 if cell i,j is in edit region Z, else 0

The value of C is determined as follows:

(a) If r is the macro material used in cell i,j, then C = 1,
(b) If r is 0, then C = 1, and the cross sections for the macro

material in cell i,j are used,
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(¢) T1f r<0, then C=1,

(d) If r>0 and is not the macro, then ¢ is the sum of all assignments
of r to the macro according to the mixing table. Suppose IACT=4
and the following table is entered, referring back to the mixing
table illustrated above; and suppose material 7 is named as a

macro in a portion of the problem:

T ICMAT ICPOS ACMUL
1 7 3 1.
2 ~7 3 1.
3 0 4 500.
4 1 5 1.

Activity 1 will use position 3 of material 7, but will be O where 7
is not the macro. Activity 2 will be similar, but will be calculated
whether 7 is the macro or not. Activity 3 will use position 4 of the
macro in each space cell, and will multiply the result by 500. Activity
4 will use position 5 of material 1, a '"mumber density'" of .l wherever 7

is the macro.

As a special feature, if |s| > IHP, then the value of CHI (1%) for
the group will be used to replace o, and ¢ and d will be everywhere O.

This can be useful in adjoint problems.

If s<0, the activity will be written on the punch data set. This

can be used for fission density output, for example.

5.6. CPU Time Usage

A reasonably accurate time limit should be calculated and entered
as TMAX for all problems that run more than a few minutes. The maximum
time given to the operator or operating system should be a few minutes
larger than TMAX. This allows DOT to complete its I/0 and data summaries
if the time is exceeded during the iteration phase. The CPU time required,

C, can be calculated by the following formula:
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¥y 150
= Posivba % =2
¢ A+ [FR] SF
FW = & I L L.I MM
P G F J I

where

FW = flux work

MM = number of directions
I,J = space-mesh indices
G
F

energy group

i

inner (flux) iteration index

outer (source) iteration index
FR = flux rate (depends upon problem and code configuration)
SF = the speed factor (machine dependent)

A = overhead (I/0, problem setup, and summary activities)

The value of A 1is typically O to 2 minutes on the IBM 360/91. The
table of suggested speed factors, drawn from experience with various codes,

is:

Speed Factor
(Based on IBM 709 = 1)

IBM 360/195 300

IBM 370/168 150
IBM 360/91 150
IBM 360/75 30
IBM 360/65 20
IBM 7094 10
IBM 7090 5
CDC CYBER 176 600
CDC 6600 30

UNIVAC 1108 © 30
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The value of FR depends upon the performance of the flux routine being
used, and, to a lesser extent, upon the class of problem solved. On the
IBM machines with the assembler-language routines installed, FR is about

1.0 million fluxes per minute for large P, problems using the linear dif-

ference model. The weighted model runs rzughly 30% slower, and a Po cal~-
culation runs as much as 407 faster., With optimized FORTRAN routines, FR
would drop to something less than 0.5 million on either IBM or CDC machines.
The combined P1 routines have speed equivalent to MM at about 4, Assembler
language routines are not available for CDC use, Expert opinions offered

to us indicate that the CDC performance would not benefit greatly by

assembler language.

5.7. Scratch Data Sets

The following lists the scratch data sets, the length of each record,

and the number of records:

Logical

Unit Record Length  No of Records
Lun Symbol Description L rec _rec Required
81 NDFIJ Scalar Flux Scratch IMA*.TM IGM Always
82 NDSIG Cross—Section Scratch THM*MTM IGM Always
83 NDBTI. Balance Table Scratch NREG*10+I1ZM+8 IGM IRED>0
84 NDBSI Boundary Source Scratch (IM+JM)*MMA IGM NTBSI>0
91 NDFLX Flux Scratch TM*TMX*JBLK1 NJBLK*IGM NJBLK>0
92 NDSOR Total Source Scratch IM*LM*JBLK1 NJBLK NJBLK>0
93 NDSIN In-Source Scratch IMA*LM*JBLK1 NJBLK NJBLK>0
94 NDBFX Boundary Flux Scratch (IMAFTM) *MMA IGM Always

NOTE: The symbol !#'" denotes the word 'number,"

JBLK1 = #J levels per J block 1=<JBLK1<JM
NJBLK = #J blocks MINBLK<NJBLK<MAXBLK (NJBLK=0 if fluxes are stored
in working memory)
IM = maximum number of moments (including OEE) in spherical harmonic
expansions. LM = 1 + |ISCT|#(|ISCT|+3)/2
ILMX = as LM, but variable by group. Thus each record may be of
different length,
NREG = number of edit regions
IZM = number of material zones
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The number of space blocks is controlled by input data. If MINBLK=0,
the code will attempt to hold all flux and source data in fast memory.
Failing in this, it will attempt to allocate space for the entire mesh
to be held as 1 block in the user~buffer area (if MAXBLK>1). Failing
in this, the space mesh is broken into as many blocks as required to a

limit of MAXBIX.

5.8, System Buffer Space

Tf the IBM assembler language ALOCAT subroutine is used, the space
for system buffers and system control blocks used by all data sets except
the card input and printed output must be allocated by specifying NBUF in
the input parameter data. For each user-supplied data set, the space

required in K-byte units (1 K-byte = 1024 bytes) is:

*
K-bytes required = 2+2% {%LKS;%E8BUFNO

where [] indicates truncation, and BLKSIZE and BUFNO are as specified in

the DCB field of the JCL card. 1If BUFNO is not specified, assume 2,

For each scratch data set, where ntrk is the number of disk tracks

required for a logical record:

*
K-bytes required = 2+2% 29g5%§£k (approx)

Non—-1BM users should set NBUF=0.
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5.9. Total Clock Time

The actual clock time, T, required for a solution can be established by:
T = C+ W+ IO

where:

W = wait time caused by other jobs running concurrently

I0 = time required for disk-file access
I0 is usually negligible in the "problem—~stored'" mode. In other modes,
it can be estimated by:

I0 = R [iM(GF) + DI*TI*LM(G) BE l]

PG GF*- JI DR
LM = number of moments of flux and source data, including the scalar
DR'= disk data flow rate

DI = 0 if data for the entire space mesh are stored in one block

= 11 otherwise

Obviously DR and W depend upon the system. In a typical very large problem
using 1/2 of the memory of the Oak Ridge IBM 360/195, the space mesh was
broken into 4 blocks, and the job ran in competition with other jobs.
Approximately 207% of the time was consumed by W; 40% by C, and 40% in
actual data transmission. If the entire memory is used, and the problem

is run in group-stored mode, it is not unusual for C to approach 807 of T.
DR is about 6 x 106 words per minute, but 107 should be available with

improved software.

5.10. Memory Requirement

The exact data storage requirement can be found by examining the
subroutine INPUT. It is a complex function of many input parameters, due

to careful attention to space-saving techniques. A suitable estimate can
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be obtained by examining only the major arrays. In the problem-stored

mode, the total space requirement is approximately:
MM* (JM+IMA) + 2%IMSIM + 6*TCM*JCM + LM*IMSJIM*{2+1GM)
In row~stored mode, the fast memory requirement is reduced to, approximately,
MM* (JM+IMA) + 2%IMSIM + 6%ICM*JCM
and the user-buffer space is:
LM%IMA*3*JBLK1
If fission density is calculated (NOFIS<2), The user-buffer space is
increased by 2*IMSJM. Also, special options such as diffusion theory,
variable mesh or quadrature, or boundary sources can increase this
requirement. Users who are specifying diffusion theory for the entire

problem should minimize storage requirements by specifying a coarse mesh

such that ICM=JCM=1.

