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ABSTRACT

Methods of biasing three-dimensional deep penetration Monte
Carlo calculations using importance functions obtained from a two-
dimensional discrete ordinates adjoint calculation have been
developed. The important distinction was made between the applications
of the point value and the event value to alter the random walk in
Monte Carlo analysis of radiation transport. The biasing techniques
developed in this study are the angular probability biasing which
alters the collision kernel using the point value as the importance
function and the path length biasing which alters the transport
kernel using the event value as the importance function, Source
location biasings using the step importance function and the scalar
adjoint flux obtained from the two-dimensional discrete ordinates
adjoint calculation were also investigated.

The effects of the biasing techniques to Monte Carlo
calculations have been investigated for neutron transport through
a thick concrete shield with a penetrating duct. Source Tocation
biasing, angular probability biasing, and path length biasing were
employed individually and in various combinations. Results of the
biased Monte Carlo calculations were compared with the standard
Monte Carlo and discrete ordinates calculations. Based upon the
fractional standard deviations of the answers, the biasing techniques

are a factor of 2 to 8 better than the standard method. Hence, the



effectiveness and the applicability of the biasing techniques in
deep penetration, three~-dimensional Monte Carlo calculations are
clearly demonstrated.

Results of Monte Carlo calculations using respectively the
event value and the point value to alter the transport kernel
showed that the event value calculation gave much better statistics
(the FSD reduced by a factor of 2) than the point value calculation,
Therefore, it was confirmed that the event value is the more

appropriate function for biasing the transport kernel.
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CHAPTER 1
INTRODUCTION

The Monte Carlo method is a very useful tool to solve a large
class of radiation transport problems. In analyzing radiation
transport by Monte Carlo, enough histories must be generated and
processed in order to sufficiently determine the average behavior
of the particles. For the deep penetration problem where the
natural probability of contribution to the answer of interest is small,
importance sampling must be used. Importance sampling is a variance
reduction procedure which alters the sampling scheme to one which
samples more often from the phase space coordinates which make important
contributions to the answer. In Monte Carlo, importance sampling is
a form of "biasing."

It has long been recognized(w’Z’B)

that the adjoint solutionis
a good if not optimum choice of importance function for Monte Carlo
biasing. In principle, the application of importance functions
derived from adjoint calculations is straightforward. However, in
practice, it has been limited to special cases where either a
reasonable approximation to the importance function may be represented
analytically or the adjoint flux can be numerically calculated from

a simplified problem.

(4)

Kalos used an approximate analytic form of importance

function to bias neutron penetration through hydrogen slabs. Armstrong

(5)

and Stevens applied the v importance function, which is the first
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term of a series representation of the adjoint function and is similar
to the form used by Kalos, to calculate gamma ray penetration in slabs
of lead and of water.

It should be noted that the works of Kalos, and Armstrong and
Stevens concerned only special cases where the importance function
could be approximated by a relatively simple analytic expression.
Another approach to obtaining an importance function is to solve the
inhomogeneous adjoint transport equation and to use this adjoint
flux as the importance function. Since it is just as difficult to
calculate the numerical adjoint flux as it is to calculate the forward
flux, a practical approach is to solve the adjoint problem in a
simplified geometry. This approximate adjoint flux is then employed
as the importance function in the Monte Carlo calculation of the
real problem,

(6)

Bendall and McCracken calculated the numerical adjoint flux

with the removal diffusion method, then used this adjoint flux in

(7)

the Monte Carlo calculation with some success. Cain used the one-
dimensional discrete ordinates adjoint flux to bias the source energy
distribution and to generate parameters for an exponential transform
which is dependent on energy and position. Schmidt et a].(g)
extended this approacnh to include directional dependence in the
exponential transform parameters, and at the same time utilized the
adjoint function as a guide to set tne weight standards of Russian
roulette and splitting.

(

Burgart and Stevens 9) further extended the application of

the one~dimensional discrete ordinates adjoint flux to bias the



collision kernel. A symmetrical discrete angular grid was employed to
incorporate angular biasing and angular-dependent path length stretching.
This method was quite successful for deep penetration in simple
geometries. However, the application of this approach to deep
penetration in complex geometries such as a thick concrete shield with

a penetrating duct is very limited. Two reasons account for this
limitation:

1. The one-dimensional discrete ordinates adjoint flux
does not lead to a good approximation of the importance
function for the three-dimensional complex geometry
problem.

2. The symmetrical discrete angular grid, which restricts
particles to travel only in discrete directions, fails to
properly describe the streaming radiation through the
duct.

The objective of the present study is to use the two-dimensional
discrete ordinates adjoint flux to bias the Monte Carlo analysis of
the three-dimensional deep penetration problem. Two biasing
techniques, “angular probability biasing" and "path length
biasing," have been developed. The effectiveness of "source biasing"
using the scalar adjoint flux was also investigated.

In the angular probability biasing technique, the probabilities
associated with the scattering directions are biased by the point
value. The point value is used because it is the value to the
effect of interest of a particle coming out of a collision. 1In the

path length biasing technique, the selection of the next collision



site is biased by the event value. The event value, being the value
of a particle going into a collision, is the appropriate function to
bias the path length of a particle going into the next collision
site. These two value functions can be obtained directly from a
two-dimensional discrete ordinates adjoint calculation,

The three biasing schemes are investigated for neutron transport
in a thick concrete shield with an axial duct., Results of biased
Monte Carlo calculations are compared with standard Monte Carlo and
discrete ordinates calculations. Improvements achieved by the biasing
schemes are very good, and their general usefulness is clearly
demonstrated.

The multigroup Monte Carlo code, MORSE(]O) is used for the
Monte Carlo calculations, and the two-dimensional discrete

(1)

ordinates code, DOT is used to calculate the adjoint fluxes.



CHAPTER I1I
THE ADJOINT BOLTZMANN TRANSPORT EQUATIONS

In this chapter, the time-independent multigroup adjoint integral
transport equations are formulated in terms of the point value and the
event value importance functions.* Then the adjoint Boltzmann integro-
differential transport equation is derived from the principle of
conservation of value. Finally, the relationship between the point
value and the event value and their applications to the biased Monte

Carlo calculation are discussed.

2.1 The Event Value and the Point Value Equations

There are several integral forms to the adjoint Boltzmann
transport equation, namely the point value equation, the event value
equation, the emergent adjunction density equation, and the adjunction

event density equation.(]o)

These adjoint integral transport
equations describe the importance of radiation particles with
respect to a specific effect of interest. Hence, they are
equivalent to one another even though each involves a different
variable. The focus of this study is on the event value and the
point value because they are the importance functions which will be
used to bias the Monte Carlo random walk. In this section, the

integral transport equations for the event value and the point value

will be formulated.

*For brevity, these quantities will be referred to simply as
the peint value and the event value respectively.



6

The behavior of radiation particles in a medium may be described
in terms of the event density or the emergent particle density. The
event density is the density of particles going into collisions, and
the emergent particle density is the density of particles leaving a
source or emerging from collisions. The concept of the importance of
particles can be described in terms of the value of going into a
collision or in terms of the value of emerging from a collision or
a source. The event value V\lg(F‘,s"'z)Jr is defined to be the value to
the effect of interest of a particle which enters a collision at
point r with energy group g and direction &. The point value
xg(?,ﬁ) is defined to be the value of a particle which emerges from
a collision or from a source at point r with energy group g and

(12)

direction Q. According to Irving, the event value wg(?,ﬁ) is
composed of two parts, the immediate payoff and the future payoff.
The immediate payoff is simply the group g response function

PS(F,@). The future payoff is the expected value* of the probability
that the particle survives the collision and emerges with energy
group g~ and direction in d3~ about Q* times the value of this

emergent particle x;,(?,ﬁ’). This interpretation leads to the

following time-independent multigroup integral equation

1 r379(7,556°)
*

(r,07) da-, (2-1)

e symbolism and terminology of this chapter follow those of
Straker et al.

*txpected value implies integration over all appropriate phase
space coordinates,



Pw(F,Q) = the group g response function for Q-directed

g
particles which experience events at r,
z%(r) = the group g total macroscopic cross section [cm']],
zg+g (r,2+02°) = the group g to group g~ differential

scattering cross section [cm"1 steradian"]].
The summation over ¢~ denotes all energy groups. However, if there
is no upscatter, the g7 summation would be from g to G, where G
is the group number with lowest energy.
As defined above, the point value xg( r,Q) is the value of a
particle which emerges from a collision or from a source at r with
energy group g and direction Q. This particle will experience an

event in dR about r+R2 with the probability

-3 YeRT) AR

zg(F+R§) e 0 dR

and the value of this event is given by wg(F+R§, Q). Since the
value of leaving a collision is equal to the expected value of
going into future collisions, the following time-independent multi-
group integral equation is obtained.
R sd(EeRl) R

~* (r,0) f z (r+R2) e wg(P+RQ,Q) dR. (2-2)
Equations (2~1) and (2-2) express explicitly the event value and the
point value respectively in terms of the other. "The integral transport
equation for the event value is obtained by substituting Equation (2-2)

into Equation (2-1).



