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A ONE- AND TWO-DIMENSIONAL LEAST-SQUARES SMOOTHING AND
EDGE-SHARPENING METHOD FOR IMAGE PROCESSING

Mozelle R. Bell

ABSTRACT

A rapid method is developed for two-dimensional smooth-
ing and edge-sharpening by the least-squares fitting of a
function to a limited area of the data. This convolution or
matrix weighting is applied at each point of the data set to
yield a smoothed or a sharpened image. Weighting matrices
for 3 x 3, 5x 5, and 7 x 7 point fitting areas are provided
for polynomial function fits of all degrees up to the high-
est degree determinable. For the T x T point fitting area
weights for fitting functions of up to the gquartic in both
dimensions are supplied. Application of the 5 x 5 point
quadratic fit smoothing to a nuclear medicine image ' is
shown as an example,

INTRODUCTION

Data smoothing is used extensively in nuclear medicine and other dis-
ciplines that employ images for analysis. Smoothing is needed to permit
the use of isometric images, multicycle images, and color coded imageé,
all of which suffer greatly from excessive raggedhess of the data. Excess
high frequency noise lying outside the frequency range defined by the sys-
tem point source response reduces the readability of the image withdut con-
tributing useful information. The smoothing.methods gehefally employed in
nuclear medicine are simple averages of neighboring points, of a 3 b'd 3
square area, or at best a simple Gaussian shaped weighting fuﬁction: These
methods are chosen for speed or simplicity of application and have littie
or no theoretical justification. The methods of least-squares two dimen-
sional fitting give better results and have sound statistical Justification
but when applied in the usual straightforwafd manner are too time coﬁsuming
for routine application to the large nuclear medicine images. o

One-dimensional smoothing methods that provide least-squares fitted
polynomials to noisy data are widely known. These yield good smoothing by

a simple and rapid convolution or weighting method. Each entry in a short



list of numbers derived from the Gram orthogonal polynomialsl or directly
from least-squares method_s2 is multiplied by successive data values. The
sum of these products yields the least;squares fittéd value at the mid-
point of the range. The list of multipliers is then advanced along the
data list by one point and the operation is repeated to provide a fitted
value at the next position of the mid-point and so on. The method is rapid
and well suited for use in small éomputers.

The method‘is here extended to two dimensions to provide a rapid two-
dimensional smoothing method.

Another procedure, of value especially to nuclear medicine where im-
agesvhave necessarily both poor resolution and bad statistical fluctua-
tion, is that of boundary sharpening. The method of sharpening an edge
where there should be a sudden transition, but where the transition has
been broadened by inadequate resoiution, is an old one3. It has frequently
‘been applied to Beta ray or Scintillation spectra. It consists in the sub-
traction of a certain amount of the second derivative of the data curve
from the curve to yield sharper transitions. Extending this method to two
dimensiohs«requires the generation of the directionally averaged second
derivative of the image at each data point and the subtraction of the re-
sultant correction imageifrom the original to produce a resultant image
with sharpened organ boundaries.

| The.‘“same meﬁhods that provide the least-squares fitted value at the
central point of the weighting matrix area can be extended to provide sim-
ilarly the direétionally averaged second derivative of the fitted two-
dimensional function at the central point of the range. Weighting tables
for 3 x 3, 5x 5, and T x 7 point fitting regions are provided to yield
smoothing and second derivative values for fitted functions of various
degfees. The degree extends to a'quartic in both dimensions for the T x 7
point area. The 7 x 7 pcint smoothing or second derivative procedures
require about 3 minutes to process a 16,000 point nuclear medicine image

on ‘a PDP-8/E computer without EAE.



I. One Dimensional

A, Orthogonal Polynomial Method

The use of the Gram orthogonal polynomials to calculate the least-
square formulas for nth degree polynomials using 2M + 1 points has been ex-
pounded in great detail in F. B. Hildebrand's "Introduction to Numerical
Analysis"l in sections 7.1l through 7.14 (see pages 288 through 302). [For-
mula numbers with H given in the remainder of this memo refer to this book].
Formulas are given there for the smoothed central value for cases up to
n=5and M= 3 (i.e., fifth-degree seven-point formulas). For the sake of
completeness we develop and repeat these formulas here and also include the
companion formulas for the second derivative at the central point, since
these will later be found to be useful for edge-sharpening of the data.

1. Five Point Formulas for Polynomials of Degree £ 3. For M = 2

(5 points) the highest order orthogonal polynomial needed is of third de-
gree, p3(t,h); a L4th degree polynomial would fit the data exactly. Here t
represents the distance from the mid-point of the range in units of the

spacing.

Then y(t) = (t,4) + ap (t,l) + ap (t,h) +a

24P, 1P s (t,h) IA.1.1

3P3
Substituting the values for the orthogonal polynomials given by for-
mulas 7.2.1H we have

a

a
- t 2 ,,2 3 3
y(t) = ay + a, 5+ 5= (t° - 2) + - (5t° - 17t) IA.1.2
whence
y"(t) = a, + 5a_t ‘ TA.1.3

2 3
For the central point, t = 0,

y(0) =a. - a IA.1.L

0 2
and

y"(o) = a, IA.1.5



We note that at the central pcint the cubic term in the original equa-
tion makes no contribution. The quadratic and cubic fits give the same re-
sults at the central point.

