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ABSTRACT

Application of the mathematical theory of groups to the
symmetry of molecules is a powerful method which permits the
prediction, classification, and qualitative description of
many molecular properties. In the particular case of vibra-
tional molecular spectroscopy, applications of group theory
lead to simple methods for the prediction of the number of
bands to be found in the infrared and Raman spectra, their
shape and polarization, and the qualitative description of
the normal modes with which they are associated. This report
contains the tables necessary for the application of group
theory to vibrational spectroscopy and instructions on how to
use them for molecular gases, liquids, and solutions. A brief
introduction to the concepts, definitions, nomenclature, and
formulae is also included.






THE -USE OF GROUP THEORY IN THE INTERPRETATION
OF INFRARED AND RAMAN SPECTRA

1. INTRODUCTION |

Application of the mathématical theory of groups to the symmetry of
molecules is a powerful method which permits the prediction, classifi-
cation, and qualitative description of many molecular properties. ‘Most
of this information would be unobtainable from first principles because
of the d1ff1cu1t1es in solving the complicated equations, and, 1n most
cases, very long calculations would be necessary .in order to obtaln
equivalent information by other methods.

In the particular case of vibrational molecular spectroscopy,
applications of group theory lead to simple methods for the prediction
of the number of bands to be found in the infrared and Raman spectra,
the1r shape and polarlzatlon, and the qualltat1ve description of the
normal modes with which they are associated. ,

ThlS summary W111 include the tables necessary for the app11cat10n
of group theory to v1brat10na1 spectroscopy and 1nstruct10ns on how to
use them for molecular gases, 11qu1ds, and solutlons A brief intro-
ductlon to the concepts, definitions, nomenclature, and formulae will be
presented but no theoretical Just1f1cat10n of the methods will be
given. More complete descrlptlons of the theory underlying such methods,
as well as their extensions to molecular SOlldS and polymers, can be

found, at different levels of d1ff1cu1ty, in the annoteted blbllogrephy

included at the end of this'section.

2. THE POINT GROUPS

The movement of a molecule from one position to another that is
indistinguishable from the original one (because every atom has been
replaced by another of the same kind or has not moved at all) is called
a 'symmetry operation. 'Each symmetry operation has to be carried out
with respect to a geometrical entity (point; line, or plane) which is

called a symmetry element. There are a limited number of possible



symmetry operations; they are listed in Table 1, together with their

. usual symbols and associated symmetry elements. ‘The identity, a trivial
symmetry which all molecules have, has.been included because it has to
be taken into account in the calculations that follow. The axis of
symmetry of .the highest order (if it exists) is called "principal axis,"
and it is customarily considered to be vertical; if a coordinate system

is used, the principal axis should coincide with the z axis.

Table 1. Symmetry operations

Symbol Operation : VDescription
I Identity 3 Rotation by 360°
Cb p-Fold rotafién Rotgtion by angle 2n/p
o Reflection Reflec;ion by a plane
Sp _ Rotafion-reflection o Rotation Py angle 2n/p followed by
o reflection
7 Inversion ' "Reflection" of each point through

. the origin, or center of mass

v A molecule may have one Oor more symmetry elements. Not all com-
binations of‘symmetry elements are possible; on the other hand, the
presence of certain pairs of symmetry elements implies the existence of
certain others. Each set of compatible symmetry operations is called a
"poin; gioup" because (1) no symmetry operation can move the point
coincident with the center'bf mass (which'is unique and cannot, therefore,
be shifted to an "equivalent" positioﬁ), and (2) each‘éet must satisfy
the conditions to constitute a mathematical 'group."

Because very few known molecules have symmetry axes of order greater
~ than six (except =), the number of point groups of practical interest is
limited. Table 2 lists those groups and gives typical examples of
molecules that have the corresponding symmetry in their equilibrium
configuration. Some point groups for which examples are not known are
listed because of the possibility of having to deal with molecules that
belong to them in a perturbed configuration (as may happen in liquids)

or in excited states.



Table 2. The symmetry elements of the point groups of interest to molecular spectroscopy

Point groupa o Symmetry elemenfsb’c 1 ' Examples
) E " | * CHFC1Br, CH3+CHO
Cy ' Co H,0, (nonplanar)
Cs cq | S .
Cy | Cy | ie. e
Ce Co Cy(c. Cg), C3(c. C¢) :
c; (=52) i L - | trans-C1BrHC - CHBrC1
S s Cie. 8
Se S o C3(c. Sg), % _ D o
s,y e . o ' NoC1 (nonlinear), NH,D,
C,HsC1
0w 02, 9, ) _ | oé(p.,ov)e , H,0, HZ?CIé, chlorobenzene
w ¢, 30, - NH3, HCClz, OPClj
" C,» 20, o ZOé(p. ov), Cg(c. Cu) IF,, Fe(CO)si
60 06, 30, ' 30,,(b. ov),f % (c. Cg),
, . Ci(c. Cg)
- Cop =0 Any €, (c. C,) ~ HC1, HON, Hecel
Czh~ 02’-0h iA' : trans-ClTC=CHC1, C302
C3h 03’,0h; Ss(q:'Ca) . H3BO3, C (NH5)3
th Cu’ oy C;(c. €, 8, (c. C), i
Céh : CG, oy Cg(c.rcs), Ca(c. Ce) »

SG(C' Ce) > 53(c. Ce)s T



Table 2 (continued)

Point groupa

Symmetry elements

b,e

Examples

|4

N
By
~~
1]

C2, C2(p. C2)
C3, 3Co(p. C3)
Cy, 2C3(p. Cy, m.p.)d
Ce, 3C2(p. Cg)

s 2Cy(p. C,, m.p.),
h
Zod(t. 02)

c SCz(p. 03), Sod

3)
C“, 4CZ(p. Cu)’ 4cd
Cys Ch(p. Cp),s

a(t. cécg)
03, SCZ(p. 03), 9,
Cu) 202(p° CH) ’

L

ZCZ(p. Cu), oy

Cs, SCZ(p. CS)’ oy

06, SCz(p. CG),

3C,(p. Cg)» oy

Co(p. C2C3)

2C3(b. €3), Calc. Cy)

3¢5 (b. C3), Ca(c. Cg),
C3(c. Cg)

Sq(c. Cz)

Ss(c. C3), 1

Cy(c. €), Sglc. )

Ch(p. C,C5), o' (t. CxCy),
o' (t. C,Ch)» 2

Ss(c. 03), 300

Cyle. €, 8, (c. C),
Zov, ZUd, 1

Ss(c. Cs), Sov

1"
Ss(c. CG)’ SG(C- CG);

30v, 30d

BZCIM’ H2C3H2, Nusu

CoHg, C6H12 (cyclohexane),
(SiH3) 0

S 8 .