N w s
W (r,Q) = P (r,0) + i f ~ X
g g 4y Jo Xg( )
B A G O N i
ny (F+RI7) e Wy -(FR37,37) dRdi-. (2-3)

Substitution of Equation (2-1) into Equation (2-2) yields the integral

transport equation for the point value

o o g - f 2J(F+R°T) dR”
*(r,Q) = b Z%(Y+RQ) e

1})— - -
+ +
Xg [Pg(V R2,0)
o 23797 (7R3, 7 o
* - -
—— y*,(r+R2,27) d2”] dR
g 4 Z%(F+RQ) 9
o —f§ rI(F4R-) dR-
= PA(r,2) + ) f4ﬁ f t(r+RQ) e X
1379 (F+R2,3407) )
— x*_(r+RQ,07) do~dR (2-4)
Z%(F+RQ)
R g/=. .-
; -0 zZ(r+R72) AR
where Pé r,Q) = f g(r+RQ e O T Pz(r+RQ,Q) dR. (2-5)

Pé(?,é) is the response function of a particle which emerges from a
collision at r with energy group g and direction &. Then according
to Equation (2-5), the response function of a particle leaving a

collision at r is the expected value of the probability of traveling
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to r* = r + R} and having an event within dR about v~ times the
response function for an event at r” = r + RQ. Figure 1 illustrates

the relationship between spatial points r and r-,

2.2 Derivation of the Adjoint Boltzmann Equation from the Value

Functions

The multigroup adjoint Boltzmann transport equation is well

(10,12,13)

documented in the literature, and can be written as

3.9t (F,0) + 3P e3(FE) -

- - _‘g-—>~".-_._, - = -,
Sx(F.d) + g, fg, 79 % (E,5:07) 45.(7,87) ¢, (2-6)
where

SS(F,@) = the group g adjoint source,
¢§(F,n) = the group g adjoint angular flux the nature of which

is determined by the choice of the adjoint source

S*(r,0).

g( )

Equation (2-6) can be derived from the forward Boltzmann trans-
port equation by defining an adjoint function and an operator which
is adjoint to the operator associated with the forward Boltzmann
transport equation. Then from the property of adjoint operators and
the proper application of the boundary conditions, the adjoint
Boltzmann transport equation can be obtained. This is strictly
a mathematical procedure, and the physical meaning of the adjoint
function is yet to be determined. The details of this derivation

are presented in References 10 and 13.
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Figure 1. Coordinate System which Relates a Fixed Point r to an

Arbitrary Point r* = r + Rq.
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Using the physical interpretation of the adjoint function as a
neutron importance to an effect of interest, Bell and G]asstone(13)
derived directly the adjoint Boltzmann transport equation from
first principles.

The adjoint Boltzmann transport equation can also be derived
by requiring that the value of a particle be conserved along its
path. The derivation is based on the distinction between the
value of a particle entering a collision and the value of that
particle leaving a collision. Consider a particle which emerges
from a point v in direction 2 and energy group g. For the
particle's value to be conserved, the following relationship must

be true for an incremental distance AR along the @ direction:

[vaiue of emgrging] - [probability of 1 [value of going into]
from point r collision in AR” *“collision in AR

+ [probability of no] [va]ue of emgrgiggq
collision in AR from point r+aRa “°

which can be expressed as

Xg(?,a) = [z%(F) AR] [wg(? + %-ARQ,Q)] + [ - XE(F) AR]

[XE(F + aRR,A)]. (2-7)

AR
T

r+ARG
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Equation (2-7) can be rearranged as

X*(Fsﬁ) - Xg(F+AR5=§)

g - 9¢7 =+ X g8y -
R Zt(r) wg(r + 5 0R2,Q)
z%(?) v*(r + ARD,Q).
Taking the 1imit of aR»>0, gives
dx*(r, &) g,- . T
= dR '''''' - Zt(r) wg(raﬂ) - Zt(r) Xg(rsﬂ)a (2“8)

and with rearrangement Equation (2-8) becomes

. dxg(?,ﬁ) -
x*(r,q) - - =W (r,2). (2-9)
d 29(7) dR g’
t
dX*(F,@) - R (]O) - =
Noting that ~ﬁﬂaﬁ—~— = Q-vxg(r,g) and substituting wg(r,Q) from
Equation (2-1) into Equation (2-8) yields
-0 vxg(r,q) + x%(?) x*(r,2)
— qb - ,'— Y r‘g>%g‘ - ~+“‘ - o G- -
= Pg(r,n) + ] f4vbs (r,o-07) Xa,(r,g ) di-, (2-10)
bm =y = 9(Ey pY(RS
where Pg(r,Q) Zt(r) Pg(r,Q).

Pg(F,i) is the group g response function of the effect of interest
due to a unit angular flux. A comparison of Equation (2-10) with
the multigroup adjoint transport equation as given by Equation (2-6)

reveals that if PS(F,@) = S*(r,2), the two equations are identical

*
g
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and xg(?,ﬁ) = ¢§(F,§). Therefore, the adjoint angular flux (the
solution of the integro-differential form of the adjoint Boltzmann
equation) is the value of a particle leaving a collision if the

adjoint source is taken to be the response function Pg(F,ﬁ).

2.3 Application of the Point Value and the Event Value in Monte

Carlo Biasings

The random walk procedure in Monte Carlo calculations is
composed of the transport process and the collision process. The
biasing of these processes requires importance functions which may
be obtained from appropriate deterministic adjoint calculations.

Since the transport process involves the selection of the next
collision site, the event value would seem to be the appropriate
importance function to bias the transport kernel. In the collision
process, a particle emerges from a collision site with its new
energy and direction determined by the collision kernel, The point
value would seem to be the suitable importance function to bias
the collision kernel. Therefore, a distinction must be made
between the point value x* and the event value W, insofar as their
applications to Monte Carlo biasing techniques are concerned.
Finally, proper correction of the particles' statistical weights
must be exercised in order to remove the bias and preserve the

"fair game.,"



CHAPTER TII

DEVELOPMENT OF MONTE CARLO IMPORTANCE SAMPLING TECHNIQUES

This chapter first presents a description of the collision

mechanics used in the Monte Carlo code MORSE.(]O)

The "angular
probability biasing" technique is then introduced, and the
application of the point value to bias the selection of the emergent
direction from a collision process is described. Finally, "the path
length biasing" technique using the event value as the importance

function is developed and a method of normalizing the altered

transport kernel is formulated.

3.1 Collision Mechanics

The MORSE code utilizes the same multigroup cross sections used

by the discrete ordinates codes DOT,(]]) ANISN,(]g) (20)

or DTF-IV.
These cross section sets employ an nth~order Legendre polynomial
expansion to describe the scattering distribution for each group-to-
group transfer,

At a collision site, the emergent energy group and direction

are normally selected according to the natural collision kernel

~g>g” =
- . L r,aQ-Q )
¢¥79 (r,0>0") = S (3-1)

zg( )

—~

=i

where Zg+g’(ﬁ,§+ﬁ’) is the group g to group g~ differential scattering

cross section and the group scattering cross section x?(?) is equal to

14
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Z, f4ﬂ Zg+g (r,e»0”) d2”*. The collision kernel is a properly
normalized joint probability density function (p.d.f.) and may be

expressed as a product of a marginal p.d.f. and a conditional p.d.f.

Y - - - (7, - - -,
[4, 2277 (7,087) di Zg 9(F,557)

Cgﬁg (;9§+5,) = —~ X S -~
Z$F) M“z?g(rmﬂr)mr

2379 (F) xgég’(F,ﬁﬂﬁ‘)
= ~ P . (3-2)
23(F) 2379 (7)

The energy group g~ of the emergent particles is selected from the

marginal p.d.f.

zg*g'(F)

2o (F)

) forgo=g,g+1, .. .G, (3-3)

The emergent direction &~ js then selected from the conditional p.d.f.

zg+g’(F,§+§’)
’ (3'4)

zg%gf(F)

given that a particular g>g” transfer has been selected according to
Equation {3-3). Considering the scattering process as azimuthal
symmetric, the differential scattering cross section may be written
as a function of the cosine of the polar angle, and expanded as a

series of Legendre polynomials

- n S
$F9 (70 = - L@ Py, (3-5)
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where
gg”, =, _ th . e
fg (r) = the £ Legendre coefficient for the group g to group
g~ transfer,
n = the maximum order of the expansion,
L = 0%, the cosine of the scattering angle.

Using Equation (3-5), Equation (3-4) can be written as

99" (7 5,5+
z (r,a>0") n .
> g>g” /= - glg’ - E fg_)g (Y‘) PQ'(H)
b ) 4 23 (r) 2=0
1§ 0
-5 1 eTIE) ), (3-6)
2=0
. fg"’g’(;l)
where fzg+g (r) = ~£>——frj:— .
ng (r)

The conditional p.d.f. as given by Equation (3-6) can be
expressed as a product of two distributions, namely the polar angle
distribution and the azimuthal angle distribution. The polar angle

distribution is

n
wlu) = Z

I ISR Po(),s (3-7)

where the group-to-group transfer superscript and the position vector
v are dropped to simplify the notation. Because of the azimuthally

symmetric scattering, the azimuthal angle distribution is simply

n(6) = 7 . (3-8)
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The realization of the polar angle, cos-]u, from Equation (3-7)
is not accomplished directly. Instead, the distribution w(u) is
discretized by the use of a generalized Gaussian quadrature scheme.(]o)
This approach effectively replaces the continuous distribution
w(n) by a discrete distribution «*(p) with the constraint that the

first n moments of w*(u) are identical to the first n moments of w(y)

respectively. Thus, the angular distribution of Equation (3-6) becomes

Xg+g (r,0+07)

13797

p; s{u-us), (3-9)

1
21 1

i

i o~12

where P is the probability that polar angle COS_1ui will be selected
and N is equal (n+1)/2. The original normalization of Equation (3-6)
gives

3797 (7,587

4y Zg»g’(F)

do” =1,

which provides the following normalization requirement on the pi's,

B~z

20 1 1 . B
fo f_] s ] P; ‘J(u—ui) dudy = 1,

and
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The selection of the outgoing direction is normally
accomplished within MORSE in two separate steps:
1. First, a scattering polar angle is selected from the
discrete distribution w*(u).
2, Then an azimuthal angle is selected from the uniform
distribution h{¢).
The sequence of the two steps can be reversed, i.e., first azimuthal
angle then polar angle, because the two distributions, w*(u) and

h(¢), are independent. Figure 2 iltustrates the two possible

scattering directions ﬁ’] and 5’7 and their corresponding cones

with respect to the incoming flight direction & for a P3 scattering

distribution.

