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DISLOCATION LOOP GROWTH AND VOID SWELLING IN BOUNDED
MEDIA BY CHARGED PARTICLE DAMAGE

M. H. Yoo

ABSTRACT

A system of partial differential rate equations for the
growth of dislocation loops and voids in one-dimensionally
bounded media, namely the semi-infinite medium and the foil,
under charged particle irradiation has been formulated in
terms of the diffusion controlled kinetics of defect
annealing and cluster growth. An efficient numerical method
of integrating the rate equations is presented. Example
calculations for 4 MeV Ni self-ion bombardment at 550°C
are made, and both time and space dependences of loop growth
and void swelling are discussed.

1. TINTRODUCTION

The investigation of microstructural radiation damage of metals by
high-energy charged particles such as electrons, protons, and heavy ions

has received considerable attention in recent years.!™3

In the experi-
mental study of void formation much effort is put into simulating the
damage produced by fast neutrons in fission or fusion reactor conditions
with that by heavy ion bombardment in an accelerator. In theoretical
modeling of correlation of neutron and ion radiation damage mechanisms,
only some of the important factors inherent to the ion bombardment
situation have been incorporated into the homogeneous rate theory of void

#=6 Bullough et al.’ extended the rate theory of void growth

swelling.
to include a homogeneous distribution of vacancy loops which may character-
ize the irradiation induced cascade damage. Taking the depth gradient

of displacement damage by ion bombardment into account, Garner and

Guthrie® solved the steady state rate equations for semi-infinite media

and discussed the characteristics of depth dependent void growth.

2

Transient sclutions of the rate equations were obtained by Savino” for



thin foils under homogeneous displacement damage as in a high-voltage
electron microscope. Ghoniem and Kulcinski'®? studied the growth behavior
of voids and dislocation loops in an infinite medium under pulsed
homogeneous displacement damage.

The purpose of the present paper is to present a general model of
loop growth and void swelling in one~-dimensionally bounded media during
irradiation. It is assumed that aunealing and clustering kinetics of
point defects is diffusion controlled. Thin foils and semi-infinite media
are considered. Both time and space dependences of the point defect
generation rate, the concentrations of free point defects, and the sizes
of fixed internal sinks are included in the model. In Sec. 2, a system
of partial differential vate equations is formulated and physical meanings
of the input parameters given. The numerical method used to integrate
the rate euqtions is given in Sec. 3. Example calculations for the case
of nickel self-ion bombardment on a semi-~infinite medium is given in
Sec. 4. Discussion follows in Sec. 5, which includes other possible

applications of the present model.

2. THE RATE EQUATIONS
2.1 Growth Rate of Defect Clusters

Consider three different types of defect clusters as internal sinks

for point defects such that

Py = oj(x,t) = Rj(X,t)/b , (1)
where Rj is the average radius of jth sink type ia the plane perpendicular
to Xmaxis, x the distance from a reference boundarv, t the time, and b is
the Burgers vector of dislocation loops. We assign j = 1 for interstitial
loops, j = 2 for vacancy loops, and j = 3 for voids. If one postulates
that self-interstitials and vacancies are the only important free defects,
then the growth rates of dislocation loops treated as spherical sinks and

voids can be obtained from the net fluxes of point defects as follows:
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where subscripts v and i denote vacancies and interstitials, D's the
diffusion coefficients, C's the fractional point defect concentrations,
r(j) the effective capture radius of sink type (j) for point defects, and
65 is the local equilibrium concentration of vacancies at a sink of jth
type.

When dislocation loops are large enough to be treated as dislocation

line sinks, denoted by j = 4, the loop growth rates may be given as

%%L = % z.0.C; — 2.0 (¢, ~ "Cl)] , (5)
%%& - %TEZVDV (Cv - —62) — Z;0;C 1 (6)

where Zv and Z are the numerical factors which depend on the effective

O

!

capture radii, L and the outer cut-off radius of dislocations.

2.1.1 Thermal Emission of Vacancies

In order for a faulted dislocation loop to be in local equilibrium
with vacancies, the release of elastic line energy of the loop and the
reduction of stacking fault energy must be related to the local

concentration of thermal wvacancies by
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where § is the atomic volume, kB is the Boltzmann's constant, T the
absolute temperature, Y the stacking fault energy, y the shear modulus,
and Vv is the Poisson's ratio. The thermal equilibrium value of vacancies

is
¢S = exo(s_/igyexpCEL/T) )

where Si and Ei are the entropy and energy of vacancy formation,
respectively. For an unfaulted dislocation loop the stacking fault energy
vanishes in Egs. (7) and (8), and for a straight dislocation the line
tension force also vanishes to give Eﬂ = Ci.

Similaxrly, the local concentration of vacancies near a void is

— _ e [a q2r _ ]
Cy = Cv exp [kBT (R3 Pg)J , (10)

where [' is the void surface energy and Pg is the gas pressure in each void
of radius R3. According to van der Waal's equation of state for non-

interacting rigid gas atoms,
P, = nngL/(awR§/3 — 08, (11)
where ng is the number of gas atoms in a cavity of radius Rz and B is

van der Waal's coefficient. The number of gas atoms giving rise to an

equilibrium pressure is



n, = 8wTR3/3 (R3k,T + 2IB) . (12)

Unspecified so far, the radial distance from a sink at which‘aﬁ
applies 1s the inmer cut-off radius. To ensure a local thermodynamic
equilibrium for vacancies one must include in Egs. (7) and (8) the inter-
action energy between a vacancy and the sink at that radius as was done
for infinitesimal lcops in our earlier work. '™ Because of the relatively
weak strength, this’interaction energy terms 1s neglected in the present
model. The contribution of such an interaction term i1s substantial in
the case of interstitials, but thermal emission of interstitials is
neglected because of a large value of formation energy. Since Ej = E&(pj)
and pj = pj(x,t) for j = 1, 2, 3, the local cqncentfétion of thermal

vacancies is a function of position and time, 65 = C,{x,t).

j

2.1.2 Effective Capture Radius

The effective capture radius c¢f an internal sink is defined byll-lu

4 () )
2B Dy %,i) , (13)

where r, is the capture radius and 9§ 1 is the preference factor (S > 0).
The magnitude of the preference factor is indicative of how strongly the
point defects interact with the particular sink. Since the magnitude of
the volume dilatation of an interstitial is greater than that of the
relaxation volume of a vacancy, the first-order size interaction gives
rise to the condition that 61 > 6V for any sink type with a self-strain

field. This condition is the primary cause of void formation at

temperatures where both vacancies and interstitials are mobile.

*The following typographic errors in Eq. (6.8) of ref. 11 should be
noted: the second and the third signs should be exchanged to read % and +,
respectively, and the last argument should contain 2 instead of 32.



2.1.2.1 Voids. As discussed earlier for randomly distributed

11512

spherical sioks, the capture radius of a typical void may be

approximated by

c T “T (14)

where the superscript (j) is omitted for brevity, r; is the inner cut-off
radius, the void radius in this case, and 1, is the radius of the outer
boundary which can be assumed to be, r, = (r; + RS)/Z, the average of 1
and the radius of the sphere of influence, Rs = (3/4WN)1/3, where N is the
void number density.

Brailsford et al.!® have recently derived a simplified expression
for the sink strength of voids, which duplicates reasonably well the
procedure given by Brailsford and Bullough.® Bringing the 'effective
lossy medium' right up to the void, i.e., RS = T, they15 eliminate the
problem of defining RS when more than one sink type is present.

According to their expression for the sink strength for voids as the only

sink, the capture radius of voids is

r =172, (15a)
c 1
A A
PR Ty o, (15b)
A = (4'n‘rlN)1/2 . (15¢)

The capture radius evaluated frow Egs. (15) is smaller than that from
Eq. (14). As expected from the many sink effect, the difference between
the two increases as the void size and the void number density increase.
For the example calculations in the present work, Eqs. (15) are used to

evaluate the capture radii of spherical sinks.



