
i
 

r. 
:.

 

.. .. 
. 

:I
 i

 

f 
‘)
 

..
. 

;
:

j
 

<; 
;I 

i
 -.-

 
I
 

..
. 

..
. 

.. (.
. 

!
i
i
 

w
 
c
 

F
 

Ln
 

n- n
 

0
 

tu w
 

P
 

B
 

Ln
 

U
 



. .. . 

.. 



ORNL/TM-6895 

Contract  No. W-7405-eng-26 

ASSOCIATION OF RADIONUCLIDES WITH STREAMBED SEDIMENTS I N  
WHITE OAK CREEK WATERSHED 

B. P. Spalding and T. E. C e r l i n g  

ENV I RONMENTAL SC I ENCES D I  V I  S I O N  
P u b l i c a t i o n  No. 1351 

Date Publ ished: September 1979 

NOTICE This document contains information of a preliminary nature. 
It is subject to revision or correction and therefore does not represent a 
final report. 

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 

operated by 
UNION CARBIDE CORPORATION 

f o r  t h e  
DEPARTMENT OF ENERGY 

3 Y45b  0 0 2 3 2 0 5  0 





ABSTRACT 

SPALDING, B. P., and T. E. CERLING. 1979. .Associat ion of 
rad ionuc l i des  w i th  streambed sediments i n  White Oak Creek 
Watershed. ORNL/TM-6895. Oak R i  dge Na t iona l  l abo ra to ry ,  
Oak Ridge, Tennessee. 54 pp. 

Radionucl ides are found i n  much h igher  concentrat ions on streambed 

sediment than i n  t h e  water of White Oak Creek. Se lec t i ve  e x t r a c t i o n  o f  

sediments demonstrates t h a t  6oCo i s  immobi 1 i zed i n  a nonexchangeable 

form i n  t h e  

S r  occurs 

oxides, and 

ferromanganese hydrous ox ide coat ings on the  sediments; 

predominant ly i n  an exchangeable form on c lay,  i r o n  

f erromanganese hydrous oxides; 137Cs occurs i n  a 

nonexchangeable and s t r o n g l y  bound f o rm on c lays  which compose t h e  

dominant rock (Conasauga shale)  i n  t h e  watershed. The f i n e - g r a v e l  t o  

coarse-sand s i z e  f r a c t i o n  o f  streambed sediments i s  t h e  most s u i t a b l e  

f r a c t i o n  f o r  r a d i o n u c l i d e  ana lys i s  because of i t s  abundance i n  t h e  

sediment and i t s  h i g h  concen t ra t i on  of rad ionuc l i des  compared t o  l a r g e r  

and smal ler  s i z e  f r a c t i o n s .  A p r e l i m i n a r y  survey o f  a l l  major 

t r i b u t a r i e s  i n  White Oak Creek shows t h a t  r a d i o n u c l i d e  analys is  o f  

streambed sediments i s  a ve ry  u s e f u l  technique t o  l o c a t e  sources o f  

rad  i oac t i ve con tami n a t  i on. 

iii 
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I MTRQDU CT I ON 

A1 t h o u g h  several general sources of radiochemical contamination 

entering White Oak Creek ( F i g .  1) are known, the estimated releases 

from these sources f a1 1 considerably bel ow the to ta l  monitored re1 eases 

leaving the watershed at  White Oak Dam (Stueber e t  a l .  1978). 

unknown sources as well as imprecisely located known sources of 

contamination ex is t  i n  the watershed. These must be ident i f ied before 

abatement measures can be effect ively applied. 

radiochemical concentrations i n  stream water and groundwater offers an 

e f fec t ive  method of locating these sources, b u t  t h i s  method has some 

limitations.  

T h u s ,  

Analysis o f  the 

Water analysis has a comparatively limited sens i t iv i ty ,  

a t  l eas t  when employing sample volumes less  t h a n  a l i t e r ,  due to the 

large dilution o f  radionuclides by uncontaminated water flowing t h r o u g h  

the watershed. 

s ens i t i v i ty  for  radionuclide detection, par t icular ly  a t  point sources 

o f  contamination; the laboratory values for  dis t r ibut ion coeff ic ients  

(Kd = dpm/g i n  so l id  f dpm/ml i n  water) for  radionuclides in local 

groundwater w i t h  Conasauga shale, which composes most o f  the sediment 

i n  Melton valley,  are h i g h :  

6oCo, and 137Cs, respectively. 

short-term his tory o f  the sur rounding  stream water cornpasition, 

par t icular ly  for  the more strongly adsorbed radionuclides. 

addition, the 1 arger-sized components of stream sediment are 

transported more slowly by flowing water and, thus, may represent 

s ta t ionary monitors o f  the radionuclide concentrations i n  stream waters. 

Sediment analysis offers  a considerable increase i n  

120, 70,000 and - > 100,000 ml/g for 

Sediment analysis also provides a 

In  
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Th is  s tudy was undertaken t o  eva lua te  the  p o t e n t i a l  use o f  

streambed sediments f o r  l o c a t i n g  and mon i to r i ng  r a d i o n u c l i d e  

contaminat ion i n  White Oak Creek. 

were examined because these comprise most of t h e  r a d i o a c t i v i t y ,  w t h  

t h e  except ion  of t r i t i u m ,  re leased i n t o  White Oak Creek. 

rad ionuc l i des  was examined f o r  i t s  i n t e r a c t i o n  w i t h  streambed sed ment 

us ing  severa l  approaches. Contaminated sediment was ex t rac ted  w i t h  

water, s a l  t / b u f f e r  so lu t i ons ,  and reduc ing  agents t o  observe t h e  

d i s t r i b u t i o n  o f  each r a d i o n u c l i d e  i n  va r ious  phases: 

exchangeable by o ther  ca t ions ,  o r  p r e c i p i t a t e d  w i t h  ferromanganese 

hydrous oxides, r e s p e c t i v e l y .  

Only 'OS,, 137Cs, and 6oCo 

Each o f  the  

so lub le,  

The f erromanganese hydrous ox ide phase, 

which coats many o f  t h e  sediments i n  White Oak Creek, was examined 

because o f  i t s  known importance i n  the  adsorp t ion  and immob i l i za t i on  o f  

t r a n s i t i o n  elements (Jenne 1968) i n c l u d i n g  6oCo, and because severa l  

comon manganese m ine ra l s  con ta in  a l k a l i  ne ea r th  elements (McKenzie 

1977) i n c l u d i n g  9oSr. 

r a d i o n u c l i d e  i n  d i f f e r e n t  s i z e  c lasses o f  sediment was examined t a  

determine which s izes  are most contaminated and, t he re fo re ,  most 

s u i  t a b l e  f o r  r o u t i n e  mon i to r ing .  

I n  add i t i on ,  t h e  d i s t r i b u t i o n  o f  each 

Since t h e  i n i t i a l  i n v e s t i g a t i o n s  descr ibed above generated some 

i n t e r e s t i n g  observat ions,  a d d i t i o n a l  and more bas i c  i n v e s t i g a t i o n s  of 

rad ionucl ide-sediment  i n t e r a c t i o n s  were i n i t i a t e d .  

i r o n  ox ide  p r e c i p i t a t e s  ( s o l s )  and i s o l a t e d  ferromanganese hydrous 

ox ide coat ings  were examined by s e l e c t i v e  chemical d i s s o l u t i o n  t o  

e l u c i d a t e  the  fo rm and mechanism of r a d i o n u c l i d e  adsorpt ion and 

p r e c i p i t a t i o n .  Several mechanisms cou ld  account f o r  t he  assoc ia t i on  o f  

Several hydrous 
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each radionuclide w i t h  these hydrous oxides including coprecipitation, 

cation exchange by e i ther  the oxides themselves, or organic tnatter 

incl usi ons produced by mi crobi a1 growth or entrapment o f  part iculates  

from stream water. Particular attention a l so  was focused on the  

potential  interaction o f  Sr w i t h  d i f ferent  types o f  sediment. Organic 

de t r i tus  i n  varyi ng stages o f  decomposition and mineralogically 

different  rocks were examined for t he i r  a b i l i t y  t o  adsorb Sr from 

stream rjater spiked wi th  85Sr. 