The nature of the Gaussian quadrature scheme of discretizing
the scattering distribution produces discrete directions which tend
to be located near the peaks of the scattering distribution. Examples
of the P3 scattering distributions and their corresponding discrete
distributions for the concrete cross section are shown in Figures 3
and 4, Note that although the truncated lLegendre expansion for the
scattering distribution may have negative values, the discrete
distribution will always yield positive probabilities, This is true
because the condition of positive probabilities is one of the

constraints for the generalized Gaussian quadrature scheme,
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Figure 2, Particle Incoming Direction and Two Possible Scattering
Directions at a Point P(X,Y,Z).
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Figure 3. The P3 Scattering Distribution and the Discrete Distribution
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o Angulac Probability Biasing Technique

The "angular probability biasing” technique is formulated by
hiasing the conditional p.d.f. of Equation (3-9) using the point
value xg(?,b) as the importance function. The biased scattering

distribution is denoted as Yg+g (r,2>0) and can be written as

In Fquation (3-10), the N possible outgoing directions ﬁ’i(ui,¢i)
must he known so that the corresponding point values XS,(F,ﬁ’i) can
be identified. In order to accomplish this, the azimuthal angles

for each of the N polar angles are selected first., With the N
nossible outgoing directions determined, the corresponding point
values xS,(F,ﬁ‘i) can be identified. This approach of predetermining
the N outgoing directions effectively transforms the distribution

given by Equation (3-10) into



[471 Z

1 pi(g(u..ui) 5(¢-¢].) XS,(P,Q') da-

1

_i=1 !
N - ~ - — -~
/.' - * - -
f4. Z] pi8(a--0-) xx.(r,i7) di
p K*,(F,ﬁ’ )
= - ’ for i =1, 2, , N
. ox*L (.0,
121 Py G ( 1)
= pY for i =1, 2, . . ., N. (3-11)

As would be the case for any biasing procedure, the statistical weight

of the particle must be corrected in order to remove the bias. The

WT = , (3-12)

where the direction "j" has been selected from the biased distribution
given by Eguation (3-11).

It is interesting to note that this biasing technique alters
the probabilities of the N discrete scattering angles while the
corresponding N possible scattering angles remain unchanged. This
is the reason that the name "angular probability biasing" is

adopied.
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3.3 The Path Length Biasing Technique

The transport of radiation particles from one collision site
to the next involves the selection of a path length from the transport
kernel. For particles traveling within a material, the transport

kernel Tg(F+F+R§) can be written as(14)

-59
Ly R

Tg(F»F + R3) dR = z% e dR, (3-13)

g
-%? R
where e t is the probability that a particle travels the distance
R without suffering a collision and x% dR is the probability that a

collision occurs within dR. Also since

.9
[Fi9e R
o "t ’

the transport kernel Tg(F+F + R2) is a properly normalized p.d.f.
The transport kernel can also be expressed in terms of the mean free

path n, and we have
Tg(?»? + R2) dR = e " dn, (3-14)

where n = Zg R. Thus, the path length selection can also be

accomplished in terms of the number of mean free paths traveled,
Equation (3-14) is also valid for particle transport through more
than one material. Note that e™" is a normalized p.d.f. over the
interval (0, »). However, events occur only in the interval

(0, ne), where e is tne total number of mean free paths to the

n

external boundary. When a path is selected from e "', only the
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- -n
fraction (1 - e e) are events, and the fraction e ° leak into

the external void. Therefore, the leakage probability of a particle

. ~Na iq s . “Na
is e ~, and the nonleakage probability is (1 - e 7).

The "path length biasing" technique is an alteration of the
transport kernel using the event value Ng(?,ﬁ) as the importance
function. The biased transport kernel TS(F+F+R§) can be defined as

e " W(n)

Ta(F»F + RQ) dR = —§E - dn (3-15)

where W(n) is the event value with the position expressed in terms of
n (g and Q are omitted to simplify the notation), and NF is the
normalization factor of the biased transport kernel. If the
nonleakage probability of the biased transport kernel is assumed to
be equal to that of the unbiased transport kernel, we have

R R
e == = _ e - - -
Jo TE(r + R2) dR = [ 5 T (P + R3) dR

where Re= ne/zg. Substituting Equations (3-14) and (3-15) into the
above equation, we have

N -1 H =N
ee ' W(n _y € -n - e
fO -——~N-F~*—-—)— dn —IO e dn =1 e

Hence,

- 1 Te -n
NF = *-'*—"’:—n"” fO e W(ﬂ) dn. (3-]6)
1-e °©
If an average W(n) is assigned to each spatial region, the event

value is given by
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W(n) = W1 for O <n< n.l
= WL ﬂLn] 5_ T] < an (3‘]7)

where L is the number of regions along the particle's trajectory
and N is the number of mean free paths from the particle's
starting point to the emergent boundary of the 1th region. Note
that Nt Mg Figure 5 shows a particle's flight trajectory
through three regions before reaching the external void. Although
the number of regions | would be different for each flight
trajectory, L = 3 is used to illustrate the analysis which would be
valid for any L. Substituting Equation (3-17) with L = 3 into

Equation (3-16), the normalization factor becomes

N —— [[n] e " W.dn + fnz e Wodn +
"n3 0 1 T|-| 2
1 - e
f“3 o w3dn]. (3-18)
N2

Substituting Equation (3-17) into Equation (3-15), the biased

transport kernel becomes
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Figure 5. A Typical Particle Flight Trajectory in the Cylindrical
Geometry which is Divided into Twelve Spatial Regions.
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. ) e” W
Tg(n+r + Rg) dR = NE dn for 0 <nc< "
e” W
= --—g‘dn Ny < n <o
NF 15 2
e "y
= 3dr Ns <N <1
NF ! 2 = 3
= e "dn ng<n < (3-19)

The integration of Equation (3-19) over the interval (0, =) gives

o TR + R3) R = f(: ! i;«fwl dn + f:f e_;gﬁ dn :23 »e:;F% dn +
ﬁ? e " dy
3
:lf[;n W dot f] W, dn + [3 "y dnl +e 3. (3-20)
Substituting Equation (3-18) into Equation (3-20), we have
I TE(FT ¢ RA) dR = 1, (3-21)

which is the normalization requirement for the biased transport
kernel. With the normalization factor NF given by Equation (3-18),
the biased transport kernel is well defined and properily normalized.

Hence, Equation (3-20) becomes



W W W -n
_ 1 n 2 2 -n 3 3 -n 3
Togpfo & dnrgE e dn e/ e dnre
= Pry + Pro + Pragt+ Pry s (3-22)

where Pri is the probabi1ity that the next collision will occur in the ith
region and Pre is the probability that the next collision will be in the
external void. In principle, the path length can be selected from
Equation (3-19). However, the actual sampling procedure is accomplished
as follows:

1. First determine the region where the next collision will

occur from Equation (3-22).
2. If the next collision is in region "i," select the number

of mean free paths n the particle travels in this region from

-n i-

N -(n.-n.
f 1 e ! dn 1 ~ € v

3. Compute the number of mean free paths between the new collision
site and the last collision site by ny = n;_ ¢ + n .

4, Correct the particle's statistical weight by




CHAPTER IV

DESCRIPTION OF THE STANDARD P0OBLEM AND
GENERATION OF IMPORTANCE FUNCTIONS

In this chapter, the standard problem and the two-dimensional
discrete ordinates adjoint calculations are described. Then the
methods of obtaining the point value and the event value from the

adjoint discrete ordinates (DOT) calculation are described.

4,1 Description of the Standard Problem

The standard problem was designed to have geometric -nmplexity
along with deep penetration limitations. The shield configuration
consists of a right circular concrete cylinder with an axial
duct (void) 15.24 centimeters (6 inches) in diameter, The
dimensions of the cylinder are 152.2 centimeters in height and
150.0 centimeters in radius. An isotropic monoenergetic (14 MeV)
neutron source is uniformly distributed over the bottom surface, and
four detectors are positioned on a plane which is 152.2 centimeters
beyond the top surface. The radial positions of the detectors
are 5, 20, 75, and 150 centimeters from the Z-axis. The layout and
important dimensions are shown in Figure 6. One of the main reasons
for selecting a two-dimensional configuration was the availability
of a discrete ordinates solution which would provide a comparison
for Monte Cario calcui-tions,

Analysis is done only on the neutron transport through the

first 14 energy groups of 22 group structure given in Table 1. The

30
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Figure 6. Geometry of Concrete Cylinder with Axial Duct, Source,
Detectors, and Adjoint Sources.
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TABLE 1

NEUTRON ENERGY GROUP STRUCTURE

Energy Group Upper Energy (eV
1 1.50(+7)*
2 1.22(+7)
3 1.00(+7)
4 8.18(+6)
5 6.36(+6)
6 4,96(+6)
7 4,06(+6)
8 3.01(+6)
9 2.46(+6)

10 2.35(+6)
11 1.83(+6)
12 1.11(+6)
13 5.50(+5)
14 1.11(+5)
15 3.35(+3)
16 5.83(+2)
17 1.01(+2)
18 2.90(+1)
19 1.07(+1)
20 3.06(+0)
21 1.12(+0)
22 4.14(-1)

*Read as 1.50 x 10’ eV(= 15 MeV).
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cross section set for the concrete is taken from References 15 and 16;

the angular dependence of particle scattering is approximated by a P3

Legendre polynomial series expansion. The concrete composition and

its neutron cross section are presented in Appendix E.