2.1.2.2 Dislocations. The term 'effective capture radius' was coined

first by Ham'? in his work on particle precipitation on dislocationms. The
capture radius in Eq. (13), ré“), is equivalent to the dislocation core
radius, PP and the preference factor, Séji, denotes the effect of point
defect~dislocation interazction on defect flux. TFor a random distribution
of straight parallel dislocations, the numerical factors given in Eqs. (5)

and (6) may be related to the effective capture radius by'®

z, = 2ﬂ/ln(RC/réq)) , (16a)
Z, = 2n/1n(R /r(”)) (16b)
i ) ¢’ i *

where Rc = (WL)_I/Z, L 1s the dislocation line density. A similar
correction as for Egs. (15) to Eg. (14) was also made to Eqs. (16) by

Brailsford et al.!® but this is not included in the present work.

2,1.2.3 Dislocation Loops. When dislocation loops are randomly distrib-

uted and are small compared to their sphere of influence, the torus of a

dislocation loop core can be replaced by a charged sphere that creates

17

an equivalent electrostatic capacity. The inner cut~off radius of

the equivalent spherical sink is

&)
£ = @2 - rfl)l/z/lncst/rd> . i=1,2 . (17)

The capture radius of small loops is obtained by putting rgj) from Ea. (17)

into either Eq. (14) or Egs. (15). The effective capture radius,

réji, or the preference factor, 6531, for small dislocation loops
3 »

(j = 1,2) was calculated based on the infinitesimal loop

11»>13518

approximation. The effect of defect~loop interaction on defect

flux is independent of the character of a dislocation loop as far as the
1 2
first—order size interaction is concerned.!! Therefore, 6§ ) 6( ) and

v
Gil) = 6§2) for both vacancy type and interstitial type of Frank loops.



When dislocation loops are large compared to the sphere of influence,
the dislocation loops may be best approximated as straight dislocations of
the lengths egqual to their circumferences by using the relationship that

the corresponding dislocation line density is

L. = 27R.N, , io= 1,2 (18)
h| i3]

where Nj is the number density of dislocation loops. In this approxima-

tion, the growth rates of dislocation loops are given by Egqs. (5) and (0).

2.2 Point Defect Concentrations

The point defect concentrations, Cv i 7 CV i(x,t), must satisfy the
b b

following defect conservation rate equations:

SCV 5 BCV N

e = e | TY) —e—— — N . C

Y aX(.DvBX + GV RCVCi KV v (19a)

oC, BC.\

i d i = .

Ul J—— 4 G —— RC C . K. C . s 19b

3t 3x (Di ax / i Vi i1 (19%)
where G, are the point defect generation rates, R the mutual recombi-

b
nation constant, and KV ; are the reaction rvate constants for point
? L3
defects with the continuum sinks of all types.

2.2.1 Boundary Effects

The first term on the right-hand side of each of Egqs. (19} accounts
for the diffusional loss of point defects to the reference boundary. An
expression for the drift term due to a defect-boundary interaction has
been derived by taking full account of the pon~linearity of the interaction
energy,“+ but because of the short range nature of the interaction between

a point defect and a surface or an interface, the resulting contribution



to the diffusional loss by the drift term is usually small at elevated
temperatures. The drift terms is, therefore, not included in the

present model. However, such a short-range effect can be introduced into
Egs. (19) if the change in the activation energy of defect migration,

m
Ev T near the boundary is known, e.g.,

m m

Ev,i = Ev,i(x) , (20a)
D ., =D .(x)=D> . exp(-E"  /k,T)

v,1 v,1i x v,i XY v,i' B ’ (20Db)

b

where D3 ; are the pre-—exponential diffusion coefficients.

2.2.2 Recombination Rate

The rate constant for point defect annihilation by uncorrelated
recombination, E, depends on the probability that the faster interstitials

will encounter vacancies in their diffusive movements, and is given by!®

R = 4nr (D, +D)/2, (21)

where L is the effective capture radius of a vacancy for interstitials
or the radius of recombination volume. Based on the first~order cubic
elastic anisotropy and the first~order size interactién, Yoo and Butler'!
and Schroeder and Dettman®?® have made theoretical analyses of how Toq
depends on the interaction strength, the inner cut-off radius, and
temperature. The recombination rate constant used in the present work
is based on Eq. (21) and the calculated recombination volume by our

earlier work.!'!?

2.2.3 8ink Strengths

The reaction rate constants feor internal sinks are simply related

to the so-called 'sink strength'®’!**1% by
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K ., =0D_.k» ,, (22)

and to a first approximation the total sink strength way be expressed

as the sum of all the sink strengths by

2 . oy . (»
k,V ZRUE ) by Nj , (23a)

K2 = 7L+ 5 4ne By, (23b)
i i - i ]
]
If the loops are small, the summation includes j = 1,2 and L = Ly;
whereas if the loops are large, the summation does not include j = 1,2

but L = L1 + Ly + 1, as discussed previously. The approximation of the
sink strength given by Egs. (23) ignores the influence of one sink type
on another type.

An exact description of the sink strength is perhaps the most
important input and remains as the most demanding task in so far as
theoretical modeling of radiation damage is concerned. This is a
difficult task even for the steady state condition because of many sink
effects. As for the combined sink strength of voids and dislocations,
Brailsford et al.!'® have recently derived a transcendental equation for k

(omitting the subscripts v or i),
k? = 4mryN(L + kr)) + Z(K)L (24)

where r; and N are the radius and the number density of voids, respectively.
An expression of Z(k) and the approximations of it for special cases are

given in their paper.15

The sink strength is time dependent as defect
clusters grow and dislocation microstructure evolves during irradiation.

Evolution of faulted loop microstructure results due mainly to the fact
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that certain internal sinks have net fluxes of one point defect type
over the other, i.e., réj) # réj) and partly to the mutual interaction
between sinks. After unfaulting, dislocation loops are transformed into
a tangled microstructure. As dislocations climb under irradiation and
interact with themselves to develop a cell structure, the cell boundaries
can be treated as discrete interface boundaries. If solution treatment
and/or cold working is applied prior to irradiation to create fine grain
or cell sizes in the specimen, then a typical grain or cell may be
treated as a bounded medium.

We are of the opinion that the rate theory model presented here
and a quantitative analysis of microstructures by transmission electron
microscopy (TEM) together can give the best estimates of sink strengths

and 'sink efficiencies'.??

Our preliminary result on the determination of
the sink efficiency of faulted Frank loops in nickel during HVEM
irradiation was reported in the recent conference.?? 1In the example
calculation that follows, the sink strengths are described by Egs. (23)

together with Eqs. (13)—(18).

2.2.4 Defect Generation Rate

Atomic displacement rate by fast electrons may be obtained from
the experimentally measured electron flux, a threshold displacement
energy, and the well documented data of displacement cross-sections.??
In the case of ion bombardment, the various energy loss mechanisms have
been developed,? and numerical methods now exist for calculating the
depth distribution of atomic displacement rate.*"?2%

The point defect generation rate is lower than the atomic displace-
ment rate, 6'='E(x,t), by a substantial f{raction because of correlated
recombination and alsoc defect clustering and annealing within the cascade
regions in the case of heavy-ion bombardment. We are not certain as to

what this fraction is for a given irradiation condition; but pending an

exact treatment of this factor, f, we will assume that the depth variation
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of the point defect generation rate has the same form as that of G. The
emission rate of thermal vacancies from dislocations and that from all

the spherical sink types are, respectively,

L e
¢ =z et (25)
and
N sy (26)
v Vo3

where j = 1,2,3 for small loops and j = 3, L = Ly + L, + L, for large

loops. The total point defect generation rates are then given by

L

- N
G = fG+G +G , (27a)
v v v

Gi = fG . (27b)

As internal sinks evolve during irradiation the thermal emission
contribution to the vacancy generation rate, Eq. (27a), is also dependent
on spatial position. 1In order to include the effect of nucleation of
small vacancy clusters from displacement cascades, one should introduce
into Egs. (27) two numerical factors such that more free interstitials
are generated from displacement cascades than free vacancies, fi > fv’
and the corresponding size and number density of vacancy clusters are
continuously iuntroduced into the sink terms, Eqs. (23). Straalsund?®
and Bullough et al.” found thai the effect of such vacancy clusters on
the correlation analyses of void swelling data by neutron and charged
particles irradiation was a significant factor. This effect is not
included, however, in the present example calculations.