F i n a l l y ,  a preliminary survey was made of the radionuclide content 

o f  the f ine gravel and coarse sand fract ions of streambed sediments 

from t h r o u g h o u t  klhite Oak Creek watershed. Samples were taken from a l l  

major streams above and be low known or suspected areas of contamination. 

This information is needed t o  select  areas or sections of streams which 

will require more intensive sampling to locate sources o f  contamination 

entering the  watershed. 

EXTRACTION OF METALS AND RADIONUCLIDES AND 
THEIR RELATIONSHIP TO MINERALOGY 

Several different  extractants were evaluated for  t he i r  abi 1 i t y  t o  

extract  iron, manganese, 6 0 ~ o ,  'Osr, and 1 3 7 ~ s  from stream 

sediments. These included c a t i o n  exchangers, acids, o x i d i z i n g  agents, 

chelating agents, and reducing solutions (Table I). TWO different  

samples were examined: 

and the other cantaminated w i t h  6oCo. 

one contaminated w i t h  b o t h  ''St- and 137Cs 
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Table 1. Extractants used for Fe, Mn, and radionuclides and mechanism o f  each 
e x t r a c t  ant 

Mechanisma 

Extractant (1) ( 2 )  ( 3 )  ( 4 )  ( 5 )  Comments 

Tap wa ter 

1 N amnonium 
azetate pH=7 

1 ,lj NaCl 

c i t r a t e  
0.3 p1. NH4- 

3% H202 i n  b 
0.01 p1. HNO3 

0.1 fi NH20H HCL, 
in 0.01 pl HNO3 

2% NH20H HCL in 

c i t r a t e ,  PH 7d 
0.3 NH4- 

0.2 M NHq-oxalate 
pH Te 

0.2 g /g  NaZS204 
i n  0 . 3  Na c i t r a t e ,  
pH 4.8f 

X 

X 

X 

X X 

X X 

X 

X X 

X X 

X X 

Reduces Mn ( IV) b u t  
X oxidizes organic matter 

X 

X X 

Precipi ta tes  Ca, Mg, Sr 
X oxalate 

X X 

A t  h i g h  temperature, 
s t ruc tura l  a1 terat ion 
of clay 

a( l )  Exchangeable (exchange s i t e s  on clay,  organic matter,  Fe-Mn oxides);  
( 2 )  acid (metals, organic matter,  carbonates, some s i l i c a t e s ) ;  (3)  oxidizing 
agent (organic mat ter) ;  ( 4 )  chelating agent (Fe and Mn, some organic mat ter) ;  
(5 )  reducing agent (Fe and Mn). 

bTaylor et a l .  1964. 

CChao 1992. 

dWhitney 1975. 

c 
eMcKeague and Day 1966. 

fCoff i n 1963. 



ORN L J TM- 689 5 6 

In  conjunction with th i s  study, sequential dissolutions of a 

contaminated iron sol and a contaminated manganese coating were carr ied 

o u t  t o  help determine the association of radionuclides w i t h  d i f fe ren t  

minerals present i n  stream gravels. 

Experimental 

Evaluation o f  Extractants 

Ten-gram d u p l  i cates  of the ’OS,- and 137Cs-contami nated 

sediinents were placed i n  25- x 150-mi test  tubes and extracted twice 

with 30 ml and once w i t h  20 m l  o f  one o f  solutions (Table 1) by 

swirling, waiting one hour, swirling again, and decanting the solution. 

Combined decantinqs were f i l t e r e d  by washing through Whatman No. 40 

paper t o  remove the small amount of par t icu la te  matter produced d u r i n g  

extract ion,  and were made t o  100 ml with water. The extractions of the 

“Co-contami nated samples were performed on 1.50-g samples w i t h  two 

15-1111 and one 10-ml volumes, f i l  tered as above, and made t o  50 m l  . All 

extractions were r u n  in duplicate a t  both ambient (s. 25°C) and 95°C 

temperatures ( i n  a hot  water bath).  

manganese by oxidation t o  permanganate (Adams 1965) and for iron by an 

o-phenanthroli ne procedure (Jackson 1956) 

Each ex t rac t  was analyzed for 

Sequential Dissolution 

17 r e l a t ive ly  pure Fe sol was o b t a i n e d  from a seep i n  Solid Waste 

Disposal Area (SWDA) 4 near well 186A; a ferromanganese hydrous oxide 

separate was obtained by scraping w i t h  a s t a in l e s s  s tee l  spatula the 

eas i ly  flaked-off dark coating on an encrusted shaley limestone cobble 
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from Meltan Branch. 

algal coatings. 

centrifugation a t  600 RCF for  30 min ;  the aqueous phase was analyzed 

a f t e r  three weeks. 

air-dried and the remainder was dried at  8OoC. 

Care was taken to avoid cobbles w i t h  excessive 

The iron sample was separated from the l i q u i d  phase by 

The ferromanganese sample was s p l i t ;  one-half was 

Samples were t reated 

w i t h  progressively more destructive reagents and each leachate was then 

analyzed for Fe, Mn, 6oCo, 'OS,, and 137Cs as described l a t e r .  

Weight losses were determined a f t e r  each step; x-ray diffract ion 

patterns were r u n  a f t e r  the removal o f  iron and clay minerals. Reagents 

used were: 

cations (Jackson 1956) ; repeated H202 treatments f o l l  owed by 

extraction w i t h  1 - N sodium-acetate a t  pH 7 t o  remove organics and 

Mn02 (used on Fe sol only);  0.3 E ammonium c i t r a t e  w i t h  2% w/v 

hydroxylami ne hydrochloride adjusted t o  pH 7.0 w i t h  ammonium hydroxi de 

to  remove MnOZ and poorly c rys ta l l ine  i ron  oxides (Whitney 1975);  and 

Na-dithionite i n  0 .3  pl sodium c i t r a t e  and 0.1 sodium bicarbonate t o  

remove iron oxides (Jackson 1956). These treatments resulted i n  a 

residue o f  disaggregated s i l i c a t e  minerals. 

ammonium acetate buffered to pH 7 to  remove exchangeable 

This residue ( i n  the case 

of the iron sample, a f t e r  separating i n t o  sand, s i l t ,  and clay 

f rac t ions)  was then t reated w i t h  hot HMO3 fo r  1 hr at  95"Cr 

f ina l  dissolution procedure dissolved clay minerals by fus ion  w i t h  

sodium pyrosulphate and leaching w i t h  HC1 and NaOH (Kiely and Jackson 

1964, 1965). 

feldspar,  determined by optical  examination under a microscope and by 

X-ray d i f f rac t ion .  

The 

The residue was shown to be quartz containing a t race  o f  

Each procedure (except clay dissolution) was 
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performed twice, followed by three washings w i t h  d i s t i l l e d  water which 

were added t o  the i n i t i  a1 supernatant before analysis. 

I Radiochemical Analyses 

A 25-rnl aliquot was used for the determination o f  to ta l  

radiostrontium (American Public Health Service 1975); the barium 

ca r r i e r  addition and i t s  precipi ta t ion w i t h  sodium chromate were not  

employed because l4OBa was not  present a t  detectable levels  i n  these 

samples. In addition, only one scavaging w i t h  the  mixed rare-earth 

ca r r i e r  was employed because samples were counted a f te r  f u l l  ingrowth 

of the '*Y daughter ( 2 1  days). The f i na l  p rec ip i ta te  (SrC03) from 

the radiochemical f ract ionat ion was s lur r ied  onto  a tared l-in.-diam. 

aluminum planchet, dried,  weighed t o  calculate  ca r r i e r  recovery 

(usually between 70 and 80x1, and counted on a Beckman Wide Beta I1 

gas-flow proportional counter a f t e r  ingrowth. C o u n t i n g  

eff ic iency was determined u s i n g  a di lut ion o f  standard reference 

rnaterial 4234 (National Bureau of Standards) a t  various SrC03 sample 

L h i  cknesses; typical  counting e f f ic ienc ies  were about 42% depending on 

ca r r i e r  recovery. The to t a l  observed counts, which represent equal 

contributions from and 'OY, were halved to  report  only 9oSr; 

this  was expressed i n  dpm/g o f  oven-dried material .  