Applying equations T7.11.1LH and 7.11.13H and noting that po(t,h) =1

and p,(t,4) = LE——:—EL we have
T e 2
t=2
2
Yo = T P, (t,L) = 12 + 12 + 12 + 12 + 12 =5
t==2 IA.1.6
t=2 2
: 2 1 2 2 2 2 2
Y, =L p,o(t,h) = (B (274 (1) + (2% + (-1)%+ (27 = L
2 2 2 2
t==2
IA.1.7
1 =@ 1
= = ' L)y = = + + + + f
&y =y L £t) po(t,h) =g £, + £ ) + 05+ 1) f,] TA.1.8
0 t=-2
1 b= 2
a, = ;;.E=-2 f£(t) p2(t,h) = —T--[f_2 -1/2 £, -7%y- 1/2 £+ f2]
' IA.1.9
Here f_2, f—l’ ceas f2 represent the data values at t = =2, =1, ..., 2.
Hence for a polynomial fit of either degree 2 or degree 3
= =1
y(0) = 89 - &, = 32 [-3f_2 +12f | + 176 + 12, - 3f2] TA.1.10
and
" 2 a
= = - P - - '.l. l
y"(0) ay = 5 [f_2 1/2 f_l fo 1/2 fl + f2] IA.1.1

2. Seven Point Formulas for Polynomials of Degree < 5. For M = 3

(7 points) the highest order least squares fit possible is

y(t) = (t,6) + (t,6) + a.p.(t,6) + a_p. (t,6)

33
5p5(t,6) IA.2.1

%o%0 &P oPo

+ ahph(t,6) + a



Evaluating formulas T7.11,10H with M = 3 to obtain the orthogonal polynomi-

als for this case and substituting into (2.1),

2 3 L 2
_ t t~ - b 17 - Tt Tt =67t + 712
y(t) = a, +a; 3 *.a, ( 5 )+ 2, (F—¢ ) + &) ( % )
5 3 IA.2.
+ g (2lt - 245t + 52ht)
75 60
whence
28, 7 2 67 3 Lo
y"(t) = —§—+ a3t + g-aht -1g &t 7a5t -5 a5t IA.2.
For the central point, t = O,
ha2
y(O) = ao - —3—' + 2ah TA.2.
and
2a
no) = 2 _ 6T
y"(0) = 5 - 18 2 IA.2.

Again applying equations T7.11.14H and 7.11.13H we have

t=+3 5
Vo= =7 TA.2.
t==-3
t=+3 2 _ o) _ 9. lé, 2_ B §£
Y, = I [ z h] T+ 0+t otost 0+ 1= IA.2.
t=-3
t=+3 L 2 2
VI B AR N I SN L
IA.2
t=+3
—']—_“- =..]:.
agy = Y E=_3 £(t) (1) - [f g+ £+ Ty + T+ +1,+ 1]

IA.2,



2
S 1 £ - by _ 25 3 ]
- IA.2.10
3
s o+ f3]
t=+3 L 2
_ 1 Tt - 67t" + 727 _ 9 T
R 36 I=mrlis -3,
- IA.2.11
1 1. .1
*+3 £+ 2f0 * 3 £, - 3 £, + f3]
For a polynomial fit of degree 2 or degree 3, a), and a5 do not occur and
y(0) = a, - M =L [or w36 466 470 +6f
0 5 2 21 -3 -2 -1 0 1
IA.2.12
+ 3%, - 2f3]
and
2a
") = —2 = 5 3 3 3
y'(0) = ===z [f5-51, -5f, -5 % + 1] IA.2.13
For a polynomial fit of degree 4 or degree 5,
y(0) = a, - Y+ 2a = o [5f . - 308 _ + 75¢ . + 131f
0 5 72 L 231 -3 -2 -1 0
IA.2.1k
+ 75 - 301, + 5T ]
and
2a,
2 67 1
y"(0) = == - =% a, ==z [-13f _ + 67f _ - 19f . - 70f
> 18 "k~ 132 -3 -2 -1 0 IA.2.15

—19fl + 67f2 - l3f3]



B. Least Squares Solutions Using a Symmetrical Grid with Equal Spacing

Let us determine our experimental data points in the following symmet-

rical types of grid:

-2 -1 0 1 2 for 5 points

—

2 X-axis

and
-3 -2 -1 0 1 2 3 for 7 points
> x-axis
n n n n
We then have I xi = xi3 =3z xi5 = ... =2 xiOdd = 0.
i=1 i=1 i=1 i=1

As we shall now show this fact allows us to make such great simplifications
in the set of least-square equations that the solutions thereof may be ob-
tained directly. This provides an alternate method of solution in which
the use and knowledge of orthogonal polynomials is not needed.

Let us represent a general fitting polynomial of degree < 5 by

_ 2 3 L 5
y = b1 + b2x + b3x + bhx + b5x + b6x IB.1
Then y(0) = b1 : IB.2
and y"(0) = 2b3 ‘ IB.3

We can reduce this from a quintic to a quartic to a cubic to a quadratic

by setting b6 = 0, b = 0, and bh = 0 respectively.