Any time dependence of the point defect generation rate due to
pulsed operation of reactors, as in sdme of the advanced concepts of

fusion reactors,?’ can be explicitly put in Eqs. (19). Simulations of
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recovery upon stopping irradiation and post-irradiation annealing of

the microstructural radiation damage may also be modeled.
3. SOLUTION OF THE RATE EQUATIONS

3.1 1Initial and Boundary Conditions

To solve the system of rate equations, Egqs. (2), (3), (4), and (19)
or Egs. (2), (5), (6), and (19), the initial and boundary conditions
must be specified for p;, p2, P3, Cv, and Ci' The initial conditions for

point defects are

1}
Q

€, (x,0) e, (28a)

Ci(x,@) =

[
o

(28b)

The initial conditions for the defect clusters are set to be a uniform
distribution of small clusters having radii of a number multiple of

Burgers vectors
p;(x,0) = 55 , (29)

and these are subjected to a point defect conservation by

Nip? = Nppg + —N3p3 . (30)

Since the present model does not include the nucleation processes of the

defect clusters, additional initial conditions on Nj and L are provided.
For the case of a semi-infinite medium with a free surface as the

boundary, the boundary conditions are

e .
c 0,t) = ¢S , lim C_{x,t) = Ci , (31a)
Koo



Ci(o’t) =0 lim Ci(x,t) =0, (31b)

X

For a foil of thickness d the boundary conditions at the wid~foil are

BCV d
3% @t 70 (322)
9C; 4
'é';{w(—z"s t) =0, (32b)

while the same boundary conditions as before, Egs. (31), apply at the

surface x = 0.

3.2 Numerical Solutions

The system of rate equations subject to the initial and boundary
conditions is solved numerically by a procedure known as the method of

lines and by the stiff integrator package called GEAR-B.2?®

First of all,

a number, M + 1, of one-dimensional grid is chosen. The partial
derivatives in x in Egs. (19) are replaced by the finite difference
quotients for defect concentrations oun grid points, Xg5 £=1,2,..... s

M + 1, where x; = 0 is taken as the free surface and XM+1 as the center of
a foil or a large distance from the surface in the case of a semi-infinite
medium {see Appendix A). The system of partial differential rate equations,

Eqs. (2), (3), (4), and (19) or KEgs. (2), (5), (6), and (19), are cast

. . 2
into a vector form as was done by Myers et al. 2

Y(e) = FIY(0),e] , (33)
V]
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by assigning Y as Cv(xl,t), Y, as Ci(xl,t),~Y3 as p1(x1.,t), Yy as
p2(x1,t), Y5 as pa(x;,t), Y¢ as C,(x2,t), Yy as Ci(X2,t), Yg as py(x2,t),
etc. (See Appendix A). This system of 5(M + 1) first~order ordinary
differential equations is solved numerically subject to the initial

conditions,

(@) =¥ (34)
obtained from Egs. (28) and (29). The boundary conditions of Egs. (31)
and (32) are incorporated into Eq. (33) (see Appendix A).

The present problem in the form of Eg. (33) has the property of
stiffness due to the fact that some solutions decay at very different
rate compared to others. 1In additions, the Jacobian matrix (BYi/BYj) in
the present model is banded about its main diagonal with 5 non-zero
diagonals above and 5 below. The stiff integrator GEAR-B developed by
Hindmarsh?® is designed to handle such problems., The governing equations
developed so far (Appendix A) have been written into a FORTRAN program,
from which the GEAR-B package is called. The computer program and typical

outputs are listed in Appendices B and C, respectively.

4. EXAMPLE CALCULATIONS

An example problem is taken of 4 MeV *8Ni2t ion bombardment on a
high-purity nickel semi-infinite medium at T = 823 K (550°C). The
deposition of initial damage energy was calculated by using the computer
program E~-DEP-1%" with the nickel density of pp = 9.13 X 1022 cp~? and
the electronic stopping power parameter of ke = 0.162. This was converted
to the atomic displacement rate by the modified Kinchin and Pease
formula®® and an estimate of ion flux at the peak position,
¢ =1 pa/em?.3l  In Fig. 1 the calculated atomic displacement rate,'E,
is plotted with respect to the ion penetration depth. The rate of point
defects escaping the cascade regions is assumed to be fG with £ = 0.2.

The problem is set up by M = 26 increments of varying sizes between

x; = 0 and x37 = 4.8 um. Vacancy loops survive for a relatively short
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Fig, 1. Atomic Displacement Rate Approximated from the Energy
Deposition of Initial Damage Energy Calculated by E-~DEP-1.

time, and these ave neglected in the present calculation. Therefore, a
total of 4M + 1) = 108 rate equations are integrated. The diffusion
coefficients are assumed to be independent of position. The material

and defect parameters used for the calculations are given in Table 1.

4.1 Recombination Dominant Case

This limiting case is attained by setting the reaction rate constantis
to zero, K = Ki = 0, Calculated vacancy diffusion profiles, Dv(cv + Ci),
are plotted in Fig., 2. They start from the initial value, Dvci’ and rise
gradually into a stationary profile. In the case of interstitials,
however, there appears a transient surge of diffusion profiles, Dici’
roughly over t = 107% & 1073 sec range as shown in Fig. 3. The difference
between the two, Dici wDV(CV + Cs), may be considered as the 'defect
diffusion potential' for nucleation of interstitial clusters. This is
plotted in Fig. 4. for the peak position, x = 0.7 um, with respect to
irradiation time. Far from the surface with no internal sinks, one

obtains for a steady state the following:

cap,. \/2
._'\2'..,.> , ( 35 )

D C = D.C, = (7
v Vv 1 1 .nrvi
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Table 1. Materials Constants and Defect Parameters for Ni

= 9.5 x 1010 pa v = 0.28
a=13,524 b = a/¥3
rvi/a = 1,2 rd/b = 2
y = 0.4 J/m? [=1J/?
£ £ .
E, = 1.6 eV s,/kg = 1.5
N = 1.2 eV p° = 0.19 em?/sec
v v
E? = 0.15 eV Di = 0.008 cm?/sec
ORML-DWG 76~17288BR
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Fig. 2. Vacancy Diffusion Profiles for the Recombination Dominant
Case.
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Fig. 3. Interstitial Diffusion Profiles for the Recombinaion
Dominant Case
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Fig. 4. Defect Diffusion Potentials at the Peak Position for the
Recombination Dominant Case.

with which G at x = 0.7 um yields a value of 2.06 X 10~'* cm?/sec. The
calculated steady state value at the peak position (Fig. 4.) is

2.04 x 10~'* cm?/sec, which is 0.9% smaller than the infinite medium
value. It can be inferred from Fig. 4. that if there were no internal
sinks at the start of irradiation, interstitial clusters such as inter-

stitial dislocation loops may nucleate within t < 1 sec.