The total memory requirement includes, of course, the data storage

requirement + system buffer space (if any) + space for program instructions.

5.11. Input and Output Data Files

All of the user input and output data files are expressed in formats
designed according to recommendations of DOE's Committee on Computer
Code Coordination (CCCC).2 The specifications of these files are contained
on the following pages. Two exceptions, retained for backward compatibility,
are an optional capability to process a "GIP" cross section input file

and to produce a "DOT Angular Flux Tape'" as output.

The GIP file is defined exactly as the records labeled "CROSS
SECTION DATA" in the ORDOSW file, and has no other record types. The
"DOT Angular Flux Tape" is defined in the DOT III memo, ORNL—TM—42805

and is simulated by DOT IV as accurately as possible.
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The correspondence of file type to use in the code is:

SYMBOL FILE TYPE USE

NTFLX VARFLM Flux and wmoment input

NTFHG VARFLM Flux and moment output

NTSIG ORDOSW or GIP C(Cross section input

NTBSI BNDRYS External boundary soutce input
NTDSI VARSOR Distributed source moment input
NTFCI VARSOR First collision source input
NTIBI BNDRYS Internal boundary source input
NTIBR® BNDRYS Internal boundary flux output
NTNPR Formatted output

NTDIR DOT LII "Angular Flux Tape"  Directional flux output

NTDS® VARSOR Directional flux moment output



65

C -VSORO010

VS0OR0020
C********************************'k***************7‘:**********************VS(’)ROOBO
C REVISED 10 NOV 76 -VSOR0040
C ~VSOR0O050
CF VARSOR ~VSOROO60
CE VARIABLE MESH SOURCE MOMENT DATA ~VSOR0O070
c ; ~VSORODS0
C'k-k‘k*****-k'k***************************:‘c******‘k**************************VSOROOE;O

VSOR0100
CD ORDER OF GROUPS IS BY DECREASING ENERGY VSORO0110
CD I IS THE FIRST-DIMENSION INDEX VSOR0120
CD J IS THE SECOND-DIMENSION INDEX VSORO130
CD JM=1 FOR 1-DIMENSIONAL GEOMETRY VSCR0140
CDh IF ISOP.GT.0, SOURCE IS FIRST-COLLISION TYPE VSORO150

VSOR0160
o o o e e e e e e £ i o A T o o o 2 VSOR0170
Cs FILE STRUCTURE ~VSOR0180
Cs -VSOR0190
Cs RECORD TYPE PRESENT IF ~VSORO200
cs e e ~VSOR0210
CSs FILE IDENTIFICATION ALWAYS ~VS0R0220
CS FILE LABEL ALWAYS ~VSOR0Z230
CS FILE CONTROL AILWAYS ~VSOROZ240
CS FILE INTEGER PARAMETERS ALWAYS ~VSOR0250
CSs ~-VSOR0260
Ccs ¥kkEkkrkkhkkkx % (REPEAT OVER ALL .GROUPS) ~VS0R0270
cSs * SOURCE MOMENTS ALWAYS ~V50R0280
Cs AhkkhkkhkhhkAhkhkkk _.VSOROZQO
Cc -VS80OR0300
cs Fhrkkxkkkkkkdk (REPEAT OVER ALL GROUPS) ‘ ~V30R0310
CSs * SCALAR UNCOLLIDED FLUX ISOP.GT.0 ~-VS0OR0320
Cs Fhdhkkhkdkddkrkhkkkk ~-YSOR0O330
C ~VSOR0340
o o o o o e e e e e e e e e e e e e e e e o o e ot o o ) ] S e e e s 2 VSOR0C350

YVSOR0360

VSORG370
o o o e e e e e e e e e e e e e e e e e e e e e e e e e e o e ot o e VSCRO380
CR FILE IDENTIFICATION ~VSOR0390
C ~VSO0R0400
CL HNAME, (HUSE(I) ,I=1,2),IVERS ~VSOR0410
C ~VSOR0420
CwW 1+3*MULT=NUMBER OF WORDS ~YSOR043G
c ~-VSOR0440
CD HNAME HOLLERITH FILE NAME - VARSOR - (B6) ~VS0OR0450
CD HUSE (1) HOLLERITH USER IDENTIFICATION ~ (A6) ~VSC0R0460
CD IVERS FILE VERSION NUJMBER ~VSOR0470
CD MULT DOUBLE PRECISION PARAMETER ~VSOR0480
CD 1- A6 WORD IS SINGLE WORD ~VS0R0490
CD 2- A6 WORD IS DOUBLE PRECISION WORD -VSOR0O500
c : ~YSORDS510
ot e e e e e e e e e e e e e e e g o ot e V3OR0O520

VSOR0O530

VSOR0540
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C ~VSOR0560
CR FILE LABEL —VSOR0570
C ~VSOR0O580
CL DATE, USER, CHARGE, CASE, TIME, (TITL(I),I=1,12) ~VSOR0590
C ~VSOROE00
CW 17*MULT=NUMBER OF WORDS —~VSOR0610
C ~VSOR0620
CD DATE AS PROVIDED BY TIMER OPTION 4 - (A6) ~VSOR0630
CD USER AS PROVIDED BY TIMER OPTION 5 - (A&) ~VSOR0640
CD CHARGE AS PROVIDED BY TIMER OPTION 6 -~ (A6) ~VSOROG50
cp CASE AS PROVIDED BY TIMER OPTION 7 - (A6) ~VSOR0660
cD TIME AS PROVIDED BY TIMER OPTION 8 - (A6) ~VSOR0670
cD TITL(T) TITLE PROVIDED BY USER - (AG) ~VSOR0680
C ~VSOR0O690
i e o o e e e et e e e e e e e VSORO700

VSOR0710

VSOR0O720
o e o e e e e e e e e e e e e VSOR0730
CR FILE CONTROL ~VSOR0O740
c ~VSOR0750
cD IGM,NEUT,JM, LM, IMA,MMA , ISM, IMSISM, ISOP, (IDUM(N) ,N=1,15) ~VSORO760
C ~VSOR0O770
CW 25=NUMBER OF WORDS ~VSOR0O780
C ~VSOR0O790
CD IGM NUMBER OF ENERGY GROUPS ~VSOR0800
CD NEUT LAST NEUTRON GROUP —~VSOR0810
cD (IGM IF ALL NEUTRONS, O IF ALL GAMMAS) -VSOR0820
CD JM NUMBER OF SECOND-DIMENSION (J) INTERVALS ~VSOR0S30
cD IM MAXIMUM LENGTH OF MOMENT EXPANSION -VSOR0840
CD TMA MAXIMUM NUMBER OF FIRST-DIMENSION INTERVALS ~VSOR0850
CD MMA NUMBER OF BOUNDARY DIRECTIONS ~VSOR0860
cD ISM NUMBER OF I-BOUNDARY SETS ~VSORO870
CD IMSISM TOTAL NUMBER OF I-INTERVALS, ALL I-SETS —~VSOR0880
CD ISOP UNCOLLIDED FLUX FLAG ~VSOR0B90
CD 0 - NO UNCOLLIDED FLUX RECORDS PRESENT ~VSOR0900
CD 1 - UNCOLLIDED FLUX RECORDS PRESENT -VSOR0910
cD IDUM(I) ARRAY SET TO O —VSOR0920
C ~VSOR0930
o e e £ e e e o 2 e e e e e e VSOR0940

