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A FLUID MECHANICS MODEL TO ESTIMATE THE LEAKAGE OF 
INCOMPRESSIBLE FLUIDS THROUGH LABYRINTH SEALS 

J. T. Han 

ABSTRACT 

An analytical model for estimating the leakage of incom- 
pressible fluids through straight labyrinth seals is described. 
Results from the model are' in reasonable agreement with the 
limited data available. The mass leak rate is shown to be 
proportional to the seal clearance and pressure drop in the 
following functional dependency: 
< 3 and 0.5 < b < 1. 

M a Ca(AP)b, where 1.5 < a 

INTRODUCTION 

Labyrinth seals [ l - 7 1  have been used in steam turbines and compres- 
These seals utilize a laby- sors to reduce flow leakage for many years. 

rinth path to increase resistance to flow. 

Egli [l] developed a theoretical model for calculating the leakage 

of compressible fluids (gases). Using the ideal gas law and assuming' 

isentropic expansion for the gas passing through each throttling passage 
of the seal, he derived an equation showing leakage as a function of seal 

inlet pressure and specific volume, seal outlet pressure, and total number 

of throttlings in the seal. However, empirical coefficients in his equa- 
tion were determined from superheated steam data. Other similar analyti- 
cal studies and empirical correlations f o r  gases can also be found in the 

literature [2-71.  

Recently, labyrinth seals have been used in the test section of two 

sodium-cooled THORS pin bundles [8,9] to reduce the leakage and to account 
for the differential thermal expansion between the heated test section and 

its housing. The correlations for gases [ l - 7 1  are probably inapplicable 

to sodium, and therefore a method for estimating the leakage of incompres- 

sible fluids through labyrinth seals was needed. 

This report presents an analytical model for estimating the leakage 
of incompressible fluids through straight labyrinth seals. 

velopments [lo-281 in theoretical (including numerical solutions) and 

Recent de- 
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experimental studies of the recirculating flow inside rectangular cavities 

and of the channel flow between parallel plates (including the entrance 

and exit effects) have been incorporated into the model. The approach 

used in the model is different from that of previous ones in which the 

gas-dynamics laws with some empirically determined coefficients were used. 

In the present model, as well a5 previous ones [l-71, the straight 

labyrinth seal is assumed to be stationary. 

rotating shaft of some of the seals has been experimentally found to be 
small [l]. Furthermore, the analytical results by Tao and Donovan [291 

have also indicated that the rotating effect of the shaft is insignificant 

for flow in a narrow annulus. 

The effect caused by the 

ANALYTICAL MODEL 

Labyrinth seals are normally used in annular passages. Figure 1 
shows the two kinds of straight labyrinth seals discussed here: rectangu- 

lar cavity and helical thread types. Assumptions used in the present 

model are (1) constant fluid properties based on average temperature and 
pressure in the seal; (2) R/C >> 1 for cavity-type seals (see Nomenclature 
for definition of symbols) and R/C >> 1 and also 21'rrR/S >> 1 for helical- 
thread-type seals so that the flow can be treated as two dimensional in 

. the seal; (3 )  finite cavities and threads (e.g., H/B 5 5 and A/B - < 5 ) ;  
and ( 4 )  Rec = UB/V - > an order of 100. 

The flow of fluid through the seal is driven by the pressure dif- 

ference between the seal inlet and outlet. 
driving pressure drop across each throttling of the seal (as represented 
in Fig. 2), 

Letting AP be the 'laveragell 

where C = 0 if the seal inlet and outlet are at the same elevation and 

C = 1 (or C 

above) the outlet. The last term in Eq. (1) is the pressure loss caused 
by the contraction and expansion of flow area at the seal inlet and outlet, 

respectively [lo]. 

1 
= -1) if the seal inlet is located vertically below (or 

1 1 
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Fig.  1. Two k inds  'of s t r a i g h t  l a b y r i n t h  seals:  (a )  r ec t angu la r  
c a v i t y ,  (b) h e l i c a l  th read .  
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Fig. 2. Friction drags in a unit of seal throttling: (a) rectangular 
cavity, (b) helical thread. 

For fully developed flow in the channel between two parallel plates 

[ll], AP is equal to the sum of various friction drags exerted on the flow 
by the inner wall (Dl), the outer wall (Dz), and the cavity flow (D3) as 

shown in Fig. 2. Thus, 

For flow in the hydrodynamic entry length of the channel [ll], the 

right-hand side of Eq. (2) should include a term to account for the 

increase in the total fluid momentum flux between the outlet and inlet 
of the throttling. To simplify the equation, the momentum flux term is 
included in the terms of D1 and D2 to be defined later. There is no 

gravity term in Eq. (2) because it has already been taken into account 
in E q .  (1). 

The incompressible flow in the channel is approximated by the ideal 

channel flow without the presence of cavities or threads and can be either 

laminar or turbulent, depending on its Reynolds number. For laminar flow 

in the channel [ll] with Re = U2C/V - < 2000, we have 

I" 

. 