5

The least-square equations are obtained by minimizing

. 2
[f. - (bl + b.x. +D xi2 + bhxi3 + D x.)+ + b6xi5)] IB.4

F i 271 3 571

i
o™ s

=1
where fi is the experimental data.

Differentiating F with respect to bl’ b2, b3, bh’ b5, and b6 in turn,
setting each of the six equations equal to 0 and remembering that I xiOdd

= 0, we get the following set of least-squares equations,



%%I: 1 =z fi = nbl + b3 I x + b5 z xih IB.5
%= C25fol=b22xi2+bh2xh+b62xi6 IB.6
%33 C,=2 fixi2 =D L xi2 + by 1 xih + by 2 xi6 IB.T
g% ChEZfixi3=b2inh‘“buzxf“bgzxf 1B.8
gi—sz Cg = 2 fixih =b) I xil* + bz xi6 +bg I xi8 TB.9
%. Cp = 2 fixi5 =1, 3 xi6 " by, ¥ xi8 + by 2 Xilo 1B.10

For determining central values only the three equations B.5, B.7, and
B.9 need be considered.
The solutions of the least-squares equations will be given as linear

functions of Cl’ C3, and C., which are themselves linear functions of fi.

5,
We will use these facts to find a set of weights, Vs such that our answers
n
may be written as I wifi, an easily calculable form.
i=1

1. Five Point Formulas.

For n =5: x, = -2, X

1 = -1, x, =0, X, =1, x

3

= 2, whence

2 5

z x.2 = 10; I x.4 = 3kh; I X.6 1303 Z X-8 = 51k.
i i 1 1

1.1. Quadratic or Cubic (highest possible degree for n = 5). For a

quadratic or cubic (b_ = b6 = 0) the set of equations to be solved becomes

P
= IB.1.1
Cl Sbl + lOb3
= .1.2
C3 lObl + 3hb3 IB.1



The solution of this pair of equations gives

= =1 _ .
y(0) = b = 33 (17cl 503) IB.1.3
¥"(0) = 2b, = = (C, - 2C,) IB.1.L
3 T 3 1 i
Applying the definitions of Cl and 03
-1
y(0) = 35 [-3f_2 *+1of ) + 17f, + 12f, - 3f2] IB.1.5
and
1
" = = - - -
y'(0) = Z[ef , - £ -2f - f +o2f] IB.1.6

in agreement with equations IA.1.10 and IA.1.11l, where f with a subscript

means the value of the data at the x point which is the subscript.

2. Seven Point Formulas.

For n = T: X = -3; X, = =25 X3 = -13 x), = 03 X5 = 1; X = 2;
x7 = 3 whence
2 _ Lo ) 6 _ ) 8 _
Lx" = 28; = X, = 196; & X, = 1588; t X, = 13636.

2.1. Quadratic or Cubic. For a quadratic or cubic the set of equa-

tions to be solved is:

Cl

Toy + 28b, , IB.2.1.1

C

3 28bl + 196b3 ' IB.2.1.2

The solution of this pair of equations gives

oy -1 _
y(0) = b, = 57 (1cy 03) IB.2.1.3

y"(0) = 2b, = %5-(03 - key) IB.2.1.k
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Expressed in terms of the experimental data these are

)

-2 -1

+ 3f _ + 6F _ + 7fo + 6fl + 3f2 - 2f3

1 _l
y"(0) = 5 (5f_5 + 0 = 3f | - bf - 3f, + 0+ 5f)

in agreement with equations IA.2.12 and IA.2.13.

2.2. Quartic or Quintic (highest possible degree for n =

quartic or quintic the set of equations to be solved is

Although the arithmetic involved is more tedioug than in previous

cl = 7bl + 28b3 + 196b5
03 = 28bl + 196b3 + 1588b5
05 = 196bl + 1588b3 + 13636b5

the solution is straightforward and gives

and

and

5

52hCl - 2)45C3 + 21C
y(O) = b. =
1 924

-8Loc. + 679C., - 67C
" - _ 1 3 5
y"(0) = 2bg = 158L

Expressed in terms of the experimental data these are

1

y(0) = 557 (5f_5 - 30f_, + T5f , + 131f  + T5f, - 30f,
+ 5f3)
" = ;L_
y"(0) = 355 (-13f_, + 67f_, - 19f | - T0f, - 19f) + 67f,
- 13f,)

in agreement with equations IA.2.1k and IA.2.15.

IB.2.1.5

IB.2.1.6

For a

IB.2.2.1

IB.2.2.2

IB.2.2.3

cases,

IB.2.2.4

IB.2.2.5

I1B.2.2.6

IB.2.2.7
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IT. Two Dimensional

1. Determination of Central Value of Function and Second Derivative.

We shall here generalize the symmetric grid procedure described in
Section I, Part B.

Let us represent a general fitting polynomial of degree < 5 in two
dimensions by

f(x,y)=bl+bX+by+th2+bX2y2+b6y2+bX3

2 3 5 T
2 2 3 L 3 22
* DgR Y DXy + Dy gy o+ by gX + D XY+ DXy
IT.1.1
3 Lo 5 i 32 23
+ blhxy + bl5y + bl6x + b17x y + bl8x ¥y .+ bl9x y
L 5
T DXy * by
Then
£(0,0) = b IT1.1.2

1
We can reduce II.1.1 from a quintic to a quartic by setting b16 through
b,y = 0; to a cubic by additionally setting bll through bl = 0; to a quad-

21 >

ratic by additionally setting bT through blO = 0.