VSOR0950

VSOR0O960
o o e 2 A 1 e e 2 2 o VSOR0970
CR FILE INTEGER PARAMETERS ~VSOR0980
C ~VSOR09290
CL (LMBIG (IG),IG=1,IGM), ~VSOR1000
CL  *(IMBIS(IS),IS=1,ISM), (ISET(J),J=1,JM) ~VSOR101.0
C ~VSOR1020
cw TGM+ISM+IM=NUMBER OF WORDS ~VSOR1030
c ~VSOR1040
CD LMBIG (IG) LENGTH OF MOMENT EXPANSION FOR GROUP IG ~VSOR1050
cD IMBIS (IS) NUMBER OF INTERVALS IN ISET IS ~VSOR1060
CD ISET (J) I-SET ASSIGNED TO INTERVATL J ~VSOR1070
C ~VSOR1080

O T TS e et e e e e VSOR1090
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VSOR1100

VSOR1110

i e o e e e e e e e e e e e e e VSOR1120
CR SOURCE MOMENTS -VSOR1130
Cc ~VSOR1140
CL ((SORM(I,L),I=1,IMS),L=1,IMS) —VSOR1150
C ~VSOR1160
CW IMS*LMS=NUMBER OF WORDS -VSOR1170
C -VS0R1180
c DO 1 J=1,JM ~VSOR1120
c 1 READ(N) *LIST AS ABOVE* -VSOR1200
c -VSOR1210
CD SORM SOURCE BY INTERVAL AND MOMENT INDEX - VSOR1220
CcD IMS IMBIS(IS) FOR IS CORRESPONDING TO J ~VSOR1230
Cb LMS IMBIG(IG) ~VSOR1240
C ~VSOR1250
e et o e e e e e e e e e e e e V50R1260
VSOR1270

VSOR1280

o o e e e e e e e e e e e e e e e e e VSOR1290
CR SCALAR UNCOLLIDED FLUX -VS0R1300
C ~VS0R1310
CL (FLUM(1) ,I=1,TIMS) ~VSOR1320
c -VSOR1330
CW IMS=NUMBER OF WORDS ~VSOR1340
Cc -VS0OR1350
Cc DO 1 J=1,IM ~VSOR1360
C 1 READ (N) *LIST AS ABOVE* -VSCR1370
c ~VSOR1380
CD FLUX UNCOLLIDED FLUX BY INTERVAL -VSOR1390
C ~VS0R1400
G o o e e e e e e e e e e e e e e e e e e e e et e i e e VSOR1410
VSOR1420

VSOR1430

VSOR1440

VSOR1450

END VSOR1460

C ~VRFL0O010
VRFL0O020
Chrhkkdhkkhdhhhhdhkhhhhkhadhhhhdhkhkdhhhkdh kA A AR Rk AR R I XA AR R I AKX XX R KR X AYRFLOOIO
C REVISED 10 NOV 76 ~VRFI1.0040
c -VRFLOO50
CF VARFLM ~-VRFL0OO60
CE VARIABLE MESH FLUX MOMENT DATA WITH BOUNDARY FLUXES ~-VRFLOD70
C ~VRFLOO80
CHRIRIREI KR A R KA AARI IR AR KA IR R A Ak A AR R AR A TR AR kIR I AR KRR AR XX AKX R FYRFLOODO
VRFLO100

CD ORDER OF GROUPS IS BY DECREASING ENERGY VRFLO110
Ch I IS THE FIRST-DIMENSION INDEX VRFL0O120
CD J IS THE SECOND~DIMENSION INDEX VREFLO130
CD JM=1 FOR 1-DIMENSIONAL GEOMETRY VRFL0140

VRFLO150
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e e e e e e e e e e e e e VRFL0O160
cs FILE STRUCTURE ~VRFLO170
cs ~VRFLO180
cs RECORD TYPE PRESENT IF —VRFLO190
CS e e T ~VRFL0200
cs FILE IDENTIFICATION ALWAYS ~VRFL0O210
cs FILE LABEL ALWAYS —VRFL0220
cs FILE CONTROL ALWAYS ~VRFL0O230
cs FILE INTEGER PARAMETERS ALWAYS ~VRFL0O240
CS FILE REAL PARAMETERS ALWAYS ~VRFLO250
cs ~VRFLO270
CS  **¥#kkkxk*kx*% (REPEAT OVER ALL GROUPS) ~VRFL0O280
cs o+ FLUX MOMENTS ALWAYS ~YRFLO290
cs o+ BOUNDARY DIRECTIONAL FLUX ALWAYS ~VRFLO300
CS AAkKkARARAXkXL X% % .VR_‘E‘LOB_]_()
C —-VRFL0320
o e e e e e e e 7 o o e e e e e e VRFLO330

VRFL0O340

VRFLO350
G e e e e e e e e 2 e o VRFLO360
CR FILE IDENTIFICATION ~-VRFL0O370
C ~VRFLO380
CL HNAME, (HUSE(I),I=1,2),IVERS ~VRFLO390
C -VRFLO400
CwW 1+3*MULT=NUMBER OF WORDS ~VRFLO410
C ~VRFLO420
CD HNAME HOLLERITH FILE NAME - VARFIM - (A6) ~VRF1,0430
cD HUSE (I) HOLLERITH USER IDENTIFICATION ~ (A6) ~VRFTL.O440
CD IVERS FILE VERSION NUMBER ~VRFLO450
cD MULT DOUBLE PRECISION PARAMETER ~VRFLO460
cD 1- A6 WORD IS SINGLE WORD ~VRFLO470
CD 2- A6 WORD IS DOUBLE PRECISION WORD ~VRFLO480
C ~VRF'LO490
i e e e e e e o £ R 1 £ 1 2 2 2 £ e e e e VRFLO500

VRFLO510

VREFLO520
o e e 8 2 T . AR £ £ 1 88, 8 8 e 8 2 e o e o VRFLO530
C -VRFLO540
CR FILE LABEL ~VRFLOS550
C ~VRELOS60
CL DATE,USER, CHARGE, CASE, TIME, (TITL(I),I=1,12) ~VRFLO570
C ~VRFL0580
CW 17*MULT=NUMBER OF WORDS ~VRFL0O590
C -VRFLO600
CD DATE AS PROVIDED BY TIMER OPTION 4 — (A6) -VRFLO610
CD USER AS PROVIDED BY TIMER OPTION 5 - (A6) ~VRFL0620
cD CHARGE AS PROVIDED BY TIMER OPTION 6 - (A6) —-VRFLO630
CD CASE AS PROVIDED BY TIMER OPTION 7 — (A6) ~VRFL0640
CD TIME AS PROVIDED BY TIMER OPTION 8 - (A6) ~VRFL0O650
CD TITL(I) TITLE PROVIDED BY USER - (A6) ~VRFLO660
C ~VRFLO670
e e e e e VRFLO630