The ex t r ac t ab i l i t y  o f  6oCo and 137Cs by each solution was 

determined by computing the difference i n  radionuclide content o f  the  

sediment before and af te r  extraction. 

counted w i t h  a Packard Model 16 multichannel analyzer equipped w i t h  a 

well -type NaI (Tl-activated) detector.  Counting e f f ic ienc ies  were 

Cesi um-137 and 6oCo were 
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determined u s i n g  single radioisotopic standards (which had previously 

been compared w i t h  NBS s tandard  reference material)  prepared i n  10-g 

soi l  matrices and contained i n  25- x 150-m t e s t  tubes. Background 

counts i n  the 137Cs channels window were determined by computing the 

average counts per channel for the f ive  channels on each side of the 

window and multiplying this f igure by the number of channels i n  the 

137Cs window. The background counts i n  the 6oCo channels window 

were determined by counting empty t e s t  tubes because no y-emitter with 

decay energies greater t h a n  6oCo was present i n  these samples. 

Results and Discussion 

Each radionuclide present i n  sediment was strongly associated w i t h  

d i f ferent  mineral phases. 

gravel by different  reagents strongly suggests i t s  association w i t h  the 

ferromanganese hydrous oxide component i n  the stream sediment (Table 2 ) .  

L i t t l e  6oCo was water-soluble or exchangeable since tapwater, ammonium 

The ex t r ac t ab i l i t y  of 6oCo i n  streambed 

acetate,  and sodium chloride solutions removed only minor amounts. 

Other extractants removed varying amounts of Mn, and Fe from 

the sediment, b u t  the amount of 6oCo extracted was well correlated 

(r = 0.93) w i t h  the amount o f  Mn extracted ( F i g .  2 ) ;  6oCo was less  

well correlated ( r  = 0.61) w i t h  the Fe extracted,  because Fe and Mn 

behaved somewhat independently i n  t he i r  extractabil  i t i e s  ( r  = 0.65). 

Sequenti a1 dissolution of the scraped-off ferromanganese coating showed 

that  a l l  6oCo was extracted d u r i n g  the dissolution s tep which removed 

90 t o  95% of the Mn b u t  only abou t  20% of the to ta l  Fe i n  the sample 

(Table 3 and F i g .  3 ) .  
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Table 2. E x t r a c t i o n  of Fe, Mn, 6oCo, f rom coarse sand (3.35 t o  0.85 rnm) 
con t ami nated w i  t h 60Co 

Tapwat er 3 5 2 10 4 

1 N amnoniurn 
acetate p~ := 7 1 20 

18 

3 

3 

2 

6 

45 

29 

1 

3 1 .- N NaCl 2 

0.3 M NH4- 
c i t Fa t e 160 90 13 1260 46 0 80 

3% H202 in 
0.01 - M HN03 28 410 40 18 400 33 

0.1 M NH20H0HC1 
i n  n.01 - M HNO3 

2% NH2OHOHC1 i n  

82 

0.3 fi NH4- 
c i t r a t e ,  pH 7 350 

530 44 2830 840 75 

430 

41 0 

64 

54 

5630 

11750 

630 

660 

84 

77 
0.2 M NH4- 

oxai-ate p~ 2 57 2 

0.2 g/g Na2S204 
i n  0.3 Na-c i t ra te  
pH 4.8 14200 66 0 

490 

77 

65 

18760 

45270 

48 0 

1020 

80 

98 8 - N HNO3 3200 

aTotal 6oCo was 12,500 dpm/g. 
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Table 3. Sequen t ia l  d i s s o l u t i o n  o f  a ferromanganese c o a t i n g  scraped f rom a 
sha ley  l imestone cobble f rom Me l ton  Branch o f  White Oak Creek. The 
second s e t  shows t h a t  h e a t i n g  t h e  sample t o  80°C p r i o r  t o  d i s s o l u t i o n  
has l i t t l e  e f f e c t  on t he  e x t r a c t i o n s  

'I'r e atme n t 

O r  i g i  na l  577.7 

NH4- ace t a t  e, 
PH 7 

NWq-ci t rate,  2% I 
NH2OH HC1 (124.1)C 5.3 36.4 - 38 10,000 

Hot HNO3 (29.0) 9.4 - 530 I - 
NaHS04 f u s i  on (124.4) 4.9 - _ - - 

Residue = q u a r t z  300.2 n.d.d n.d. - n.d. - 

Na-d i t h i  on i t e  1 8.1 1.5 - - - 

O r i g i n a l  577.7 

80 c (7.0) 

Nl-I4-acetate, 

NHq-c i t ra te ,  2% 

pH 7 - - - 109 - 

NH20H HC1 (112.3)C 5.3 33.5 - 51 10,800 

Na-d i t h  i on i t e  1 7.7 3.8 - - I 

I-lot HNO3 (34.4) 10.0 - 580 - - 
NaHSOa f u s i  on (125.2) 4.9 - - - - 
Residue = q u a r t z  298.8 n.d. n.d. - n.d. - 

a O r i g i n a l  sample had an a i r - d r y  weight  o f  577.7 mg and con ta ined  a smal l  

0 -  -I n o t  detected.  

Cldeight loss a f t e r  combined t rea tmen ts .  

dn.d. = n o t  determined. 

amount o f  o rgan ic  m a t t e r .  
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Unlike 6oCo, the "Sr i n  streambed sediment was predominantly 

i n  an exchangeable form, Although only 4% of the sediment 'OS, was 

soluble in tapwater, about 85% was exchangeable since it was removed by 

o n i u m  acetate or sodium chloride (Table 4 ) .  Total i s  

defined as the amount extracted by hot 8 E HN03= 

were also very effect ive i n  removing 9oSr since they a l l  contain 

exchangeable cations. Notably, ammoniuin oxalate and sodium di thioni te  

removed considerably l e s s  "Sr t h a n  amnonium acetate or NaC1; t h i s  

was l ikely due t o  the i n so lub i l i t y  o f  alkaline-earth oxalates and low 

s o l u b i l i t y  of Ca and Sr su l f a t e s  w h i c h  would form as di thioni te  is 

oxidized. A signif icant  portion, about 15%, o f  the t o t a l  9oSr was 

present i n  a nonexchangeable farm. 

Other extractants 

Sequential dissolution o f  both the iron sol and the scraped-off 

ferromanganese coating showed tha t  greater than 70% o f  the 'OSr i n  

each material was exchangeable (Tables 3 and 5; F igs .  3 and 4 ) .  

Hydroxylamine hydrochloride dissolved 90% of the Mn from the scaped-off 

f erromanganese coati ng and a1 1 o f  the remaining, nonexchangeable '*Sr 

(Table 3 and F i g .  3 ) .  The iron sol also l o s t  most o f  the remaining, 

nonexchangeable 9oSr d u r i n g  oxidation by H202, followed by 

extraction w i t h  sodium acetate and by reduction w i t h  hydroxylamine 

(Table 5 and Fig. 4 ) ;  no manganese, however, was detected i n  these 

extracts .  

the clay phases since hot HNQ3 and sodium pyrosulfate dissolution of 

the s i l i c a t e  phases was required t o  remove i t  (Table 5 ) .  