The directional derivative %gvat any point (x,y) taken in the direction

of a straight line making an angle a with the x-axis is

dféz ) = %ﬁ-cos o + %§'sin o = fx cos o + fy sin a I11.1.3

The second directional derivative is

2 3[f cos a + f sin a] 3[f. cos a + f sin a] I1.1.h
d f - X y X y
— (x,y) = " cos a + 3y sin o
ds
or
d2f 2 2
——é-(x,y) = f  cos” a+ efyx sin a cos o + fyy sin® a I17.1.5

ds
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since fyx = fx We take the average of f"(x,y) over o by noting that
27 27 2 1 .
2 .2 _1 2 _ 1 sin“a = =, and (sinacosa)
(cos a)av = (sin a)av = 5 _f cos adal— o g\ 2 av
1 2m
= o “f sinacosada = 0. Thus
0
fM(x,y) = l-(f S+ ) I1I1.1.6
*lav 2 'Txx vy
From equation II.1l.1
" = + . II.1.
£ (o,o)aLV b, + b T

When comparing one-dimensional answers as special cases of the two-
dimensional results, note that since the two-dimensional result is an av-
erage it gives only 1/2 the one-dimensional results in the x and y direc-

tions, respectively.

2. Least-Squares Equations. The least-square equations are obtained

by minimizing

2 T2
X + b3y + bhx + bsxy + b6y

n
? [f.. - (bl + b,

3 2 2 3 L4 3 2 2
+ + +
b7x + b8x y + b9xy + bloy + bllx blgx Yy b13x y

Ir.2.1

3 h 5 L 32 23
FDEYT H D gy Dy pXT F by X Y by gXy s + by Xy

2
+ b xyh +b 5]

20 o1Y

where fij is the experimental data. Differentiating F with respect to

b b b in turn, setting each of the 21 equations equal to

T b3, cees Dy
0 and remembering that inOdd = ZyiOdd = 0, we get the following set of

l’

least-square equations.



oF

ob,,

oF
ab

oF
9b

oF
9b

aF

8b6.

oF
9b

13

2 2 2 ' L 2
= . = + . + + E +E - E 3
k, E § fij nb) + nIx, b nEyj be + nIx, b x; "2y
+ nly, b15
2. L 2 2. 6
= X, = . + . + . . + nIx,
k2 E § finl nExl b2 nExl b7 le EyJ b9 nix, bl6
L 2 2 i
+ Ly .Db + . Z
Ix; Zysbig * IX; 2y by
2 2 2 L L 2
k. =Lz f,, = nly., b, + IX, Ly, bg + nZy, b + IX, Ly. b
313 1Jyj yJ 3 i yJ 8 yJ 10 i yJ
2 L L
+ +
in Zyj bl9 nZyj b21
2 2 L 2 2 6
= = + + X z + )
kh E g fijxi ani bl ani bh xi yj b6 n xi bll
L2 2.k
+
+ in Zyj b13 in Eyj b15
2 2 L 2 2 L
=L L f,.x. = Ix. L + . . + Ix, Ly,
k5 E : lelyj x; yj b5 le ZyJ b12 xl yJ blh
2 2 2 L 4 2
k., =Lz f, .y, =nly, b, + Ix, Ly, b, + nZy, b, + Zx, Zy. b
655 1373 Y31 i3 Y5 % i
2 6
+
k. =2z f, x 3. nx, b, + nix, b, + Ix, Ly 2b + nZx, b
T ij iji i 72 i i j i 716
6. 2 L
+ + I
in Zyj b18 X Zyj b20

2
b

17

11

13
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oF
db,’