VRFL0O690

VRFLO700
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CR FILE CONTROL ~VRFLO720
C ~VRFLO730
ch IGM,NEUT,JM, LM, IMA,MMA, ISM, IMSISM, ISBT, ITER, (IDUM(N) ,N=1,15) ~VRFLO740
C : ~VRFLO750
CW 25=NUMBER OF WORDS ~VRFLO760
c ~VRFLO770
CcD IGM NUMBER OF ENERGY GROUPS ~VRFLO780
CD NEUT LAST NEUTRON GROUP —VRFLO790
CD (IGM IF ALL NEUTRONS, O IF ALL GAMMAS) ~VRFLO80O
CcD JM NUMBER OF SECOND~-DIMENSION (J) INTERVALS -VRFLO810
cD IM MAXIMUM LENGTH OF MOMENT EXPANSION ~VRFLOB20
CD IMA MAXIMUM NUMBER OF FIRST-DIMENSION INTERVALS ~VRFL0O830
ch MMA NUMBER OF BOUNDARY DIRECTIONS ~VRFLO840
CD ISM NUMBER OF I-BOUNDARY SETS ~VRFLO850
CD IMSISM TOTAL NUMBER OF I-INTERVALS, ALL I-SETS ~VRFLOB60
CD ISBT I-SET FOR SYSTEM BOUNDARIES ~VRFLO870
CD ITER OUTER ITERATION NUMBER AT WHICH FLUX WAS —~VRFLO880
CD WRITTEN ~VRFLOS90
CD IDUM(I) ARRAY SET TO 0 ~VRFLO900
C ~VRFLO910
(im0 VRFL0920

VRFLO930

VRFLO940
(o e e e B 2 B o e VRFLO950
CR FILE INTEGER PARAMETERS ~VRFLO960
C ~VRFLO970
CL (LMBIG (IG),IG=1,IGM), ~VRFLO980
CL  *(IMBIS(IS),IS=1,ISM), (ISET(J),J=1,JM) -VRFLO990
C ~VRFL1000
CW IGM+ISM+IM=NUMBER OF WORDS ~VRFL1010
C ~VRFL1020
) LMBIG (IG) LENGTH OF MOMENT EXPANSION FOR GROUP IG ~VRFL1030
CD IMBIS (IS) NUMBER OF INTERVALS IN ISET IS —VRFL1040
cD ISET (J) I-SET ASSIGNED TO INTERVAL J ~VRFL10O50
C ~ -VRFL1060
Gl o e e et ot o VRFL1070

VRFL1080

VRFL1090
i e e e e e o VRFL1100
CR FILE REAL PARAMETERS ~VRF1.1110
C ~VRFL1120
CL (z(J),J=1,IM1), ((R(I,I8),I=1,IM1),IS=1,ISM), ~VRFL1130
CL  *(ENER(IG),IG=1,IGM),EMIN,ENEUT,EV,DEVDK,EFFK,POWER, -VRFL1140
CL  *(DUMRL(I),I=1,13) ~VRFL1150
C ~VRFL1160
CW JIM+IMSISM+ISM+IGM+20=NUMBER OF WORDS ~VRFL1170
C ~VRFL1180
CD 7 (J) J-INTERVAL BOUNDARIES ~VRFL1190
CD R(I,IS) I-INTERVAL BOUNDARIES FOR I~-SET I ~YRFL1200
CD ENER (IG) TOP ENERGY BOUNDARY OF GROUP IG ~VRFL1210
cD EMIN BOTTOM ENERGY BOUNDARY OF GROUP IGM -VRFL1220
CD ENEUT BOTTOM ENERGY BOUNDARY OF GROUP NEUT ~VRFL1230
CD (0 IF NEUT=0) ~VRFL1240
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CD EV EIGENVALUE ~VRFL1250
Cch DEVDK DERIVATIVE OF EV VS. EFFK ~VRFL1260
CD EFFK EFFECTIVE MULTIPLICATION FACTOR ~VRFI1.1270
CD POWER POWER (WATTS) TO WHICH FLUX IS NORMALIZED ~VRFL1280
CcD DUMRL ARRAY SET TO O -VRFL1290
ch JM1 JM+1 ~VRFL1300
Ch M1 IMBIS (IS)+1 ~VRFL1310
C ~VRFL1320
o o e e e e e e e o e e e o o ot o VRFL1330
VRFL1340

VRFL1350

VRFL1360

VRFL1370

e o e e 0 s e T e e VRFL1380
CR FLUX MOMENTS ~VRFL1390
C ~VREFLL1400
CL ((FLUM(I,L),I=1,IMS),L=1,LMS) ~VRFL1410
C ~VRFL1420
cw IMS*ILMS=NUMBER OF WORDS -VRFL1430
C -VRFL1440
c DO 1 J=1,IM ~VRFL1450
C READ (N) *LIST AS ABOVE?* ~VRFL1460
C ~VRFL1470
CD FLUM FLUX BY INTERVAL AND MOMENT INDEX ~VRFL1480
CD IMS IMBIS(IS) FOR IS CORRESPONDING TO J ~VRFL1490
CD LMS LMBIG (IG) -VRFL1500
C ~VRFL1510
e e o e e e e e e e e e e o VRFL1520
VRFL1530

VRFL1540

(e o e s 2 s o 7 . 2 im0 £ 2 2 o o s o VRFL1550
CR BOUNDARY DIRECTIONAL FLUX ~VRFL1560
C -VRFL1570
CL ({FIO(M,J),M=1,MMA) ,J=1,IM), ((FJO(M,I),M=1,MMA),I=1,IMB) ~VRFL1580
C -VRFL1590
cwW MMA* (JM4+IMA)=NUMBER OF WORDS ~VRFL1600
c ~-VRFL1610
Ch FIO DIRECTIONAL FLUX OUTGOING BY DIRECTION AND ~VRFL1620
CcD J-INTERVAL -VRFL1630
CD FJO DIRECTIONAL FLUX OUTGOING BY DIRECTION AND ~VRFL1640
o I-INTERVAL. FJO=0 FOR A 1-D GEOMETRY ~VRFL1650
CD IMB IMBIS (IS) FOR IS CORRESPONDING TO ISBT ~VRFL1660
C -VRFL1670
(oo e 2 s e £ i 2 8T 3 i e £ 7 VRFL1680
VRFL1690

VRFL1700

VRFL1710

VRFL1720

END VRFL1730
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s -BNDS0O010
C***********************************************************************BNDSOOZO
C PROPOSED 8 OCT 76 -BNDS0030
C . ~BNDSG040
CF BNDRYS ~BNDSOD50
CE MULTIPLE BOUNDARY SOURCE DATA ~BNDSDO60
C -BNDS0O70
C***********************************************************************BNDSOOBO
BNDS0O090