Interestingly,  a small amount o f  9*Sr was strongly held by 

Several other 1 i nes of evidence suggest t ha t  the ferromanganese 

coatings contained 'OS, in  a nonexchangeable form. In the 
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Table 4. E x t r a c t i o n  o f  Fe, Mn, gOSr, and 137Cs 
streambed sediment contaminated w i t h  g 8 ~ a ~ ~ a r 1 5 g C s  

sand (3.35 t o  0.85 mm) o f  

25°C 95°C I -- 
Fe Mn 90 S r  137cs Fe Mn 9 0 ~ r  137c5 

E x t r a c t i o n  ( W / g )  (P9/g) (dPm/g)b (% t o t a l )  (vg /g )  (Pg/g) (dpm/g)b (% t o t a 1 ) a  

Tapwater 

1 8 amnonium 

1 8 NaCl 

0.3 E NH4- 
c i t r a t e  

3% H202 i n  
0.01 fl HNO3 

0.1 NH20H.HC1 
i n  0.01 fi HNO3 

2% NHZOH-HCl i n  
0.3 E NH4- 
c i t r a t e ,  pH 7 

oxa la te  pH 2 

ace ta te  pH = 7 

0.2 p1 NH4- 

3 

6 

8 

140 

7 

54 

430 

920 

0.2 g/g Na2S204 
i n  0.3 N a - c i t r a t e  
pH 4.8 8220 

8 y HNO3 56 70 

- < 10 

12 

13 

2000 

650 

2330 

2920 

2090 

4270 

1790 

37 (2%) 

888 (60%) 

789 (53%) 

926 (62%) 

316 (21%) 

749 (50%) 

1230 (83%) 

38 (3%) 

906 (61%) 

1290 (89%) 
___ 
aTota l  137Cs was 458 dpm/g. 

4 

7 

4 

5 

4 

4 

5 

5 

6 

29 
I 

1 

5 

6 

1190 

6 

89 1 

3060 

6440 

11,600 

32,900 

10 64 (4%) 2 

39 1340 (90%) 10 

18 1210 (81%) 4 

3160 1350 (91%) 6 

470 339 (23%) 5 

3740 1260 (85%) 6 

3590 1510 (101%) 7 

3460 124 (8%) 7 

3370 841 (56%) 6 

4920 1490 (1Oo"k) 49 
__i_.I 

b T o t a l  90Sr i s  d e f i n e d  as t h a t  e x t r a c t e d  by h o t  8 8 HNO3. Numbers i n  parentheses are  
t h e  percent  o f  t h e  t o t a l .  
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6ANb- DWG 78- 20513R 

203 SOL : SEQUENTIAL DISSOLUTION 

90% '"cs 
100 0 100 0 100 Fe 2'3 

8 

EXCHANGEABLE IT 

HYDROXYLAMINE 

DITHIONITE 

HNO, 

CLAY D I S S 0 L U T I ON 

RESIDUE== QUARTZ Ll_ 
Fez03 1733mg "Oca == 30 dprn 
MnO2 = 1 mg =12.1,000 dprn 
CLAY = 384 mg 137Cs = 30,000 dprn 
QUARTZ = 344 mg 

F i g ,  4. Percent loss o f  each component f r o m  the Fe so l  d u r i n g  
sequential d i s sa lu t i an .  
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Table 5. Sequential dissolut ion o f  an Fe sol col lected a t  a radioact ive 
groundwater seep i n  SWDA-4 

Treatment 

n.d.b 8.0d lOOd 3.3d Water 

1 N NH4 ace ta te  
pR 4.5 1.3 3310 

3150 

84,000 

24 , 000 

30 

- 
n.d.  0.3 

1.6 H202 

NHq-citrate, 2% 
NH2OH HCl 

n.d. 

6,000 

6,200 

n.d. 

n.d. 

656 440 

1066 850 Na-d i t h  i on i te  

Hot HNO3 > 63 ~-r 
63 t o  2 1-1 

< 2  I.1 

(9.51, 
(51.6) 
(39.2) 

0.5 
3.1 
3.0 

507 
5360 

13300 

- 
62 
48 ." 

NaHS04 
fusion > 63 

63 t o  2 1-1 
< 2 l J  

(22.9) 
(95.2)e 

[ 167.1) 

0.1 
0.9 
0.9 

- 
0.1 - 

- - 
2760 

- 
24 

188 

Residue = 
quartz > 63 

63 t o  2 1-1 
< 2 l J  

142.1e 
174.2 

n.d. 
n.d. 
n.d.  

n.d. 
n.d.  
n.d.  27.3 

aThe or ig ina l  sample had an oven-dry weight of 3.30 g and contained some 

bn.d. = not determined. 

organic matter.  

C- = not detected. 

dDpm/ml. 

eCentrifuge tube broke. Extractions carr ied out on broken tube plus samples. 
Weights estimated by comparison with another sample. 
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non-sequential extractions (Table 41, although about 85% of 9oSr was 

exchangeable, a l l  ''5, was removed by extraction w i t h  hydroxylamine 

i n  anmonium acetate;  th i s  extractant  removed most of the Mn b u t  only 

10% of the Fe extracted by hot  8 1 HN03 (Table 4 ) .  Secondly, when a 

f erromanganese-coated sediment sample was segregated by color i nts a 

l i g h t  and dark f rac t ion ,  the dark-colored gravel contained 27% more 

"5, than the lighter-colored gravel (Table 6 ) .  The dark-colored 

gravel contained f ive times as much Mn and twice as much Fe extracted 

by hydroxyl ami ne than the 1 i ghter colored gravel. 

observations indicate tha t ,  although 70 t o  85% o f  the "Sr was h e l d  

These separate 

i n  an exchangeable form by streambed gravels and their ferromanganese 

coatings, most o f  the remaining, nonexchangeable "Sr was associated 

w i t h  ferromanganese oxides. Trace amounts were also h e l d  i n  a 

nonexchangeable .form by clay minerals. 

Cesium-137, unlike e i ther  "Sr or 6QCo, could n o t  be extracted 

i n  s ignif icant  amaunts (Tables 2 and 4 )  by any solution other than 

8 E HNQ3 which causes s t ruc tura l  changes i n  c rys ta l l ine  minerals. 

This lack o f  ex t r ac t ab i l i t y  o f  137Cs i l l u s t r a t e s  i t s  strong and 

s p e c i f i c  adsorption by i l l i t i c  clays (Varnura and Jacobs 1960, Tamura 

1963) which compose the parent rock, Conasauga shale,  o f  which this  

streambed gravel was composed, Dark-colored gravel from a spl i t  sample 

contained approximately f ive times as much 137Cs and Mn as d i d  the 

light-colored gravel (Table 6 ) .  Progressive dissolution o f  the  

scraped-off ferromanganese coating showed tha t  a1 1 the 137Cs was 

associated w i t h  i l l i t e  since the 137Cs was not  dissolved u n t i l  

treatment with 8 HN03 (Table 3 and F i g .  3 ) .  Dissolution of the 
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Table 6. Radionuclide and extractable Fe and Mn content of streambed 
gravel (4.75 to 2.0 mm) segregated by color 

L i g h t - co 1 or ed 
gravel 

Dark-colored 
gravel 

54 

1025 

6.0 

910 

1220 

266 

1300 

20.0 

46 30 

2940 

aTotal content based on tr ipl icate 10-g samples. 

bExtractable in 2% hydroxyl amine hydrochloride/0.3 E amnonium citrate, 
pH 7, based on triplicate 10-g samples. 
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i ron  sol was less  Straightforward (Table 5 and F i g .  4 ) .  

of the a-37Cs was released by 8 - M HNO3 or by treatment t o  remove the 

layer s i l i c a t e s ,  s ignif icant  amounts were present i n  the water 

A l t h o u g h  most 

associated w i t h  the seep or  removed by a on ium acetate or H202 

extraction. The h i g h  concentration of lS7Cs i n  the water l ike ly  

indicates t h a t  the adsorption capacity of the small amount o f  clay i n  

this sample may have been exceeded. The calculated Kd o f  137Cs for 

t h i s  sample and i t s  associated water was about 10,000. 

These studies have shown which mineral phases are responsible f o r  

the adsorption o f  each radionuclide by streambed sediment. They also 

give some indication o f  how each radionuclide is  l ike ly  to  move i n  the 

Because 60Co was Found t o  be strongly associated w i t h  the 

ferromanganese oxide phase, i t  i s  l ikely t o  be solubilized by s t r e  

water as sediment moves froin well-aerated t o  reducing sections of a 

par t i  cul ar stream. The f erromanganese hydrous oxi  de coatings on 

issolution, depending on the 

is ,  therefore,  l ikely 

streambed sediments undergo deposition or 

Eh o f  the stream water (Jenne 1968). Coba 

t o  move i n  streams as Mn does. 