oF

10

or
b

oF

8b12

oF
ab

oF
90y,

11

13

1k

2
= = + . + .z
E g fijxi yj in Ly. b3 in Ly b8 Lx y. b
6. 2 ' 6
+ +
in Ly b17 le Zyj bl9 in Zyj b21
2 2 2 N 2 2 N
=y f..xy. =1Ix, Zy. by, + Zx. Zy. b, + Ex. Zy. D
ig 1id 1JJ i yJ 2 i yJ T , i yJ
6. 2 Lok 2. 6
+ +
in Zyj bl6 in Zyj b18 in Zyj b20
=z f..y = ng b, + Ix 22' hb + niy 6b
10~ 35 T1d73 I3 °3 i “Y5 °8 i "10
Lo 4 2.6 8
z + Z z + nZ
in yj b17 xi yj bl9 n yj b21
L4 in 6 L. 6
= = -+ -+
11 % g fijxi ani bl» ani bh in Zyj b6
8 6. 2 Lo k4
+
nix, bll in Lyj b13 + in Zyj b15
3 L2 6. 2
= z X. . = Ix, Zy. Ix, Ly.
l2 % : fijxl yJ xl yJ b5 + xl yJ b12
Lo L
+Z.r~izyjblh
2 2 2 2
= = + + Ix, L
13 2-% fljxi yj in Zyj bl in Zyj bh x1 y
2 2 6
7 + +
le ZyJ bll le Zyj bl3 in Zy b15
=L f,.x = IX 22 b. + Zx, & b
Ty Yy T Y s i “Y3 P12
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L, 6 8. 2 6. L
Ik Ly by *OIX Ly by IX Iy By 11.2.18
ko =IIf xy2=1x 1y % +ox. %y Po. + ox s b
18755 11 Yy SRS T T TS T A B P
¢ 1x. 0%y 2o+ 1x.%ny Moo+ ox Yoy G 11.2.19
Y5 16 Y5 18 Y35 P20 S Thees
k =z f, .x 2,3 = Ix 22 b, + Ix. kL b + Ex, I 6b
197§ 3 1571 Y] 175 %3 i Y387 1 Y5 P10
6. & b, 6 2. 8
+ in Zyj b17 + in Zyj b19 + in Zyj b21 IT1.2.20
L4 2. 4 L4 2. 6
k =TI f .x.y., =Ix Iy. + Ix, Ty, b, + IX.“Ty. b
20 i j 135193 *3 %Y b2 i Y57 i3 %
- 6. k4 L. 6 > 8
z +Z + 2.
+ in yj bl6 xi Zyj bl8 in Zyj b20 II 21
_ 5 6. - 2. 6 10 L. 6
k =2z f..y.” = nly, + Ix, Zy. by + nIy. b + Ix. Iy. b
21 T i} 1373 Y3 by i *Y3 8 Y5 P10 i %Yy P17

2 8 10
+ 2.
+ in Zyj bl9 nZyj b21 I1.2.22
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From this set of equations we see that the variables are split into

the following independent groups:

b by, bgs g blB’ b15 - occur only in equations 2, 5, T, 12, 1k,

and 16

b2, bT’ b9, bl6’ b18’ b20 - occur only in equations 3, 8, 10, 17, 19,
and 21

b3, by blO’ blT’ bl9’ b21 _ oecur only in equations 4, 9, 11, 18, 20,
and 22

b5, b 55 by - occur only in equations 6, 13, and 15.

Since we are interested only in central values and equations II1.1.2
and II.1.7 show that these are functions of bl’ bh’ and b6 only, we now
consider only the six equations determining these values.

We again point out that -~ as in the one-dimensional case - all of the

)

k values are linear combinations of fij and that our smoothing value (bl
and secqnd derivative value (bh + b6) will be some linear combination of
the "k's". Hence to determine a weighting factor wij at any point we need
only use the contribution of that point to each of the summations involved
in the "k" values in the formulas. (Another way of saying this is that to
determine the weight at each point we consider fij to be a delta-function;

1 at the point and 0 elsewhere.)

Bf 3 x 3 Point Formulas. For nx n = 3 x 3: xl = yl = -1; x2 = y2
=0 x, = = +]1 whence I x 2 =z 2 - 2
3.1. Linear. For a linear fit (bh = b5 = ... = b21 = 0) the set of
equations to be solved becomes
kl = 9bl IT.3.1
kl
Hence £(0,0) = bl = 5—-and the smoothing matrix of weights is
1 1 1
1
= |1 1 1
9
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3.2. Quadratic. For a quadratic fit (b7 = bg = ... = bel = 0) the
set of equations to be solved becomes
= + y
k, = 9b 6th + 6b6 I1.3.2.1
k, = 6bl + 6bh + hb6 I1.3.2.2
= + +
kg 6bl hbh 6b6 11.3.2.3
The solution of this set of equations gives
£(0,0) = b, = = (5k, - 3k, - 3k.) - II.3.2.4
? 1 9 1 L 6 T
and
1
" = - = - lo)
f (o,Q)av b, +Dbg =z (3kh + 3k, hkl) II.3.2.5

Applying the definitions of kl’ kh’ and k6 the matrix of weights for
£(0,0) is

-1 2 -1

1

5| 2 5 2 I1.3.2.6
-1 2 -1

2 -1 2
1
g |- =k -1 II.3.2.7
2 -1 2
4, 5 x 5 Point Formulas. For nxn =5 x 5: Xl = yl = =2; X2 = y2
2 2
= =1, x3 = y3 = 0, X), =y, = +1; XS = y5 = +2 whence I Xi = I yj = 10;
Lo Lo 6 6 _ 8 _ 8 _
Ix, =1L yy = 3k; = X, = pX y; = 130; & X, = by y; = 51k,
. ko
4.1. Linear. The linear fit gives £(0,0) = b, = 35> @ uniform