CD ORDER OF GROUPS IS BY DECREASING ENERGY BNDS0OL100
'on) I IS THE FIRST-DIMENSION ‘INDEX BNDS0110
D J IS THE SECOND-DIMENSION INDEX BNDS0120
ol JM=1 FOR 1-DIMENSIONAL GEOMETRY BNDS0130
Ch NINTSR=NINTSR=1 FOR EXTERNAL BOUNDARY DATA, BNDS0140
CD AND Z(1)=R(1)=0 IN THAT CASE BNDS0150
, BND50160

e e e e e e e o s e T e BNDS0170
Ccs FILE STRUCTURE ~-BNDS0180
cs ~BNDS0190
s RECORD TYPE PRESENT IF -BNDS0200
CS e e e et e e e e e e e e e o ~BNDS0210
Cs FILE IDENTIFICATION ALWAYS -BNDS(0220
cs FILE LABEL . ALWAYS -BNDS0230
Cs FILE CONTROL ALWAYS ~BNDS0240
cs MESH DESCRIPTION ALWAYS ~BNDS0250
cs « ~-BNDS0260
CSs *hkkkkhkkkkkk* (REPEAT OVER ALL GROUPS) -BNDSQ270
cs * I-BOUNDARY DIRECTIONAL SOURCE NINTSR.GT.O -BNDS0280
s * J-BOUNDARY DIRECTIONAL SOURCE NINTSR.GT.O ~BNDS0290
Cs KhkkRkkAAX kA kkkkd : —BNDSQ3OO
C -BNDS0310
(o o o 2 e e e BNDS0320
BNDS0330

BNDS0340

(e e e e e e e BNDS0350
CR FILE IDENTIFICATION ~BNDS0360
~BNDS0370

CL HNAME, (HUSE(IL),I=1,2),IVERS ~BNDS0380
C ~-BNDS0390
CW 1+3*MULT=NUMBER OF WORDS ~BNDS 0400
C ~BNDS0410
CD HNAME HOLLERITH FILE NAME - BNDRYS ~ (A6) ~BNDS0420
CD HUSE(I) HOLLERITH USER IDENTIFICATION - (A6) ~BNDS0430
CDh IVERS FILE VERSION NUMBER ~BNDS0440
CD MULT DOUBLE PRECISION PARAMETER ~-BNDS0450
co 1- A6 WORD IS SINGLE WORD ~BNDS0460
D 2~ A6 WORD IS DOUBLE PRECISION WORD ~-BNDS0470
c ~-BNDS0480
(e e e e e e e e e e s 2 o e BNDS0490
BNDS0O500

BNDS0510
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o e e e 2 i o e BNDRS0520
CR FILE LABEL ~BNDS0530
C ~BNDS0540
CL DATE,USER, CHARGE,CASE, TIME, (TITL(I),I=1,12) ~BNDS0550
C ~BNDS0560
cw 17*MUTT=NUMBER OF WORDS —~BNDS0570
C ~BNDS0580
cD DATE AS PROVIDED BY TIMER OPTION 4 - (A6) ~BNDS 0590
ch USER AS PROVIDED BY TIMER OPTION 5 (26) ~BNDS0600
CD CHARGE AS PROVIDED BY TIMER OPTION 6 ~ (A6) —~BNDS0610
CD CASE AS PROVIDED BY TIMER OPTION 7 - (A6) ~BNDS0620
cD TIME AS PROVIDED BY TIMER OPTION 8 — (A6) -BNDS0630
cD TITL(I) TITLE PROVIDED BY USER (n6) ~BNDS0640
C —-BNDS0650
(e 2 4 e B o BNDS0660

BNDS0670

BNDS0680
e e e e e A e BNDS0690
CR FILE CONTROL ~BNDS0700
C -BNDSO710
CL IGM,JM, IMA,MMA, NINTSR, NJNTSR, (IDUM(T) ,I=1,19) -BNDS0720
C ~BNDS0730
CW 25=NUMBER OF WORDS -BNDS0740
C —BNDS0750
CD IGM NUMBER OF ENERGY GROUPS ~BNDS0760
CD JIM NUMBER OF SECOND-DIMENSION (J) INTERVALS ~BNDS0770
CD IMA NUMBER OF FIRST-DIMENSION INTERVALS ~BNDS0780
CD MMA NUMBER OF BOUNDARY DIRECTIONS ~BNDS0790
cD NINTSR NUMBER OF I-BOUNDARY SOURCES ~-BNDS0800
cD NINTSR NUMBER OF J-BOUNDARY SOURCES -BNDS0810
CD IDUM(T) ARRAY SET TO O ~BNDS0820
C -BNDS0830
(e e e e e T e e BNDS0840

BNDS0850

BNDS0860
(e e e 2 22 2 o 2 P 2 8 e £ S, BNDS0870
CR MESH DESCRIPTION -BNDS0880
c ~BNDS0890
CL (2(J),J=1,NINTSR) , (R(I),I=1,NINTSK) ~BNDS0900
C ~BNDS0910
cw JM+IMA=NUMBER OF WORDS ~BNDS0920
C -BNDS0930
CD Z(J) POSITION FROM WHICH J-BOUNDARY SOURCES TAKEN -BNDS0940
cp R(I) POSITION FROM WHICH I-BOUNDARY SOURCES TAKEN -BNDS0950
c ~BNDS0960
2 £ 2 o e o BNDS0970

BNDS0980

BNDS0290
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e e o e e e e e 28 e e o e e e BNDS 1000
CR I-BOUNDARY DIRECTIONAL SOURCES ~BNDS1010
C ~BNDS1020
CL (((BIJ(M,J,N) ,M=1,MMA) ,J=1,TM) ,N=1,NINTSR) -BNDS1030
C ~BNDS1040
CW MMA*JM*NINTSR=NUMBER OF WORDS ~BNDS1050
C ~BNDS1060
cD BIJ(M,J,N) SOURCE IN DIRECTION M, INTERVAL J, SET N ~BNDS1070
c ~BNDS 1080
(i e e o e o e BNDS1090
BNDS1100

BNDS1110

(Com om e e o e e e e 8 2 o 0 2 o BNDS1120
CR J-BOUNDARY DIRECTIONAL SOURCES ~BNDS1130
c ~BNDS1140
CL (((BJI(M,I,N),M=1,MMA),I=1,IMA),N=1,NINTSR) ~BNDS1150
C ~BNDS1160
CW MMA* IMA*NJINTSR=NUMBER OF WORDS -BNDS1170
C ~BNDS1180
CD BJI (M, I,N) SOURCE IN DIRECTION M, INTERVAL I, SET N ~BNDS1190
C ~BNDS1200
(e e e et e e e e o e BNDS1210
BNDS1220

BNDS1230

BNDS1240

BNDS1250

END BNDS1260

C ~ORDS0010
ORDS0020
C*****‘k'k*********************************‘******'k'k***********************ORDSOG3O
C REVISED 10 NOV 76 -ORDS0040
C -ORDS0050
CF ORDOSW -ORDS0060
CE WORKING FILE FOR THE OAK RIDGE DISCRETE ORDINATES SYSTEM  ~QRDS0070
C ~ORDS0080
C‘k*************************'k******'k*************************************ORDSODQO
ORDS0100