Cesium-137 was also res t r ic ted  alniost en t i re ly  t o  a single phase. 

Even the ferrornanganese-coated sample had a l l  of i t s  137Cs associated 

w i t h  the layer s i l i c a t e  phase; most of 13’cs i n  the i ron  sol was also 

associated w i t h  the layer s i l i c a t e  phase. Cesium-137 content was a l so  

f ive  times greater i n  dark-colored streambed gravel than i n  the portion 

of the same sample which was lighter-colored (Table 6 ) .  

suggest t h a t  137Cs-cl ay par t ic les  may be incorporated into growing 

f erromanganese coatings. 

These resu l t s  

The Terramanganese coati ng contained less  
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than 10% Mn p l u s  Fe; the remainder was original rock, d e t r i t a l  

minerals, and, possibly, organic matter. Examination of an apparently 

homogeneous ferromanganese coating w i t h  an electron microprobe 

(10-p beam diam.) showed a maximum of  42% Mn02 and 14% Fe203, 

w i t h  minor amounts of  S i ,  A l ,  K ,  Ca, Ni, and Cu indicating the presence 

o f  s i l i c a t e  inclusions as well as other metals. 

Strontium-90 occurred primarily as an exchangeable cation i n  

streambed sediment, although i t  i s  uncertain which of the three 

dominant phases {clay,  6-Mn02 or Fe-sol) was most important. 

and Mn hydrous oxides have a s ign i f icant  capacity t o  adsorb cations 

( K i n n i b u r g h  et a l .  1976, Loganathan et  a l .  1977) and several common 

manganese minerals contain alkal ine earth elements (McMenzie 1977).  

A l t h o u g h  some ''5, is l i ke ly  i n  a nonexchangeable form, most 

is l ike ly  par t i t ioned between the stream water and sediment by a cation 

exchange mechanism probably maintained by the level o f  dissolved Ca i n  

s t r earn - w a t  e r  . 

Iron 

ADSORPTION OF 8 5 ~ r  TO STREAMBED MATERIALS 

As noted above, several different materials have cation exchange 

s i t e s  avai lable  for  strontium. In order t o  estimate the r e l a t ive  

importance of each of these materials i n  radionuclide contamination, 

d i s t r ibu t ion  coeff ic ients  for t race  levels  of strontium were determined 

for  bedrock materials,  various k i n d s  of organic matter, and iron and 

manganese hydrous oxi des - 
on March 20 and 21, 1978, as part  o f  a preliminary survey of White Oak 

Creek sediment for  radionuclide contamination. From th is  col lect ion,  

Samples of streambed gravel were coll  ected 
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several samples were selected tha t  had differ ing l i thologies:  brown 

shale,  dark shale  w i t h  ferromanganese coating, light-colored chert ,  

limestone, chert-limestone-shale mixture, and dark chert  w i t h  

fsrromanganese coating. Samples of organic material were collected 

from White Oak Creek upstream (northeast)  o f  the ORNL plant s i t e .  

Experimental 

L i  tholoqi c Mater i a1 s 

One iiii11 i l  i t e r  of car r ie r - f ree  85Sr (138,000 dprn) was added t o  

25 m l  o f  f resh ly  collected creek water (pH 1 . 3 ,  e.c.  96 Imhos/cm) 

containing 10,O g o f  oven-dried gravel-sand i n  a 50-ml polypropylene 

centrifuge tube. 

temperature and centrifuged at. 650 R C F  for 10 m i n  on an IEC model PR-2 

refr igerated centrifuge. A 10-ml aliquot of the supernatant was 

transferred t o  a 30-ml polycarbonate "Oak Hidge"-type centrifuge tube 

and centrifuged for  15 min a t  36,000 RCF w i t h  a Beckman L-2 

ult racentr i fuge (equipped w i t h  a No. 30 head) t o  remove suspended 

The tube was shaken lengthwise fo r  18 hr at  room 

material not  removed d u r i n g  the i n i t i a l  centrifugation a t  lower speed. 

A 5-ml aliquot o f  the supernatant was transferred t o  a 25- x 150-m 

t e s t  tube and counted on a Packard Model 16 multichannel analyzer u s i n g  

30,000 dpm of 85Sr i n  5 m l  o f  water as a standard; ac t iv i ty  o f  the 

standard was determined by the Analytical Chemistry Divis ion .  All 

observations were corrected for  radioactive decay from the time of 

Cali brat i  on .  

obtained w i t h  empty t e s t  tubes. 

sample was determined by calculating the difference i n  the concentration 

Background counts i n  the 85Sr channels window were 

The amount o f  85Sr adsorbed by a 
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i n  the supernatant o f  a sample and t h a t  of a control containing no 

gravel. 

d i r ec t ly  from the counts of the 5 m l  of supernatant. 

f r m  duplicate determinations was calculated by the r a t io  o f  dpm/g o f  

so l ids  t o  dpm/ml of supernatant. 

The concentration of 85Sr i n  the creek water was determined 

The average Kd 

Organic Materials 

Samples of organic materials common t o  streambeds were collected 

from White Oak Creek ,  upstream (northeast)  of the ORNL plant s i t e .  

These included a sound wood branch, a somewhat darkened/rotted wood 

branch, a well-rotted wood branch, pa r t i a l ly  d scolored deciduous 

leaves, dark-colored/well-rotted leaves, and a green algal slime. 

material was oven-dried ( l O O D C ,  overnight) and ground i n  a Wiley mill 

to  pass a 2-mn sieve. 

shaken w i t h  35 m l  o f  f resh ly  collected creek water (pH 7.7, e lec t r ica l  

conductivity o f  196 pmhos/cm) t o  whjch was added 109,000 dpm o f  85Sr 

i n  1 m l  o f  water. 

a f t e r  counting supernatants, as described above. 

determination for  these same organic materials was performed a f t e r  

twice washing the samples w i t h  water. 

weighed i n t o  tared 50-ml polypropylene centrifuge tubes. Forty 

m i l l i l i t e r s  of f reshly collected creek water (pH 7.7,  e lec t r ica l  

conductivity of 196 mhos/cm) were added and the tubes capped and 

shaken lengthwise for 48 h r .  

650 RCF on the  IEC Model PR-2 centrifuge and the supernatants 

discarded; a second wash was carried out w i t h  30 ml of creek water w i t h  

The 

Duplicate samples (2.50 g )  of each type were 

The average Kd for  each material was calculated 

A second Kd 

Duplicate 1-g samples were 

The tubes were centrifuged for  15 m i n  a t  
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shaking for 4 h r ,  centrifuging, and decanting as before. The tubes 

were weighed t o  determine the amount o f  adsorbed water and additional 

creek water added t o  a t t a in  30 ml per t u b e .  One m i l l i l i t e r  o f  water 

containing 97,000 dpm of 85Sr was added and the contents shaken 

lengthwise for 16 hr. The K d  was then calculated as described above. 

Synthetic Iron and Manganese Hydrous 0 x 2  

Art i f i c i a l  6-Mn02 and iron hydrous oxides were prepared by t h e  

oxidation of a MnC12-Na0H mixture a t  pH 8 t o  12  (s imilar  t o  the 

method of J e f f r i e s  and Stumn 1976) and by neutral izat ion of 

Fe(N03)3 by NaOH ( K i n n i b u r g h  e t  a l .  1975) t o  pH 7 ,  respectively.  

After formation of the hydrous oxides, excess s a l t s  were removed by 

repeated washings w i t h  d i s t i l l e d  water and centrifugings a t  600 RCF for 

20 min  u n t i l  the hydrous oxide began t o  destabi l ize .  The hydrous oxide  

was then air-dried.  Twenty m i l l i l i t e r s  of White Oak Creek water 

(pH 7.7, e l ec t r i ca l  conductivity o f  196 umhos/cm) were added t o  50 t o  

100 mg of air-dried gel; 85Sr (86,000 dpm) was added t o  each sample. 

Samples were then shaken continuously fo r  24 hr and analyzed as 

described above. 