weighting for each element in the smoothing matrix.
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4.2, Quadratic or Cubic. For a quadratic or cubic fit (bll = bl2 =
. = b21 = 0) the set of equations to be solvéd becomes
k, = 25b, + 50b + 50b6 IT.4.2.1
-kh = 50bl + lTObh + 100b6 I1.4.2.2
= + +
k6 SObl lOObh l70b6 I1.4.2.3
The solution of this set of equations gives
- = L1
£(0,0) = b, = 175 (27kl ~ 5k) - 5k6) ITI.h.2.4
and
A 1 _
" = + = — (=
f (o,o)av b, + by 7 ( hkl + k) + k6) II.4.2.5
Applying the definitions of k), k), and k, the matrix of weights for £(0,0)
is
-13 2 T 2 -13
2 17 22 17 2
1
- 22 2 22 IT.4.2.6
5| T -
17 22 17
-13 2 T 2 -13
and for f"(O,O)av the matrix is
L 1 0 1 L
1 -2 -3 =2 1
1
= - - - A2,
70 0 3 3 0 IT1.Lk.2.7
1 =2 -3 -2 1
L 1 0 1 L
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4.3. Quartic or Quintic. For a quartic or quintic fit the set of

equations to be solved is

b
I

= 25bl + SObh + 50b6 + l"(Obll + lOObl + l"(Obl

3 5

-
=
il

50b, + 170, + 100bg + 650bll + 3h0bl + 3h0bl

3 5

+ 650b

b
il

50b., + 100b, + 170b, + 340Ob.. + 340b
6 1 L 6 11 13 15 IT.4.3.1

b
|

= 170bl + 650bh + 3h0b6 + 2570bll + 1300bl

3 + 1156b'l5

b
|

= lOle +.3h0bh + 3h0b6 + 1300b,, + 1156bl3 + l3OObl

11 >

b
|

= 170bl + 3h0bh + 650b6 + 1156bll + 1300bl + 2570b

3 15

It is helpful to combine the above set of six equations into

k, = 25bl + 5o(bh + b6) + 100bl

1 + 170(bl + b )

3 1 15

(kh + k6) 100bl + 27o(bh + b6) + 68Ob13‘+ 99o(bll + blS)

II.Lk.3.2

+ 3726(bll + b )

(k,, + k,_) = 3h0bl + 990(bh + b6)‘+ 2600bl 15

11 15 3

le = 100b, + 3ho(bh + b6) + 1156bl3 + 13oo(bll + blS)

Then by solving the last of this gréup of equations for bl3 in terms

of the other unknowns, substituting that quantity into the first three

equations and simplifying we get:

280k, - 25k, = (5)(9b5)by + (170)(35) (b, + b) + (2)(8315) (b ) + b))

= (5)(140)b, + (170)(T)(b) + be) + (2)(1915)(b,, + D

3 1 )

17(kh + k6) - 10kl 15

289(k,; + kyg) - 650k 5 = (5)(6652)b, + (170)(383)(b), + by)

15 3

+ (2)(115907)(bll + blS) o I1.4.3.3
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The solution of this set of equations gives
= = 2 '
£(0,0) = b, = 5900 [%l6hkl - 1h25(kh + k6) + 2h5(kll + k. _)

15 SII.bL.3.Y4
+ lOOkl?ZI

and

£"(0,0)_, = by, + by =

1
76386-[_n;on0k1 + 37523(k, + k)

II.4.3.5
- T595(ky * Kp) - lthklé]

and k the matrix

Applylng the definitions of kl, kh’ k6, kll’ le’ 13

of weights for £(0,0) is

~ 7
51 ~99 96 -99 51
-99 -2k 246 -2k -99
1
555 96 246 541 246 96 II.k.3.6
-99 -2k 246 =24 -99
51 -99 96 -99 51
and for f" (0,0) the matrix is
av
-173k 2925 -3117 2925 -173k
2925 L34k -2778 L3k 2925
I?%EE -3117 -2778 -10260  -2778 -3117 II.4.3.7
: 2925 L34k -2778 L3LL 2925
~173k 2925 -3117 2925 -173k

5. T x 7 Point Formulas. Fornxn=7TxT7T: x, = ¥y, = -3 X,

1}
!
N

:_l;xhzyhzo;.xszyszl;x6=y6=2;x7_y7=3

= =25 %3 =93
2 _ 2 _ ) o I ) 6 _ 6 _ ) 8 _
whence Ix.~ = Zyj = 28; Ix; = Zyj = 196,‘Zxi = Zyj = 1588, Ix, =
Zy.8 = 13636-'2'x.2 Zy.2 = T84, Ix, Zy.h = Ix, Zy.2 = 5488; ix,° Zy,6 =
J ! J i J 1 1 J
6 4

: 2 _ . . b
o Ixg Zyj = LLLU6k, Ix, Zyj = 38416.
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5.1. Linear. The linear fit gives f(0,0) = bl =

weighting for each element in the smoothing matrix.

5.2. Quadratic or Cubic. For a quadratic or cubic fit (b

., = b, = 0) the set of equations to be solved becomes

21

w
i

h9bl + 196bh + 196b6

a3
t

g = 196bl + (7)(196)bh + (h)(196)b6

it

1966, + (4)(196)b, + (7)(196)b,

The solution of this set of equations gives

= = L
£(0,0) = bl = Th7 (llkl -k, - k6)
and

" — — l
f (o,o)av = bh + b6 = ggg-(kh + k6 - 8kl)