CoHy, p-dichlorobenzene,
naphtalene

BF3, 1,3,5-CgH3Cl3

2.
CuHa’ PtClu

Cyclopentane (plane and
symmetric), ferrocene
~ eclipsed)

CGH6 (benzene)



Table 2 (continued)

Poiﬁt groupa' R ' Symmetry elementsb"-c ~ Examples
D, Cos =L,y (p- C)s 0 Any € (c. C), any' j 105, €05, CoH,
| | .N | §,(c. €, =0, i
T ac,, 3C,(m.p., b. C,'s) o ,
: ) . . . . L . . - + 2-
Td o 403, SCz(m.p., b. 03'5), : - CHq,‘BFq , NHH , 509
' 35, (c. 02),
.| 6od(t. C,'s) v . .
Th : 403; SCZ(m.p.), 1 3a(t. C 's); 4S (c. 03'5)
o SCq(m.p.), 4c, , SC "(c. C ), 6C .
0, 3¢, (m.p.), 4C,(cube : 302(c. cl’), 6Cz(t.' centers | SF,, PtCl 2", UF.
diagonals), © ‘ opposite cube edges), .
SSq(c. Cu)’ 4SG(C. 03),
30h(p. Cq), 6od(t. oppo-
site cube edges)

%In the CZU’ qu, and Csv groups, o, should (if possible) pass through more atoms than o (which is

sometimes labeled 9 in Cuv and Cev)* if the rule is not applicable, 9, should.lntersect more bonds
1 sl . . : . . ot

than O, Similar rules should be used‘to label C,, €5, and Cg in groups Pz and Dzh’ and Czlahd Cz

in groups D Dy, 2d’ h’ and D oh o '

The element E (1dent1ty), which is contalned in every p01nt group, has been om1tted

“Axes and planes preceded by a number are equlvalent (can be transformed one into the other by another
symmetry operation). : : v
c. = coincident with. S »fh. = bisecting. : ht. = throﬁgh.

g,

ep. = perpendicular to. m.p. = mutually perpendicular.



A few remarks may facilitate the use of Table 2:

1. The first column gives the name of the group in the Schoenflies
notation habitually used by molecular spectroscopists; the corresponding
notation in the Hermann and Mauguin system used in crystallography, and
more recently in solid state spectroscopy, can be found in most of the
tables given in the bibliography. Although it is not necessary to
memorize the symbols and symmetry elements of the point groups, it can
be useful to notice that: (a) the groups Cp and Sp contain essentially
only the corresponding axis, the special cases being C; (which really
does not have any symmetry) and Ci {(which has only a center of symmetry
equivalent to the operation S;); (b) the groups va and C,; are generated

p

by adding a o, or 9 plane to the groups Cp’ the special case being Cs’

_whose plane oz symmetry can equally well be considered horizontal or
vertical, justifying the equivaléent names Clv and Clh; (c) the dihedral
groups Dp are generated by adding a C2 perpendicular to the principal
~axis of a group Cp; the operations with both axes generate new Cz's
perpendicular to the Cp; (d) the addition of yertical planes o4 bisecting
adjacent Cz's of each Dp group gives origin to the Dpd groups; (e) the
additiop of a horizqntal plane 0y to each Dp_group gives origin to the
Dph groups; and (f) all the above mentioned groups are called axial
point groups and can be characterized as not having more than one (if
any) axis of order three or higher. Groups that have more than one
three—fbld or four-fold axis are called cubic point groups, and only two
of them are likely to be found in freeAmolecules — T,, which has the
symmetry of a regular tetrahedron, and Oh’ of which the cube and the
regular octahedron are the typical examples. The cubic groups T, T,,
and 0 have been included because of their usefulness in the study of the
spectra of many crystals.

2. The symmetry elements that constitute each point group have
been separated into two columns to facilitate the search when trying to
assign symmetry to a molecule. The first column lists the minimum set
that characterizes the group and, in most cases, justifies its symbol.
The second column contains symmetry elements that are a cénsequence of

the presence of the former ones. All the elements are equally important
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for the deductionfof”the molecular properties derived from the molecular
Symmetry. ' ,

3. The table contains the 32 'crystallographic'" point groups from
which the 230 crystal space groups can be derived by addition of new
elements of symmetry. (translations, screw axes, glide planes). The
reader must be reminded.that the methods for the interpretation of
crystal spectra are more -complicated than the methods applicable .only to
isolated molecules that.will be described. A first approximation to the
spectra of molecular crystals can be obtained, however, by treating each
molecule or ion in the crystal as isolated, but with its own -symmetry
reduced to the symmetry of the crystal at the '"site' where the molecule

or ion is located.

3. GROUPS, . REPRESENTATIONS, CHARACTER TABLES,
AND THE REDUCTION FORMULA

" A set of elements A; B,'C, ... that can be combined in pairs .
according to a Eertaih’rule is said to constitute a.group if (1) each
binary combination yields an element of the set, (2) the associative law
holds for the combination of more than two elements, (3) the set contains
an identity element (its combination with all the other elements leaves
them unchanged), and (4) each element has an inverse in the set (théif
combination yields the identity). The combination is usually called
""product" although it does not need to be a product in the ordinary
algebraic sense and, in general, will not be commutative. It may be
useful to tabulate all the binary products in a "multiplication table.”