A second se t  of hydrous oxides was prepared by the oxidation or 

neutralization o f  aliquots containing a known amount of manganese or 

i ron (50 t o  100 mg). These samples were t reated as above except t ha t  

the a i r  drying step was omitted t o  minirnize s t ruc tura l  changes due t o  

drying. 

samples were checked fo r  loss by f i l t e r i n g  blank precipi ta tes  through 

tared f r i t t ed -g la s s  crucibles.  

The amounts o f  manganese or iron hydraus oxide i n  these 

Oven-dried (110°C) sols weighed w i t h i n  
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5% o f  the amount o f  Mn02 or Fe20j i n  the aliquot,  indicating tha t  

1 oss was minimal . 
Results and Discussion 

Table 7 demonstrates tha t  Conasauga shale had a six- t o  sevenfold 

greater Kd for  85sr than chert and a tenfold greater K d  than 

limestone. 

(dark-colored) exhibited a 12% greater Kd for  85Sr than an uncoated 

(l ight-colored) shale. 

for  85S1, similar to Conasauga shale (Table 7 ) .  

and leaves leads t o  a release of some soluble organic matter (Jenkinson 

1966), and i t  was suspected tha t  this m i g h t  increase the ionic strength 

o f  the stream water tha t  was used for  the K d  determination, and 

hence, lead to  an unrea l i s t ica l ly  low Kd' 

supernatant f r m  the unwashed, oven-dried organic materials appeared 

highly colored; twice prewashing these organic materials with creek 

water removed most o f  the color and i n  some cases, the observed Kd's 

rose considerably. 

materials l ike ly  r e f l ec t  t h e i r  a f f i n i t i e s  for "5, i n  the unperturbed 

(non-oven-dried) s t a t e .  

Notably a ferromanganese hydrous oxide-coated shale 

Rotted wood and leaves exhibited an a f f i n i t y  

Oven-drying of wood 

The equilibrium 

The Kd'S determined w i t h  the prewashed organic 

Several Kd'5 were determined for natural and synthetic iron 

hydrous oxides and B-Mn02. 

probably were related t o  the degree o f  c rys t a l l i n i ty  o f  the specimens. 

Burns (1976) suggested tha t  the adsorbtion of cations should decrease 

as the amount o f  bi rness i te  ( c rys t a l l i ne  d-MnQ2) increases. 

addition, the adsorption capacity o f  both iron sols and 6-Mn02 

These Kd'S were qui te  variable and 

In 
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Table 7. Distribution coeff ic ient  (Kd) 0% 8 5 ~ r  between White Oak 
Creek water and streambed gravels, sediments, organic matter 
and Fe-Mn oxides 

Grave 1 s 

~ 

Sarnpl e number Kd a 

Liyht-colored shale 9-7 
Dark-col ored shale 9-8 
1- i gh t - co 1 or ed chert 9-14 
Mixed chert and limestone 9-18 
Mixed chert and limestone 9-19 
L imestone 9- 21 

129 b 
I44 b 
20 b 
23 b 
8 b 
6 b 

Organic materi a1 Kd ( unwashed)d Kd (washed) 

Wood, light-colored (sound) 49 
Wood, dark-colored ( r a t t e d )  102 
Wood, very dark ( ro t t ed )  78 
Deciduous leaves: d a r k ,  

s l i g h t l y  decomposed 127 
Deci duous 1 eaves : very dark,  

A lga l  slime 31 
s l i g h t l y  decomposed 101 

60 c 
144 C 

155 C 

39 2 C 

160 C 
55 C 

Fe-Mn oxides Kd 

Fe203-so 1 (natural  ) 
Fe203-sol (synthet ic)  
6-Mn02 natural 
6-Mn02 syntheti c 

55 0 C 
15 0 C 
100 t o  > 1000 c 
100 t o  > 1000 C 

aK = -..E! d m/g solid-- 
d dpm/ml creek water 

bCreek water o f  pH 7.3, E = 96 pmhos/cm. 

cCreek water of pH 7.7 ,  E = 196 umhos/crn. 

dPrewashed samples rinsed twice w i t h  t h i s  creek water before Kd 
determi nations ( see  t e x t ) .  
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changes most rapidly i n  the pH range of 6 t o  9 ( K i n n i b u r g h  e t  a l .  1975, 

Loganathan e t  a l .  1977) which includes the pH (7-8) of the stream water 

used for  these Kd determinations. Thus, small changes i n  pH due to  

aging of the gel could lead to  marked changes i n  the measured K d ' S .  

OPTIMUM S I Z E  FOR SEDIMENT SAMPLING 

w i t h  respect 

m i  neral ogi ca 

t o  the s ize  of sediments (Whitney 1975) .  

differences between different  s i r e  f r a c t  

Iron and manganese concentrations are not uniformly distributed 

Because o f  

ons, i t  i s  

expected t h a t  the radionuclides will not be uniformly dis t r ibuted 

ei ther .  Furthermore, i t  would be useful t o  sample a s i ze  tha t  i s  

eas i ly  reproducible, one tha t  can be done i n  the f i e l d ,  and one tha t  i s  

present i n  large amounts a t  most s i t e s .  For these reasons, the 

dis t r ibut ion o f  radionuclides w i t h  respect t o  s ize  f ract ion was 

determi ned. 

Exper irnental 

On March 1, 1978, a large (approximately 3.5-kg) sample of 

sediment was collected t o  a 4-cm depth from the channel of the 

t r ibu tary  of White Oak Creek that  runs south o f  SWDA-4. 

sieved under a flow of tapwater into seven s ize  f ract ions;  clay and 

s i l t  f rac t ions  were isolated by gravity or centrifugal sedimentation 

(Jackson 1956). All gravitational and centrifugal s i ze  i so la tes  were 

washed three t o  f i ve  times by resuspending i n  tapwater u n t i l  the f i n a l  

The sample was 
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supernatant appeared c lea r ;  a l l  supernatants were combined and used f o r  

the  i s o l a t i o n  o f  t h e  nex t  smal le r  s i z e  f r a c t i o n .  Each f r a c t i o n  was 

oven-dr ied (lOS°C, overn igh t )  and weighed. 

Each s i z e  f r a c t i o n  was analyzed f o r  137Cs conten t  be fo re  and 

a f t e r  e x t r a c t i o n  w i t h  2% hydroxylamine hydrochlor ide/0.3 - M amonium 

c i t r a t e ,  pH 7.0, as descr ibed p rev ious l y .  

con ten ts  were a l s o  determined on these e x t r a c t s  as descr ibed 

p rev ious l y .  

c o a r s e - s i l t  and a l l  c l a y  f r a c t i o n s  which were expended) was a l s o  

determined as descr ibed p rev ious l y .  

by comparing quar t z  X-ray d i f f r a c t i o n  peak he igh ts  (100) i n  each s i z e  

f r a c t i o n  w i t h  t h a t  i n  a r t i f i c i a l  q u a r t z - i l l i t e  mix tu res .  Standards and 

samples were ground t o  pass a 325-mesh s ieve  and mounted i n  r e v e r s i b l e  

glass-backed aluminum frames. Each standard was run  t h r e e  t imes t o  

The 'OSr, Mn, and Fe 

The 6oCo conten t  o f  each f r a c t i o n  (except t h e  

The quar t z  conten ts  were est imated 

prepare a c a l i b r a t i o n  curve; unknowns were a l so  r u n  t h r e e  t imes and t h e  

average peak h e i g h t  was used t o  es t imate  t h e  quar t z  percentage. 

P h i l i p ' s  X-ray d i f f r a c t o m e t e r  w i t h  a N i - f i l t e r e d  Cu-K r a d i a t i o n  source 

opera t i ng  a t  40 kv and 20 ma w i t h  a scanning speed o f  l " /m in  was used 

A 

f o r  these s tud ies .  