_. 
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where C2 is the laminar entry-length coefficient to account for the larger 

pressure drop in the hydrodynamic entry length (above that in the fully 

developed region) caused by the increase in the fluid momentum flux and 

a larger viscous friction at the wall. 

unity and will be approximately equal to unity for the channel flow with 
a much longer, fully developed region than the hydrodynamic entry length.) 

(C2 is generally greater than 

For turbulent flow in the channel with Re > %2000, friction drags 

are given either in empirical formulas or in the Moody diagram [12]. 
Blasius formula was chosen for the present study because of its simplicity 

and accuracy: 

The 

T O  = 0.03955 pU2 , 

which is in excellent agreement with experimental data, at least up to 

Re = 100,000. 
Substituting Eq. (5) into D1 = C~TOSW and D2 = C3TO(S - B)W yields 

0.25 swu'.75 D1 = O.O333C3p(U/C) 

and 

D2 = O . O ~ ~ ~ C ~ P ( U / C ) ~ * ~ ~  (S - B)WU'*75 , 

(5) 

(7) 

where C3 is the turbulent entry-length coefficient (C3 2 1). 

The magnitude of drag D3 is equal to the shear force of the channel 
flow exerted on the cavity flow (or flow inside the thread) to maintain 

it in motion; therefore, D3 is equal to the flow resistance exerted on the 
cavity flow by the cavity walls (two side walls and one bottom wall). 

order to estimate the value of D3, one must understand the characteristics 

of the flow inside the cavity (or thread). 

In 

A number of experimental and theoretical (including numerical solu- 

tions of the governing equations) studies have been performed to investi- 

gate the recirculating flow inside rectangular cavities of various height- 

to-breadth ratios [13-281. Batchelor [13] proposed that at large Reynolds 



, 

6 

numbers (Rec = UB/V), two-dimensional cavity flow can be divided into two 

regions: an inviscid core of uniform vorticity and a boundary-layer region 

adjacent to the wall, as shown in Fig. 3 .  Based on Batchelor's idea, Squire 

[14,15] solved the laminar boundary layer equation for flow inside a cylin- 
der. Roshko [15,16] obtained velocity and pressure profiles on the walls 

of a square cavity (H = B = 102 mm) in a wind tunnel. Figure 4 shows his 
velocity measurements along the line normal to the midpoint on each of the 

cavity walls at two external velocities; it is clearly shown that the 

boundary-layer region does exist along the cavity walls, as Batchelor 

suggested. Furthermore, the velocity at the outer edge of the boundary 

layer (U ) is approximately 25 to 45% of the external velocity. 
C 

Although the boundary layer on the cavity walls (Fig. 4) will be 
somewhat different from that on a flat plate because of pressure varia- 

tions [16] inside the cavity, it is assumed in the present study that the 
boundary layer along each of the three cavity walls is approximated by that 

on a flat plate. 

is approximated by that on a flat plate with its origin at the lower right 

corner of the cavity.) 

(Re ) based on the maximum boundary layer velocity (taken U = 0.4U) 

instead of external velocity (U), its value (using air properties at 

(For instance, the boundary layer along the bottom wall 

If we introduce a modified cavity Reynolds number 

R C 

Fig. 3.  Batchelor's cavity-flow model: an inviscid core of uniform 
vorticity surrounded by a boundary layer region (Squire [14]). 
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Fig. 4 .  Experimental velocity profiles on the walls of a square 
cavity (H = B = 102  mm) at two external velocities (Roshko [ 1 6 ] ) .  

room temperature) is found to be 170,000 and 61,000, respectively, cor- 
responding to U = 64.0 and 22.9 m/s (Fig. 4 ) .  These values are still 

below the upper limit of the Reynolds number, approximately at 500,000 

for the laminar boundary layer on a flat plate [12 ] .  

solution El21 with 6 = 5.0 [VB/(2Uc)]0'5, one finds the laminar boundary- 

layer thickness at the midpoint of each of three cavity walls (note that 
H = B) to be at 6/B = 0.0086 and 0.014, respectively, for U = 64.0 and 
22.9 m/s. These values are in excellent agreement with Roshko's experi- 
ment (Fig. 4). Therefore, the use of flat-plate boundary-layer approxi- 
mation is justified, at least for Roshko's experiment. 

Using Blasius' 

Batchelor [13 ]  did not specify the lower limit of the cavity Reynolds 

number (Re ) to.sustain the boundary-layer flow on the cavity walls. How- 

ever, from Roshko's experiment (Fig. 4 )  at cavity Reynolds numbers of the 

order of 100,000, the boundary-layer flow did exist. All other experimen- 

tal investigations [17-211 were devoted to flow visualization studies to 

determine the sizes and locations of recirculating vortices inside rectang- 

ular cavities of various height-to-breadth ratios; and therefore, it cannot 

C 
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be determined from those studies whether or not the boundary layer flow 

exists along the cavity wall. 