CD SIMPLE CODES CAN FIND GROUP-ORGANIZED CROSS ORDS0110
ch SECTION DATA BY SKIPPING TO RECORD NBRREC.  ORDS0120
cD ORDER OF GROUPS IS BY DECREASING ENERGY ORDS0130
ORDS0140
o ORDS0150
cs FILE STRUCTURE ~ORDS0160
cs —~ORDS0170
cs RECORD TYPE PRESENT IF ~ORDS0180
C8 e ~ORDS0190
cs FILE IDENTIFICATION ALWAYS ~ORDS0200
cs FILE LABEL ALWAYS ~ORDS0210
cs FILE LENGTH DATA ALWAYS —~ORDS0220
cs FILE INTEGER PARAMETERS ALWAYS ~ORDS0230
cs FILE REAL PARAMETERS ALWAYS -ORDS0240
cs QUADRATURE SET LENGTHS NQUAD.GT.O ~DRDS0250
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Cs ¥hExAAFARAERA, (REPEAT OVER NQUAD QUADRATURE SETS) ~ORDS0260
Cs * QUADRATURE SET IDENTIFICATION NQUAD.GT.O ~ORDS0270
Cs * QUADRATURE DATA NQUAD.GT.O ~ORDS0280
cs kkkkkhkkkkkhkhkhk ~ORDS0290
C ~ORDS0300
CSs PRINCIPAL CROS5S SECTION DESCRPTN MTM.GT.O —~ORDS0310
CS NUCLIDE IDENTIFICATION MTM.GT.O ~ORDS0320
C —~ORDS0330
Cs kkkkkkxkixkxk* (REPEAT OVER IGM ENERGY GROUPS) -ORDS0340
Cs * CROSS SECTION DATA MTM.GT.O ~ORDS0350
cs KAAREERKEE AR LR —~ORDS0360
CS ~ORDS0370
o o e e e e e e e e e e e o o P e ORDS0380

ORDS0390

ORDS0400
o e e e e e e ot T o ORDS0410
CR FILE IDENTIFICATION ~QORDS0420
¢ -QRDS0430
CL HNAME, (HUSE(I) ,I=1,2),IVERS ~QORDS0440
C -ORDS0450
CW NUMBER OF WORDS = 1 + 3*MULT ~ORDS0460
C ~ORDS0470
CDh HNAME HOLLERITH FILE NAME - ORDOSW - (A6) -0ORDS0480
CD HUSE (I) HOLLERITH USER IDENTIFICATION - (A6) —ORDS0490
CD IVERS FILE VERSTON NUMBER -ORDSO500
CD MULT DOUBLE PRECISION PARAMETER ~ORDS0510
Ch 1- A6 WORD IS SINGLE WORD -ORDS0520
CD 2- A6 WORD IS DOUBLE PRECISION WORD ~ORDS0530
C —~ORDS0540
e o e e e e e e e e e e e e e e e e e o o o e ORDS0550

ORDS0560

ORDS0570
e e e e e e e e e e o o e e e ORDS0580
CR FILE LABEL ~QRDS0590
C ~0ORDS0600
CL DATE,USER,CHARGE,CASE, TIME, (TITL(I),I=1,12) ~ORDS0610
C —~ORDS0620
CW NUMBER OF WORDS = MULT*17 ~ORDS0630
C -ORDS0640
CD DATE A5 PROVIDED BY TIMER OPTION 4 - (A6) ~ORDS0650
CD USER AS PROVIDED BY TIMER OPTION 5 -~ (A6) ~ORDS0660
CD CHARGE AS PROVIDED BY TIMER OPTION € - (A6) ~0ORDS0670
CD CASE AS PROVIDED BY TIMER OPTION 7 - (A6) —ORDS 0680
CD TIME AS PROVIDED RY TIMER OPTION 8 ~ (A6) ~0ORDS0690
CD TITL(I) TITLE PROVIDED BY USER - (AB) ~ORDS0700
C —ORDS0710

i e e e e o e ORDS0720
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ORDS0730

ORDS0740

(e e oo e st o 2 e et e e o o e A et 2 0 . e e e i ORDS0750
CR FILE LENGTH DATA ~ORDS0760
C ~QRDS0770
CL NBRINT,NBRREL, NBRREC, IGM,MTM, NQUAD, NUMDM ( 14) ~ORDS0780
c ~ORDS0790
cwW NUMBER OF WORDS 20 ~QRDS0800
C ~0ORDS0810
CD NBRINT NUMBER OF INTEGER PARAMETERS = 20 -ORDS0820
cD NBRREL NUMBER OF REAL PARAMETERS = 10 + (1+NC)*IGM -ORDS0830
CD NBRREC NUMBER OF FIRST RECORD OF CROSS SECTION DATA  —-ORDS0840
cD IGM NUMBER OF ENERGY GROUPS ~CRDS0850
CD MTM NUMBER OF NUCLIDES ~CORDS0860
CD NQUAD NUMBER OF QUADRATURE SETS ~ORDS0870
CcD NUMDM (1) ARRAY SET TO O ~QRDS0880
C ~ORDS0B890
(T i e e e e ot 8 e e e ORDS0900
ORDS0910

ORDS0920

(Do o o et e e S e o i e ORDS0930
CR FILE INTEGER PARAMETERS ~ORDS0940
C -ORDS0950
CL IHT,IHS,IHM,NEUT, IADJ,NSCAT,NCHI ,NUMIN(13) -0ORDS0960
C ~ORDS0970
CW NUMBER OF WORDS = NBRINT ~ORDS 0980
C —~0ORDS0990
CD NEUT LAST NEUTRON GROUP -ORDS1000
CD (IGM IF ALL NEUTRONS, O IF ALL GAMMAS) -ORDS1010
CD IHT TABLE POSITION OF TOTAL CROSS SECTION ~ORDS1020
CD THS TABLE POSITION OF SELF~-SCATTER CROSS SECTION  -ORDS1030
CD THM CROSS SECTION TABLE LENGTH ~QRDS1040
ch IADJ ADJOINT FLAG ~ORDS 1050
CcD 0~ NON-ADJOINT DATA ~ORDS 1060
CD 1- ADJOINT DATA ~ORDS1070
cD NSCAT NUMBER OF LEGENDRE COMPONENTS BEYOND OTH ~QRDS1080
CD NCHI NUMBER. OF FISSTON SPECTRA ~ORDS1090
cD NUMIN (1) ARRAY SET T0 0 ~-ORDS1100
c -ORDS1110
(o o e 1 e A 2 e " i o o o e e ORDS1120
ORDS1130