Resu l ts  and Discussion 

'The d i s t r i b u t i o n  o f  137Cs9 9QSr, Fe, and Mn i n  

s ime- f rac t i ona ted  sediment f u r t h e r  i l l u s t r a t e s  assoc ia t ions  between 

rad ionuc l i des  and m ine ra l  phases (F ig .  5). 

concent ra t ions  were bimodal i n  t h i s  sediment, w i t h  maxima i n  t h e  f i n e  

grave l  t o  coarse sand ( - 2  t s  +2 4 )  and again i n  t h e  medium-si l t  t o  c l a y  

Both 'OSr and 137Cs 
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Fig.  5. The distribution o f  quartz, 137Cs, and 9*Sr, Mn, and 
Fe extractable by hydroxylamine i n  size fractions o f  
contaminated streambed sediment. 
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f rac t ions  ( 7  t o  9 $). Cobalt-60, although present a t  only  OW levels 

i n  th i s  sample, also exhibited a maximum i n  the coarse-sand fract ion 

(Table 8) and appeared t o  be increasing again from the coarse- t o  

m e d i u m 4  l t -s ized f rac t ions ;  unfortunately, the  finer-sized f rac t ions  

were no t  available for 60Co analyses. Since the s i z e  i so la tes  larger 

than medium sand represented greater than 95% o f  whole sample weight 

(Table 8 ) ,  most o f  the to t a l  rad ioac t iv i ty  was associated w i t h  these 

larger  f rac t ions ;  such larger-sized f rac t ions  wauld also have a much 

lower potential  than the f ine r  s izes  for  transport  i n  the stream as 

suspended sol ids .  T h u s ,  the coarser f rac t ions  wi l l  have a longer 

residence time i n  a given stream section and t h e i r  radionuclide content 

l ike ly  represents prolonged contact wi th  stream water w i t h i n  t ha t  

stream section. Ideally,  a s ta t ionary f rac t ion ,  such as exposed 

bedrock, could be chosen b u t  this is ra re ly  possible. T h u s ,  the 

fine-gravel t o  coarse-sand fract ion appears t o  be the best s i ze  

f rac t ion  for monitoring radionuclide contamination by 6oCo, 'OS,, 

and 137Cs o f  streambed sediments because o f  i t s  abundance i n  the 

sediment, i t s  ease i n  i solat ing and sampling, and i t s  h i g h  

concentrations of the radionuclides o f  i n t e re s t .  In addition, 

gravel s/sands w i t h  f erromanganese hydrous oxi  de coatings represent 

those sediments which have been deposited for some time and, hence, 

would have more abundant s i t e s  f o r  radionuclide retention. These 

coated sediments generally occur i n  r i f f l e s  i n  the streams. 

The bimodal d i s t r i b u t i o n  o f  each radionuclide was s t rongly  r e  

t o  the mineralogical composition of each size f rac t ion .  Quartz,  w 

i t s  comparatively ine r t  surface,  would not  be expected t o  adsorb 

ated 

t h  



Table 8. Radionuclide and extractable Fe and Mn o f  streambed sediment s ize  f ract ions 

Coarse gravel 
Fine gravel 
Very coarse sand 
Coarse sand 
Medium sand 
Fine sand 
Very fine sand 
Coarse s i  1 t 
Medium s i l t  
Fine s i l t  
Coarse c lay  
Medium clay 
Fine clayJ 

40,000-4750 
4,750-2000 
2,000-850 

850-500 
500-212 
212-125 
12 5 -88 
88- 20 
20-12 
12-2 
2-0.5 
0.5-0.2 
0.2 - 

-3.79 
-1.63 
-0.39 
+O. 62 

1.62 
2.62 
3.26 
4.58 
6.01 
7.68 
9.97 

11.63 
- 12.29  

2200.0 
741.8 
325.1 
100.6 
58.2 
19.1 
17.8 
10.9 
31.2 
i9.4 
6.2 
1.6 
1.0 

2700 
4130 
47 70 
4170 
3760 
49 20 
4310 
2143 

15700 
3i900 
23800 
13000 
4210 

2110 
4070 
4220 
3500 
3600 
5270 
3970 
2 240 

11300 
23200 
28800 
33900 
27400 

539 
996 
942 
776 
653 
547 
366 
2 16 
764 

I276 
1228 
1123 
408 

n.d.c n.d. n.d. 
388 13 33 
58 3 26 16 
7 09 30 13 
568 29 24 
348 26 63 
240 18 63 
214 n . d .  58 
550 54 20 
732 88 13 
758 n.d. 4 
846 n.d. -h 
675 n.d. - 

d 
d 
d 
d 
d 
e 
e 
f 
f 
f 
g 
i 
k 

w 
F 

aExtracted i n  2% illH2M-1-HC1/0.3 

bTotal. 

n.d. = no t  determined. 

dTriplicate 10-g samples used for  extraction and counting. 

e ~ r i p ~  i cate 5-9 samples. 

f D u p l i c a t e  5-9 samples. 

gsingle 5-9 sample. 

h- = not detected. 

aimonium c i t r a t e ,  pii 7.  

c 

a 
-I 

cn 
M 
a 

i S i n g j e  1-3 sample. T 
JSettled sol ids  24 hr a f te r  f locculation w i t h  50 m l  of @ CaC12 i n  8 l i ter  of combined rinse water f rom 

previous s ize  isolate .  u1 

kSingle 0.95-g sample. 
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radionuclides. Notably i t s  concentration reached a maximum i n  the f ine  

sand t o  coarse s i l t  f rac t ions  exactly where 

concentrations on the sediment attained minima. The larger-sized 

f rac t ions  were dominated by shale fragments, i . e . ,  aggregated clay and 

other mi neral s ,  with consi derabl e ferrcmanganese hydrous oxi de 

coatings; quartz ex i s t s  as sand- and s i l t - s i zed  grains i n  the shale 

fragments of the coarser s izes .  Quartz i s  the dominant mineral i n  the 

medium-sand to  coarse-s i l t  f rac t ion ,  while clay minerals doininate i n  

the  smaller f rac t ions .  This large increase i n  ferromanganese coatings 

i n  the clay-sized f rac t ions  was probably due t o  t h e  large increase i n  

surface area per u n i t  weight w i t h  decreasing pa r t i c l e  size. 

and 1 3 7 ~ s  

The dis t r ibut ion o f  radionuclides and mineralogical composition 

w i t h  sediment s i ze  w i l l  d i f fer  when other rock types dominate the 

sediment. However, Conasauga shale is  the dominant parent rock i n  

Me1 t o n  Valley where, presumably, most radionuclide contamination 

ar ises .  Other types o f  rocks including chert ,  dolomite, and limestone 

enter White Oak Creek i n  Bethal  Valley and are transported i n t o  Melton 

Valley by the creek. 

SURVEY OF WHITE OAK CREEK STREAMBED SEDIMENTS 

Samples of streambed sediment were collected from a l l  major 

streams and t r ibu ta r i e s  i n  the White Oak Creek drainage basin on 

several dates i n  March and A p r i l  1978. Figure 1 shows the location o f  

the s o l i d  waste disposal areas (SMDA) and intermediate-level l i q u i d  

waste (ILLW) pits and trenches w i t h i n  the White Oak Creek basin; F i g .  6 

shows the location o f  sampling si tes w i t h  respect t o  these references 
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Fig. 6. location o f  streambed sediment samples from White Oak 
Creek watershed. Sample identification numbers 
correspond to the radiochemical concentrations listed in 
Table 6. 
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and QRNL buildings. Samples were collected from sections of streams 

where ferromanganese oxi de-coated gravel degosi t s  appeared t s  doni nate 

the surface o f  the streambed sediment; generally, these areas are 

narrower and more rapidly f l o w i n g  sections of a g i v e n  stream. Samples 

were collected t o  a depth of  approxiniately 4 crn and placed i n  

polyethylene seal-lock bags. The material was sieved under f l o w i n g  

tapwatev and the fine-gravel and coarse-sand f rac t ion  ( 3 . 3 5  t o  0.85 m) 

isolated and oven-dried (lO5"C, overnight). 

content o f  a 10-g sample was determined as described previously. The 

exchangeable content was determined u s i n g  the hot 1 amnonium 

acetate,  pH 7 ,  extracting procedure described previously. 