Numerical studies for laminar cavity flow have been reported in the 

literature [17-18, 22-28]. Either the full Navier-Stokes equations or 

the creep flow equations (Rec + 0) were solved numerically on a computer 
with Rec as high as 50,000. Figure 5 shows the streamlines and vorticity, 

distributions inside a square cavity calculated by Burggraf [22] (with the 

top wall moving from the right to left). At Re < 100, there is no such 

core region of constant vorticity; however, at Re 

region of the cavity has a somewhat uniform vorticity. Figure 6 shows 

Burggraf's velocity profiles on the vertical centerline . .  of the square 
cavity at various values of Re . 
Re 

streamline.) If the Blasius solution [12] is used to estimate the boundary- 

layer thickness at the midplane of the bottom wall with Re = 400 (arbi- 

trarily using air properties at room temperature, U = 0.3U as shown in 

Fig. 6,  U = 0.4 m/s, and B calculated from Rec = 400 as 0.015 m), a 
value of 6 = 0.32B is obtained; this value is in excellent agreement 
with that shown in Fig. 6 with the peak velocity at 6 / B  = Y/B = 0.3.. 

Therefore, in this report it is assumed that the boundary-layer flow exists 

along the cavity walls at Rec of approximately 400 or higher. 

the corresponding boundary-layer Reynolds number in the cavity (Re = 

UcB/V = C4Rec, where 0.25 - < CL, - < 0.62 as shown in Figs. 4 and 6)  is at 
least 100 or higher, which indeed satisfies the Prandtl assumption [12] 

that the Reynolds number should be at least two orders of magnitude greater 
than unity in order to have boundary-layer flow on a wall. (It is worth 
noting that in a recent paper, Nallasamy and Krishna Prasad [23] concluded 

from their numerical solutions for square-cavity flow that only at Re 

30,000 will the cavity flow "completely" correspond to the Batchelor model, 

where an inviscid core of uniform vorticity is surrounded by a boundary- 

layer region next to the wall. However, the author believes that the value 

of 30,000 is much too high for practical applications because the calculated 

vorticity variations in the entire cavity core at Re 

small- less than 1% from a constant value as shown in [23].) 

c -  

C 
= 400,  the central 

(He obtained the result analytically at 
C 

+ a  by using a linearized model for an eddy bounded by a circular 
C 

C 

C 

Note that 

R 

> 
c -  

= 30,000 are very 
C 

4 
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Re, =I00 

I , \ I  I i I I I C O J  
R e c =  400 

(a) Strezun1inc.s 

Re, =O 

Fig. 5. Streamlines and vorticity distributions inside a square 
cavity. Note that the dimensionless values of the stream function and 
vorticity are shown respectively in (a )  and ( b )  (Burggraf [ 2 2 ] ) .  
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Fig. 6. Velocity profiles on vertical centerline of a square cavity 
(Burggraf [22]). 

In summary, in the present model the boundary-layer region on the 
cavity walls (two side walls plus the bottom wall) is approximated by 

that on a flat plate with each cavity wall being treated as a single plate; 
the drag D3 is equal to the sum of friction forces exerted on the cavity 

recirculating flow by the cavity walls. By use of the friction formulas 

for flow on a flat plate [12], the following equations are obtained for 
estimating D3. (The value of D3 in a deep cavity with H/B > 1 is taken to 
be the same as that in.a square cavity. 

later. ) 

Justifications will be described 

Labvrinth Seals with Rectangular Cavities (Fie. 2a) 

For a laminar boundary layer on the cavity wall with Re < 500,000, R -  
we have 

D3 = 0 . 6 6 4 p ~ ~ ~ ~ ~ ~ ~ ’ ~  (Bo” + 2Hoa5) for H/B < 1 (8) 
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and 

1 

.r 

.. 
(i 

D 3  = 1.992pv0'5WB0'5U l o 5  f o r  H/B  - > 1 . (9) 
C 

For a tu rbu len t  boundary l a y e r  on t h e  c a v i t y  w a l l  wi th  Rell > 500,000, 

w e  have 

D 3  = 0.036pv0'2WLJc'~8 (Bo*'  + 2HoS8)  f o r  H/B  < 1 (10) 

and 

D 3  = 0 . 1 0 8 p ~ O ' ~  WBoo8LJ C l o '  f o r  H / B  - > 1 . (11) 

S imi l a r ly ,  f o r  r e c i r c u l a t i n g  flow i n s i d e  a thread  (Fig.  2b) i t  is  

a l s o  assumed t h a t  t h e  boundary-layer flow e x i s t s  a long two la te ra l  w a l l s  

of t h e  thread  a t  Rec  t an o rde r  of 100 (based on t h e  thread  b read th ) .  