4,2 Sink Dominant Case

As for the other extreme situation we consider a sink dominant case
where there is no recombination, R = 0, and the internal sinks consist
of dislocations of L = 10!'! em™? with GV = 0 and Gi = 0.1. Equations
(19a) and (19b) are then decoupled from one ancther. The mean free paths
of point defects before annihilating at dislocations are kv'"1 = 245 A
and ki“1 = 242 A, Calculated defect diffusion profiels are shown in
Figs. 5 and 6. The transient surge of interstitial diffusion profile
in this case (Fig. 6) is much less pronounced than in the recombination
dominant case (Fig. 3). The transience of defect diffusion potentials
at the peak position is shown in Fig. 7. The steady state values for

an infinite medium in this case are given by
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ft

Gi/ZvL ; (36a)

Cves)”
(0565)"

where thermal vacancies are neglected. The calculated steady state

values (Fig.7) are 1.43 x 10~'* cm?/sec and 1.38 x 10-'* cm?/sec for

H

G /7L, (36b)

vacancies and interstitials, respectively, which are 0.9% and 1.7% smaller
than the corresponding values calculated by Eqs. (36). Insofar as the
role the net point defect flux plays in the processes of defect
clustering, the results of Fig. 7 may be interpreted as follows: under
the constant sink strengths of kz = 1.70 x 10'! cm~? and

ké = 1.66 x 10'! cm—? interstitial dislocation loops may nucleate before

t = 107° sec, whereas vacancy type clusters may nucleate after
t = 1072 sec.
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Fig. 5. Vacancy Diffusion Profiles for the Sink Dominant Case with
L =10 cn™®, § =0, § =0.1.
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4.3 General Case

The following sink densities are chosen for the calculation:
N; = 4 X 10" em™?, Ny = 2 x 10 em~?, L = 1 x 10*? em™?. These are
held constant with respect to both time and position. Given an initial

size of voids, e.g., ps = 5, the initial radius of interstitial loops

was set by

nefe e

Initially (t = 0), the cavities of radius, Rj = ng, are assumed to be
small equilibrium gas bubbles containing ng gas atoms, Eq. (12). Then,
with the constant ng, Pg decreases as Rz increases as expressed by Eq. (11}
thus characterizing the growing voids. The growth rate of interstitial
loops given by Egs. (5), (7), ana {16) is used with 65“) = () and
Siu) = 0.6, It is assumed that the loeps unfault with their radius
exceed their sphere of influence, RS = 421 b. The interaction between a
point defect and a void may be incorporated into the present model by
setting appropriate non-zero values for preference factors,
653) # 6£3).32’33 However, because of the relatively weak strength of
the preference factors as compared to those for dislocations and
disloéation loops, we assume that voids are weak neutral sinks, i.e.,
§(3) = 5(3) = 0.
v i

The time dependences of the defect diffusion potentials and the loop
and void radii at the peak position, x = 0.7 um, are shown in Fig. 8.
Interstitial loops grow continuously, and after t = 100 sec the growth
rate increases to show an exponent of approximately n = 0.9 for (R1/b)atn.
Whereas, voids shrink slightly until t = 10~? sec at which DV(Cv + Cs)
and DiCi cross over, Beyond this time the void growth rate steadily
increases to reach n = 0.5 for (R3/b)atn at t > 102 sec. Void swelling

of a specimen of volume V is

AV

ST FTITAY ? (38a)
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AV 4
T < 3R - (38b)

The time dependent void swelling at x = 0.7 um is shown in Fig. 9. The
time exponent of n = 1.4 for Satn is obtained toward the end of
irradiation time to the dose of 1 dpa. The rate of approach to this
dose dependence of void swelling depends divectly on the chosen initial

value of void size as illustrated in Fig. 9.
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The spatial dependences of the defect concentrations and the loop
and void radii at t = 1680 sec are shown in Fig. 10. The shape of the
depth profile of vacancy concentration is the same as that of interstitial
concentration as shown in Fig. 10(a). Two peaks of loop radius appear
in Fig. 10(b), R; = 502b at x = 0.04 um and R; = 484b at x = 0.74 um.
As unfaulted loops, large loops at these depths grow into the dislocation
microstructure. Since the front peak position is only 400 A from the
free surface, a portion of each loop must intersect the surface. If an
interstitial loop were to stop growing upon intersecting the surface,

then a smaller peak near the surface would result as approximated by
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the dashed curve in Fig. 10(b). The depth profile of void radius is

also shown in Fig. 10(b). Table 2 shows the calculated values of G, the
sink strength, the loop and void radii, and the swelling for three
reference depth positions. Even though the irradiation dose at the front
position (x = 0.14 um) is 6% higher than that at the back (x = 0.92 um),
the void swelling at the front is 237 lower than at the back. The reason

for this is the proximity effect of the free surface.

5. SUMMARY AND DISCUSSION

A system of partial differential rate equations for vacancies,
self-interstitials, dislocation loops aud voids in one~dimensionally
bounded media, viz. a thin foil and a semi-infinite medium, under charged
particle irradiation has been formulated in terms of diffusion controlled

kinetics of defect annealing and clustering. The rate equations are



25

Table 2. Numerical Results at Three Reference Positions

Front Peak Back
x(um) 0.14 0.76 0.52
G(10™% dpa/sec) 2.10 6.00 1.95
dose (dpa) 0.35 1.01 0.33
ké (1010 cn™2) 3.69 4.81 2.72
k% (1010 cm™?) 4.G5 5.28 2.98
Ry/b 328. 483, 177.
R3/b 52. 74. 56.
s (%) 0.10 0.29 0.13

integrated numerically to give the growth rate of interstitial loops and
the void swelling rate. An example calculation for 4 MeV Ni self-ion
bombardment on a semi~-infinite medium at 550°C gives the following
summary: (a) While the loops grow continuocusly, the voids initially
shrink (t < 1072 sec) before starting to grow. This is because of the
transient net flux of faster interstitials, Di >> Dv' (b} At the low dose
range of less than 0.1 dpa, the void swelling rate depends directly on

the initial size of voids chosen for the calculation. (c) Two peaks,

one near the free surface and another near the peak damage position,
appear on the depth variation of loop size. The peak near the surface
arises because of the proximity of the free surface as a neutral sink and
the high perference factor of dislocations for interstitials,

6£”) = 0.6, Gé“) = 0., (d) Because of the free surface, the void swelling
near the surface is lower than at a reference position far away from

the surface even when the defect generation rate and the total dose near
the surface are greater than those at the reference position. (e) If
there were no internal sinks initially, e.g., a single crystal semi~
infinite medium with a low dislocation density, interstitial clusters
such as interstitial loops may nuclieate within t < 1 sec. (f) If a
specimen initially contains a high density of stable dislocations

(L=1 X 10! cm“z) as in cold-worked metal, then the nucleation of
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interstitial loops may take place within t < 10~% sec, whereas vacancy
clusters may nucleate beyond t > 1072 sec.

Many applications of the present wmodel are possible, e.g., micro~-
structural damage recovery, post~irradiation anmealing, pulsed irradiation,
stress effects, gas bubble growth, etc. The computer execution time to
obtain the results of Figs. 8, 9, and 10 was only about 2 minutes.
Therefore, a future extension of the present model to include more
mobile defects and internal sinks is promising. The most important
unsolved problem, however, is the chavacterization of the collective sink
sitrength of an evolving microstructure of internal sinks of various types.
In ocur opinion, this can be best solved by quantitative analyses of TEM

microstructures by use of the rate theory model presented here.
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The second-order derivative of the defect concentration, C, with

respect to the depth position, x, is expressed by the finite difference

quotient,28
; C — C
_9 (.9¢C £+41 £
5% (PSQ)'&’[?E+1/2 ( By )

—~D Cp = Coa\] (A% * 8%pq\ 7’
0-1/2 \ dxp_, 2 (A1)

@0Cp 1~ BpCp T Vployr >

where
D = (D + D,)/2
041/2 1 T D2 (43)
Ax, = x —~ X
£ 41 A (ad).
Yo = ppyyplbrg by + 0%, 1), 1 (45)
e Tty (46)

The above equations (Al1—A6) replace diffusional flux terms in Egs. (19) .
The system of 5(M + 1) governing rate equations, Eq. (33), for a

semi-infinite medium has the following general form:

av) _dip _d¥s 4N _dY5 o (47)
dt dt dt dt dt

% = o'y - gVY + vy
dac - %g'se-9 2rsp-4 T Yptse4l
(A8-a)

v o= . LV
Gy —RY¥gp ;Yop 5~ Kp Y5p 4
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at 27508 Ppi58-3 " Ys5p42
‘ (A8-b)
+GL —~ RY., ,Y —~ gy
2 50—4 50~3  “prs5p—3 0
ay
SM~4 v LV Ve
at - OMUsuo  Pusms T MGy
+G. — RY v (49-2)
EYRERA S VIR S VI S VIR VAR
sy oy _aly
dt “MI5M-8 T PM 5M-3
' (A9-D)
+C- — RY Y —xly
M sM—4 sm-3 T SMUsme3 o

with the superscripts v and i for vacancies and interstitials and the

subscripts £ = 2, 3, . . . , M. The boundary conditions, Eqs. (31), that
e - - . .

