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ABSTRACT 

A f l  uorine-18 recovery system u s i n g  an anion-exchange side-stream 
colurnin was designed f o r  the H2180 t a r g e t  a t  the ORNL 86-inch cyc lo t ron .  
The e x t e n t  o f  r a d i o l y s i s  was determined and a c a t a l y s t  v e s s e l ,  con- 
t a i n i n g  a palladium c a t a l y s t ,  was incorporated t o  recombine the rad i -  
o l y s i s  product  gases .  
gas t a r g e t  f o r  the product ion of from y802 was a l s o  completed. 

The  prel im'  a r y  des i  n o f  an e x t e r n a l l y  bombarded 
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A previous MIT group ( 9 )  examined 18F production efficiency, heat 
removal character is t ics ,  a n a  materials of  construction i n  designing an 
H20 t a rge t  system f o r  the ORNL 86-inch cyclotron f a c i l i t y  using a - 

24-min proton beam of 250 PA t o  produce a 5 C i  of ac t iv i ty .  
was calculated t o  be s ignif icant  w i t h  ‘Lo.371 ml/min water decomposing to 
1.12 and l802. 
ca ta ly t ic  recombination u n i  t u s i n g  385 in1 o f  f i  nely-di vidcd pal 1 a d i  utii on 
alumina was incorporated. The ca ta lys t  vessel also ac ts  as a reservoir,  
should ta rge t  water accidentally be forced from other regions of the system. 

4 sidestream anion  exchange column was designed t o  recover 18F, u t i  - 
l i z i n g  the acetate  form of highly crosslinked resin.  The pressure drop 
and ow r a t e ,  calculated to be 13.6 psi and 2 . 2  ml/sec, enable 99.9% o f  
the fsF to be recovered w i t h i n  18 min  a f t e r  the cyclotron r u n .  The total  
target-water inventory i s  240 ml and losses are  estimated to be n o  more 
than 0.75 ml/run. 

An  externally bombarded l802 target  was also designed to deliver l8F-F.  
Suitable conditions t o  yield one C i  would be a 20-l.A beam current w i t h  an 
i r radiat ion time of 47 m i n .  
efficiency o f  the sidestream recovery column, heat exchangers, and ca ta lys t  
vessel a r e  recommended. 

Radiolysis 

Since i t  i s  cost ly  to vent these gases (%$A66 per run) , a 

Laboratory t e s t s  w i t h  normal water t o  examine 

2 INTRODUCTION 

M i  t h  the development of tomographic imaging devices a radiopharniaceu- 
t i c a l s  labeled w i t h  short- l iving,  positrsn-emitting nuclides o f  ]IC, 13N, 
140, 150, and 18F are  finding increased use i n  medicine. Among them, 1 8 F  
has the longest ha l f - l i f e  and can be attached to cer ta in  compounds w i t h  
una1 tered biological behavior. F1 uorine- 8 can be produced e i ther  w i t h  
reactions such a s  I60(a,d) ,  160(3He,p), 2ANe d , a ) ,  o r  180(p,n) u s i n g  par- 

thermal neutrons. 
t i c l e  accelerators or  w i t h  the reaction s e t  k Li(n,a)t, 160(t,n)18F u s i n g  

I n  a continuing project by ORNL and ORAU, an integrated modular system 

Problems of heat removal -1% ac t iv i ty ,  target 

for- synthesizing positron-emitting radiopharmaceuticals was designed. 
a previous report ,  the design for  a system ut i l iz ing  H2180 as  the ta rge t  
material was presented (9 ) .  
geometry, and materia o.f construction were investigated. However, target-  
water radiolysis a n d  ]&  recovery processes were n o t  examined. The decompo- 
s i t i on  of  the ta rge t  water by radiolysis i s  undesirable since i t  may cause 
pressure b u i l d u p s  and r e su l t  i n  l8O 

r ides ,  o r  f luorine gas ,  a l l  o f  which can be used i n  syntheses of different  
radiopharmaceutical s .  