Labyrinth Seals wi th  Helical Threads (Fig.  2b) 

For a laminar boundary l a y e r  on t h e  thread  w a l l  wi th  Rell  < 500,000, - 
w e  have 

D 3 = 1.. 3 2 8 ~ ~  O WA O 5Uc ' f o r  A/B < 1 (12) 

and 

D 3  = 1.328pvo'5WBo'5U C f o r  A / B  - > 1 . (13 )  

For a tu rbu len t  boundary l a y e r  on t h e  thread  w a l l  wi th  Rell > 500,000, 
we have 

and 

Equations (9 )  and (11) apply f o r  both square  and deep c a v i t i e s  wi th  

H / B  > 1, and Eqs. (13) and (15) apply f o r  t h e  th reads  wi th  A / B  > 1. 

J u s t i f i c a t i o n s  f o r  doing t h i s  are descr ibed  below. 
- - 

For r e c i r c u l a t i n g  flow 



12 

in a square or shallow cavity, there are generally a primary vortex in the 

core and two small corner vortices on the bottom wall (Fig. 5). (The latter 

are driven by the shear force from the former.) 

cavity becomes larger than its breadth, experimental flow visualizations 

[17,18] and numerical solutions [17, 18, 25, 261 for H/B = 2 have shown 

that a second core vortex exists underneath the primary vortex, which is 

located right underneath the moving (top) wall. However, numerical solu- 

tions have shown that the recirculating speed of the second vortex is 

approximately two orders of magnitude smaller than that of the primary one. 

As the height of the cavity becomes larger than twice its breadth, there 

may be more than two vortices in the cavity. Numerical solutions of 

Pan and Acrivos [18] with H/B = 5 show that there are four vortices in 

the core - the primary vortex is on top, followed by the second, third, 
and fourth. The recirculating speed of the second vortex is also approxi- 

mately two orders of magnitude smaller than that of the primary one and, 

in turn, the speed of the third one is about two orders of magnitude 

smaller than that of the second. 

As the height of the 

The important point is that in a finite cavity (H/B - < 5), the pri- 
mary vortex is predominant over the other vortices in the core and its 

height (defined as the vertical distance between the top cavity wall and 

the lower stagnation point of the vortex) is approximately equal to one 

cavity breadth. This is the reason that, for flow in a deep cavity 
(H/B > 1) with a finite depth (H/B - < 5), the drag D3 that acts on the 
main channel flow in the seal (Fig. 2)  is taken to be the same as that 

in a square cavity [see Eqs. (9) and (ll)]. 
However, this statement may no longer be valid for flow in an in- 

finite cavity (H/L > 10); the experiment of Pan and Acrivos [18] for flow 
in a cavity with H/B = 10 (to simulate the infinite cavities) showed that 

the height of the primary vortex increases from a value of 1 B up to 1.7 B 
as Re increases from approximately 340 to 4000. (They also indicated that 

the height of the primary vortex is approximately proportional to (Re ) 

in the range of 1500 - < Rec 

has found no flow visualization studies nor numerical solutions in the 

C 

C 
4000, the highest value in their experiment.) 

For recirculating flow in a thread as shown in Fig. 2b, the author 

b 

... 

k 



13 

literature. However, it is likely that the arguments for rectangular 
cavities can also be applied to the threads with various values of A/B. 

The maximum boundary-layer velocity in the cavity is given by 

uc = c4u , (16) 

where C4 is approximately in the range of 0.25 to 0.62 (Fig. 6). 

Substituting Eqs. (3) through ( 7 1 ,  Eqs. (8) through (111, and Eq. (16) 
into Eq. (2) yields the following equations for various flow conditions in 

straight labyrinth seals with rectangular cavities (Fig. la). 

For laminar channel flow and laminar boundary-layer cavity flow with 
Re 5 2000 and Rell 1. 500,000, we have 

AP = 6C2pVC2(2S - B)U + O.664pVoo5C-' 
x (BOo5 + 2H0*5)(C~U)1*5 for H/B < 1 (17) 

and 

For laminar channel flow and turbulent boundary-layer cavity flow 

with Re - < 2000 and Rell > 500,000, we have 

AP = ~CZPVC-~(~S - B)U + 0.036~V~'~C-' 
x (Bo.' + 2Ho'e)(C4U)1'8 for H/B < 1 (19) 

For turbulent channel flow and laminar boundary-layer cavity flow 

with Re > 2000 and Rell - < 500,000, we have 

1.75 AP = O . O ~ ~ " ~ ~ V ~ ' ~ ~ C - ' ' ~ ~  (2s - B)U 

+ 0.664pV0"5C-1(B0.5 + 2H0*5)(C4U)'*5 for H/B < 1 (21) 
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and 

‘For t u r b u l e n t  channel flow and t u r b u l e n t  boundary-layer c a v i t y  flow 

wi th  R e  > 2000 and ReR > 500,000, w e  have 

AP = O . O ~ ~ ~ C ~ P V ~ * ~ ’ C ” * ~ ’ ( ~ S  - B)U 1.75 

+ 0.036pVO 2C-1 (Bo*’ + 2H0*’) (C4U)  ’ .’ f o r  H/B < 1 (23) 

and 

S i m i l a r l y ,  s u b s t i t u t i n g  Eqs. (3) through (7), Eqs. (12) through (15), 
and Eq. (16) i n t o  Eq. (2) y i e l d s  t h e  fol lowing equat ions f o r  v a r i o u s  flow 

cond i t ions  i n  s t r a i g h t  l a b y r i n t h  seals wi th  th reads  (Fig.  l b ) .  