The elements of a group may have any degree of complexity or

abstractness, and the operations necessary to obtain their products may

be very complicated. Usually it is possible to establish a correspon-

dence betweén each element of a group and a number or a matrix'belonging
to another group in such a way that the multiplication tables of both
groups are "paralleli" "The group:ofynumbefs or matrices is called a
représentation of the'originai group and its dimension is edual to the
order of the square matrices that constitute it (the dimension is 1 if

its elements are numbers). Many properties of a group can be foundhby‘



operating with their representations, which may vary in number and
dimensions. Frequently, mathematical operations may be performed that
will factorize the matrices of a high-order representation into matrices
of lower orders, which constitute representations of lower dimensions.
When that process is carried out in such a way that the lower order
matrices cannot be further factorized, it is said that the higher order
reducible representation has been reduced to its irreducible represen-
tations.: It can be proven that there are only a limited number of
irreducible representations of any group; they can, therefore, be found
and tabulated. For many applications of group theory it is enough to
know the character (sum of diagonal elements) of the representations, a
fact which explains the interest in the availability of tables of char-
acters of the irreducible representations of the point groups.

The reduction of a reducible representation to its irreducible
components may be a complicated process, but there is a simple reduction
formula which gives the number of times each irreducible representation
will appear when the reduction process is completed. If the g elements
of a group have characters Xz (z =1, 2, 3, ..., g) in some reducible
representation and characters xz (7 = 1, 2, 3, .++5.g9) in the irreducible
representation g, the reduction of the former will contain the latter NY

times, with

4. THE CHARACTER TABLES OF THE POINT GROQUPS

The symmetry operations of the point can be described by the
equations that relate the coordinates of each atom before and after each
opération. The coefficients of these equations may be arranged in
matrices that represent the symmetry operations. The dimension of these
reducible representations will depend on the choice of a coordinate
system. If cartesian coordinates are used, each atom will require three

coordinates, and a molecule with N atoms will yield a representation of




dimension 3N; use of internal coordinates (distances between atoms,
angles between bonds, etc.) may yield representations of dimgnsion
3N - 6 (3N - 5 for linear molecules). All these representations can be
factorized into the irreducible representations whose characters are
given in Table 3, together with some additional information that will be
necessary for the applications to molecular spectroscopy.

To explain Table 3, we will use a typical example. Let us reproduce
part of the character table for the point group D3h’ to which the planar

molecule BF3 belongs.

Dy, E 20, 3, o 25 = 30,
4 1 1 1 1 1 1

Ay 1 11 -1 -1 -1

4, 1 1 -1 1 1 -1

4y 1 1 .21 -1 -1 | A
E' 2 -1 0 2 -1 0 BF3 molecule
Al 2 -1 0 -2 1

In addition to the Schoenflies symboi of the group, the first line
contains all the symmetry operations that constitute it. The number 2
in 2C; indicates that the group includeés, in fact, the two C3 operations
C% and.C% (rotations of 120° and 240° around the Ca axis); But Becéuse
both operations have the'same'characters in all the representations, it
is unnecesséry to repeat the column. Thé number 3 in 3C, indicates,
similarly, that there are three b1nary axes [through BF(l) BF(Z), and
BF( ) in BF3], edch one contributing an identical column to the table
There is one reflection through a horizontal plane (the plane of the
molecule, which is pérpendicularfto'the princip%l axis C3), to improper:
rotations Sé andvsg around the axis S3 (coincident with C}),<and three
refleqtions-thrqugh the vertical planes (which contain Cj and each one.::
of the C,'s). Addition of the trivial symmetry E completes thé 12 .
elements of D sk’

Each one of the follow1ng lines of the table contains the characters

of one of the irreducible representations of the group, preceded by its



-10

.Table 3. Character tables of point groups
The C :
e P groups
c, E’J
A 1 l R; T ]
c, | c2||
A 1 1 Tz-; Rz Oyt ayy’ azz, axy
B 1 -1 T oy .Ty; Rx’ Ry ayz’ L
y 2 2ni
C3 E C3 Cs €= e 3
A 1 1 1 T, R a +0 , 0
. 2 2’ "z ] yy’ =z
1 ¢ ¢ noy. _
E {1 - ell(z'x,Ty), (Rx,Ry) (o %y axy), (ayz, a )
" 3
C4 3 C4 C2 C4
4 . 1 1‘ 1 1 Tz; Rz : % * clyy’ %2z
B. ; "1. ; "1. e - ayy’ ‘axy
E vt =t " W¢r,T); (R,R ' a
| {1 " .J 1:% x° y 3 2 y) (Gyzs zx)
2 s S
. : " _ 6
Al1 1 1 1 1 1 Tz; Rz L + ayy" a,,
B |1 -1 1 -1 1 -1 h
' e 1 € e*
e --e - - . .
1 * 1 * :
E; & € “& "E (a. -« a_ )
{1 -€ -C* 1 -e -e* e vy’ =y
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The Sp groups

AN
A 1 1 (R] «
Ag 1 A ,
u -1 T
" 3
84 13 AS4 CZ 34_
A 1 1 1 1 Rz & * ,ayy’ o,
B |1 -1 1 -1. T, % = Yy Oy
1 1+ -1 -1 ’ _
E 1 -1 -1 li : (Tx’va)" {Rx’Ry) (ayz’ ,azx)
| . omi
_ 2 3
1 1 1 1 1 1 |R o+ o, Q
g 4 % 2 X Yy 2z .
1 e e 1 e e B . S A
- % * - . o
Eg 1 e e 1 et e (I?x,Ry) (am ayy,_ uxy), (ayz, azx)
A 1 1 1 -1 -1 -1 |7
1 € € -1 -e -€ )
* ®
Eu 1 €€ € -1 -e -€) (Tx’T )
The va groups
¢, [ o || |
[) . : ' )
A” 1 1 Ta:’ .Ty, Rz aa’:a;f 'ayy’ Qs axy' .
4 1 =1 1T, R Ry ’ 'f.q‘yzf o
Coo | E € o lzx)  ollyz)
A 1 1 1 1 T o0, 0 , 0
z xx® Tyy’ az
Az 1 1 -1 -1 R ‘
2 Ty
B, 1 -1 1 -1 T; R a
x Ty zx
B, 1 -1 -1 1 T; R |«
y x yz




.