Y5M+1 = CV and Y5M+2 = (0 have been used for the last two Eqs. (A9); for

these boundary conditions to be realistic X1 must sufficiently exceed

the range of point defect generation. For the sinks, pj, Egs. (2), (3),

and (4) become

dy
502 i i v v =) ] 3

3_5.@:;1. - ()

v v N i i, 3
ac z[rsfiwlDK(Yszm—a e > rSK—lD2Y53*3]/(Y5£—1b ) o (AlD

58 v v —=(3)_ i i 2 1.3
A - [r5 2P 3<Y5£_¢, ~Cp \ rSKDKYSEWfﬂ]/ (Yszb ) ’ (A12)



and Egs. (5) and (6) become

_méif/:;z_ i1 AN =1 2
dt [Z Dp¥py = 20p (Y5py — Gy )] /v%, (A13)
dY
_ 5L v ey i 2 .
FT [Z Dz(stzr-a ¢ ) 2 DzYsz-A-a] /o s (A14)
where & = 2, 3, , M+ 1,

For a foil problem, all the equations from (A7) to (Al4) equally
apply except that Eqs. (A9) must be replaced to satisfy the zero-flow
boundary condition at the mid-~foil, Xyl = d/2, by the following:

ay , 2
SMAL /v v/ _
= (Phers * DM)\Y5M~4 Y5M+1)/(AXM>

a* (A15-a)
v 7 Y N VI
t Gy T R Yoz T Nl sl s
dy ,
SM+2 i i . )2
T (DM+1 " DM)(Y5M~3 Y5M+2)/(ZXM
(A15-b)

- 1
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The main program is listed in this Appendix B. The input data cards
for the deposition of damage energy, GP, were generated by simply
punching out cards for SD form E~DEP~1. Subroutine DRIVEB of the GEAR-B
package is called from this main program. A proper setting of appropriate
dimensions in the subroutine DRIVEB is the only necessary adjustment to
the GEAR-B package.

Also listed in this Appendix B are the two subroutines required by
the GEAR~B package. First, in DIFFUN the governing differential rate
equations are established in a vector form. Second, a dummy subroutine
PDB is required even when the Jacobian matrix is evaluated numerically
with the flag MF = 22.

Instructions on the usage of the GEAR-B package are given in the
Lawrence Livermore Laboratory Report by Hindmarsch.?® The computer

code is available from the Argonne Code Center.
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OWTH KINETICS OF DEFRECT CLUSTERS IN A SEMI-IMFINITE MEDIUOM

DURI¥G HEAVY IOWN IRRADIATION

TH
In
(s]1}

IN
TA
A0
RO
RC
RV
SM
PR
SE
SF
DO
DO
EHM
En
SF
EF
DN
DN
DN
DL
DL
G

REFERENCE..A. C. HINDERMNARSH, GEARB.. SOLUTION OF ORDINARY DIFFERENTIYAL
EQUATIONS HAVING BANDED JACOBIAN, LA¥RENCE LIVERMORE LABORATORY

REPORT UCTD~3005%2, REV. 1, MARCH 1975

IS BAINY PROGRAMN CALLS SUBROUTINE DRIVEB
PUT IS TAKEN OW LOGICATYT. UNIT LIN, WHICH IS SET EQUAL TO 5
TPUT IS WRITTEN OGN LOGICAL UNIT LOUT, WHICH IS SET EQUAL TO 6

ISPLICIT REAL*3 (A-H,0-Z)

COMMON /GEAR9/ HUSED,NQUSED, NSTEP, NFE, NIE

{OMMON /GEARA/ R,0,BV,DV,DI,RCO,RVO,CVE,M

COMHON /GEARB/ DN1,DN2,DN3,DLH,SBN,SE,SF,GN,BF

COMMON /GEARC/ PT,AKT,BVS,RSL,%V,%I

COHMON /GEARD/ $57(27),552{27),ALP(27) ,BET{27),GAN {27) ,G (27)

COMMON /GEARE/ C1(27),C3(27)

DINENSION Y0 {108),CV(27 ,CL(27),R1(27) ,R3 (27)

DIMENSION GP{131),X{28) ,0K{27),0CD{27) ,TT (20)

DATA LIN/5/,LOUT/S/

BATA X/0.D0,0.31D0,0.0200,0.04D0,0.08D0,0.14D0,0.22D0,0.32D0,
A0.4200,0.52D0,0.600,9.66D0,0.7D0,0.7400,0.8D0,0.86D0,G.92D0,
B0.9800,1.02D0,1.1D0,1.16D0,1.24D0, 1.4D0, 1.700, 2. 200, 3. 1D0, 4. 8D0,
CR.DO/

DATA TT/%1.D~4,1.D-3,1.D~2,1.D-1,1.00,1.D+1,1.D¢2,1.D¢+3,1.68D+3/

PI=3.1415926535897932D0

BC=0.86204744D-4

BB=1.361D~16

BF=1.7D-23

EX3=1.D0/3.D0

PUT PARAHETERS:

TEMAPERATURE (K)

LATTICE PARABETER (TH#}

RADIUS OF RECOHBINATION VOLUME {AO0)
0 = DISLOCATION CORE RADIUS (BV)

0 = VOID CUT-OFF RADIUGS (BV)

Wonon

= SHEAR NODULUS (DYNES/CHZ)
= POISSGH¥S RATIO
= STRCKING FAULT ENERGY (EBRGS/CH2Z)
= SURFACE ENERGY (ERGS/CHZ}
V = PRE-EXPONENTIAL DIFFUSION CONSTANT OF VACANCIES (CM2/SEC)
I = PRE~EXPONENTIAL DYFFUSITON CONSTANT OF INTERSTITIALS {(CH2/SEC)
V = HIGRATION EKRERGY OF VACANCIES ({EV)
I = MIGRATION ENERGY OF INTERSTITIALS (EV)
V = VACANCY FORHATION ENTROPY (BC)
V = VACANCY FORMATION ENTHALPY (EV)
i = NUNBER DENSITY OF INTERSTITIAL TYPE LOOPS (1/CH3)
2 = NUXBER DENSITY OF VACANCY TYPE LOOPS (1/CH3)
3 = NUMBER DENSITY OF VOIDS (1/CH3)
4 = DISLOCATION LINE DENSITY (1/CH2)

4TI = PREFERENCE FACTOR OF STRAIGHT DISLOCATIONS POR INTERSTITIALS
= DEFECT GENERATION RATE (DPA/SEC)
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READ(LIN, 1)

1 FORMAT (8D10.

READ{LIN, 1)
READ{LIN, 1)
READ{(LIN, 1)
READ(LIN, 1)
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TH,AQ,RO,RCO,RV0, DLYT
0)

$M,PR,SE,SF

DOV, DOI,EMV,EMI,SFV, EFY
DN1,DN2,DN3,DLi

GP

FOR FACE-CENTERED CUBIC METALS

O=(AQ**3) /4.,

Do

BV=A0/DSQRT (3.D0)

BYS=BV*BV

SBN=SM*BV/ (4. DO*PI* {1.D0-PR})

RC=BV*RCO

RCP=RC* {1.D0 +DL4T)

N=27
N=M*y

DEFECT GENERATION RATE AS A FRACTION, FC, OF ATOMIC DISPLACEHMENT RATE

ESTIMATED FROHM

THE INITIAL DAMAGE EWERGY, GP, CALCULATED BY E-DEP-1

TRANSFORMATION OF DEPTH POSITION COORDINATE AWD
INTERPOLATION OF DEFECT GENERATION RATE

IN=131
XI=1IN
GPS=0.D0
CF=2.5D-3
FC=0.2D0

DO 200 I=1,IM
GP{I) =GP (I) *CF*FC
200 GPS=GPS+GP (1)

GPA=GPS/XT
DO 60 I=1,M

TF(X{I).GT.1.3D0) GO TO 62

XI=X(1)*100.