I n  

oss if the p oduct  gases are vented. 
’The recovery scheme should deliver 1 8  F i n  the forms o f  anhydrous HF, fluo- 
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The objectives were t o  determine the extent of proton radiolysis o f  
water a n d  i t s  e f fec ts  on the 18F production system and to design a 18F 
recovery process. Cyclotron space 1 imitations, radiation hazards, target-  
water costs,  and yields in radiopharmaceutical synthesis processes were 
considered. 

3. RADIOLYSIS OF TARGET WATER 

Radiolysis is the decomposition o f  water by high-energy radiation and 
can produce many products, depending o n  the beam energy, beam current,  
temperature, and nature of solutes .  Molecular and radical yields can be 
described by G values, which represent the number of  molecules o r  radicals 
formed per 100 eV deposited in the target .  Values of G for water decompo- 
s i t i on  are shown in Fig. 1 a s  a function of -dE/dx, the r a t e  a t  which 
par t ic le  beams lose their energy, also called stopping power by physicists 
and l inear  energy t ransfer  ( L E T )  by radiobiologists.  Oxygen was found 
among the decomposition products and was believed to be formed indirect ly  
as a r e s u l t  of the action of  the radicals on the intermediate hydrogen 
peroxide (1 - ) . 

I n  the proposed system, 250 vA o f  22-Mew protons have a stopping power 
o f  0.31 eV/l. As they slow down, t he i r  stopping power will increase t o  
8.0 eV/8, a maximum for  protons (L). 
average G values for  H20 decomposition and tl2 formation were 3.0 and 1.0 
molecules per 108 eV deposited, respectively.  
3 kW would be deposited in target  water. 
t ion ra te  would be 5.58 x 10-2 mole/min or  1 .I2 ml/min, and w i t h  H forma- 
t i o n  r a t e  of 1.85 x 10-2 mole/min or 0.51 l iter/min (see Appendix f 0.1 for  
de t a i l s ) .  By stoichiometry, 0.26 l i ter/min 02 would form, and  venting 
these gases would then represent a corresponding water loss o f  0.37 rnl/min. 
W i t h  H2180 costing $75/gm, the loss would be $666 for  each 24-min r u n .  

In  the region from 0 .3  t o  8.0 eV/8, 

Therefore, the H2180 decomposi- 
From previous data (g), 

A reactor vessel w i t h  palladium ca ta lys t  was designed t o  recover radi- 
olysis  products. I n  a previous work, 25-50 in1 of alumina-supported pallad- 
i u m  (1/8 x 1/8-in. pe l l e t s )  was successfully used t o  recombine 100 ml/min 
o f  H2 and 02 (10) .  A d i rec t  scaleup resu l t s  in a ca ta lys t  inventory of 
385 ml t o  permit the same residence time for the gases. 

A schematic diagram of the ca ta lys t  vessel is shown in Fig. 2 .  The 
vessel volume i s  compact enough t o  be used in the cyclotron target  dolly 
ye t  should provide suf f ic ien t  heat-transfer surface to condense the water 
vapor. Pel le ts  f o rm a 
ca ta lys t  bed shaped l i ke  a truncated cone. The condensed water will s l i de  
down the water-cooled wall of  the conical section rather t h a n  d i rec t ly  f a l l  
into the ca ta lys t  bed. 

A perforated plate supports the ca ta lys t  pe l le t s .  

All in te r ior  surfaces m u s t  be nickel t o  prevent HF damage. Walls o f  
100-mil thickness allow an internal pressure up t o  300 psi .  For safety,  a 
pressure-relief valve s e t  a t  100 psi i s  located near the base o f  the conical 



dE 
dx Linear Energy Transfer = - - (eV/W) 
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section. 
would be low (%89 W) b u t  suf f ic ien t  to  keep the catalyst  dry and enhance 
recombi nation kinetics . 

Heat generated from the exothermic recombination of HZ and 02 

4. FLUORINE-18 RECOVERY FROM TARGET WATER 

The system used to recover 5 C i  o f  18F ( 4  x 

1 .  

mole of 18F) meets 
the  501 lowing constraints:  

par t icular ly  ~ 1 8 ~  o r  H I + .  
Permits t h e  production o f  18F in an anhydrous fluoride form, 

Uses a quick recovery process to minimize decay of I8F ac t iv i ty .  2. 