C3U E 203 30v
A, 1 1 1 Tz lex -+ ayy’ azz
A, 1 1 -1 Rz
E 2 -1 0 (Tx,Ty) 3 (Rx,}?y) (am - ayy’ axy) 3 (ozyz, azx)
"
C4U t 2C4 Cz 20\) 20
A |11 11 1|7, LN VL
A, | 1 1 1 -1 -1 | R,
- - -a

B, 1 1 1 1 1 uxx vy
By 1 -1 1 -1 1 X . uxy
E 2 0 -2 0 0 (Tx,Ty); (Rx’Ry) (ayz, azx)

o ]
cév E 2C6 203 : Cz 30 30,
Ay 1 1 .1 1 1 -1 T a +a , 0

z xx Yy 22
A, 1 1 1 1 -1 -1 Rz
By 1 -1 1 -1 1 -1
B, 1 -1 1 -1 -1 1
By 2 1 -1 -2 0 0 (Tx’Ty)‘; (R:c’Ry) (ayz, az:c)
E, 2 -1 -1 2 0 0 faa - ayy’ axy)
¢
Cooy E 2c? g
a1 1 1 | «_+o ,a
- 2 xx yy’ “zz

Ar = L 1 1 -1 Rz
E f n 2 -2 cos ¢ 0 (Tx’Ty); (Rx-,Ry) (ayz, azx)
E, = A 2 2 cos 2¢ (am - ayy, o )
Ey=¢ || 2 2 cos 3¢
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The Cph groups
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_ ' ] ﬂ
A 1 1 1 1 a , 0 , 0
) _ xx’ Tyy’ a2z
B, 1 1 -1 -1 Té, Rz aiy
Ba 1 -1 1 -1 Ib, Ry azx
B3 1 -1 -1 1 JT_, R a
lac z Yz
03 13 2C3 3C2
T B 1 | o +0 , 0
T yy® 2z
Ay 1 -1 T R
2’ a
E 2 -1 0 (Tx,Ty); (Rx,Ry) (am - ayy, a:::y)5 (ayz, azz)
o, le 2, cZ-¢c" 2¢, 2
4 -4 4 2 2 2
Ay 1 1 1 1 1 a +a . , q
o yy’ 2z
Al 1 1 1 -1 -1 |IT , R :
2 "z
By i1 -1 1 1 -1 o -
X Yy
Ba 1 -1 1 -1 1
. xY
E 2 0 -2 0 0 (Tz,Ty); (RE,RQ) -(ayz’azx)
06 “ t 206 203 Cz 3C2 SC2
Ay 1 1 1 1 1 ‘ am + ayy’ ozzz
A, || 1 1 1 -1 -1 |r; R
2’ 'z
By §1 -1 1 -1 1 -1
B, f 1 -1 1 -1 -1
E, ‘2 1 -1 =2 0 (Tx,Ty); (Rx’Ry) (ayz, azx)
E, 2 -1 «1 2 0 (axx - ayy, axy)




The Dpd groups
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de = Vd E 234 Cz 2C% ) 2°d
A 1 1 1 1 1 o + ayy’ L.
Az 1 1 1 -1 -1 R,
B\ 1 -1 1 1 -1 G = %y
B2 1 -1 1 -1 1 T, a
E 2 0 -3 0 0 (T:r' Ty),‘ (Rz’ Ry) (cyz’aza:)
D3d E 2C3 3C2 4 236 3°d
Alg 1 1 1 1 1 1 am + ayy’ o,
Asg 1 -1 1 1 -1 R, : |
Eg 2 -1 0 2 -1, 0 (Rx’Ry) (a__ - ayy, a_), (ayz’ az,x)
AJu 1 1 1 -z -1 -1
AZu 1 1 -1 -1 -1 1 2}
Eu 2 -1 0 - 1 0 (IQR'IQ)
n
D4d E 238 2C 28 Cz 4C2 40d
A 1 1 1 1 1 1 1 am + ayy’ azz
A2 1 1 1 1 1 -1 -1 Rz :
B 1 -1 1 -1 1 1 -1
B2 1 -1 1 -1 1 -1 1 Tz.
E) 2 /2 0 /2 -2 o 0 (T x,:z'y)
E; 2 0 -2 0 2 0 0 (a_ - ayy’ azy)
Es 2 V2 0 Z -2 0 0 ‘(Rz,Ry) (aya, am)
The Dph groups
- ) " P ’ [l 1 A
th 3 Uh E Cz(z) CZ(y) Cz(x) 4 ofxy) ofzx) olyz)
'Ag 1 1 1 1 1 1 1 1 axx’ ayy’ 2
BlgA 1 1 -1 71 1 1 -1 -1 Rz ny
Bzg 1 -1 1 -1 1 -1 1 -1 Ry o,
BSg 1 -1 -1 1 .1 -1 -1 1 R& ayz
Au 1 1 1 1 -1 -1 -1 -1
BIu 1 1 -1 -1 -1 ~1 1 1 1;
82u 1 -1 1 -1 -1 1 -1 1 » Ty
BSu 1 -1 -1 1 -1 1 1 -1 Tx




2
DSh E ZC3 3C2 op 33 30’V

! 1 1 1 1
A] 1 1 o + (lyy, azz

’ - -
A 2 1 1 1 1 1 Rz
E' 2 -1 0 2 -1 0 T ,T) -

( =Ty (o ayy’ axy)

Ag 1 1 -1 -1 -1
A 1 1 -1 -1 -1 T

2 2
E" 2 -1 0 -2 1 R LR '

"( 0 y) (O.yz, azx)
" . ]

D4h E 2C4 C2 2C2 2C2 L 234 o Zov Zod
Alg 1 1 1 1 1 1 1 1 1 1 azx + ayy, uzz
A2 1 1 1 -1 -1 1 1 1 -1 -1 R

g 2
Blg 1 -1 1 1 -1 1 -1 1 1 -1 u:c:c - yy
B 1 -1 1 -1 1 1 -1 1 -1 a

2g ( zYy )