4,2 Two-Dimensional Discrete Ordinates Adjoint Calculations

Several methods have been employed to obtain importance

(4-9)

functions for biasing Monte Carlo Calculations. Among these
methods, the one-dimensional and two-dimensional discrete ordinates
calculations provide numerical importance functions suitable

for Monte Carlo biasing. For problems with complex geometries, the
one-dimensional discrete ordinates adjoint fluxes are generally
inadequate and two-dimensional adjoint calculations are required.
In this study, two-dimensional discrete ordinates calculations are
employed to generate the importance functions.

The two-dimensional discrete ordinates code DOT(]]) in R-Z

geometry was used to solve the adjoint Boltzmann transport equation.

An assymmetric angular quadrature set which consists of 166 directions

(25)

was recommended for this problem. The source was the detector

response function which was taken as unity for all energy group since

neutron flux would be the quantity determined by the Monte Carlo
calculations., Calculations were performed for two different
locations of the adjoint source, one on the Z-axis and the other
150.0 centimeters off the Z-axis as shown in Figure 6.

The computer code GRTUNCL(]7) was employed to calculate the

analytic first collision source for the DOT calculation., The
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adjoint angular flux for each calculation was stored on two
magnetic tapes and the total scattering source was written on

another magnetic tape.

4,3 Determination of tie Point Value

It was shown in Section 2.2, page 9, that the point value is
identical to the adjoint angular flux which may be calculated by
the discrete ordinates method. Hence, the point value is directly
available from the results of the adjoint discrete ordinates
calculation. Due to the truncated Legendre expansion of the
scattering cross section, the adjoint angular flux as calculated
by the DOT code may assume negative values, Negative fluxes
(forward or adjoint) do not have any physical meaning. Thus,
they are assumed to be zero before the adjoint angular flux is
spatially averaged intu the point value.

The adjoint angular flux is averaged over spatial regions
and will be used in that form in the Monte Carlo calculations.

This is necessary so as to alleviate the data storage problem that
would exist if all of the adjoint angular fluxes were required in
the Monte Carlo calculations. Furthermore, it is straightforward to
carry out the proposed importance sampling schemes by region in

the worse 19) code.

The geometry of the concrete cylinder is divided into twelve
spatial regions as shown in Figure 5, page 27. The directional depesn-
dence of the point value is given in terms of the quadralture set .
in the adioint discrete ordinates calculation. This quadrature set

i< described in terms of two cosines ¢ and ¢, and a weight WG, As
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shown in Figure 7, ¢ is the cosine of the polar angle vy and ¢ is the
cosine of ¢, the angle between the discrete direction and a unit vector
in the radial direction. The Weight WG is the fraction of the total 4«
solid angle associated with a given discrete direction. Thus the
weights sum to unity. The discrete divections in the quadrature set
are grouped by polar angle and an arbitrary number of ¢ angles are
associated with each polar angle. For the quadrature set used in the
adjoint discrete ordinates calculations, there are 20 polar angles.

The computer program POINT first reads the adjoint angular flux
tapes, then sets the negative adjoint angular fluxes to zero, and
finally calculates the region-averaged point values for all enerqgy
groups and directions. The region-averaged point values are then
stored on a magnetic tape for the anqular probability biasing of
Monte Carlo Calculations. A listing of the POINT program along with

the input instruction is presented in Appendix A.

4.4 Determination of the Event Value

The event value can be determined from the total scattering
source that is available from an adjoint DOT calculation. Equation

(2-1) can be rewritten as

Wpm = Z f Z?g’(;’ﬁ--}ﬁ)) (.5 -
W (r,2) = P (r,0) + - yv* (r,2°) da-. {(2-1
g d g- S g

The point value XE,(F,@”) can be written as

L (FL50) = xn (F,57) + ok (Fade (4-1)
yg,(rgz) X% ,(r27) X3 raa), {4~7)

S
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and Cylindrical Coordinate Systems.
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where

the uncollided contribution to the point value

>%,u(r,ﬂ’)

XS,C(F,Q’) the collided contribution to the point value.
Substituting Equation (4~1) into Equation (2-1), the event value
becomes

T (R 5)

W (r,Q) = Pg(r,Q) + é"&“ z?(?) X

P Y G2 :9797(7,5:07) ]
= Pg(r,Q) + w959:~,.+ -y S i xg,c(r,&’) de-,
p2(r) g7 £2(r)
t

zg*g (F,0+07) X%, (¥,5°) di-.

i g u

where Qg(F,ﬁ) =1 L;
g

If the differential scattering cross section from Equation (3-5) is

substituted into Equation (4-2), then



The addition theorem of Legendre polynomial can be expressed as 1
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- CL_Q(r,8)
W (F,0) = PO(r,0) + G
£i(r)
n 4
LI P ()
vy [, X0 & (F,5°) dar
e b 4n ZE(F) 9-¢c

2
_ . (e-m)! _m m, . _ .
PQ(U) =P (g) P (z7) +2 mZ} zz;ajT'Pg(C) PQ(C ) cosm(¢-4~)
Cp () () v 3 LMl pney gy «
G > iy ()T Ty g \o
[cosme cosmd” + sinmé sinme”]
where
P?(g) = the associated Legendre function

it

if

L

il

the
the
the

the

cosine of the polar angle of the direction @
cosine of the polar angle of the direction &~

azimuthal angle of the direction @

azimuthal angle of the direction Q-.

Substitution of Equation (4-4) into Equation (4-3) yields the

following equation for wg(?,é).



_ o Q (r,2)
W (7.3) = PY(F,8) + Lomee
’ J 2)(F)
1 f2ﬂ ,ﬂ E g>g”
) dorde” x*, (r,57,07) £9°97 (%)
4x Z%(F‘) g~ © ol gc o= ¥
L
» \' £~m ! m m .
x P ley pple) vz L %*;;H%I "(e) P27 X

[cosmé cosme” + sinme sinmé”]}.

Due to the symmetry of cylindrical R-Z geometry, the point value
XS,C(F,Q’,¢”) is an even function of ¢~ and can be expanded in
spherical harmonics as a function of P?(c‘) cosme”. Since the
integral of cosmy” sinm¢” over the interval 0 < ¢~ < 27 is equal
to zero, in Equation (4-5), all terms involving sinm¢” varnish
under the integration. Thus, Equation (4-5) becomes

0,(FA)

*;‘,_.‘P"“ g
W (r,5) = PY(F,0) + — saal)
g g zg(r) 4r £9(7) g

2' ] - - - - - -
x [P, (2) [ [ dends xa,c(r,c ,07) P (27)

'3

Q/— ! 2 ] - - -~ »

+ 2 Z] (1+$)! PR(c) cosmp f57 [ dyrde K375 2507) X
m:

P?(c’) cosme ”]
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b Q (F\aQ) n - 2
= PU(R,A) + s l_y 97977 go AL (cs8)

z%(r) 4 z%(?) g” 2=0

2 ] - - - - - . .
xfo [y derde ek (Foe7,07) Al(he7)]

1/2
2 (z—m)!] Pm(c) COSmé.

m _
where Az(c’¢) E (o4m)? [

==
om

In discrete ordinates theory, the integral in Equation (4-6) is

known as the flux moment. That is
3NE) = [T SN et e (Faeme) AT
g’ 0 _-l Ly g, L 3 ,Q, 2 .

With the above relation and setting the response function Pé(?,é)
equal to zero because the detectors are located outside the

shield configuration, the event value of Equation (4-6) becomes

(r,a
W (F,ﬁ) = 89_2__1
J 23 (F)
1 n g

vl D DN N O IR MO
4n Zi(r) g” 2=0 m=0

Integration of Equation (4-7) over a volume element V. gives

I
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[y W _(r,Q) dv %(r.2) dv
P, = ,
Vi g REREIE
9*9” (=
1 no%o f (r) 37.(r)
ta= 1)1 A(e.e) S dv
Y15 w20 w0 ® R

If the mean value approximation is applied to the volume integral,

the above equation becomes

Q. (%)
- _ ’I
wg’I(m) VI ;%--~ VI
t,1
g>g” .am
n % f i,
l~.2 T AM(z,e) el T9TIy (4-8)
4 g” 2=0 m=0 . Zg I I

Qg I(s-z) can be expanded in terms of spherical harmonics as

]

(_ n &
Q, ((3) =
0,1 7 Ly L

20+]1 zm
4r 9,1 AT o (5s0) (4-9)

1 -
where qi"; = [T [ 1 a (@) Al(c,0) dede.

Substituting Equation (4-9) into Equation (4-8), we have

- 1 n
(@) v ) Z A (c,¢) X
9,1 I 4WZ%I£OmO
[(24+1) QSTI ) fg*g G&m 1Yl (4-10)

q- 9
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Equation (4-10) can be further simplified by defining the "total

scattering source" for energy group g and volume element VI as
Lm am ] G-g”.am _
Tg,I (22471) qq,I VI 4 g’ fQ,I Jg,’I VI' (4-11)
Substitution of Equation (4-11) into Equation (4-10) yields
n 2
= 1 .o am
W Q) V, & ———r A(z,0) T .. 4-12
5,1 1T :d Lo ko "o Taut 1)

Equation (4-12) is the relationship actually employed to calculate
the event values, Similar to the point value, the event value is
averaged over region for all energy groups and directions.

A computer program EVENT was written to read the total
scattering source tape from the adjoint DOT calculation and to
calculate the event values for all regions, energy groups, and
directions. A listing of this program along with the input
instruction is given in Appendix A.

Shown in Figure 8 is a flow diagram which illustrates the
relationships which exist among the adjoint DOT calculation, the
generation of importance functions by the POINT and EVENT programs,
and the MORSE calculation. The source location biasing will be

discussed in the next chapter.
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CHAPTER V
DESCRIPTION OF THE BIASING TECHNIQUES

The description of the biasing techniques including some
programming details will be presented in this chapter. The importance
sampling techniques studied in this investigation were source
Tocation biasing, path length biasing, and angular probability biasing.
In addition, the survival biasing schemes of nonabsorption weighting
and Russian roulette and splitting were routinely used in all

calculations performed.