ITX=XT
XD=XI-IX

Do

IF(¥XD.GT.0.5D0) IX=IX+1

IM=TX+1

G(I)=GP{INM)

GO TO 60
62 G(I)=0.D0

60 DX(I)=X{I+1)-%X{I)

DETERMINATION OF PARAMETERS FOR FINITE DIFFERENCE QUOTIENTS

WHEN DV AND DI

CF=1.D-4
DO 90 K=1,H4

ARE INDEPENDENT OF X

30 DX(K) =DX{K)*CF

DO 63 K=2,H

ALP (K} =2.D0/ (DX {K-1) * {DX {K) +DL{K- 1))}
GAM{K) =2. D0/ {DX (K} * {DX {K) +DX {K—1} }
53 BET (X) =ALP {K) +GAM (K)

TEMPERATURE DEPENDENT DEFECT PARAMETERS
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INI
R10
R20
R30
cvo
CI0
GN

40

RZ=RO*A0

AKT=BB*TH

BKT=BC*TH
DV=DOV#DEXP (- EHY,/BKT)
DI=DOI*DEXP {(-ENI/BKT)
R=4.DO*PI*RZ* (DI+DV}) /0
CVE=DEXP (SFV) *DEXP(-EFV/BKT)

K PARAHETERS

RSL={{3.D0/(4.DO*PI*DN 1)) **EX3) /BV
R4=1.D0/NDSQRT (PI*DL4)
ZV=2.D0*PI/DLOG (RU/RC)

ZI=2. DO*PI/DLOG (R4/RCP)

AMETERS FOR GEAR-B

T0=0.DO0
TL=1.68D+3
H0=1.D-10
EPS=1.D-9
HF=22
WRITE (1OUT,10) AO,RCO,RVO,TH,R0,54,PR,SE,SF,DO0V,ENY,DV,DOT,ENL,DTI,
SFV,EFV,CVE,DN1,DN2,DN3,PLY,DLUT, TO, TL ,EPS,HO, HF
FORMAT (1H1/90H GRO¥TH KINETICS OF DEFECT CLUSTERS IN A SEMI-INFINI
TE MEDTIUM DURING HEAVY TON IRRADIATION///
SX,12H AO(CH}) = ,B10.4,5X,108 RC(BV) = ,Fh4.2,
5X,11H RVO(BV) = ,F4.2//
4x,124 TH(K) = ,FT7.1,9%,10H RO(AO) = ,F4.2//
7X,174 SH(DYNES/CM2) = ,E10.4,5X,6H PR = ,F6.4//
7X,16H SE(ERGS/CM2) = ,E10.4,5%,16H SF(ERGS/CM2) = ,E10.4//
7X,14H DOV{CH¥2/S) = ,B10.4,5%,11H EMV{EV) = ,F4.2,5X,13H DV (CH2/S
) = L,E10.4//
7X,144 DOT(CH2/5) = ,E10.4,5X,11H EMI(EV) = ,F4.2,5%X,13H DI(CH2/5
) = JE10.4//
7x,11H SFV{BC) = ,P4.2,5%X,11H EFV(EV) = ,F¢.2,5X,6HCVE = ,E10.4//
7X,13H DN1(CH-3} = ,E10.4,5X,13H DN2(CH-3) = ,Ei10.4,
5%, 13H DN3(CH~3) = ,Bi10.4//7X,13H DL& {CHA-2} = ,BE10.4,
5%,8H DLLI = ,F4.2//
74,54 T0 =,E8.2,2¥,5H TL =,E8.2,5X,5HEPS =,E8.2,5%X,5H HO =,E8.2,
5X,5H HBF =,13//)
YRITE(LOUT,70} (K,X(K) ,K=1,M)
FORMAT (//55K,5H X(K),//5(I4,E16.5,6%))
YRITE{LOUT,71) (K,G(K) ,K=1,H}
FORMAT (//55%,5H G(K),//5(14,E16.5,6%))
WRITRE{LOUT,72) (K,DX(K),K=1,M)

FORMAT (//55X,6H DX{K),//5(14,E16.5,6%))
TIAL CONDITIONS:
= RADIUS OF INTERSTITIAL TYPE LOOPS (BV)
= RADIUS OF VACANCY TYPE LOOPS (BV)
= RADIUGS OF VOIDS (BYV)
= VACANCY CONCENTRATION (ATOM FRACTION)
= INTERSTITIAL CONCENTRATION (ATON FRACTION)
= NUMBER OF GAS ATOHS IN AN EQUILIBRIUM BUBBLE OF RADIUS R30
R30=5.D0

R10=DSQRT (4.D0/3.D0O*DN3I/DN 1*R30%%3)



aoonoaonnaanOnn

41

GN=8.DO*PI*SF*RIO*RIO*BVS,/ (3. DO* {AKT+2.DO*SF*BF/ (R3I0*BV) })
Ci0=0.D0
Cvo=0.D00
DO 100 K = 1, M
KV=G*K~-3
KI=KV+1
K1=KI+ 1
K3=K{+ 1
Y0 (KV) =CVO+CVE
YO {KX)=CIO
Y0 (K1) =R10
YO0 {K3) =R30
CV (K} =Y0 {(KV)
CI{K)=Y0{KI)
DCD {K} =DV*CV {K) ~DI*CI (K)
RYI{K)=Y0 (K1)
100 B3 (K} =Y0(K3)
WRITE(LOUT,40) TO
40 FORMAT (1H1//4H T =,B15.8)
WRITE (LOUT,41) (K,CV(K), K=1,HM)
41 PORMAT(//55X,6H CV(K) ,//5 (I4,E16.5,6X))
WRITE(LOUT,42) (K,CI(K).K=1,H)
42 FORMAT {//55%,6H CI(K) ,//5{I4,E16.5,6%))
WRITE (LOUT,46) (K,DCD(K),K=1,M)
46 FORMAT {//55X,7H DCD(K),//5(14,816.5,6X))
WRITE (LOUT,43) (K,R1(K),K=1,H)
43 FORMAT {//55X,6H R1{K),//5 (I4,E16.5,6X))
WRITE (LOUT,45) (K,R3(K),K=1,M)
45 FORMAT (//55%,6H R3(K) ,//5 (I4,E16.5,6%))
C1{1) =CVE
3{1)=CVE
INDEX=1
AL=4
MU=4
ID=0
S0 ID=1ID+1
TOUT=TT (ID)
CALL DRIVEB (XN,TO,HO,YO,TOUT,EPS,MF,INDEX,HL,NU)

QUTPUTS:

T = IRRADIATION TIME (SEC)

cv VACANCY CONCENTRATION {(ATOM FRACTION)

(o3 INTERSTITIAL CONCENTRATION (ATOM FRACTION)
DCD = DV¥* (CV+CVYE)~-DI¥*CI (CM2/SEC)

o

RT = INTERSTITIAL LOOP RADIUS (BV)
R3 = VOID RADIUS (BV)
C1 = LOCAL CONCENTRATION OF THERMAL VACANCIES AT INTERSITIAL LDOOPS
C3 = LOCAL CONCENTRATION OF THERMAL VACANCIES AT VOIDS
DO 101 K = 1,H
KV=4%K~3
KI=KV+ 1
K1=KI+1
K3=K1+¢1

CV (K) =YO (KV)
CI{K)=Y0 {KI)
DCD (K) =DV*CY (K) -DI*CT (K)
R1(K)=Y0 (K1)
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104 R3(K) =Y0 (K3)
WRITE (LOUT, 40) TOUT
WRITE(LOOT,41) (K,CV{(K),K=1,H)
WRITE (LOUT,42) (K,CT(K},K=1,H)
WRITE (LOUT,46) (K,DCD (K),K=1, 8)
YRITE{LOUT,39) (K,C1(K),K=1,H)