- - a _, a

E, |2 o 2 0 0 2 0 2 0 0 (Rx,Ry) Yzt Oy
A 1 1 ) -1 -1 -1 -1

lu
A2u 2 1 1 -1 -1. -1 -1 -1 1 1 Tz
Blu 1 -1 1 1 -1 -1 ~1 -1 1
B2u 1 -1 1 -1 1 -1 1 ~1 1 -1
E 2 0 -2 0 0 -2 0 2 0 0 rT ,7T)

u x Yy

: 2

vSh E 205 205 5C2- 9 235 2355 S0,
A 1 1 1 1 1 1 a_+a ,a
Az'- 1 1 -1 1 1 ,‘1 RS = yy a
Ey'[| 2 2 cos 72° 2 cos 144° 0 2 2 cos 72° 2 cos 144° ¢ (Tz,T )
Ea'|l 2 2 cos 144° 2 cos 72° 0 2 2 cos 144° 2 cos 72° y (fa_~a ,a )
H'| 1 1 1 1 = W

. -1 -1 -1 -1
A" 2 1 -1 -2 -1 -1 1z,
Ex'|| 2 2 cos 72° 2 cos 144° 0° -2 -2 cos 72° -2 cos 144° 0 (Rx"R ) (a 2 sz)
E2"|| 2 2 cos 144° 2 cos 72° 0 -2 -2 cos 144° -2 cos 72° ¢ Y Y
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The Cubic groups

2w
3
T E 403 4C§ 302 €e=e
A 1 1 1 1 o + a + a
XX Yy 23
1 € e* 1
E : (a +a =20 , «
1 e* € 1 el LA 22
F 3 0 0 -1 (T), (R) (a:cy’ ayz’ azx)
Td E 8C3 3C2 634 6Ud
Ay 1 1 1 1 a +a + 0
% vy 23
Az 1 1 -1 -1
E 2 -1 .0 0 (oo + ayy - 20
P 3 0 -1 1 -1 (R)
- F 3 0 - -
2 1 1 1 () (axy’ ayz, azx)
r, | & <, «? s, i 45, 455 3o,
A 1 1 1 1 1 1 1 1 a
g rx
1 € e* 1 1 € e* 1 (o
E a
g 1 e* € 1 1 e* € 1 xx
F 3 0 0 -1 3 0 0 -1 (R, R, RJ)| (a
g 2 "y Tz
A 1 1 1 1 -1 -1 -1 -1
u .
1 € e* 1 -1 - _ex -]
E
u 1 ¥ € 1 -1 -c* -€ -1
F 3 0 0 -1 -3 0 0 1 (T, T, T)
u Y
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0 E §C 3C)
| 3 3¢, 6C, &G,
A 1 1 2 a + 0 4+ 0
X vy 23
Az || 1 -1 -1
Efl2 -1 0 0 (a_ +a 20, a
- - a
yy 33’ “xx yy)
25 3 0 -1 1 -1 (R); (T)
Py 3 0 -1 -1 1 a a
( xy® y=z’ azx)
Oh E 803 305 66‘4 66'2 1 BSG Sah 654 Sod
Alg 1 1 1 1 1 1 1 1 1 1 u.m' + uyy + oaz
A 1 1 1 -1 -1 1 1 1 -1 -1
2g
E‘g 2 -1 2 - 0 0 2 -1 2 0 0 (a + uyy - 2“33’ um uyy)
Flg 3 0 -1 1 -1 3 0 -1 1 -1 (R, Ry, R) (ury, o0 .uzx)
FZg 3 0 -1 -1 1 3 0 -1 -1 1
A 1 1 1 1 1 =1 -1 -1 -1 -1
Tu
AZu 1 1 1 -1 -1 71 -1 -1 1 1
Eu 2 -1 2 0 0 -2 1 -2 0 0
Flu 3 0 -1 1 -1 -3 0 1 -1 1 (Tz, Ty’ Tz)
F 3 0 -1 -1 1 -3 0 1 1 -1




20

conventional symbol. This symbol gives some information about the
characteristics of the representation, according to the following

convention:

® A one-dimensional representation will be recognized to be ''symmetric"
or '"asymmetric'" with respect to a symmetry operation when the
corresponding character is +1 or -1 respectively. For two- and
three-dimensional representations the characters may be +2 and *3
respectively. ‘

® 4 or B: one-dimensional representations which are symmetric or
antisymmetric, respectively, with respect to rotations about the
principal axis Cp.

® F: two-dimensional representations.

® F: three-dimensional representations (sometimes designated T).

® ] or 2: subscripts attached to A's and B's to designate represen-
tations that are symmetric or antisymmetric, respectively, with
respect to rotations about a (; perpendicular to the principal axis.
"If such a Cy does not exist, it is replaced by a T,

® g or u: subscripts attached to all letters in groups with a center
of symmetry to indicate representations that are respectively
symmetric or antisymmetric with respect to the inversion through the
center.

® Primes or double primes: superscripts attached to all letters, when
appropriate, to designate a representation that is symmetric or
antisymmetric, respectively, with respect to reflection through a 0y,

® =" or £°: one-dimensional representations for the groups of linear
molecules that are respectively symmetric or antisymmetric with
respect to reflection through a o,

® I, 4, ¢, etc.: two-dimensional representations for the groups of

linear molecules.