ORDS1140

(Dl e 2 s s 2 i ORDS1150
CR FILE REAIL PARAMETERS ~0RDS1160
C ~ORDS1170
CL (ENER(I),I=1 IGM),EMIN,ENEUT, ((CHI(I,NC),I=1,IGM),NC=1,NCHI), ~-ORDS1180
CL DUMRI, (8) ~ORDS1190
C ~ORDS1200
cw NUMBER OF WORDS = NBRREL ~ORDS1210
C ~0ORDS1220
CD ENER (IG) TOP ENERGY BOUNDARY OF GROUP IG ~ORDS1230
CD EMIN BOTTOM ENERGY BOUNDARY OF GROUP IGM ~ORDS1240
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ch ENEUT BOTTOM ENERGY BOUNDARY OF GROUP NEUT ~QRDS1250
CD (0 IF NEUT=0) —~ORDS1260
CD CHI (I,NC) FRACTIONAL FISSION YIELD BY ENERGY GROUP ~ORDS1270
CD DUMRL (I ) ARRAY SET TO O ~ORDS1280
C ~ORDS1290
o e e e e e e e e ORDS1300

ORDS1310

ORDS1320
o e e e e e e e e e e e e e ORDS1330
CR QUADRATURE SET LENGTHS —~ORDS1340
C ~ORDS1350
CL (MM (MS) ,MS=1,NQUAD) ~ORDS1360
C ~ORDS1370
CW NUMBER OF WORDS = MULT*NQUAD ~ORDS1380
C ~ORDS1390
CD MM (MS) NUMBER OF DIRECTIONS BY QUADRATURE SET —~ORDS 1400
C ~ORDS1410
C ~ORDS1420
o e e e e e e e e o e e e e e e e ORDS1430

ORDS1440

ORDS 1450
o e e e e et ot e e e e e 2 e e ot e e e ORDS1460
CR QUADRATURE SET IDENTIFICATION ~ORDS1470
C -ORDS1480
CL (QID(I),I=1,2) -ORDS 1490
C ~ORDS1500
CW NUMBER OF WORDS = MULT*2 ~ORDS1510
c ~ORDS1520
ch QID(T) QUADRATURE SET LABEL - (A6) —~ORDS 1530
c ~ORDS1540
G e e e e T U ORDS1550

ORDS 1560

ORDS1570
o e o e e e e e e e et e e ORDS1580
CR QUADRATURE DATA ~0ORDS1590
C -ORDS 1600
CL (W(M), I=1,MX), (EMU (M) ,T=1,MX), (ETA (M) ,I=1,MX) ~ORDS1610
C -ORDS1620
cwW NUMBER OF WORDS = 3*MX ~ORDS1630
C ~ORDS1640
cD W (M) WEIGHT BY DIRECTION ~ORDS1650
CD EMU (M) FIRST DIRECTION COSINE BY DIRECTION ~ORDS1660
CD ETA (M) SECOND DIRECTION COSINE BY DIRECTION ~ORDS1670
CD MX MM(MS) FOR THIS QUADRATURE SET ~ORDS1680
C ~ORDS 1690
o o e e e e e e e e e et e e e ORDS1700

ORDS1710

ORDS1720



77

e e e e e e et i ORDS1730
C ~ORDS 1740
CR PRINCIPAL CROSS SECTION DESCRIPTION ~ORDS1750
C ~ORDS1760
CL (PCSD (IH) , IH=1,IHT) ~ORDS1770
C -ORDS1780
CW  NUMBER OF WORDS = MULT*THT ~ORDS1790
c ~ORDS 1800
CD PCSD (IH) PRINCIPAL CROSS SECTION LABELS - (A6) ~ORDPS 1810
C -ORDS1820
i e e e ORDS1830

ORDS1840

ORDS1850
o o o e e e e e e e ORDS1860
CR NUCLIDE IDENTIFICATION ~ORDS1870
c -ORDS1880
CL (NUC (MT) ,MT=1,MTM) ~ORDS 1890
C ~ORDS1900
CW  NUMBER OF WORDS = MULT*MTM ~ORDS1910
C -ORDS1920
CD  NUC(MT) NUCLIDE LABELS - (A6) ~ORDS1930
c ~ORDS1940
o e e e e e e e e ORDS1950

ORDS1960

ORDS1970
G o o o e e e e e e e ORDS1980
CR CROSS SECTION DATA ~ORDS 1990
C ~ORDS2000
CL ((SIG(IH,MT),IH=1,THP) ,MT=1,MTM) ~ORDS2010
C ~ORDS2020
CW  NUMBER OF WORDS = IHP*MTM ~ORDS2030
c ~ORDS2040
CD SIG(IH,MT) CROSS SECTION DATA BY TABLE POSITION, THEN BY -ORDS2050
cp NUCLIDE. TABLE POSITIONS CONTAIN - ~ ~ORDS2060
co 1 TO IHT-5 ARBITRARY DATA, SPECIFIED BY USER, OR ABSENT-ORDS2070
cD IHT-4 FISSION YIELD FRACTION (RECOMMENDED) ~ORDS2080
cD IHT-3 FISSION CROSS SECTION (RECOMMENDED) ~ORDS2090
cp THT-2 ABSORPTION CROSS SECTION ~ORDS2100
cD IHT-1 NEUTRON PRODUCTION CROSS SECTION ~ORDS2110
CD IHT-0 TOTAL CROSS SECTION ~ORDS2120
cD IHT+1 UPSCATTER FROM GROUP IG+IHS-IHT-1 TO TG ~ORDS2130
CD e e e e e e ~ORDS2140
cD C e C e e e ~ORDS2150
CD IHS-1 UPSCATTER FROM GROUP IG+1 TO IG -ORDS2160
CD THS SELF SCATTER FOR GROUP IG ~ORDS2170
cD IHS+1 DOWNSCATTER FROM GROUP IG-1 TO IG -ORDS2180
CD C e e e e e e ~ORDS2190
CD C e e e e e e ~ORDS2200
cD THM DOWNSCATTER FROM GROUP IG+IHS-IHM TO I1G ~ORDS2210
CD IHM+1 UPSCATTER FROM GROUP G TO ALL GROUPS ~ORDS2212
cD (PRESENT ONLY TF IHS.GT.IHT+1 ~ORDS2214
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cD -0ORDS2215
ch IHS MAY BE IHT+1 IF UPSCATTER IS ABSENT. ~0RDS2220
CD TRANSFERS FROM GROUPS .LT. 1 OR .GT. IGM —0ORDS2230
CD ARE 0. POSITIONS .LE. IHT ARE O FOR PL ~ORDS2240
CD COMPONENTS OTHER THAN OTH. —~0ORDS2250
CD EACH COMPONENT OF A PL SET IS TREATED AS A -ORDS2260
CD SEPARATE NUCLIDE. THUS, M SETS WOULD ~ORDS2270
CD COMPRISE M*NQUAD+M NUCLIDES ~ORDS 2280
C Igp IHM UNLESS THS.GT.IHT+1, THEN IHM+1 ~ORDS228%8
C —ORDS2290
o o o e e e e e e e e e e e e e e e e e e T e e e e o (e ORDS2300

ORDS2310

ORDS2320

ORDS2330

ORDS2340

END

ORDS2350
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Section 6. Operation at ORNL

6.1. Program Access

The most up-to-date version of DOT IV is kept in on-line data sets

at both X-10 and K-25. Catalogued procedures can be used for access at

either location. The user is warned that:

THESE ARE NOT PERMANENT OR QUALITY-ASSURANCE DATA SETS.

THEY MAY BE CHANGED WITHOUT NOTICE. JOB FAILURE OR UNSATISFACTORY

RESULTS MAY OCCUR.