3. Avoids loss or  csntaminal,ion o f  t a rge t  water. 

4. Fits in the limited space a t  ORNL's 85-inch cyclotron f a c i l i t y .  

5. Provides radiation shielding for operating personnel. 

Recovery techniques such as ion exchange, d i s t i l l a t i o n ,  solvent extrac- 
t ion,  and co-precipitation were considered, Ion exchange was chosen because 
i t  has been the only simple technique i n  which anhydrous 18F production has 
been demonstrated i n  addition to having other operation-related advantages 
( 5 ) .  Use o f  a sidestream recovery system has the advantages of  small column 
s i zep  prolonged contact time, a n d  small pressure drop. A mathematical model 
of the system indicated tha t  a sidestream w i t h  2% o f  the total  flow will 
recover 99.9% of the 1% w i t h i n  10 min  a f t e r  t h e  cyclotron run (see Appen- 
d i x  10.2 for  d e t a i l s ) .  

Since fluorine i s  very weakly bound by the ion exchange resin,  strongly 
basic anion exchange resins such a s  Bio Rad AG1 ( 2 )  a r e  required. 
resins considered to recover fluoride ion should h v e  the following ionic 
forms i n  order o f  decreasing strength: 

The 

CH3COO- > OH- > F-  . 

The OH- is  unsuitable because i t  has only f a i r  thermal s t a b i l i t y .  The F- 
form has the drawback OP dilut ing 18F ac t iv i ty  w i t h  large amounts o f  i n -  
active fluorine.  Acetate-form resin i s  as  e f f i c i en t  as  the fluoride form 
and was therefore chosen ( 3 ) .  
would be sui table  since i texpands  l i t t l e  on hydrolysis and therefore has 
more ion exchange capacity per u n i t  volume ( s e e  Table 1 ) .  
par t ic le  s i ze  available (50-100 mesh) i s  recommended to minimize pressure 
d r o p  through t h e  column. 

A highly crosslinked resin,  such as  AG1-X10 

The largest  
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Table 1. Properties of AG1 Resin as  a Function of Crosslinkage ( 2 )  I 

Exchange Ca ac i ty  Water 
(meq/ml !i’ % D i  v i  nyl benzene ~- Res r’ n 

__I- 

A61 - X I  1 0.3 80- 90 

AG1 -X2 2 0.7 70- 79 

AG1 -X4 4 1 . 2  59-65 

AG1- X8 8 1.4 39-45 

AG1- X1O 10 1.5 34-42 

h column was designed similar to  Lindner’s (8 ) ,  although somewhat more 
conservative (see Table 2 ) .  Associated connector? and f i t t i n g s  were then 
specified,  as  shown i n  F ig .  3. The pressure drop was calculated to be 
13.6 psi ,  g i v i n g  a s ides t r  m flow ra t e  of 2 .2  ml/sec (see Appendix 10.4),  
which would recover 99.9% fi8F 10 m i n  a f t e r  the cyclotron r u n .  Finally,  
a lead chamber, providing radiation protection, was designed to  f i t  around 
the column (see Appendix 10 .3 ) .  

Table 2 .  Column Design 

System flow r a t e  

Sys tern vol ume 

Column ID 

Col umn length 

Column vol ume 

Exchange capacity 

Column flow r a t e  

T h i s  Work 

31.6 ml/sec 

240 ml 

0.80 cm 

5.0 cm 

2 . 5  cm 3 

3.75 meq 

2 . 2  ml/sec 

Lindner  (8) 

66.7 ml/sec 

250 m l  

0.80 cm 

3.5 cm 
3 1 .75 cni 

2.28 rneq 

6.7 ml/sec 
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5. COMPLETE WATER-TARGET SYSTEM 

The complete water-target system, shown in Fig. 4 ,  will f i t  on a one- 
foot-square platform b u i l t  into the cyclotron dolly,  with the heat exchan- 
gers fastened t o  the dolly leg. The procedures fo r  system s t a r t u p ,  column 
replacement, t a rge t  drainage, and system drainage a re  described i n  Appen- 
dix 10.5. 