The physical meaning of the symmetric or antisymmetric behavior of
the representations will become clearer after the explanation of their

use in vibrational spectroscopy.
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The right side of the character tables contains information about
the symmetry of the components of molecular translations (), rotations
(R), and polarizabilities (o). This information is given through their
assignment to the different representations and will be used in the
prediction of vibrational spectra. The symbol T is an abbreviation for
the set 1}, Ty’ T_; the R replaces Rx’ R Rz and means o, o

3’ y’ xx’ Tyy’
Degenerate components are enclosed in parentheses.

a
z3’

[¢) o) (¢
xy’® “ya’® "ax

5. GROUP THEORY AND MOLECULAR VIBRATIONS

Up to this point we have mentioned only the symmetry of molecules
in their equilibrium configuration. But it can be proven that the
displacements of the atoms during molecular vibrations are constrained
to specific patterns determined by the molecular symmetry. This fact
results in a close relationship between the normal vibrations and the
irreducible representations of the point group. This relationship is
the basis for the application of the group theory to vibrational spec-
troscopy. The most important consequences of this application are: (1)
The normal modes of vibration can be classified according to the irre-
ducible representation to .which they "belong." (2) This classification
provides some description of the normal modes because the character
table indicates if they are symmetric or antisymmetric with respect to
some symmetry operations; in this application, ''symmetric' means that
the operation performed on the vibrating molecule will keep the vectors
representing the atomic displacements unchanged, while "antisymmetric"
means that the same vectors will change to the opposite direction.

(3) The degeneracy of the normal modes is given by the dimensions of
their representations. (4) The normal modes belonging to the same
representation as any component of a translation are infrared active.

(5) In the gas phase of symmetric top molecules, the vibrations in the
same representation as Tz are ''parallel" and should show the typical PQR
structure. (6) The normal modes belonging to the same representation as
any component of the polarizability are Raman active; only the vibrations
belonging to the completely symmetric representation (all characters

equal to 1) can originate polarized bands.
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6. THE PREDICTION OF THE FUNDAMENTAL VIBRATIONAL BANDS

In this section we will describe step by step a procedure for the
calculation cf the number and polarization of the fundamental bands that
should appear in the infrared and Raman spectra of a molecule of known

configuration.

Step 1: Assignment of the molecule to a point group

By working on a model or a good drawing of the molecule, one can
locate all the symmetry elements. There are no systematic procedures to
perform this step, but experience shows that a short practice period
will provide the necessary skills. It may be useful to look first for a
proper axis of rotation of the highest order. If none exists the molecule
can only belong to Cs’ Ci’ or Cl’ and the search for a plane or center
of symmetry will decide among them. If one or more Cp's exist, select
the one of the highest order and determine in Table 2 the groups that
contain it. The left half of the list of symmetric elements can be used
as a guide to select which elements to look for next to reduce the
possible choices. This procedure should continue until only one group

is left and a careful check.has been done to verify that no element

belonging to a higher symmetry group is present.

Step 2: Calculation of the characters of a reducible representation

Once all the symmetry elements have been located and the point
group has been determined, the characters of each symmetry operation in
a reducible representation of dimension 3N - 6 can be calculated according

to the following rules:

® For each operation F or Cb: Count the number of atoms that are not
shifted when the symmetry operation is performed. Subtract 2.
Multiply by the appropriate factor in Table 4.

® For each operation Z, S, or o: Count the number of atoms that are
not shifted when the symmetry operation is performed. Multiply by

the appropriate factor in Table 4. .
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Table 4. Contribution to character per unshifted atom

Operation © X; Operation < xi
E 3 B 1
Cs -1 i -3
ci, 3 0 53, 53 -2
cl, ¢l 1 si, 52 -1
1 4 1 n
ct, ¢t 1.618 si, st -0.302
cz, ¢l -0.618 5%, sd -2.618
ci, C2 2 st, 52 0’

Step 3: Calculation of the number of fundamental vibrations belonging
to each representation (symmetry species)

In molecular spectroscopy, the irreducible representations of the
point groups are often referred to as '"'symmetry types' or ''symmetry
species,'" and the reduction formula is slightly modified to account
explicitly for the fact that the columns of the character table may
contain more than one symmetry operation.

The number of fundamental vibrations of symmetry type Y is given

by:
] o]
Y Y
N=_ZnXX')
g jaq LT
where .
n. = number of operations in the Zth column of the character

table,
¢ = number of columns in the character table (equal to number of

representations),

g = Z n, = total number of operations in the point group,



24

character of the reducible representation of the operations

>
1}

of column Z (determined in step 2),

xY character of the y irreducible representation of the operations

of column <.

In some groups there are imaginary or complex characters, but they
always appear as conjugate pairs in two one-dimensional representations
which are the components of a degenerate mode E. When the reduction
formula is applied, the real sum of both complex characters has to be

used as the character for the species E. Notice that

21 _2ni
o /n+e /n

i+ (-2) =0 and = 2 cos %1 .

Step 4: Determination of the number of fundamental bands
in the infrared and Raman spectra

® Infrared spectra: will include all the fundamental modes with the
same symmetry as 1&, Ty’ and/or Tz. The vibrations in the same
species as (Zx,Ty) or (Zx,Ty,Tz) will be double or triple degenerate
respectively.

® Raman spectra: will include all the fundamental modes with the
same symmetry as any component of a. The vibrations in the same

species as a__, a will be polarized (totally in the cubic

xx’ Yy’ %22 .
groups, partially in the rest). The vibrations in the same species

as a__, o

vy Cya’ and/or,azx will be depolarized.

7. EXAMPLES

7.1 AMMONIA (NHj)

Step 1

As a pyramid with the N at the cusp and

the three H at the corners of an equilateral

triangular base, ammonia shows 1C3 (through

the N, perpendicular to the base) and 30v
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(through the C3 and each NH bond). Inspection of Table 2 gives immedi-
ately a point group C3v'

Step 2

Atoms unshifted per symmetry operation:

Ug = 4 , uC3 =1 (the N) , uov = 2 (the N, one H) ,
xg = (4 -2)3=6, Xg, = (1 -2)0=0, xov=2-1=z.
Step 3
From the character table for the group Cav:
n, = 1, nC,3 =2, nov =3,
c=3, g=1+2+3=6,
N = % [1+6°1 + 2+0+1 + 3-2-1] = 2 ,
N = % [1¢6+1 + 20-1 + 32+(-1)] = 0 ,
N7 = L [10602 + 200+ (-1) + 3+2:0] = 2 .

Ammonia has, therefore, two nondegenerate vibrations of species 4;
and two doubly degenerate vibrations of species E. This result is

usually represented by

I =24, + 2F .