= o=
\O|H

a uniform

=b12=

Ir.5.2.1

I1.>.2.2

I1.5.2.3

Applying the definitions of kl, kh’ and k6 the matrix of weights for

£(0,0) is

[ _7 -2 1 2 1 -2

-2 3 T 6 3

1 6 9 10 9 6

1

lﬂ7- T 10 11 10 T

1 6 9 10 9 6

=2 3 3

L—7 =2 1 2 1 -2

10 5 2 1 2
5 0 -3 -k -3 0
2 -3 -6 =T -6 -3
3%5 1 . -7 -8 -7 -
2 -3 -6 -7 -6 -3
5 0 -3 -k -3 0
|10 5 2 1 2 5

-7
-2
1
2
1
-2

10

(VN VRN

10

II.5.2.4

IT.5.2.5
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5.3. Quartic or Quintic. For a quartic or quintic fit the set of

equations to be solved is

o
|

= hgbl + l96bh + 196b6 + 1372bll + 78hbl3 + 1372b15

kh = l96bl + l372bh + 78hb6 + llll6bll + 5h88bl + 5&88bl

3 >

fl

196 + 78kb) + 13720 + 54880, + 5k88b) 5 + 111160, I1.5.3.1

= 1372bl + 11116bh + 5&88b6 + 95&521)1l + hhu6hb13 + 38h16bl

o
|

>

o
|

= 78§bl + 5&88bh + 5h88b6.+ hhh6hbll + 38hl6b13 + hhh6hb15

o
|

= l372bl + 5&88bh + llll6b6 + 38hl6bll + hhh6hbl3 + 95&521)15

It is helpful to combine the above set of six equations into

k
l — .
5= b, + h(bh + b6) + l6b13 + 28(bll + blS)
(kh + k6)
——g— = lhbl + 77(bh + b6) + 392b, .+ 593(bll + blS)
I1.5.3.2

Efli_i_ilil = 98b, + 593(b, + b,) + 3176b. . + 4781(b,, + b._)

28 = 90by y * b 13 11 F P15
ki3
115 = 7oy *+ u9(bh + b6) + 3h3b13 + 397(bll + blS).

Then by solving the last of this group of equations for b13 in terms -

of the other unknowns, substituting that gquantity into the first three

equations, and simplifying we get:

ugkl - kl3 = (1&7)(11)1)l + h116(bh + b6) + (8h)(271)(bll + blS)

= (147)(8)b, + hli6(bh + bg) + (84)(325) (b, + b))

11 15

(k) + ¥g) - k!

3&3(kll + le) - 79ukl3 = (1&7)(2;68)1;l + (h116)(325)(bh + b6)

) I1.5.3.3

+ (8&)(126337)(1)ll + b15
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The solution of this set of equations gives

- R S
£(0,0) = bl = ToLob [3h52kl - 9ll(ku + k6) + 63(kll + k__)

15
11.5.3.4
+ hhkls]
and
1" — — l
f av(0,0) = by, + b = T5)(38808) [_1u576kl + 5h57(kh + k6)
I1.5.3.5
- h69(kll + le) - l76k13]

and k the matrix of

Applying the definitions of kl, kh’ k6, kll’ le’ 13

weights for £(0,0) is

206 -174 -2k 89 -2k  -17h 206
-17h  -279 36 20k 36 -279 -1Thk
-2h 36 450 651 L50 36 -2k
— 89 204 651 863 651 20k 89 I1I.5.3.6
-2k 36 Ls50 651  u50 36 -24
~1Th =279 36 - 204 36 ~-279 =174
B 206 -17h -2u 89 24  -1T7h 206

7"

and for f" (0,0) the matrix of weights is

av
-1646 1134 -12 -863 -12 1134  -16L4k
1134 2814 1008 -63 1008 2814 1134
-12 1008 -1194% -2397 ~-1194% 1008 -12
§§%6§ 863 63 2397 -364k -2397 -63  -863 1I1.5.3.7
-12 1008 -1194 -2397 -1194 1008 -12
1134 2814 1008 -63 1008 2814 113k
Lfl6h6 1134 -12 -863 -12 1134  -16L6
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*
IT1I. Example of Application

The 5 x 5 point quadratic smoothing matrix was applied to a nuclear
medicine image with a low counting rate area to demonstrate the effective-
ness of the least-squares processing when compared with a standard gaussian
weighting method. The gaussian weight used is shown below. It is a "sharp"

averager with one standard deviation per element spacing.

.003 - - - -
.013  .060 - - -

Gaussian Weight _  o»n 101 162 - -

Matrix

The image was an ordinary clinical scan with 67Ga made on an Ohio
Nuclear dual 8" rectilinear scanner. Only one 4K section of this large
scan is illustrated. The liver is at the upper edge of this section with
the abdominal area in the lower part of the image.

Three processes were used in succession. The first pass was a bound-
ing action in which the smoothing matrix was applied with weight 1. The
smoothed value was compared with this data point. If the point lay within
the smoothed value * the square root of the smoothed value, the value was
unchanged; if it lay outside the range, it was replaced by the smoothed val-
ue. The purpose is to remove bad points or statistically improbable val-
ues. Figure 1 shows Z cuts of the raw data and the least squares bounded
image at the line marked in the image. After the bounding pass the images
were smoothed once with weight L and once with weight 1. Figure 2 shows
the same line on the left with the simple gaussian weight and on the right
with the least square quadratic fit. Note that the least squares process

produces a smoother image while at the same time the ascending colon has

®
Supplied by P. R. Bell, Medical Instrumentation Group.
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a greater relief from the region around it. The mean counting rate in
this region is about 6 counts per picture element. Figure 3 shows a Z
cut across the lower part of the liver. Note the steeper rise of the
least squares lines and its rise to a higher value.