In case of f a i lu re  of the cooling-water system and/or the target-water 
c i rculat ing pump, t a rge t  water would vaporize and  cause a pressure increase. 
A check valve protects the pump and the i o n  exchange column from th i s  back 
pressure. The ca ta lys t  vessel is large enough to contain the en t i r e  target-  
water inventory a t  a level below the ca ta lys t  bed, and a r e l i e f  valve keeps 
the system pressure below a preset value. Any f a i lu re  of t h a t  valve would 
be discovered before a run by flushing the system with H 2  and releasing i t  
through the r e l i e f  valve. 

6.  EXTERNAL GAS-TARGET DESIGN 

I t  i s  also desired t o  produce 18F2, which requires a "C2 target .  An ex- 
ternal gas target  offers  advantages of lower target  inventory, no radiolysis-  
related problems, and fewer heat-transfer comp'l ications. However, for  the 
86-inch cyclotron a t  ORNL to deliver a 30 PA external beam, 3000 1iA ( fu l l  
capacity) mgst be r u n  in ternal ly .  Current research indicates t ha t  an overall 
ac t iv i ty  yield from ta rge t  t o  patient injection i s  a b o u t  2% ( 1 1 ) ;  t h u s  a 
pat ient  dose of 20 m C i  demands 1 Ci of ac t iv i ty  t o  be producedin the target  
(see Appendix 10.6) .  

The Accelerator Target Simulation (ATS) ( 6 )  package was used i n  the 
design. The proton beam leaving the in te r ior  Gf the cyclo ron cov rs an 

most pronounced in the region o f  3 t o  11 MeV. Therefore, a nickel window 
0.063 cm thick uld be su i tab le  t o  attenuate the i n i t i a l  22-MeV beam t o  
11 MeV. Using y802 a t  20 atm in a vessel 6.2 cm long attenuates the p r o t o n  
beam from 11 MeV to 3 MeV; hence a nickel vessel such a s  a 1 x 4 x 6 .2  cm 
rectangular chute would be sui table  (see F i g .  5 ) .  Cooling i l s  surround- 
i n g  the vessel remove the heat generated and a p o r t  allows ci802 feed and 
lQF2 purge. Table 3 l i s t s  beam currents and corresponding i r radiat ion 
times necessary f o r  pro ucing 1 Ci of ac t iv i ty ,  For the proposed gas t a r -  
get a t  20 atm, 0.75 gm f802, a t  a cost  of $113/gm, i s  required. 

area of 1 x 4 cm. The nuclear reaction cross section for FsO(p ,n)  78 F i s  

7. CONCLUSIONS 

1 .  Radiolysis i s  a s igni f icant  factor  i n  the proton i r radiat ion o f  
t a rge t  water i n  an 18F production system. 
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Table  3. Beam Current vs  I r r a d i a t i o n  Time t o  Produce 
1 Ci o f  A c t i v i t y  i n  External Gas Targe t  

Ci 
PA 

Equation used: Final  y i e l d  = (0.199 -)(beam current, pA) ( l  - e-ht) 

(tl,2 = 110 m i n )  where: A = 0 . 6 9 3 / t  1 / 2  

Final Desired Yield Yield per 1 11A Beam Current I r r a d i a t i o n  Time 
(Cur ie )  (from . ... .- ATS) .- (PA) ........II..- I_- mi n) 

* 0.197 1 - 

* 0.197 5 - 

1 0.197 6 29 7 

0.197 10  112 

0.197 1 5  66 

0.197 20 

0.197 25 

47 

36 

1 0.197 30 (rnax) 29 

* 
A f i n a l  y i e l d  o f  1 C i  can never be achieved.  
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2. A sidestream anion  exchange column can effect ively recover 18F 
from the water target .  

3. Target-water loss i s  estimated t o  be no greater t h a n  0.75 ml/run. 

4. The system can roduce the desired 18F d o n a t i n  agents e i ther  in 
the form of anhydrous H I! F or  other f luoride,  such as KT8F. 