5.1 Source Location Biasing

It was observed by Coveyou et al.(3) that source biasing using
a reasonably good estimate of the importance function would, in
general, reduce variance significantly at a relatively low cost,
However, a good estimate of the importance function at the source
requires that much is known about the solution a priori.

A particle random walk starts with the selection of energy
group, spatial position, direction, and age from a source distribution
function. For the problem under investigation, the age is assumed
to be zero since this is a steady state problem, and the source
energy is of the first group. Thus, only the direction and spatial
position remain to be selected. Although the source is isotropic, only
the upward source particles can contribute to the answer because the
downward source particles enter an external void and are immediately

killed. Therefore, it is expedient to force all source particles to

44
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emerge in the upward direction and to correct their weight accordingly.
As for the source spatial position, particles which originate near
the duct would seem to be more important because they may penetrate
deeper into the shield by streaming through the duct. Thus, biasing
of the source location to encourage more particles to originate near
the duct was carefully studied in this work.

Two importance functions for source location biasing were
employed. The first one will be designated as the step importance
function which assumes that source particles generated inside the radius
of 10 centimeters are 1000 times more important than those outside.
This procedure is rather arbitrary, but it does encourage more
particles to originate near the duct. The probability density
function of this biased source distribution is simply

27R

1000
- Mwmz( )

T

0<R<10

2nR
2

= n(130)_ 10 < R < 150, (5-1)
:

where NF] is the normalization factor. The weight correction requires
that the statistical weight of particles outside the 10 centimeter
radius to be 1000 times higher than that of particles inside.

The second source importance function was obtained from the
adjoint DOT calculation. It was assumed that the adjoint source
was located on the axis of the cylinder and the corresponding adjoint
flux should show the maximum effect of the duct. The group one scalar

adjoint flux x? at the bottom of the cylinder was plotted as a function
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of the radial position., This curve was then fitted by the function

Is(R) which is given by Equation (5-2).

I_(R)

s 85

. o-0.13(R-8)
-0.02(R-50)

i

0.004 e

Figure 9 shows the group one scalar adjoint flux

0<R<8
8 <R <50
50 < R < 150. (5-2)

and IS(R) versus the

radial position., Mathematically, the second biased source distribution

takes on the following form

. S(R) I, (R)

S,(R) =
2 150 \
[,77 s(R) 1

Substitution of S(R) and IS(R) into the equation

21R
2R (g5)
_1(150)° (

R) =
[27 s(R) 1.(R) R

S,
1R -0.13(R-8)
R,

_ m(150)
[1°0 s(r) I(R) dR

&R (0.004) e
- 7(150)
129 s(r) 1(R) R

~0.02(R-~50)

S

(R) dR

above yields

0<R<38

8 < R <50

50 < R < 150, (5-3)

The integral in the denominator can be easily evaluated. Equation (5-3)

can be rewritten as
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SCALAR ADJOINT FLUX OF GROUP 1

0 20 40 60 80 100 120 140 160
RADIUS {cm)

Figure 9. Source Location Importance Function from the Adjoint DOT
Calculation with Axial Adjoint Source, and the Approximating
Function IS(R) to the Importance Function.
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SZ(R) F, 0<R<8
-0.13(R-8)
_Re
~-0.02(R-50)
- 0.004 Re 50 < R < 150, (5-4)
NF, Rs
JSO S(R) 1(R) dR
where NF2 = P2 .
w(]50)2

In order to remove the bias, the statistical weights of the

source particles are corrected by

Subroutine SOURCE in the MORSE code is an optional routine
which allows a user to generate source particles according to any
desired distribution and to make the necessary weight correction.
Two SQURCE routines were employed in this study. One selects source
location according to the distribution in Equation (5-1), and the
other selects source location from Equation (5-4). Only upward
source directions were allowed in both cases. The SOURCE routines

are listed in Appendix A.

5.2 Angular Probability Biasing

The theoretical development of the angular probability biasing

technique was discussed in Section 3.2, page 22, and the method of
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determining the point value was presented in Section 4.3, page 34.
This section describes the implementation of this biasing technique
in the MORSE code,

The subroutine COLISN in MORSE 1is called at each collision site
to determine the outgoing energy group and the outgoing direction.
To carry out the angular probability biasing, the subroutine COLISN
was modified and a subroutine INSCOR was written to input the region-
averaged point values from the magnetic tape nrepared by the POINT
program. In the modified COLISN subroutine, .the outgoing energy is
still selected from the downscattering matrix, but the outgoing
direction is selected from the biased angular distribution given

by Equation (3-11)

=}

*
,Yg+g (;"ﬁ‘*ﬁ)) = ﬁ& g 1 fOY‘ i = 15 « e« s> N-(3_]])

i=]

Then the statistical weight of the emergent particle is corrected

by Equation (3-12) as shown below.

N
. * r —‘.
- 121 pyxg-(rsa”y)
WTC = -

* oL
xg,(r,ﬂJ )

(3-12)

The biased angular distribution of Equation (3-11) requires the
point values for all outgoing directions which comprise the N
discrete directions of the generalized Gaussian quadrature scheme.
The outgoing directions are expréssed in terms of the rectangular
coordinate system, but the point values are given in terms of the

quadrature set used in the R-Z discrete ordinates adjoint calculation.
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Thus, the outgoing directions are transformed into the cylindrical
R-Z coordinate system, and the point values that are nearest to each
of these directions are chosen. Then the biased angular distribution
is constructed according to Equation (3-11).

The transformation of a direction from the rectangular coordinate
system to the cylindrical R-Z coordinate system and the reverse
transformation are presented in Appendix B. A listing of the sub-

routines INSCOR and COLISN are presented in Appendix A.

5.3 Path Length Biasing

The path length biasing technigue utilizes the event values to
importance sample particle flight paths (i.e., collision sites). The
determination of the event values from a two-dimensional discrete
ordinates adjoint calculation was discussed in Section 4.4, page 35.
To implement the path length biasing technique in the MORSE code, the
subroutine INSCOR was written to read the event values from a magnetic
tape, and the subroutine NXTCOL was rewritten to carry out the actual
selection of the next collision site,

When a particle emerges from a collision site with a given energy
group and direction, its flight trajectory is determined by the
subroutine REGION which subsequently returns to NXTCOL the regions
that this particle may go through and the corresponding track lengths
within those regions. The particle's direction must be transformed
into the cylindrical R-Z coordinate system so that the event value
corresponding to the direction closest to the particle's direction
can be determined for each region. Now that the event values and

the track lengths in these regions are known, the selection of the
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path length (or the next collision site) from the biased path length
distribution according to Equation (3-19) can be achieved. For easy

reference, the biased transport kernel is included here:

-
o e N]
TS(F+r+RQ)dR = —gpdn 0 <n<n
e” "W
:_*,._Z.d n-. < <
NF n ]]__n l']2
e
=M3d it < < n
NF— o0 2 =N 03
= e dn ngin <@ (3-19)

The details of the sampling procedure is outlined in Section 3.3, page
24, and the listings of subroutines INSCOR, NXTCOL, and REGION are
included in Appendix A,

Due to the curvature effect in the cylindrical R-Z coordinate
system, the angle ¢ between the radial vector and the flight
direction vector changes as the particle travels through the geometry
as illustrated in Figure 10. In this figure, the flight direction
vector  is assumed to be on the same plane as the radial vector.
This curvature effect complicates the determination of the event
values, and requires for each region the determination of the direction
that is closest to &i. To simplify this procedure, this curvature
effect is ignored and the angle 2 is used for all regions in determining
the event values. The error caused by this assumption is not severe
because for a given energy group, region, and polar angle, the event

value is relatively constant with respect to the angle y.
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Figure 10. Curvature Effect of a Particle Direction in a Cylindrical
Geometry.



53

5.4 Russian Roulette and Splitting

Russian roulette and splitting is a form of survival biasing.
In the MORSE code, Russian roulette and splitting are applied through
a set of region and energy—group:dependent weight standards. The
weight standards are composed of WTHIR, WTLOR, and WTAVE. In order
for Russian roulette and splitting to be effective, a good choice of
weight standards must be made. For problems involving complex
geometry and deep penetration, an effective set of weight standards
is not easy to specify. Usually, weight standards are chosen on
the basis of intuition, experience, or some knowledge of the
problem under investigation.

(21)

As pointed out by Solomito, WTAVE in a set of weight standards

may be related to the importance function by the following
= WT(P) x I(P), (5-5)

where WT(P) could be used for WTAVE. This equation simply states that
the effect of interest » is equal to the weight of a particle WT(P)
times its importance I(P) with respect to that effect, and is valid

at any point in phase space. At the source location, WT(P) = WTO(P)
and I(P) = IO(P). Hence, the effect of interest » is determined, and
it can be used to determine the weight WT(P) at other points

provided that the importance I(P) is known. That is

A WTO(P) X IO(P)

WT(P) = 757 = 10 ) (5-5)
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In this study, Russian roulette and splitting were employed
routinely in all calculations performed. The same weight standards
were routinely used so that the relative merits of the various
biasing techniques can be studied. WTAVE was determined using
Equation (5-5). The total adjoint flux x* obtained from the DOT
discrete ordinates adjoint calculation with the axial adjoint source
was taken as the importance function I(P), and an approximate value
of the effect of interest at detector 1 was used to calculate WTAVE.
Then WTHIR was arbitrarily assumed to be 10 times of WTAVE, and

WTLOR was assumed to be 40 times Tower than WTAVE.