Step 4

The character table shows that (1) all bands being infrared and

Raman active, each spectrum should show four bands; (2) in the Raman,
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the A, bands may be partially polarized and the EF bands will be depolar-
ized; and (3) in the infrared spectra of gaseous ammonia the A; bands

are '"'parallel" and should show PQR structure.

7.2 MONODEUTERATED AMMONIA (NH3D)

Step 1

There is only a ¢ (through ND and bisecting
the two NH bonds). The point group is, therefore,

C .
8
Step 2
uE =4 , u0 =2,
Xp = (4 - 2):3 =6, Xg = 2°1 = 2
Step 3
nE =1, n0 =1,
c =2, g=1+1=2,

M=l eee1 v 1200 -4,
" 2 L (161 ¢ 1020(-1)] = 2 .

Monodeuterated ammonia has, therefore, six nondegenerate vibrations

which can be represented by

I = 44' + 24" .
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Step 4

From the character table for the point group Cs: (1) All bands
being infrared and Raman active, each spectrum should show six bands.
(2) In the Raman, the A' bands may be partially polarized and the A"
bands will be depolarized. (3) No prediction about the shapes of the

infrared bands of the gas can be made.

7.3 1,2-DICHLOROETHYLENE (ci8) (e-C1lHC+CC1H)

Step 1

The plane of the molecule (o) and the

plane through the center of the C=C bond

and perpendicular to it (¢') are planes

of symmetry. The intersection of both planes is a Cp. There are no
other symmetry elements (except the identity) and the molecule belongs,
therefore, to the sz point group.

Step 2
Up = 6 , uc2 =0,
Xg = (6 -2)3=12, X, = (0= 2:(-1) =2,
U, = 6 , U, = 0,
v v!
Xcv = 61 =6, Xov' =01=0
Step 3
n, = 1, nc2 =1, nov =1, nov' =1,

o
]
S

«y
1]
-
+
—
+
—
+
-
[
BN

-
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NAl = 3 [1°12:1 + 1-2:1 + 1+6°1 + 1:0:1] = 5,

NZ. 7 [1e1201 + 10201 . 146+ (-1) + 1:0+(-1)] = 2 ,

NB1 = 3 [1°12:1 + 1:2:(-1) + 1+6°1 + 1:0+(-1)] = 4,

NB2 - % [1°12¢1 + 1+2+(-1) + 1+6+(-1) + 1-0+1] = 1 .
Therefore

r = SAI + 24, + 4By + By .

SteE 4

From the character table of point group sz: (1) All bands are
Raman active and only the A, bands are infrared inactive. There will
be, therefore, 54; + 4B; + 1B, = 10 infrared bands and 54; + 24, +
4By, + 1B, = 12 Raman bands {of which 10 should coincide with the in-
frared). (2) The 54; Raman bands may be polarized; the rest will be

depolarized.

7.4 1,2-DICHLOROETHYLENE (trans) (¢-C1HC-CC1H)

dxca
Step 1
The plane of the molecule is the only é/////“\c==b;c<”//u
plane of symmetry and there is a Cy perpen- el L
dicular to it in the .center of the C=C bond.
This center is also a center of symmetry.

Table 2 shows that the point group is Czh'
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Step 2

uE =6 , uc2 =0,
Xp = (6 - 2):3 =12, Xg, = (0-2)-(-1) =2,
ui = 0 ’ uoh = 6 >
Xi=0°('3)=0, Xoh=6'1=6.
Step. 3
n. = 6 , nc2 =1, n, = 1, noh =1,
c=14, g=1+1+1+1-=4,
A 1
N9 = 7 [1°121 + 1-2-1 + 1-0-1 + 1+6°1] = 5,
B, 1
N9 = 7 [1012:1 + 1-2¢(-1) + 1:0°1 + 1+6:(-1)] = 1,
Au 1
N %= 7 [1°1201 + 1+2:1 + 140+(-1) + 1:6-(-1)] = 2,
Bu 1
N ™ =7 [1+12:1 + 12+(-1) + 1+0+(-1) + 1+6+1] = 4 .
Therefore
' =54 +B + 24 + 4B
g g u u
"~ Step 4

From the character table of the point group Czh: (1) There will be
2Au + 4Bu = 6 infrared bands and SAg + lBg = 6 Raman bands; there should
not be any coinciding frequencies. (2) The SAg Raman bands may be

partially polarized; the Bg will be depolarized.



30

7.5 ETHYLENE (C,Hy)

Ci»)
Step 1 | | %“
“\ s /

There are no C3's or higher order axes, ,wc ,;' pe
but it is easy to find three perpendicular Cﬁi ;/iél
Co's passing through the center of the C=C ;5/’ /ﬁxﬂj
bond — one coincident with the bond, one €20 “ﬁzf;"T?"
e

laying in the molecular plane, and the

third perpendicular to the first two. Thus, the possible groups are
reduced to Dz’ Dzd’ or Dzh' The existence of the three planes of
symmetry determined by pairs of 02 decides in favor of Dzh'

Step 2
uE =6 , uc2 =2, uCé =0 , ucg =0,
u; = o, Uy, = o, Ugr = 2, ug” =6,
Xp = (6 - 2)-3 =12, XCZ =(2-2)-(-1) =0,
Xgy = (0D (D) =2, Xgy = (0-2(1) =2,
X; = 0-(-3) =0, X, = 0°1'=0,
Xgr = 21 = 2, Xgn = 6+*1- = 6
Step 3
nE =1, nc2 =1, nc,2 =1, ncg =1,
ni =1, n0 =1, no, =1, Ny = 1,
c=8, g=1+1+1+1+1+1+1+1=28,
A

NI - % [1°12+1 + 1401 + 1+2¢1 + 1:2-1 + 1-0-1

+

+ 1201 + 1+2+1 + 1+6°1] = 3 ,
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+