The 60Co and 137Cs 

The observed radionuclide content of each sample is l i s t ed  in 

Table 9. To sumnarize the d i s t r i b u t i o n  i n  the watershed, a graphical 

representation of each radionuclide's  d i s t r i b u t i o n  is presented i n  

Figs.  7 ( Sr), 8 (137Cs), and 9 ( Co). 90 68 

Several generalizations concerning the o r i g i n  and d i s t r i b u t i o n  of 

First, the headwater sediments of each each radionuclide can be made. 

stream were at  or  near background levels  o f  radioact ivi ty  of each 

radionuclide. Strontium-90 appeared t o  have several major origins 

including SWDA-4, StdDA-5, ORNL plant e f f luents ,  the stream draining the 

western half o f  SWDA-6, ILLbJ trench 6 ,  and ILLW p i t  1 (samples 9-13, 

13-10, 9-19, 16-2, 12-8, and 14-5, respectively).  Cesium-137 seemed t o  

be dis t r ibuted s imilar ly  t o  "Sr taut d i d  n o t  appear i n  SWDA-6 or ILLW 

p i t  1 drainage; additional low contamination ( 4 1  and 26 dpmn/g) was 

observed i n  t h e  sediment o f  streams draining SGJDA-3 (sample 9-15) and 

the h i g h  f l u x  isotope reactor complex (sample 9-10>, respectively. 
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Table 9. Radionuclide concentrations of streambed sediment samples 
o f  White Oak Creek watershed 

Total 137Cs Total 6oCo Exch angeab 1 e 90Sr 
Sample No. ( dpm/g 1 ( dpm/g 1 ( dpm/g 1 

9-1 
9-2 
9-3 
9-4 
9-5 
9-6 
9-7 
9 -8 
9- 9 
9-10 
9-11 
9-12 
9- 13 
9-14 
9- 15 
9-16 
9-17 
9-18 
9-19 
9-20 
9-22 
12-6 
12-8 
12 -9 
13 -3 
13-7 
13-8 
13-10 
13-12 
13-13 
14-1 
14 -4 
14-5 
16-2 
16 -3 
17  -1 
17-3 
17-4 
17-5 

__ ~ 

969 139 17.1 
3350 203 22.2 

57 119 28.5 
,a 10,220 0.1 
11 541 43.0 

- 1,053 1,4 
25 170 3.3 - 3 104.3 

3331 8 61.0 
26 11 99 0.1 - 4 - 

c 2 0.2 
21 1365.1 2 46 

- 1.3 
41 3 4.7 

4 0.5 - - 0.7 
9 3 - 

164 47 107.4 
11 08 42 13.2 
3409 5 54 17.6 

8 33 5 0.6 
136 38 148.0 
62 37’0 5.1 
5 440 3.3 

95 180 4.2 
893 3 8.3 

1570 7 52.0 
9 104 2.5 

- 3 1.0 
- 1 0.9 

9 25 30.5 
4 5 54.0 

- 3 87.5 
- 1 0.9 

1 0.3 - 1 0.3 
- 2 0.9 

1 0.8 

- 
- 

- 

- 

a- = not detected. 
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sediment samples from h i t e  Oak Creek watershed. 
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F i g .  9. The distribution of 6oCo concentrations in streambed 
sediment samples f r om White Oak Creek watershed. 
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Rather s ignif icant  137Cs concentrations (> I 3000 dpm/g) were observed 

a t  the mouth of the stream east  of SWDA-5 (sample 9-91, i n  White Oak 

Creek jus t  below monitoring s ta t ion 3 (sample 9-21, and near points of 

entry o t  ORNL plant e f f luents  into White Oak Creek (sample 9-22). 

Cobalt-60 e x h i b i t e d  a dis t r ibut ion ( F i g .  9) quite  d i f fe ren t  from 

e i ther  

p i t s ,  par t icular ly  the well-known seep east  of ILLW trench 7 (Means e t  

a l .  19781, plant eff luent  from the main ORNL complex, leakage near the 

H K I  S e t t l i n g  Basin area, and the h i g h  f l u x  isotope reactor (HFIR) area 

(samples 9-4, 9-22, 13-12, and 9-10, respectively).  In general, the 

low concentrations of 6oCo i n  the SWDA drainage show tha t  only small 

amounts, r e l a t ive  to  'OS, and 137Cs, originate from the SWDA's. 

A l t h o u g h  the ILLW pits  and trenches are reposi tor ies  for  a l l  three of 

these radionuclides, only 6oCo appears t o  be moving from them. 

suggests tha t  the treatment of the intermediate-level l i q u i d  waste 

( h i g h  Na and pH) may have led to  immobilization of 'OS, and 137Cs 

i n  the ILLW pits and trenches. A similar treatment of low-level solid 

waste or of the so i l  i n  which i t  is t o  be buried m i g h t  well lead t o  

bet ter  retention of ''5, and 137Cs. 

or 137Cs. Major sources appear t o  be ILLW trenches and 

T h i s  

More extensive sampling o f  streambed sediment is being performed 

to locate points o f  entry o f  radionuclide contamination. Par t icular  

a t tent ion is being focused on areas where the preliminary samplings 

indicated large and unknown sources of contamination upstream. Even if 

radionuclide contamination o f  stream-water were t o  be stopped, the 

sediments themselves pose as a source of contamination for some as yet 

unestimated time. To estimate how long streambed sediments will remain 
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a source o f  contamination, samples o f  highly contaminat.ed fine gravel, 

contained i n  nylon-mesh bags, wi l l  be placed i n  uncontaminated sections 

(headwaters) o f  White Oak Greek. By removing and analyzing these 

samples a t  various times, estimates of the i n  situ ra tes  of 

radionuclide t ransfer  from sediment t o  stream water under local 

conditions can be calculated,  In addition, a similar experiment, 

placing uncontarni nated gravel i n  sections o f  contaminated streams w i t h  

periodic sampling, s h o u l d  yield a good estimate o f  the r a t e  o f  t ransfer  

o f  radionuclides from water t o  sediment as well as reveal whether 

contamination is  continuing or a resu l t  of e a r l i e r  releases.  

r a t e s  should provide enough knowledge t o  estimate how l ong  streambeds 

would remain contaminated by each radionuclide as well as to  estimate 

These two 

t h e i r  r a t e  o f  transport  i n  the creek. Studies o f  the concomitant r a t e s  

of ferrmanganese hydrous o x i d e  deposition on streambed sediment s h o u l d  

fur ther  c l a r i f y  their r o l e  i n  the  adsorption and immobilization o f  

60Co, 137Cs, and i n  White Oak Creek. 

SUMWRY AND CONCLUSIONS 

This study was i n i t i a t ed  t o  determine how streambed sediments 

could be used t o  locate radionuclide contamination i n  White Oak Creek 

watershed. Several conclusions were reached: 

(1) The three radionuclides, 50Co, '*Sr, and 137Cs, are 

retained on streambed sediment by different; mechanisms. Cobal t40 is 

precipitated w i t h  manganese i n  hydrous oxide coatings on minerals or 

rock fragments. Strontium-90 occurs primarily as an exchangeable 

cation on clays,  organic matter, i ron  oxides, and manganese oxides; 
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small amounts o f  "Sr also occur i n  a nonexchangeable form i n  

manganese oxides. Cesium-137 i s  held i r reversibly by i l l i t i c  minerals 

i n  the sediments. 

( 2 )  Fine gravel to coarse sand i s  the best s i ze  f ract ion o f  

Conasauga shale-derived sediments fo r  sampling radionuclide 

contamination. Medium to  very f ine  sand contains more quar tz  than 

larger or smaller f rac t ions .  Clay and s i l t  s ize  f ract ions,  although 

they contain radionuclides, are n o t  useful for sampling because they 

comprise only a small percentage o f  the stream bottom sediment and 

because they cannot be readi ly  isolated by sieving when sampled i n  the 

f i e ld .  

(3 )  White Oak Creek watershed contains several previously 

unreported sources o f  contamination such as 'OS ,  from SWDA-6. A much 

more comprehensive sampling of White Oak Creek sediments i s  underway t o  

locate w i t h  more precision a l l  sources o f  contamination entering the 

watershed. 
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