The time required for processing this image by the two methods was

the same.
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Fig. 1. Left is an unprocessed section of a 67Ga image. The liver is
at the top. The Z-cut crosses the ascending colon on the left
central part of the image. The activity at the extreme left
and right are the patient's arms. The count density near the
ascending colon is about 6 counts/picture element.

The right image is that following bounding with the 5 x 5 point
quadratic smoothing matrix. Note the reduction of the "sparkle"
due to points with large statistical deviation in the image.
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Fig. 2.

Left image was produced by bounding followed by weight 4 smooth-

ing and weight 1 smoothing all with the gaussian smoothing ma-
trix. The right image was similarly processed using the 5 x 5
point least-squares quadratic smoothing matrix. Note the greater
difference between the ascending colon and the region around it
in the least-squares smoothed image. This is due to the greater
suppression of this feature by the gaussian smoothing. Note the
overall somewhat better smoothness of the least-squares process-
ing.
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Fig. 3. Same images as in Fig. 2 with the Z-cut across the tip of the
liver. Note the steeper and higher rise produced by the least-
squares processing.
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APPENDIX

Once we have determined a least-squares fitting function (in either
one or two diﬁensions) we can also give two other gquantities of interest
to image processing: the location and magnitude of the extreme (maximum
or minimum) value of the function. We will give formulas for these gquan-
tities for quadratic fitting functions.

. . 2 3
In the one dimensional case, y = b, + b2x + b3x so that the location

of the extremum is given by setting ¥' = 0, i.e.
-b
2
*EXT © 2D Al
3
and the extreme value of the function is
b22
Ygxp T b1 " bo, | A2

If y", i.e. 2b3, is positive, the extremum is a minimum; if y" is negative,

the extremum is a maximum. The values of bl and 2b3 are given by I.B.1.5

and I.B.1.6 for a 5 point fit and by I.B.2.5 and I.B.2.6 for a T point fit.

From equation I.B.6 we find b2 =12 fixi/; xig. Hence for the 5 point case
i i
1
= — (=~ - + f. + 2 .

b, =35 (~2f , - T, 1 5) A.3
and for the T point case

b, = l"'(--3f -2f - -f _ + £+ 2f,  + 3f_) AL

2 28 -3 -2 -1 1 2 3

2
In the two dimensional case, f(x,y) = bl + b2x + b3y + bx 4 bsxy

+ b6y2. The location of the extremum is given by the solution of the sim-

ultaneous equations

|
O

A.5

3f _
ax P2t EDX T bgY

and

of
— } + = A.6
3 = b3 bSX 2b5Y 0
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This solution is

_ —2b2b6 + b3b5
Xpyr = 2 AT
hbhb6 - b5
and
o _ —2b3bh + b2b5
Y = A.8
B NS S |
L=6 >
The extreme value of the function is then given by
2 2
. (b, b - bybobe + by b))
s L z A.9
(hbhb6 - by )

Call the common quantity in the denominator of the above three expressions

A, i.e. A= hbhb6 - b 2 The function will have a maximum value if A > O

and either bh or b6 <50; the function will have a minimum value if A > O
and either bh or b6 > 0. If A < 0 (which is necessarily the case if bh
and b6 have opposite signs or are 0) the function has neither a maximum nor
a minimum but rather a saddle point. Hence whenever there is the possibil-
ity of a maximum or a minimum bh and b6 have the same sign.

For a T x 7 point fitting area for a quadratic, the value of the
weighting matrix to be convolved with the experimental data to give b is
given by equation II.5.2.4. Equation II.5.2.3 gives by + b, = E%E'(ku + kg

- 8kl) and it can be shown that

S
by, = 558 (kh - hkl) 4.10

and
b, = — (k, - Lk ) A.11
6~ 588 ‘76 1 .

Equations II.2.3, II.2.4 and II1.2.6 separately give the following solutions

for b2, b3, and b5'
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A.12

A.13

A.1h

Ly,
J J

)/ x,
1

ij7iv g

(; r f,.x.y.

The weighting matrices to give these additional values are given

below

~ = ~ ~ ~ ~ ~ S 4 ™M M NN 4 O A ™M
| D | [ R | [
[N QN A AN A A A &N o 4 N ™M O 4 A O NN F O
[ R R e | [ R | [ |
TR DT I
\O \O -
—|O —| O — a0
— — b~
It n il
(V] ™M N
< < <
& & &
O o} O
G 4 G
= = =
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-3
-3
-3
-3
-3
-3
-3

-k
-4
-4
-4
-4
-4
-4

-3
-3
-3
-3
-3
-3
-3

0
0
0
0
0
0
0

>
p)
p)

5 -
p)
p)
p)

-3
-l
-3

-3
-k
-3

-3
L
-3

-3
-k
-3

-3
-k
-3

-3
b
-3

-3
-4
-3

_ 1
W for b)-l- = 588

—}0

W for b6 = 5
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