For laminar channel f low and laminar boundary-layer t h read  flow wi th  

R e  - < 2000 and R e R  - < 500,000, w e  have 

AP = 6C2pvC2(2S - B)U + 1.328pV0.5C-’A0’5(C4U)’’5 f o r  A/B < 1 (25) 

and 

AP = ~ C ~ P V C - ~  (2s - B)U + 1. 328pV0* ’C-’Bo. ’ (C4U) ’ ’ f o r  A/B - > 1 . (26) 
For laminar channel flow and t u r b u l e n t  boundary-layer t h read  flow 

wi th  R e  - < 2000 and ReR > 500,000, we-have 

AP = 6C2pvC2(2S - B)U + 0.072pV0.2C-’A0’8(C4U)1*8 f o r  A/B < 1 (27) 

and 

AP = ~ C ~ P V C - ~ ( ~ S  - B)U + 0.072pV0’2C-’Bo’’(C4U)”8 f o r  A/B - > 1 . (28) 
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For t u r b u l e n t  channel flow and laminar boundary-layer thread. flow 

wi th  R e  > 2000 and ReE 1. 500,000, w e  have 

AP = 0 . 0 3 3 3 C 3 p ~ ~ * ~ ~ C ” * ~ ~ ( 2 S  - B)U’*75 

+ 1 . 3 2 8 p ~ ~ * ~ C - ’ A ~ * ~ ( C ~ U ) ’ ’ ~ ’  . f o r  A/B < 1 (29) 

and 

AP = 0 . 0 3 3 3 C 3 p ~ ~ . ~ ~ C - ’ * ~ ~ ( 2 S  - B)U’.75 

f o r  A/B > 1 . (30) - + 1.328pV O . 5C- ’ B O (C qU) ’ 
For t u r b u l e n t  channel f low and t u r b u l e n t  boundary-layer thread flow 

w i t h  Re > 2000 and ReE > 500,000, w e  have 

AP = 0.0333C3pVo.25C”*25 (2s - B)U1*75 

(31) + 0.072pV0’2C-1A0’8(C4U)1*8 f o r  A/B  < 1 

and 

AP = O . O ~ ~ ~ C ~ P V ~ . ~ ~ C - ’ * ~ ~  (2s - B)U’*75 

f o r  A/B  > 1 . (32) + 0.072pV0’2C-’Bo’e(C4U)1 - 

S i m i l a r l y ,  f o r  laminar channel flow i n  a seal wi th  no c a v i t i e s  o r  

t h reads ,  we have 

AP = ~ ~ C ~ ~ V C - ~ S U  . (33) 

For t u r b u l e n t  channel f low i n  a seal  wi th  no c a v i t i e s  o r  t h r e a d s ,  

w e  have 

I n  o rde r  t o  c a l c u l a t e  t h e  mean channel v e l o c i t y  U from one of t h e  

equat ions given above [Eqs. (17) t o  (34 ) ] ,  t h e  va lue  of AP is c a l c u l a t e d  

f i r s t  from Eq. (1) and then s u b s t i t u t e d  i n t o  t h e  equat ion chosen t o  ob- 

t a i n  U by t r i a l  and e r r o r ,  which i s  s t r a igh t fo rward  s i n c e  AP monotonically 

i n c r e a s e s  wi th  U .  Then t h e  channel and boundary-layer Reynolds numbers 
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(Re and ReR) are calculated (from U) to determine if the right equation has 
been used in obtaining the channel velocity. 

the problem, it is recommended that the following values be used for the 

coefficients: K = K = 0, C2 = C3 = 1, and C4 = 0.4.  The value of 
U thus obtained will be "larger" than the value obtained if the entrance 

and exit losses of the seal as well as the hydrodynamic entry length of 

the seal have been taken into account. However, if the value of U is 
already tolerable, the calculation can be terminated. Otherwise, more 

realistic values for those coefficients should be used. 

A s  a first approximation to 

C e 

The values of K and K perhaps can be estimated from those given in 
C e 

Kays and London [lo] (note that the maximum value of either Kc or Ke is 

approximately equal to unity), the value of C2 or C3 can be estimated 

from the velocity of the first approximation (obtained with C2 = C3 = 1) 

with the use of existing friction coefficients taking entry length into 

account as given in references [11,30], and the value of C4 can be esti- 

mated from Fig. 6. Furthermore, since the turbulent channel flow will 

become fully developed with a much shorter entry length (than that of the 
laminar flow) and since the seal length L is generally much greater than 

the clearance C, C3 = 1 is probably a good approximation. However, for 

laminar channel flow in the seal (with Re - < 2000), the flow will not fully 
develop until a flow length of approximately 0.02 CRe has been reached 

[ll, 301; for the seal with L larger than this hydrodynamic entry length, 
C2 1 + 0.018 CRe/L, which is estimated by the present author from Han's 
analytical result for flow in a channel [301. 