With this ominous caution in mind, the JCL for access follows:

Example JCL:

//DOS PROC PROG=DRIVER,DSNAM='X.WAR14636.PROG',UNT=,VLM=,FT99=SYSIN,
// REG=270K,PAR=,SABLK=300,DACYI=5,LGCYL=5,CTC=1064 OR 3458

//GO EXEC PGM=&PROG,TIME=1440,PARM='EU=-1,&PAR',REGION=&REG

//STEPLIB DD DSN=&DSNAM,DISP=SHR,UNIT=&UNT,VOL=SER=&VLM

//DUMP DD SYSOUT=A,DCB= (RECFM=FA,BLKSIZE=133)

//PRINT DD  SYSOUT=A

//GO.FTO5F001 DD UNIT=SYSDA,SPACE= (80, (50,25)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,BUFNO=1)

//FTO6F001 DD SYSOUT=A,DCB= (RECFM=FBA, LRECL=133,BLKSIZE=&CTC)
//FTO7F001 DD SYSOUT=B,DCB= (RECFM=FB, LRECL=80 ,BLKSIZE=800)

//FT51F001 DD SYSOUT=A,DCB=(RECFM=FBA, LRECL=133,BLKSIZE=&CTC)
//FT53F001 DD DSN=&DSNAM (&PROG) ,DISP=SHR,VOL=REF=* , STEPLIB
//GO.FT98F001 DD UNIT=SYSDA,SPACE={80, (50,25)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200,BUFNO=1)

//GO.FT99F001 DD DDNAME=&FT99

//FTO1F00L DD DUMMY

//FT02F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),

// SPACE=(3504, (8SABLK, &SABLK) ) ,DCB= (LRECL=700, BLKSIZE=3504, RECFM=VBS)
//FTO3F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),

// SPACE=(3504, (&SABLK, &SABLK) ) , DCB= {LRECL=700, BLKSIZE=3504 , RECFM=VBS )
//FTO4F001 DD UNIT=SYSDA,DISP= (NEW,DELETE) ,

// SPACE=(3504, (8SABLK, &SABLK) ) ,DCB= (LRECIL=700, BLKSIZE=3504 , RECFM=VBS)
//FTOSFO01 DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&SIGMAS,

// SPACE= (3504, (§SABLK, &§SABLK) ) ,DCB= (LRECL=700,BLKSIZE=3504 , RECFM=VBS)
//FT81F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL,&DACYL, ,CONTIG)
//FT82F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE= (CYL, &DACYL, , CONTIG)
//FT83F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL, &8DACYL, ,CONTIG)
//FT84F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL,&DACYL, ,CONTIG)
//FT91F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL,&LGCYL, ,CONTIG)
//FT92F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL,&DACYL, ,CONTIG)
//FT93F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(CYL,&DACYL, ,CONTIG)
//FT94F001 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE= (CYL,&LGCYL, ,CONTIG)

0010
0020

> 0030

0040
0050
0060

5 D070

0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
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//* EXAMPLES OF PROC USE: DOS 0330
//* //DOT EXEC DOS,REG=500K (THIS EXECUTES DOS DRIVER WITH 500K) DOS 0340
//* //DOT EXEC DOS,PROG=SCALE,FT99=DUMMY (THIS EXECUTES SCALE DRIVER) DOS 0350
//  PEND DOS 0360
//DOT EXEC DOS x//
( USER SUPPLIED JCL FOR INPUT/OUTPUT DATA SETS )

=GIP

( GIP DATA )

=DOT4P2

( DOT DATA )

=END

/7

6.2. Disk Space Allocation

IBM users are cautioned that each scratch data set record starts on

a new track. Thus, for 81:

445 IMA* M1

ntrk = # of tracks per record = 1 + [ N ]

where N is the byte capacity of a track, 7294 for model 2413 disks and
13030 for 3330's, and [] indicates truncation to the next lower integer.

Using the following type of JCL for all scratch data sets:

//FT81F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),
// SPACE=(CYL,ncyl, CONTIG)

where ncyl is the number of cylinders required to contain ntrk*nrec tracks.

The parameter nrec is discussed in a previous section, as is frec, used below.
Using block allocation in the space parameter:

SPACE = (f4rec, nrec)
may result in job failure. Allocation by track can also cause failure.

The user is also cautioned that ncyl does not always decrease

monotonically as NJBLK increases. A safety margin is advised.
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6.3. T/P Requests and Total Clock Time

The estimation of I/ request count and total clock time is probably
the most complicated part of DOT IV job submission. If all groups of
flux data are contained in core, the number of I/® requests is small
enough that an estimate based on experience will probably suffice, and

the clock time consumed by these 1/9 operations is likewise trivial.

If flux and source data are stored on disk, the clock time can be
much larger, depending upon the problem parameters. The following estimates
apply:
R =Rl + R2 + R3
T=W+C+ TL + T2 + T3

R = total number of I/ requests

Rl = requests with all fluxes stored internally

R2 = requests required to compute the inscatter source with fluxes
on disk

R3 = requests required to compute the fluxes with fluxes on disk

T = total clock time

TL = 1/9 tiﬁe with all fluxes stored internmally

T2 = I/0 time required to compute the inscatter source with fluxes
on disk

T3 = I/@ time required to compute the fluxes with fluxes on disk

The parameters Rl and Tl are typically small and can be estimated from
experience. They depend upon the number of energy groups, the number of
outer iterations, and other parameters. The value of W depends directly
upon the mix of problems sharing the CPU, the data channels, and the disk

packs.

The values of R2, R3, T2, and T3 are dominant for large problems.
Using the FBSAM7 disk transmission package, one I/f request is logged for
each logical record moved, independent of length. The time required

depends almost entirely upon the number of tracks written. The logical
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units involved are NDFLX, NDSOR, and NDSIN. With fluxes space mesh

stored on disk as one block, we can estimate:

R2 = 1/2 * IGM*IGM*OT*NJBLK
R3 = IGM*II*0I#D1*NJBLK

The parameter RZ is reduced in the case of cross section sets in which
all materials have 0 scattering from certain groups to a given group.

In such a case, the T/® operations not needed are bypassed.
With the space mesh broken into NJBLK blocks,

R2 = IGM*1GM*OI*NJBLK/2
R3 = IGM*(2+4D1+11*II*0I)*NJBLK

The time requirements are:

T2
T3

[

(TM*ntrk+TS) #R2
(TM*ntrk+TS) *R3

where ntrk is the number of tracks per record, computed previously, and

TM and TS are machine-dependent factors. On IBM 2314 disks, TM = 0.040

sec and TS = 0.020 sec. On IBM 3330 disks, T™M = 0.034 sec, and TS = -0.017
sec. These factors do not account for cylinder changing, which is not
important unless JBLK] becomes large. The 3330 should be capable of

™ = 0.017 sec with TS = 0.009 sec. We are working to obtain this per-

formance,

The user is cautioned that the computer operators at Oak Ridge expect

a job to reside in memory no longer than:

RM

¢+ Y000

where RM

il

the I/® request limit specified on the CLASS card. Thus,

the user should always supply, on his class card the limit:

RM = ntrk*R
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