5 .  An externally bombarded gas target  can be used to deliver 1 Ci of 
18F from a t  20 atm i n  a reasonable i r radiat ion time. 

8. RECOMMENDATIONS 

1. Investigate the efficiency o f  anion exchange columns using 18F- 
solution so t h a t  column length can be minimized t o  reduce inventory loss .  

2. Tes t  the proposed anion exchange column t o  obtain data on pressure 
d r o p  vs flow r a t e  and water-recovery e f f ic ienc ies .  

3. Investigate the contamination o f  target  water b r o u g h t  a b o u t  by 
resin decomposition due t o  high-energy radiation. 

4. Run the complete system w i t h  ordinary water t o  t e s t  the efficiency 

Study the f e a s i b i l i t y  of  using 20% enriched H2180 as target  

of the heat-removal system and the ca ta ly t ic  reactor performance. 

material. 
5. 

6. Examine the proposed external gas-target system for i t s  ac t iv i ty  
yield operating under the conditions of a 20-r.lA beam current and 47 min 
i r radiat ion time. 
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10. APPENDIX 

10.1 R a d i o l y s i s  Rate o f  Water 

From prev ious  c a l c u l a t i o n s  ( 9 ) ,  i t  i s  known t h a t  3000 W 
i s  depos i ted  i n t o  the t a r g e t  water, 
= 1 . 8 7 ~ 1 0 2 2  eV/sec. From F ig .  1, t h e  average G+ i s  1 molecule/100 eV. 
Therefore,  H2 produc t ion  r a t e  i s  1 .87x1O20 molecules/sec,  r e s u l t i n g  i n  

This  corresponds t o  300O/ ( 1  .602x10-19) 

20 23 mola l  hydrogen produc t ion  r a t e  = 1.87 x 10 /(6.02 x 10 ) 

= 3.1 x mole/sec 

Using t h e  i d e a l  gas l a w  a t  62°C and 1 a tm,  0.51 l i t e r / m i n  o f  H2 w i l l  be 
generated I 

10.2 S i  des trearn Recovery Model 

The f o l l o w i n g  equat ions descr ibe  t h e  recovery  o f  18F i n  the s idest ream 
an ion  exchange coluiiin, assuming 100% e f f i c i e n c y  o f  t h e  r e s i n .  

Anion Exchange 601 uinn 

The number o f  18F atonis i n  t h e  main f l o w  l o o p  (N, where N=O a t  t = O )  i s  des- 
c r i b e d  by: 

dN - p - AN -(-)(-) S F  N = P - BN 
d t  M V  
_ -  

N = ~ ( 1  P - e-Bt)  

The t o t a l  number o f  18F atoms i n  bo th  loops  ( T ,  where T=O a t  t = 0 )  i s  g i v e n  
by : 
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- _  dT - P - AT d t  

P - A t )  T = ~ ( l  - e 

Thus, the number of 18F atoms recovered i n  the sidestream loop (SR) i s  
simply, 

3 Given the flow rates a n d  volumes o f  the  f inal  design, V = 240 cm a n d S i =  
2.2 cm3/seca 
recovered a t  the end o f  a 24-min cyclotron r u n .  
show tha t  99.9% of the 18F wil l  have been recovered 10 m i n  l a t e r .  

These equations indicate t h a t  91.9% o f  18F will have bee! 
Additional calculations 

10.3 Lead Shield for  Anion Exchange Column 

To protect operating personnel from 18F radiation, the lead shield 
shown i n  F i g .  6 was designed. The total  weight of the shielding and column 
will be about 35 lb .  The shielding will reduce the radiation dose from 5 C i  
in the column to about 400 mr/hr a t  a distance of 10 i n .  from the lead 
surface. 

10.4 Pressure Drop vs Flow Rate c j f  Sidestreani 

The pressure drop across the sidestream loop consists o f  the pressure 
drops in the resin column, two quick-connectors, two three-way ball valves, 
and the 61-cm-long, l/&in.-OD (30-mil wall)  tubes. 
drop i s  plotted as a function o f  water flow ra te  in F i g .  7.  