39 FORMAT (//55X,6H C1(K) ,//5 (I4,E16.5,6X))
WRITE (LOUT,38) (K,C3(K),K=1,¥)

38 FORMAT {//55X,6H C3(K) ,//5(14,E16.5,6X))
WRITE (LOUT, 40) TOUT
WRITE(LOUT,43} (K,R1(K).,K=1,H)
WRITE(LOUT, 45) (K,R3(K),K=1,¥)

AVERAGING OF LOOP AND VOID RADII AND SINK STRENGTH CONSTANTS
WITH RESPECT TO PETETRATION DEPTH

R1A=0. DO

R3A=0.D0

DXA=0.D0

S1A=0. DO

$24=0.D0

DO 102 K=2,20

DXA=DXA+DX (K- 1)

S1A=S1A+SS1 (K) *DX (K- 1)

S2A=S2A+552 (K) *DX {K~ 1}

R1A=R1A¢R1(K) *DX (K~ 1)
102 R3A=R3IA+R3I{K) *DX {K-1)

R1A=R1A/DXA

R3A=R3A/DXA

S1A=S1A/DXA

$2A=S2A/DXA

EVALUATION OF IRRADIATION DOSE(DPA) AND VOID SWELLING (%}

DOSE=GPA*TOUT
DOSEF=G (6) *TOUT
DOSEP=G {13) *TOUT
DOSEB=G {17) *TOUT
$Z=4.D0/3.DO*PI*DN3
SH=SZ% (RIA*BY) **3
SWF=SZ*(R3(6) *BV) *+3
SWP=SZ*{R3I(13) *BV) *+3
SWB=SZ* {R3(17) *BV) #%3
SV=SW/(1.D0~S¥) *100.D0
SYF=SWF/(1.D0-SWF)#100.D0
SYP=SWP/(1.D0O~SWP) #100.D0
SVB=SWB/(1.D0~S¥B)*100.D0
SW=3W*100.D0
SWF=SWF*100. D0
SWP=SWP%*100.D0
SWB=SWB¥*100.D0

QUTPUTS: COMPUTED RESULTS FOR AVERAGE AND 3 REFERENCE POSITIONS

¥RITE{LOUT, 49)

49 FORMAT{///24X,'AVERAGE?, 15X, FRONT® , 18X, ' PEAK', 18X, ' BACK" /)
WRITE (LOUT,32) X(6) ,K(13),X(17)

32 FORMAT (/4X,'X%,27X, 3(6X,E16.5))
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WRITE (LOUT,37) GPA,G(6},6(13),6{17
37 FORMAT (/4X,'G ', 4%,4(6X,E16.5))
WRITE (LOUT,33) DOSE,DOSEF,DOSEP, DOSEB
33 FORMAT (/4X,'DOSE! ,2X,4 (6X,E16.5)}
WRITE (LOUT,35) S1A,SS1(6) ,SS1{13),SS1(17)
35 FORMAT (/4%,'51',4X,8(6%,E16.5))
WRITE (LOUT,34) S2A,SS2(6),S52(13),552(17)
34 FORMAT (/4X,752°,4%,8(6X,E16.5})
WRITE (LOUT,48) R1A,R1(6) ,R1{13),R1({17)
48 FORMAT(/4X,'R1°,4X,4{6X,E16.5)})
WRITE{LOUT,47) R3A,R3(6),R3(13),R3I(17)
47 FORMAT(/8X,"R3Y,0X,4(6X,E16.5))
¥RITE{LOUT,36) SW,SWF,SWP,SWB
36 FORMAT {/4X,'SW',4¥,4(6X,E16.5))
WRITE (LOUT,51) SV,5VF,SVP,SVB
51 FORMAT (/4X,'SV®,4%,4(6%X,E16.5))
IF(TOUT.LT.TL) GO TO 50
IF (INDEX .NE. 0) GO TO 80
80 WRITE(LOUT,30) NSTEP,NFE,NJE
30 FORMAT (//21H PROBLEM COMPLETED IN,I6,6H STEPS/
1 21,316,144 F EVALUATIONS/
2 21X,16, 144 J EYALUATIONS///)
STOP
END
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SUBROUTINE DIFFUN (N, T, ¥, YDOT)

A SYSTEM OF X FIRST-ORDER ORDINARY DIFFERENTIAL RATE EQUATIONS
THIS SUBROUTINE CALLS NO OTHER SUBROUTINES

ISPLICIT REAL*8 (A-H,0-%)

COKMON /GEARA/ R,0,BV,DV,DI,RCO,RVO,CVE,H
COMMON /GEARB/ DN1,DN2,DN3,DL4,SBN,SE,SF,GN,BF
COMMON /GEARC, PI,AKT,BVS,RSL,ZV,2T

COMMON /GEARD/ S$S1(27),552(27),ALP{27) ,BET(27),GAM (27),G (27)
COMHON /GEARE/ C1(27),C3(27)

DIMENSION Y (N),YDOT (¥)

DO 100 K=1,%

Ky=8%K~3

KI=Kv+1

K1=KI+1

K3=K1+1

IF{K.NE.1) GO TO 11

YDOT (KV) =0. DO

YDOT (KI) =0.D0

¥DOT (K1) =0. DO

IDOT (K 3) =0.D0

GO TO 100

THE SINK STRENGTH COEFFICIENTS

11 SS11=0.D0
$513=0.D0
SS10=2V*DL4
$521=0.D0
$523=0.D0
$S24=ZI%DL4
IF(Y(K1).LE.RCO) GO TO 19
SS11=2.DO*PI*DN1*Y (K1) *BV*ZV
5521=2.DO*PI*DN1*Y (K1) ¥BV*ZT
19 IF{Y(K3).LE.RV0) GO TO 20
S313=4.DO*PT*Y (K3) *BY*DN3
$$23=5513
20 SS1(K)=SS1145513+8514
SS2(K) =$52145523+5524

LOCAL CONCENTRATIONS OF THERMAL VACANCIES AT ILOOPS AND VOIDS
INTERSTITIAL LOOPS UNFAULT WHEN THEIR RADII EXCEED RSL

IF(Y(K1).LE.RCO) GO TO 31
IF{Y (K1) .GT.RSL) GO TO 37
S1(K) =CYE*DEXP (~0/ (BV*AKT) * {SE+SBN*DLOG(Y (K1) ) /T (K1) )})
GO TD 34

37 C1(K)=CYE*DEXP (-O*SBN/(BV*AKT) *DLOG (Y (K1) ) /Y (K1))
60 TO 34

31 C1(K)=0.D0

34 IF(Y(K3).LE.RVO ) GO TO 35
PG=GN*AKT /(4. D0/3.D0O*PI* (Y (K3) *BV) *%3-GN*BF)
IF(PG.1T.0.D0) PG=0.DO
C3(K) =CVE*DEX P {O/AKT* {2. DO*SF/ (Y (K3) *BV) ~PG) )
GO TO 36
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35 C3{K)=0.D0
RATE EQUATIONS IN A VECTCR FORM FOR VACANCIES AND INTERSTITIALS

36 IP(K.LT.M) G0 TO 12
YDOT (KV)=DV#* (ALP {K) *¥ {KV-4) ~BET (K} *¥ {KV) +GAM{K} *CVE)
A+G{K) ~R*Y {KV) ®Y (KI) ~DV*{SS11* (T {(RV)I~CV{K} ) +5S13*% (Y {KV} ~CI {K}}
B+SS1U% (Y (KV)~CYE})
YDOT{KI)=DT* {ALP (K) ¥ {RI~4) ~BET(K) *Y (KT} )
A+G(K) —R*Y (KV) *¥ (RI) ~DI*3S2 (K} *T{KI)
50 TO 13
12 YDOTIKV) =DVE {ALP{K) *¥ {KV-4} ~BET(K) *Y (KV} *GAM (K) *¥ (KVe b))
A+G(K) -R¥Y (KV) *Y (KT} -DYX {SST1V% (¥ (KV)~C1{K} ) +S513% (Y (KV) -C3{K})
B+SS 14 (Y {KV) -CVE})
{DOT{KYL) =DI* {ALP (K} *Y (KI-04) -BET (K} #Y {KI) +GAN {K) ¥Y (KI+4})
A+G{K) ~R¥Y {KV) *Y{KI} ~DI*SS2(K) *Y(KT)