The volumetric leakage through the seal is given by 

Q = 2TRCU , 

and the mass flow rate leaking through the seal is 

M = pQ = 2TpRCU . 

RESULTS AND DISCUSSION 

(35) 

Straight labyrinth seals have been used to minimize the flow leakage 

in the test sections of two 19-pin sodium-cooled bundles, designated as 

,?' 
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1 

t 

THORS bundle 3C [8] and bundle 6A [9], to simulate the fuel assemblies 
of the liquid metal fast breeder reactor (LMFBR). The seals are formed 
in an annular passage with helical threads at the outer wall as shown in 

Fig. l b  and have the following dimensions: S = 3.05 mm, B = 0.6375 mm, 

A = 1.23 mm, L = 25.4 mm, N = 8.33, R = 48.9 mm, and C = 0.0229 and 0.0343 

mm for bundles 3C and 6A, respectively [8, 91. Fluid properties used in 

the calculations are for liquid sodium at the experimental temperature of 
443°C ( p  = 845 kg/m3 and v = 3.05 X m2/s) and at 382°C (p = 860 kg/s 
and v = 3.35 X Equations 

(1) and (26) are used with C1 = C2 = 1, Kc = Ke = 0, and C4 = 0.4. 
m2/s) for bundles 3C and 6A, respectively. 

Table 1 presents the volumetric sodium leakage Q through the laby- 
rinth seal in THORS bundle 3C at various total driving pressure drops 

across the seal [NAP defined in Eq. (113; the seal leakage is estimated 
to be less than 1% of the total flow in the test section. Table 2 pre- 
sents the volumetric sodium leakage through the labyrinth seal in THORS 

bundle 6A, which has a seal clearance (C) 50% larger than that in bundle 

3C; the seal leakage is estimated to be less than 2% of the total flow 

in the test section. Since the seal leakage is no more than 2% of the 

total test-section flow, it is deemed to be negligible. 

The corresponding mass leak rates of sodium (M) passing through the 
labyrinth seals in THORS bundles 3C and 6A are shown in Fig. 7. Obviously, 

Table 1. Volumetric leakages of sodium through the labyrinth 
seal in THORS bundle 3C (sodium properties 

at 443°C are used in calculations) 

Percentage 
of total 
flow 

Seal 
leakage Q 

Total Total 
test-section driving pressure 

flow drop NAP 
[ U s  (gpdl [kPa (psi)] (%> [ U s  (gpm>I 

0.498 (7.9) 6.895 (1.0) 0.000360 (0.0057) 0.07 
0.908 (14.4) 20.7 (3.0) 0.00108 (0.0171) 0.12 
1.29 (20.4) 49.6 (7.2) 0.00258 (0.0409) 0.20 

, 3.71 (58.8) 379 (55) 0.0196 (0.310) 0.53 
2.73 (43.2) 221 (32) 0.0114 (0.181) 0.42 

4.54 (72.0) 703 (102) 0.0362 (0.573) 0.79 
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Table 2. Volumetric leakages of sodium through t h e  l a b y r i n t h  

a t  382°C are used i n  c a l c u l a t i o n s )  
seal  i n  THORS bundle 6A (sodium p r o p e r t i e s  

Percentage 
of t o t a l  

f low 
(23 

S e a l  
leakage Q 

T o t a l  To ta l  
t e s t - s e c t i o n  d r i v i n g  p res su re  

flow drop NAP 
[ U s  ( g p d  1 [kPa ( p s i ) l  ' [ U s  ( g p d l  

0.132 (2.1) 4.00 (0.58) 
0.252 (4.0) 7.58 (1.1) 
0.524 (8.3) 19.3 (2.8) 
0.770 (12.2) 35.2 (5.1) 
1.05 (16.7) 57.9 (8.4) 
1.57 (24.9) 110 (15.9) 
2.07 (32.8) 1 7 4  (25.2) 
2.58 (40.9) 252 (36.5) 

0.000630 (0.00998) 
0.00119 (0.0189 
0.00303 (0.0480) 
0.00551 (0.0874) 
0.00909 (0.144) 
0.0171 (0.271) 
0.0270 (0.428) 
0.0389 (0.617) 

0.48 
0.47 
0.58 
0.71 
0.86 
1.1 
1 .3  
1 .5  

F ig .  7. Mass l e a k  rate as a func t ion  of t o t a l  d r i v i n g  p r e s s u r e  drop 
and sea l  c l ea rance  f o r  a s t r a i g h t  l a b y r i n t h  seal wi th  h e l i c a l  t h reads .  
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the mass leak rate increases with the driving pressure drop and seal 
clearance. A s  the seal clearance is increased by 50% from 0.0229 to 

0.0343 mm, the mass leak rate is increased by approximately 200%. 

should be noted that slightly different properties have been used in cal- 

culating the curves in Fig. 7. Nevertheless, the effect on the change of 

seal leakage is insignificant.) 

and temperature measurements in the pin bundles, it was estimated that 
the leak rate through the seal was less than 10% of the total flow through 

the experimental assembly; the analytical results shown in Fig. 7 and 
Tables 1 and 2 are indeed within this range. 