CHAPTER VI
DISCUSSION DF RESULTS

Presented in this chapter are the results of the Monte Cario
calculations of the standard problem. The proposed methods of source
biasing, of angular probability biasing, and of path length biasing
were thoroughly studied using a modified version of the Monte Carlo
code MORSE. The modifications allowed the biasing techniques to be
incorporated into the random walk subroutines COLISN and NXTCOL.
Source biasing, angular probability biasing, and path length biasing
were employed individually and in various combinations. The Tist of
calculations which were performed to test the proposed biasing
techniques is presented in Table 2. The importance functions used in
these calculations were obtained from the adjoint DOT calculation with
the axial adjoint source. Russian roulette and splitting were employed
in all calculations. The weight standards for calculations (0.5)* and
(SS) were intuitively assigned, but the same weight standards were
employed for the rest of the calculations (S) through (SAP) and were
obtained from the adjoint flux of the DOT calculation with the axial
adjoint source.

In order to facilitate the evaluation of results, all calcula~
tions were performed for one hour on the Oak Ridge National Labora-

tory IBM 360/91 computer and the size of a batch of particles

*For easy reference, each calculation will be identified by
the naming given in the parenthesis.
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TABLE 2

MONTE CARLO CALCULATIONS PERFORMED

Calculation
Identification

Biasing Procedures Employed

(0.5)

(SS)
(S)

(A)

(SAP)

Standard calculation with path Tength stretching
parameter PATH = 0.5

Step biasing of source location and PATH = 0.5

Source location biasing according to the scalar
adjoint flux and PATH = 0.5

Angular probability biasing according to the
point value x* with step biasing of source
location and PATH = 0.5

Path length biasing according to the event value
W and step biasing of source location

Combination of angular probability biasing, path
length biasing, and step biasing of source
location

Combination of source location biasing by the
scalar adjoint flux and path length biasing by W

Combination of source location biasing by the
scalar adjoint flux and angular probability
biasing by x* with PATH = 0.5

Combination of source location biasing, angular
probability biasing, and path length biasing
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was standardized to 400 histories. Neutron flux at four detector
locations were calculated using the next event estimator at each

collision and source point.

6.1 Comparison of Results of Monte Carlo and Discrete Qrdinates

Calculations

Tables 3 and 4 present the uncollided flux and the total flux
respectively at the four detector locations for the nine different
biasing schemes. The total flux as calculated by the forward
discrete ordinates (DOT) calculation is also included in Table 4
for comparison. It is clear from Table 3 that the uncoiTided flux
could be calculated rather easily. Source location biasing using
either the step importance function or the scalar adjoint flux
generally gives better results for the uncollided flux. However, the
(0.5) calculation which has no source biasing gives the best results
for detectors 3 and 4 because the natural source distribution
produces a large fraction of source particles far away from the duct.
A final point of interest about the uncollided flux is that it
constitutes 82% of the total flux at detector 1 and 47% at detector 2.
For detectors 3 and 4, the uncollided flux contributes very little
to the total flux and the presence of the duct probably has little
effect on the results of the uncollided flux.

According to Table 4, Monte Carlo calculations are in general
agreement with the DOT calculation. However, the Monte Carlo results
are higher by 10% to 16% at detectors 1 and 2, and lower by 20% to

40% at detectors 3 and 4 except for the (0.5) and (P) calculations.



UNCOLLIDED NEUTRON

TABLE 3

FLUX® OF MONTE CARLO CALCULATIONS OF THE STANDARD PROBLEM

Number Detectors:

Calculation of

Identification Batches 1 2 3 4
{0.5) 31 2.43?-9(.139)b 3.971-10(.315) 4.764-15(.07%) 5.488-156(.012)
(SS) 57 2.327-9(.007) 5.153-10(.018) 5.577-15(.107;} 6.640-16(. 024)
(S) 60 2.348-9(.004) 5.086-10(.031) 5.579-15(.097) 7.751-16(.199)
(A) 60 2.352-9{(.006) 5.212-10(.018) 5.230-15(.116) 6.334-16(.028)
(P) 47 2.350-9{.007) 5.151-10{.016) 6.617-15(.137) 6.685-16{.044}
(AP) 49 2.356-9(.007) 5.252-10{.022) 6.456-15{.118) 6.616-16{.036)
(sP) 54 2.347-9(.004) 5.209-10(.031) 4.997-15(.067) 5.775-16{.195)
(SA) 72 2.345-9(.003) 5.093-10(.023) 5.211-15(.070) 6.714-16(,174)
(SAP) 62 2.337-9(.003) 5.351-10(.021) 5.942-15(.072) 6.343-16{(.150)
it = neutrons/cmz/source neutron.
b -9

Read as 2.431 x 10

with fractional standard deviation of 0.139,



TABLE 4

TOTAL NEUTRON FLUX® oF MONTE CARLO CALCULATIONS OF THE

STANDARD PROBLEM

Number Detectors:

Calculation of

Identification Batches 1 2 3 4
(0.5) 31 2.868-9(.124) 9.071-10(.159) 4.677-11(.498) 2.241-11(.472)
(SS) 57 3.092-9(.048) 1.195-9(.149) 2.907-11(.269 1.062-11(.425)
(S) 60 3.025-9(.026) 1.158-9(.073) 2.831-11¢ 1.160-11(.211)
(R) 60 2.928-9(.024) 1.085-9(.077) 3.039—11( 157 1.165-11(.188)
(P) 41 1 2.830-9(.028) 1.036-9(.051) 3.987-11(.237 1.746-11(.397)
(AP) 49 2.911-9(,024) 1.113-9(.067) 3.357-11(.2 1.170-11(.255)
(SP) 54 2.805-9(.020) 1.020-9(.084) 3.002-11{. 1.136-11(.227)
{(SA) 72 2.839-9(.014) 1.058-9(.045) 3.459-11¢. 1.261-11(.269)
(SAP) 62 2.873-9(.023) 1.120-9(.080) 2.764—1]( 1.030-11(.222)
DOT 2.453-9 9.575-10 3.703-11 1.408-11
Wnit = neutrons/cmz/source neutron,

bRead as 2.868 x 1077

with fractional standard deviation of 0.124.
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Because of the excellent statistics and the consistency of the Monte
Carlo results for detectors 1 and 2, it would not be unreasonable to
presume that MORSE's answers are correct and that the discrete
ordinates results are too low. It should be noted that this is
somewhat characteristic for the discrete ordinates solution to
problems of this type. In the discrete ordinates calculation, the
neutron dose for detectors located in an external void can be
calculated by the procedure of next event estimation. In this
procedure, the probable uncollided contribution to the detector
weighted by the neutron flux is integrated over-all collision sites.(zz)
This integration is accomplished by the computer code FALSTF.(23)
For the standard problem, the major contribution to the neutron flux
at detectors 1 and 2 is from the neutron distribution near the duct.
If the spatial mesh around the duct was too coarse, the flux at
detectors 1 and 2 would probably be underestimated due to the
increased attenuation to the detectors from the centroids of the
spatial celils. This is the probable explanation for the character-
istically lower magnitudes of the DOT's results at detectors 1 and 2.
The discrepancy between Monte Cario and discrete ordinates
results at detectors 3 and 4 might have been due to: (1) the
statistical fluctuation in Monte Carlo calculations, (2) under-

estimation which is a common occurrence in Monte Carlo solutions to

deep penetration problems.
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6.2 Comparison of Fractional Standard Deviations

The fractional standard deviations (FSD) of the total neutron flux
from the Monte Carlo calculations with different biasing techniques are
presented in Table 5. The results are arranged according to the decreas-

ing order of the FSD's associated with detector 1. Essentially, the

same decreasing order is true for the other detectors as well.
Individually, detector 1 receives the most benefit from the biasing
techniques fo]lowed in order by detectors 2, 3, and 4. The FSD decreases
from 12% to about 2% for detector 1, from 16% to about 7% for detector

2, from 50% to less than 20% for detector 3, and from 47% to 20% for
detector 4.

It is apparent, from Table 5, that the (0.5) calculation is
grossly inadequate. Source biasing by the étep function (SS) improves
the FSD's for detectors 1 and 3 a great deal but not much help for
other two detectors. Using the importance functions x* and W
obtained from the adjoint DOT calculation with axial adjoint source,
the (S), (A), and (P) calculations significantly reduce the FSD's.
for all four detectors. It is interesting to note that the improved
source biasing (S) reduces the FSD at each of the four detectors
by one-half. The combinations of any two (of the three) biasing
techniques, i.e., (AP), (SP), or (SA), show some improvement over
(S), (P), and (A). However, there seems to be a general tendency
of these calculations to underestimate the answers. Finally, no
further gain is obtained from the combination of all three biasing

techniques (SAP) and the answer itself is strongly underestimated.
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TABLE 5

FRACTIONAL STANDARD DEVIATIONS OF THE TOTAL NEUTRON
FLUX FROM THE MONTE CARLO CALCULATIONS WITH VARIOQUS
SAMPLING TECHNIQUES FOR THE STANDARD PROBLEM

Detectors:

Calculation

Identification 1 2 3 4
(0.5) 0.124 0.159 0.498 0.472
(SS) 0.048 0.149 0.269 0.425
(") 0.028 0.051 0.237 0.397
(S) 0.026 0.073 0.173 0.211
(A) 0.024 0.077 0.157 0.188
(AP) 0.024 0.067 0.223 0.255
(SAP) 0.023 0.080 0.186 0.222
(SP) 0.020 0.084 0.175 0.227
(SA) 0.014 0.045 0.243 0.269
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An important point not to be overlooked is that the three
biasing schemes, (S), (P), and (A), each utilized (or represented)
the importance data to different degrees of precision. The source
biasing (S) most completely utilized the importance data because the
scalar adjoint flux could be quite accurateiy approximated by the
analytical function IS(R) which was the importance function for
source biasing (S). The path length biasing and the angular probability
biasing techniques utilized the adjoint information in a less precise
manner because the importance functions used in these biasing

schemes were region-averaged quantities.