N9 oe L[101200 4 10001 # 1020 (-1) % 1°2¢(-1) + 1-0-1

8
+ 100°1 + 122+(-1) + 1+6-(-1)] = 0,
N 29 = L [1°12:1 + 100+ (-1) + 12:1 + 1-2+(-1) + 1-0°1
+ 1200 (-1) + 1+2¢1 + 1+6(-1)] = 1,
N % - %-[1-1241 + 140°(-1) + 1°2+(-1) + 1+2°1 + 1+0°1
+ 1200 (-1) + 1+2(-1) + 1+6°1] = 2,
A,
N = g [1412°1 # 1+0°1 + 1+2¢1 + 1+2+1 + 1+0+(-1) + 1+0+(-1)
+ 1.20(_1) + 1.6.(-1)] = 1 >
Blu 1
N %= 5 [1°1221 + 1:0°1 + 1:2¢(-1) + 1:2-(-1) + 1:0+(-1)
+ 1°0(-1) + 1+2+1 + 1+6°1] = 2 ,
B2u 1
N0 = g [101201 + 1000 (-1) + 12221 + 122+ (-1) + 1:0+(-1)
+ 1°0°1 + 12+(-1) + 1+6°1] = 2,
B3u 1
N =3 [1°12+1 + 1+0(-1) + 1°2+(-1) + 1+2-1 + 1+0°(-1)
+ 1401 + 142+1 + 1+6+(-1)] = 1 .
Therefore
r = SAg + Bzg + ZB3g + Au + Zﬁlu + 2B2u + Bau .
Step 4

From the character table of the point group Dzh: (1) There will be

ZBlu + ZBZu + 1B3u = 5 infrared bands and 3Ag + leg + 2339 = 6 Raman
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bands; there should not be any coinciding frequencies. (2) The 3Ag

bands may be polarized; the other three Raman bands will be depolarized.

7.6 PHOSPHORUS PENTAFLUORIDE (PFs) P:fji%%
N L
Step 1 ' /f1>\ L
, : f?i;;:;__ef‘
There is an obvious (3 through the axial - S

fluorine atoms and each horizontal PF bond L e ‘
. ¢ )
coincides with a Cy;. The plane of the equa--- * ﬁf/TEG \kﬁi

torial fluorine atoms is a plane of symmetry.

These elements can be found in the D,, group,
which can be verified by finding the S3 (coincident with C3) and the
SOU (through C3 and each Cj).

Step 2

U, =6, u, =3, u, =2,
E C3 Co
u = 4 , u =1, u =4 ,
9, 53 9, |
= (6 - 2):3 =12, = (3-2)0=0,
xgp = ( ) Xp, = ( )
XCz =(2-2)-(-1) =0, Xoh =4-1=4,
XS3 = 1-(-2) = -2, Xg = 4.1 = 4 .,
. v
Step 3
N, = 1, nc3 =2, nC,2 =3,
n =1 s n = 2 > n =3 ’
9 S3 9,

e =6, g=14+2+3+1+2+3=12,
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N = %5-[1-12-1 + 2+0°1 + 3°0°1 + 1°4°1 + 2+(-2)°1 + 3+4¢1] = 2 ,
A'
2 1
N = 15 (101201 + 20001 + 3:0-(-1) + 1+41 + 2-(-2)1 + 3:4-(-1)] = 0 ,
1
N*' = 15 [1°12:2 + 2:0¢(-1) + 3:0-0 + 1-4:2 + 2:(-2)+(-1) + 3-4:0] = 3,
1
N = 35 [1°12:1 + 200+ (-1) + 3-0¢1 + 1+4-(-1) + 2+(-2)+(-1)
+34:(-D] =0,
45
N % = 15 [1°12:1 + 2:01 + 340+ (-1) + 1:4+(-1)
+ 2¢(-2)(-1) + 3°4-1] = 2 ,
1]
N"' = 15 [101202 + 20+ (-1) + 3040 + 14+ (-2) + 2-(-2)+1 + 3+4:0] = 1 |

Therefore

T = 24} + 3E' + 243 + B .

SteE 4

From the character table of the point group D3h: (1) There will be
3E' + 24') = 5 infrared bands and 24, + 3E' + 1E" = 6 Raman bands, the
frequencies of the 3E' bands coinciding in both spectra. (2) The ZAE
infrared bands of gaseous PFg should show PQR structure. (3) The ZAi
Raman bands may be polarized; the other four Raman bands should be

depolarized.
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7.7 CARBON TETRACHLORIDE (CCly)

Step 1
€254
Each CCl bond coincides with a 151 \\\ //// ey
C3 axis and there are no Cy's. This QQ;Qi';}-C'

description is only compatible with

the groups T, Td’ and Th' The fact

that every pair of C3's determines
a plane of symmetry decides in favor
of Td' The existence of 3C,'s,

bisecting pairs of Cy's, can be verified.

Step 2
,uE =5, uc,3 =2, ucz =1, usq =1, ucd =3
Xg = (5 -2)3=9, XC3 = (2 -2)s0=0,
Xg, = (1= 21D =1, Xg, = 1'(-1) = -1,
Xcd = 31 =3 .
Step 3
nE=1, 1%3=8, jw2=3, r%u=6, 1%d=
c=35, g=1+8+3+6+6 =24,
A 1 ,
N =357 [19+1 + 8+0°1 + 3°1°1 + 6+(-1)*1 + 6+3°1] =1 ,
Ao 1 '
N = 52—[1~9-1 + 801 + 311 + 6°(-1)+(-1) + 6°3+(-1)] =0, -
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NT = 10 [1°92 + 80+ (-1) + 3¢1+2 + 6+(-1)+0 + 6+3:0] = 1 ,
F, 1
N = 52—[1~9-3 + 8400 + 3¢1°(-1) + 6°(-1)*1 + 6°3-(-1)] = 0,
F, 1
N = 2—4— [1-903 + 80°0 + 3.10(-1) + 6 (_1)-(_1) + 6-3.1] =2 .
Therefore
I =A4; +FE + 2Fp .
Step 4

From the character table of the point group Td: (1) All four bands
should appear in the Raman spectra while only the 2F; frequenciés should
show in the infrared. (2) The 4; Raman band should be completely

polarized, while the other three bands should be depolarized.



Fig. 2. Mono~-
deuterated ammonia.

Fig. 3. cis—l,2—Dichloroethylene.
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