(It 

From the energy balance using the flow 

To further evaluate the validity of this model, comparisons were 

also made with some existing gas data. Zabriskie and Sternlicht [4] cor- 

related the mass flow rate as a function of P 

measured in a cavity-type labyrinth seal at two seal clearances (Fig. 5 

of their paper). (Dimensions of the seal are S = 8.48 mm, B = 8.23 mm, 

H = 9.53 mm, N = 29, and C = 0.584 and 1.37 mm.) Since the present model 

is applicable to incompressible fluids only, the data chosen for comparison 

for gas leakages out”in 

is close to 1 and out”in are limited to those for which the value of P 

the resulting Mach number (Ma) is still small [31,  l o ] .  Table 3 presents 

the comparisons between the experimental results [ 4 ]  and theoretical cal- 

culations, in which Eqs. (1) and (22) were used with C1 = K = K = 0, 

C3 = 1, and CI, = 0.4 with air properties evaluated at average seal pres- 

sure [= 0.5 (Pin + Pout )] and an arbitrarily chosen temperature of 21°C. 
Theoretical calculations are of the same order of magnitude as the experi- 
mental results for gas, although the former are approximately 140 to 290% 

higher than the latter. In calculations, the entrance and exit losses of 
the seal as well as the hydrodynamic entry-length effect of the seal have 
been neglected; otherwise, the resulting channel velocity in the seal U 
should be somewhat smaller and the comparisons would be better. Neverthe- 

less, the simple model predicts the correct order of magnitude of fluid 

leakage through the labyrinth seal despite the complex seal geometry in- 

volved. 

C e 

A topic of interest to a seal designer is the comparison of flow 

leakage among labyrinth seals with cavities (Fig. l a ) ,  with threads (Fig. 
l b ) ,  and without cavities or threads. According to the model, the cavity- 
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Table 3. Comparisons between experimental results [4] and theoretical 
calculations f o r  air passing through a labyrinth seal 

Case No. 

1 2 3 4 5 

C (mm) 0.584 0.584 0.584 1.37 1.37 

0.83 0.80 0.71 0.83 0.80 Pout/Pin 

P;n [kPa (psia)l 138 (20.0) 112 (16.3) 148 (21.4) 138 (20.0) 112 (16.3) 

31 34 43 35 42 

75 80 107 136 145 

Ucal/Uexp 2.4 

( X )  140 - ("tal uexp)/uexp 

2.4 

140 

2.5 

150 

3.9 

290 

3.5 

250 

Ma = u /a 0.090 0.099 0.12 0.10 0.12 e xp 

Arbitrarily chosen values. 
* 

t ype  seal o f f e r s  more flow r e s i s t a n c e  than t h e  th read  type (due t o  t h r e e  

w a l l s  i n  a c a v i t y  v s  two walls i n  a t h r e a d ) ,  i f  a l l  o t h e r  cond i t ions  are 

kept  t h e  s a m e  (e .g . ,  C ,  B,  L ,  S ,  f l u i d  p r o p e r t i e s ,  and seal p r e s s u r e  drop) .  

A comparison of Eq. (18) wi th  Eq. (26) shows t h a t  t h e  second t e r m  on t h e  

right-hand s i d e  of t h e  former is  50% l a r g e r  than t h a t  of t h e  l a t te r .  The 

same conclusion can a l s o  be reached by comparing Eqs. (20)  and (28 ) ,  Eqs. 

(22) and ( 3 0 ) ,  o r  Eqs. ( 2 4 )  and (32).  Consequently, t h e  flow leakage 

through t h e  l a b y r i n t h  seal wi th  cavit ies is  l i k e l y  t o  be smaller than t h a t  

through t h e  seal wi th  th reads .  

The comparison of flow leakage f o r  a seal wi th  c a v i t i e s  and t h a t  w i th  

no c a v i t i e s  depends on s e v e r a l  parameters ,  i nc lud ing  seal c l e a r a n c e  C y  

c a v i t y  b read th  B y  c a v i t y  he igh t  H ,  f l u i d  p r o p e r t i e s ,  and p r e s s u r e  drop 

through t h e  seal. For most des igns ,  f l u i d  p r o p e r t i e s  and seal p r e s s u r e  

drop are given; by choosing v a r i o u s  v a l u e s  f o r  seal c l ea rance  and c a v i t y  

dimensions ( g e n e r a l l y  under t h e  c o n s t r a i n t  of t h e  c o s t  and o p e r a t i n g  con- 

d i t i o n s  of t h e  system where t h e  seal i s . i n  u s e ) ,  t h e  seal  leakage can be 

e s t ima ted  from one of Eqs. (17) through ( 2 4 ) .  The r e s u l t  can be compared 

w i t h  t h e  flow leakage through a seal wi th  no c a v i t i e s ,  which can be 

e a s i l y  c a l c u l a t e d  from e i t h e r  Eq. (33) o r  Eq. ( 3 4 ) .  One can then  dec ide  
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4, 

..' 