6.3 Spatial Distribution of Collision Sites

Figures 11 through 16 show the spatial distribution of neutron
collision sites according to regions within the concrete shield. For
the (0.5) calculation, Figure 11 shows that a large fraction of
collisions occurred in regions far removed from the duct. This is
largely due to the unbiased source distribution which generated most
of the source particles away from the duct. The step biasing of the
source and the source biasing by DOT scalar adjoint flux greatly
increased the souvrce particles produced near the duct. Hence, the
percent of collisions occurring within regions 7 through 12 increased
considerably. The angular probability biasing and the path Tength
biasing seemed to encourage the particles to penetrate deeper into the

shield as can be seen in Figures 13, 14, and 16.
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Figure 11. Distribution of Neutron Collision Sites for the
(0.5) Calculation.
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Figure 12. Distribution of Neutron Collision Sites for_the (S)
Calculation.
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Figure 13. Distribution of Neutron Collision Sites for the (P)
Calculation,
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Figure 14. Distribution of Neutron Collision Sites for the (A)
Calculation,
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Figure 15. Distribution of Neutron Collision Sites for the (SP)

Calculation.,
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Figure 16. Distribution of Neutron Collision Sites for the (SA)
Calculation,
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6.4 Path Length Biasing Using Different Importance Functions

Tables 6 and 7 compare results of Monte Carlo calculations using
different importance functions for path length biasing and angular
probability biasing. Each calculation consumed one hour computer
time, and the batch size was 400 histories.

Table 6 is a comparison of results of Monte Carlo calculations
using different importance functions for the path length biasing.

The (0.5) calculation is also included because it represented the
currently accepted practice. The event value and the point value were
employed as the importance functions in (P) and (P~”) respectively.

These value functions were obtained from the same adjoint DOT calculation
with axial adjoint source. However, the event value used in (P"”) was
obtained from the adjoint DOT calculation with the off-axial adjoint
source. Obviously, the (0.5) calculation is grossly ineffective.

Among the other three calculations, (P”) has the highest FSD's for
detectors 1 and 2, and the lowest FSD's for detectors 3 and 4. Based

on the results of detectors 1 and 2, the event value would seem to be

the appropriate importance function for biasing the transport kernel.

6.5 Angular Probability Biasing Using Different Point Values

Table 7 contains a comparison of results for the (0.5) calculation
and for the angular probability biasing using point values obtained from
adjoint DOT calculations with the axial and the off-axial adjoint sources.
The FSD's of (A) and (A”) calculations are very close at all four
detectors., For angular probability biasing, the x* importance function

obtained from the adjoint DOT calculation with the off-axial adjoint



TABLE 6

COMPARISON OF TOTAL NEUTRON FLUX® OF MONTE CARLG CALCULATIONS USING DIFFERENT
IMPORTANCE FUNCTIONS FOR PATH LENGTH BIASING

Number Detectors:
of
Batches 1 2 3 4
(0.5) 31 2.868-9¢(. 124)6 9.071-10(.159) 4,677-11(.498) 2.241-11(.472)
(P)b 41 2.830-9(.028) 1.030-9(.051) 3.987-11(.237) 1.746-11{.397)
(P‘)C 42 3.282~ 9( 065) 1.335-9(.065) 4,019-11(.166) 1.466-11(.201)
(P")d 45 2.853-9(.032) 9.346-10(.058) 4,219-11(,359) 1.399-11(.247)

. . 2
Unit = neutrons/cm™/souree neutron,

bPath length biasing by the event value W from DOT adjoint ca]cu}ation with axial adjoint source,

“path length biasing by the point value x* from DOT adjoint calculation with axial adjoint source.

d?ath fength biasing by the event value W from DOT adjoint calculation with off-axial adjoint

saurce.

®Read as 2.868 x 1070

with fractional standard deviation of 0.124,

LL



TABLE 7

COMPARISON OF TOTAL NEUTRON FLUX® OF MONTE CARLO CALCULATIONS USING DIFFERENT
POINT VALUES FOR ANGULAR PROBABILITY BIASING

Number Detectors:
of
Batches 1 2 3 4
(0.5) 31 2.868-9(.124)d 9.071-10(.159) 4.677-11(.498) 2.241-11(.472)
(A)b 60 2.928-9(.024) 1.085-9(.077) 3.039-11(.157) 1.165-11(.188)
(A’)C 61 3.084-9(.030) 1.280-9(.086) 3.691-11(.156) 1.314-11(.168)

A, - 2
Unit = neutrons/cm /source neutron,

bAngu]ar probability biasing with x* from DOT adjoint calculation with axial adjoint source.

CAngu]ar probability biasing with x* from DOT adjoint calculation with off-axial adjoint source.

d 9

Read as 2.868 x 10~

with fractional standard deviation of 0.124.

el
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source seems to be equally effective as that obtained from the
adjoint DOT calculation with the axial adjoint source. Finally,
comparison with (0.5) calculations clearly demonstrates the

effectiveness of the angular probability biasing technique.



CHAPTER VII
CONCL.USTIONS AND RECOMMENDATIONS

Methods of biasing three-dimensional deep penetration Monte Carlo
calculations using importance functions obtained from a two-dimensional
discrete ordinates adjoint calculation have been developed and system-
atically evaluated. The important distinction was made between the
application of the point value and the application of the event value
to bias the transport and the collision processes in Monte Carlo
analysis. The biasing techniques developed in this work were the
angular probability biasing (A) which altered the collision kernel
using the poing value as the importance function and the path length
biasing (P) which altered the transport kernel using the event value
as the importance function. Source Tocation biasing using the step
function (SS) and using the group one scalar adjoint flux obtained
from the two-dimensional discrete ordinates adjoint calculation (S)

were also investigated.

The angular probability biasing, path length biasing, and source
location biasing were applied individually and in various combinations
to solve the standard problem, The standard problem consisted of a
thick (deep penetration) concrete cylinder with an axial duct (geometric
complexity) and a 14-MeV neutron source uniformly distributed over
the bottom surface.

Results of calculations using the biasing techniques (A), (P), and
(S) were compared with a discrete ordinates solution and two standard
Monte Carlo calculations. The calculations using the biasing techniques

were shown to be clearly superior to the standard Monte Carlo calculations.
74
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Based on the FSD's of answers of detectors 1 and 2, the biased calculations
were a factor of 2 to 8 better than the (0.5) calculation, and a factor
of 1.5 to 3.4 better than the calculation with the step source biasing.
These improvements clearly demonstrate the applicability and
effectiveness of the importance sampling techniques in deep penetration,
three-dimensional Monte Carlo calculations.

The comparison of results of Monte Carlo calculations with path
length biasing using respectively the event value and the point value
as the importance function showed that the event value calculation
gave much better statistics (the FSD reduced by a factor of 2) than the
point value. Hence, it was concluded that the event value is the
appropriate function for altering the transport kernel. The effects
of the importance functions, which were obtained from the discrete
ordinates adjoint calculation with the off-axial adjoint source, to
the biasing techniques were also investigated. Probably due to the
nature of the standard problem, these importance functions appeared to
be as effective as those obtained from the adjoint calculation with
the axial adjoint source.

The techniques of biasing the transport and collision kernels
developed in this study were shown to be effective and applicable
to the Monte Carlo analysis of three—dimensidna] deep penetration
shielding problems. However, for further research, the following
areas are recommended.

1. The effect of higher-order Legendre expansion of the

differential scattering cross section to the angular

probability biasing should be studied. Since a
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higher-order expansion allows more scattering directions
in the collision process, a more complete utilization of
the point value importance information to bias the
collision kernel would be possible.

Biasing of the azimuthal dependence of the scattering
directions should also be studied. One possible
approach would be to discretize the cones formed by

the scattering polar angles and then bias these discrete
directions by the point value.

Increase the number of spatial regions of the problem

so that better representation and utilization of the
two-dimensional adjoint flux could be achieved. This
should be particularly helpful to the path length
biasing when applied to a problem which has a complex
geometry such as the streaming duct.

Finally, the possibility of applying these methods to
solve more complicated streaming duct problems should

be investigated,
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APPENDIXES

APPENDIX A

COMPUTER PROGRAMS

Input Instruction and Listing of the POINT Program

The POINT program consists of a main routine and a subroutine

SATURN.

the FIDO format.(

The input to this program is written in the free-form of

19) Presented below is the input instruction and

the listing of the program.

13$ array:

2%%

3%%

4%$

NAFT
NABC
IREG
JREG
MMDN
NEWDN

NEWMM

NREG

array:

array:

array:

NAFT, NABC, IREG, JREG, MMDN, NEWDN, NEWMM, NREG T

logical unit number of the adjoint angular flux tape
logical unit number of the point value tape

number of regions in radial direction

number of regions in axial direction

number of downward directions in the angular quadrature set
number of downward directions with nonzero weights in the
angular quadrature set

number of total directions with nonzero weights in the
anguiar quadrature set

total number of regions, IREG x JREG

IRLO(L), L=1, IREG - mesh number of the lower boundaries of
region L in radial direction

IRUP(L), L=1, IREG - mesh number of the upper boundaries

of region L in radial direction

IZLO(L), L=1, JREG - mesh number of the lower boundaries

of region L in axial direction

81
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5$$ array: IZUP(L), L=1, JREG - mesh number of the upper boundaries

of region L in axial direction T

C THE POINT PRQGRAM

COMMON /BULKBU/ A(1) el 1ol 29l 3eb 4ol 5ol 690 7+L8¢0L 99 10sL21sL12y013
1 oL14eL15+L1640L17

2 +TDOT(18) sMM2IMaUM;s IGsNINyNOU

3 oNAFTWNABCIREGs JREGsMMDNsNEWDN s NEWMM s NRE G
4 «DUMMY (70000)

DIMENSION LA(1)

EQUIVALENCE (A(l)sLAL(1))

LENGTH=70050

DO 5 I=1+LENGTH

A(IY=0,

NIN=5

NOU=6

L1=43

L2=L1+8

NERR=0

CALL FIDO(2+IERR«NINyNOU)

crunesaapDIT PARAMETERS

1005

C&%#%
Coann

1010

1015

LIPB=L1+7
WRITE (NOUs1005) (LA(I)«I=L1.L1P8)

FORMAT (*QOPARAMETERS INPUT FROM CARDecescss!/

1 /7 v NAFT =¢+13+3Xs'L0G UNTT # FOR INPUT ANGULAR FLUX TaPgs

2 / * NABC =',13s3Xs'L0G UNIT # FOR QUTPUT ANGULAR BIASING FUNCT!
3/ v IREG =?'4I3+3Xs*NUMBER OF REGIONS TN RADIAL DIRFCTTON?