The calculated pressure 

10.5 Operating Procedures 

.- System .__ Sta r tup  

1 .  
with the lead shield.  
bottl e.  

Attach a new anion exchange column t o  the system and surround i t  
P u t  freshly prepared @In04 solution in the scrubbing 

2.  
source. 

Connect the system t o  the ta rge t ,  cooling water supplies,  and H2 



- - - - -  
I - - - - - - -  



AP Across Sidestream ( p s i )  
35 40 45 
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3. Pour 240 ml t a r g e t  water i n t o  the  c a t a l y s t  vessel. Check the  
condi t ion  o f  the c a t a l y s t s  and replace i f  necessary.  

4. Run the c i r c u l a t i n g  pump f o r  3 m i n .  

5. Flush the column w i t h  H2 f o r  5 m i n .  

6. S t a r t  the  c i r c u l a t i n g  pump, cooling water  system, and then r u n  
the cyc lo t ron  f o r  24-min i r r a d i a t i o n .  

7. Let the pump run f o r  10 m i n  more a f t e r  ceasing i r r a d i a t i o n .  

8. Flush the column w i t h  H2 f o r  5 m i n .  Remove the  column t o  the hot 
c e l l  f o r  s y n t h e s i s .  

Col umn Rep1 acement .- 

1.  Attach a new column i n  pos i t i on .  

2. Follow the procedure i n  previous s e c t i o n  beginning w i t h  Step 4 .  

Target Drainage 

1 .  Have a l l  valves i n  the system i n  ope ra t ing  p o s i t i o n s .  

2 .  
next t o  the  c i r c u l a t i n g  pump to  f o r c e t h e  t a r g e t  water  i n t o  the c a t a l y s t  
vesse l .  

Flush the t a r g e t  region with H? t h r o u g h  the  4-way and 3-way valves 

Sys tem Drai nage 

1 .  Have a l l  valves in  the  system in ope ra t ing  p o s i t i o n s .  

2 .  
t o  the c i r c u l a t i n g  pump, and run the  puinp t o  f o r c e  the  t a r g e t  water from 
the system. 

Flush the  system w i t h  W2 t h r o u g h  the  4-way and 3-way valves next 

10 .6  Gas Target A c t i v i t y  Requirement 

The following a c t i v i t i e s  a r e  requi red  f o r  the  c l i n i c a l  use of 2-18F- 
2-deoxy-gl ucose ( F D G )  (5, VI-) : 

Yield f r o m  Each Step A c t i v i t y  
_....._....I.. *.- ( % >  (mci) 

Admi n is te red  dose - 20 

Synthesis ,pyranosyl t o  FDG (hydro lys is  60 
r e a c t  i o n  ) 

33.3 
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Yield from Each Step Activity 
( X )  (mci) 

Only one fluorine atom per FDG 50 67 

Synthesis, glycol and 18F2 to pyranosyl 35 190 

1 8 ~ 2  recovery from 1802 65 580 

Handling time, one ha l f - l i f e  50 380 

Con t i  ngencies 58 1000 

10.7 Nomenclature 

ATS accelerator ta rge t  simulation computer code 

B 1 +F, sec -1 

- --- dE stopping power ( =  L E T ) ,  ev/A 
dx  

F 

FDG 2-fl uoro-2-deoxy-gl ucose 

flow ra t e  i n  main loop, ml/sec 

G number of  molecules or  radicals formed from decomposition per 100 eV 
deposited i n  t a rge t  material 

l inear  energy t ransfer  (=  -dE/dx) ,  eV/A 

number o f  18F atoms in the main  loop, atoms 

LET 

N 

P r a t e  o f  18F production, atoms/sec 

S fraction of F in side stream 

SR 

T 

t time, sec 

t i 1 2  ha1 f-1 i f e ,  sec 

V vol ume , cm 

x decay constant = 0.693/t 

number of 18F atoms in resin column, atoms 

total  number o f  18F atoms i n  the system, atoms 

3 

1 / 2  
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