4 

'I 

which type of seal to use in his system. Similarly, a comparison can 
also be made between the seal with threads and that with no threads. 

CONCLUSIONS 

An analytical model for estimating the leakage of incompressible 

fluids through straight labyrinth seals has been described. Recent de- 
velopments in theoretical and experimental studies of recirculating flow 

inside rectangular cavities and of flow in a channel have been incorporated 
in the model to solve a practical problem. 
model is different from those of previous ones for compressible fluids 

in which the gas-dynamics laws with some empirical coefficients determined 

from gas data were used. 

reasonable agreement with those measured indirectly in sodium and those 

obtained for gas at low Mach number and small pressure variations. 

The approach used in this 

The seal leakages predicted by the model are in 

It can be concluded from this study that the labyrinth seal formed 
with cavities (Fig. l a )  has less leakage than the one formed with threads 
(Fig. l b )  if all other conditions are the same. Furthermore, the fluid 

leakage through straight labyrinth seals (for both cavity and thread types) 

is strongly dependent upon the seal clearance and pressure drop: 

(L~P)~, where 1.5 < a < 3 and 0.5 < b < 1. 

M a Ca 

A 

a 
B 

C 

c1 

c2 

c3 

c4 

D 

NOMENCLATURE 

Lateral dimension of seal thread (Fig. 1) 

Speed of sound 
Breadth of seal cavity or thread (Fig. 1) 
Radial clearance of seal 

Elevation coefficient ( I C1 I 5 1) 
Laminar entry-length coefficient (to account for the larger pres- 
sure drop in the hydrodynamic entry length above that in the fully 
developed region, C2 2 1) 

Turbulent entry-length coefficient (C3 ? 1) 

Ratio of Uc/U (C4 < 1) 

Drag force (Fig. 2) 



g 
H 

K 
C 

Ke 
L 

M 

Ma 

N 

P 

AP 

Q 
R 

R e  

R e  

R e  
C 

R 

S 

U 

U 

uC 

W 

Y 

Acce lera t ion  of g r a v i t y  

Height of seal  c a v i t y  (Fig.  1 )  

Abrupt con t r ac t ion  (en t rance)  c o e f f i c i e n t  a t  seal  i n l e t  

Abrupt expansion ( e x i t )  c o e f f i c i e n t  a t  seal o u t l e t  

S e a l  length  i n  flow d i r e c t i o n  (Fig.  1) 

Mass l e a k  ra te  [ E q .  ( 3 6 ) ]  

Mach number, Ma = U/a 

T o t a l  number of t h r o t t l i n g s  i n  seal, N = L/S 

Pressu re  

Average d r i v i n g  p res su re  drop of each t h r o t t l i n g  [ E q .  (l)] 
Volumetric l e a k  ra te  [ E q .  (35)1 

Radius of t h e  annular  seal  passage o r  t h e  channel (Fig.  1) 

Reynolds number based on t h e  hydrau l i c  diameter  of seal channel,  
Re  = U2Cfv 

Cavi ty  (or  t h read )  Reynolds number, Rec  = UB/V 

Reynolds number f o r  boundary-layer flow i n s i d e  t h e  c a v i t y ,  
R e  = U B / V  = . C k R e  (except  f o r  A / B  < 1, R e  = U A/v) 

Axial length  of a seal t h r o t t l i n g  (Fig.  1) 

Local v e l o c i t y  i n s i d e  t h e  seal  c a v i t y  ( p a r a l l e l  t o  t h e  w a l l )  

Mean v e l o c i t y  i n  t h e  annular  seal  passage (namely, t h e  channel) 

Maximum boundary-layer v e l o c i t y  i n s i d e  seal c a v i t y  o r  t h read ,  

Sea l  depth (normal t o  t h e  p l o t  i n  F ig .  l), W = 2 r R  

Coordinate normal t o  t h e  c a v i t y  w a l l  

R c  C R c  

uc = c4u 

Subsc r ip t s  

c a l  

exP 
i n  

out  

Greek 

6 
V 

P 

TO 
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Value c a l c u l a t e d  from t h e  model 

Experimentally determined va lue  

Seal i n l e t  

Sea l  o u t l e t  

r- 

0 

Boundary l a y e r  t h i ckness  (based on U ) 

Average kinematic  v i s c o s i t y  of f l u i d  

Average f l u i d  d e n s i t y  

Wall shear  stress 

C 
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