RATE EQUATIONS IN A VECTGR FORM FOR STRHNKS

13 IF{Y{K1}.LE.RGCO} GO TO 41
YDOT (K1) = (DI*Y {KI) *ZT~DV* (Y (KV} -C1(K} ) *2¥) /BVS
GO TD 44

#1 YDOT{K1)=0.D0

44 IF(Y(K3}.LE.RV3) GO TO 45
YDOT (K3} = {DV* (Y (KV) ~C3(K) ) ~DI*Y {KI)} /(Y (K3} *BYS)
GO TO 100

45 ¥DOT(K3)=0.D0

100 CONTINUE

BRETURN
END

SUBROUTINE PDB (N, T, ¥, PD, NO, ML, HU}

¥HEN MF = 22, JACOBIAN MATRIX IS EVALUATED NUMERICALLY
THIS IS A DUMMY SUBROUTINE

INPLICIT REAL*8 (A-H,0~2)
DIMENSION PD(N0O,NO}
RETURN

END
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The print-outs for the last time-out are given in the following

pages. Some of the important dimensions are as follows:

DX
cv
C1
DCD
R1
R3
Ccl

c3

DOSE
51
s2
SW
SV

sec
pm
dpa/sec
um
fraction
fraction
cm?/sec
b

b

fraction
fraction

dpa

irradiation time

depth position

defect generation rate
finite increment

vacancy concentration
interstitial concentration
D_(C, + co) ~ D,C,

loop radius

void radius

thermal vacancy concentration
at loops

thermal vacancy concentration
at voids

irradiation dose

sink strength for vacancies
sink strength for interstitials
void swelling AV/V x 100

void swelling AV/(V — AV) x 100
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11
16
21
25

1
18
21
25

91
16
21
26

AG{CHE) = 0.3524D-07 RC

TH{X} =

823.9

:3)

SH{DY¥ES/CB2) = 0.9470D 12

SE{ERGS/CH2)

-= 0.4000D 03

DOY {CH2/S8) = 0.1900D 0C

DOI{CH2/S) =

SPY{BC) = ¥.50

‘pRi{cE-3) =

G.8000D-02

BPY (EY)

0.4000D 15

DLB {CH~-2) = 0.1000D 119

0 =0.0

0.9

0.140000 00
0.600000 00
0.8600600 60
0.11600D 91
0.31000D 31

0.974700-03
0.209850-03
0.532350-03
0.33990D-03
0. 210000-05
0.0

0-10000D-05
0.890000D-05
0.60000D~05
0.500000-05
0. 820000-05
0. 170000-03

TL =0.17D 04

12
17
22
27

12
17
22
27

12
17

27

{8Y} = 2.60
(20) = 1.20

PR = 0.

RYD{BY) = 1.00

2750

SP{ERGS/CA2) = 0.1000D 04

BAY {zV) =

BRI (EV) =
= 1.60
DN2(CH-3) =
DL4T = 0.60

EPS =0,

0.100000~01
0.22000D 00
04660000 00
$9.920000 50
0. 128000 01
0. 480000 0%

0.17685D=-03
0.236300-03
0.588900~-03
0. 79490D-03
0.20000D-06
0.9

0. 10006D~-05
U. 10000004
0.300000-05
0:600000~-05
0.960000-04
0.32000D-03

1.290
0.5

CYE = 0.7197D-09

0.1000D 13 DN3 {Cu~3)
10p-08 HO =0.100-99
Xm
3 0.200000-01
8 0.32000D 00
3 0.700000 ©G
18 0. 98000D 0O
23 0.19000D o1
S {K)

3 8. 17905D-03
8 0.279750-03
13 0. 690450-03
18 0. 88700D-04

23 0.0

DI (X)

3 0. 20000D-05
8 0. 10000D~04
13 9. 40000D~05
18 0. 60000D~05
23 6. 350000-04

DY{CH2/S) = 0.8571D-08

DI{CH¥2/S} = 0.9658D-03

= 0.2000D 15

-t

146
19
28

14
19
24

14
19
24

22

0.800000-01
9.82000D 00
0.730000 00
0. 104030 9%
9.17009D 9%

0.18360D-03
0.34235p-03
6.579950-03
0.321500-08
0.0

0.5400000-05
0.100000-04
0.600000~-05
0.600000-05
0.500000-04

10
15
20
25

10
15

25

10
15
20
25

0.80000D-01
0.52000D 00
0.80000D 00
0.91000D 01
0.22000D 01

0.19335D-03
0.43705D-03
0.4B4650-03
0.32500D-05
0.9

0.600000-05
0.800000-05
0.60000D-05
0.600000-05
0.900000-04

0s



T = 0.0

11

21
26

"
16

26

Ti
16
21
26

11
16
21
26

11
16
21
26

0.719630~09
0.719690-09
0,719690-09
0.719690-09
0.71969D-09
0.71969D-09

0.61684D=-17
0.61684D-17
0.6 1684D-17
0.6 1684D-17
0.61684D-17
0.6 1684D-17

0.91287p 01
¢.912870 o1
0.91287D 0%
0.91287p 0%
0.91287D 01
0.31287D 01

8.50000D 01
8.500000 01
0.50000D 01
0.500000 01
0.50000D 01
9.50000D 01

12
17
22
27

12
17
22
27

12
17
22
27

12
17
22
27

12
17
22
27

0.719690-09
0.71969D-09
0.71969D-09
0.71969D0-09
0.719690-09
0.71969D-09

0.61684D~17
0.61684D~17
0.61684D-17
0.61684D-17
0.51684D-17
0.581684D-17

0.912870 1
0.91237D 01
0.91287D 0%
0.91287D 01
0.9%1287D 01
0.91287D 01

0.50000D 0%
0.50000D 0Ot
0.50000D0 O%
0. 500000 01
0. 500000 01
0.500000 0%

CY(K)
3 0. 719690-09
8 0.71969D-09

13 0.7 1969D-09

18 0.71969p-09

23 0.71959D-09

CI{K)
3 0.9
8 0.0

13 0.0

18 . 0.0

23 0.0

DCD{X}
3 0.616848D-17
8 0. 61684D-17

13 0.61684D-17

18 0.5 1684017

23 0.6 1684D~17

RELE)
3 0.91287D 0%
8 0.91287p 01

13 0.912870 01t

18 0.91287D 01

23 0.91287p 01

23 (X}
3 0.50000D 01
8 0. 50000D 01

13 0.50000D 01

18 0.50000D 01

23 0.50000D 01

14
13
24

14
19
28

148
13
24

14
19
23

14
19
24

0.71969D-09
0.719690-09
0.71969p-09
0.71969p~-09
0.71969p-09

0.61684p=-17
0.615684D-17
0.61684Dp-17
0.61684D-17
0.61684D-17

9.91287p 01
0.91287D 01
0.91287p 01
0.91287p 01
0.91287p 01

0.50000D0 01
0.50000p 01
0.500G60D Ot
8.50000D0 01
0.500000 01

10
15
20
25

10
15
20

AL
15
20
25

10
15
20

10
15
20
25

0.71969-08
0.719693-09
0.719690-09
0.71969D-0%
0.71969D-09

0.61684p-17
0.51684p-17
0.61689D-17
0.61684D-17
0.61584D-17

0.91287p 01
0.%1287D 01
2.91287D 01
$.912870 01
0.91287p 01

0.50000D 0%
8.500000 01
0.500000 0%
4.50000D 01
0.50000D 01

18



T = 0.16800000D 94

11
i8
23
26

11
18

21

26

1%
15
21
26

11
16
21
26

11
1%
21
26

0.719690-09
0.4825710-06
0.7914560-06
0.608910-08
0.572680-07
0.719722-09

0.18794D-23
0-33664D-11
0.681310-11
0.49357D-11
0.52993p-12
0.13364D-18

0.6 1684D-17
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