4 / ¢ JREG ='+13+3Xs 'NUMBER OF REGIONS IN AXIAL DIRECTION?

5 7/ v MMDN =1,13+3Xs 'NUMBER OF DOWNWARD ANGLES IN QUADRATURE SET?
& / v NEWDN='+.13+3Xs"NEW NUMBER OF DOWNWARD ANGLES?

7/ v NEWMM=%+I1393X+'NEW NUMBER OF TOTAL ANGLES?

8 7/ ' NREG ='4I3e3X+9TOTAL # OF REGIONy IREGHJREG!)

##READ THE FIRST RECORD OF ANGULAR FLUX TAPE NAFTLGAND PUT THE 1ST

#% 18 WARDS INTO TDOT ARRAY, THEN NEST 27 WARDS INTO A(L2) ARRAY
CALL REWNDINAFT)

CALL WANDRZI(NAFT»TDOT+1BsA(L2)227+2)

WRITE (NOUs1010) TDOT

FORMAT ('0DOT DATA TO0 8t PROCESSED FROMwwww~ *y18A4)
MM=| A(L.2+3)

IM=A(L2+6)

JM=LA(L2+7)

1G=LA(L2+26)

WRITE (NOUs1015) MM IMyJIMIG

FORMAT (*O0PARAMMETERS INPUT FROM DOT~-=-t

1 7/ ¢ MM =8 431393Xs 'NUMBER OF DIRECTIONS!
2/ v IM =V4T1393Xs "NUMBER OF RADIAL INTERVALSY
3 /7 v UM =12 13+3Xe 'NUMBER OF AXIAL INTERVALS?
& / v IG =1 e13«3X«"NUMBER OF ENERGY GROUPS*)
CALL CLEARX(A(LZ) 21e27)

L3=L2+IREG

La=3+1REG

LS=L4+JREG

Lé6=L5+JREG

LT=LEsMM

LB 7T+MM

LI9= 8+MM

L10=L9+MM

L11=L10+1IM+1

L12=L11+JM+1

[L13=L12+IREG

L14=L13+JREG

L1S=L14a+IM*MMON

L16=L 15« IREGHUMTNEWDN

L17 =L16«IREG*JREG*NEWMM



83

LAST=L17+NEWMM®*NREG# G
WRITE (NOU»1017) LAST+LENGTH

1017 FORMAT (#0%#r,76,' DATA LOCATIONS REQUIRED VS. AVAILABLE'»1§)
TF (LAST .6T. LENGTH) CALL ERROR(YLAST!.LAST)
CALL FIDO(2+TERRSNININGU)
NERR=NERR+TERR
TF (NERR .G6T. 0) CALL ERRO('*DATA?NERR)

CaasesuPRINT ARRAYS IMPUT FROM SECOND DATA BLOCKS OF FIDO

L3M1=L3~]
WRITE (NOU»1020) (LAC(T) s I=L2y) 3M1)

1020 FORMAT(*QIPLO(L)« INDEX OF LOWER LIMIT OF REGION L IN R DIRECTION?
1 / (2X913))
LéeMi=L 6]
WRITE (NQUs1030) (LACI) sT=L 35 4M])

1030 FORMAT (#0IRUP (L) s INDEX OF UPPER LIMIT OF REGION L IN R DIRECTION:®
1 7/ (2%X513))
LSM1=L5~-1
WRITE (NOU»1040) (LAUIL) sI=L4,y1 5M1)

1040 FORMAT(*QIZLO(L) s INDEX OF LOWER LIMIT OF REGION L IN Z DIRECTION®
1 /7 (2X»13))
LéMi=L6~]
WRITE (NQU«10S0) (LACT) ¢ T=L Sel 6M1)

1050 FORMAT(PQIZUP (L) s INDEX OF UPPER LIMIT OF REGION L IN Z DIRECTION?
1 7/ (2Xs13))
CALL SATURNGLA(LZ) »sLALI) sLACLA) sLACLS) s A(LB)Y «A(LT) sACLBI ALY »
1 ACLIO) o ACLTIT) s A(LIZ2)Y s ACLIZY s A(LEA) sA(L1IS) 0 A(LIE) sA(LLT))
sTop
END

SUBROUTINE SATURN(IRLOSIRUPYTIZLOsIZUPsWTN+WGT o XMUSETAS

1 RoZs AREAVHEIGHT 2 AFLUX s AAF 9 AD s COF)

DIMENSTION PHE(150)

DIMENSION TRLOC(I)»IRUP (1) «TZLOC(L) s TZUP (1) 9 WGT (1) o XMU(1)ETAL])

1 WINCLY#R(1)2Z(1) s AREACL) o HEIGHT (1)
DIMENSTION AFLUX(IMsMMON) » AAF (IREG+JMsNEWDN) » AD (NEWMM s JREGe TREG) v
1 COF (NEWMMaNREGY IG) :

COMMON /7BULKBU/ A1) sl 1oL 240390 4oL Sol 64l 790 8sL9aL 1090 11sL12s013

1 sL14sL150L16.L17

2 +TDOT(18) «MMsIMs UM TGsNINSNOU

3 NAFTSNABCIREGe JREGeMMDN s NEWDN « NEWMM s NREG

4 yDUMMY (70000)
CresroateawGY (1) IS THE ANGULAR WEIGHT ARRAY
cHunsssareXMlU(]1) IS THE MU ARRAY
Ccourestanaf TA(]) IS ETA ARRAYs ETA BEING THE POLAR ANGLE
grevnssrss INPUT QUADRATURE AND MESH DATA
cresendsealKIP THE 2ND» 3RDs AND 4TH RECORD IN NAFT

CALL WANDRO (NAFT.3)
CoaudnatdaREAD I¥MM+ TN+ IM+2 WORDS FROM THE 5TH RECORD

CALL WANDRL (NAFTsWEGT « 3I#MM+IM+UM+2,2)
ceasneasr) TMINATE ANGLES WITH ZERO WEIGHTe AND RENUMBER THE ANGLES

N=(

DO 62 M=1sMM

IF (WGT (M) JEQ. 0.} GO TO 62

p=h+ ]

WTIN(N)=WGT (M)
cunenesuus REFIECT XMU & ETA ANGLES WRT THE ORIGIN

XMU (N) == XMU (M)}

ETA(N)=~ETA (M)

PHE (N) =SQRT () 0=-XMU(N) ##2=FETA (N) ##2)
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62 CONTINUE
WRITE (NQU.15) N
15 FORMAT (*ON=t4J4+4Xs 'SHOULD BE EQUAL TO NEWMM?)
NEWMM=N
WRITE (NOU.10)
10 FORMAT (1H1a1l0Xe7H WEIGHT 98Xe3H MUsSXadH ETAB8Xs 'RADIUS s TX4
1 tHEIGHT Y 99X s 'PHEY)
CALL WOTB(WTNNEWMMs XMUSNEWMMyETASNEWMMyRs TM+1 o Zs M+l o PHE s NEWMM,
1 0+204s0409sNOW)
WRITE (NABC) (XMU(M) 9 M=1 « NEWMM) 9 (ETA(M) sM=1 ¢+ NEWMM)
CALL TIMEX
CouaaaernzpOSITION AND READ ANGULAR FLUX TAPE THEN PROCESS THEM
CALL WANDRO(NAFTLIG+1)
00 60 TIG=191I6G
DO 82 J=1»JM
NNENLESEN
coensrasreREAD DOWMWARD ANGULAR FLUX
CALL WANDRYI (NAFTaAFLUX s IM*MMDNs2)
D0 83 I=l.1IM
N=(g
DO B3 M=1sMMDN
TF (WGT(M) LeQ. 0.) GO TO 83
N=N+1
AFLUX(IgN)=AFLUX (1oM)
IF (AFLUX(IeN) LT, 0.) AFLUX(TeN)=0.
83 CONTINUE
NEWDN=N
Caaraaeter AVERAGE DOWNWARD ANGULAR FLUX OQOVER RADIAL DIRECTION
DO 85 L.=1sIREG
ILOW=TRLO (L)}
TUP=TIRUP (L)
TUPMI=TUP~]
ARFA(L)=3414159% (R{IUP) ##2~-R(I1.OW) #%2)
DO 86 M=1sNEWDN
AAF (LeJdJsM)=0.0
DO 86 T=1ILOW;IUPM]
86 AAF (LaJJeM)=AAF (Lo JJaM) +AFLUX(IoM)#3, 141598 (R(I+]1)##2-R(T1)#e2)/
1 AREA(L)
85 CONTTINVE
82 CONTINUE
Cruareasrtrr AVERAGE DOWNWARD ANGULAR FLUX OVER AXIAL DIRECTION
DO 87 L=1+IREG
DO 87 K=1sJREG
JLOW=]ZLO (K)
JUP=IZUP (K}
JUPMI=JuP~1
HEIGHT (K)=Z ( JUP) =Z (JLOW)
DO 87 M=14NEWDN
AD(MsKelL)=0.0
DO 89 J=JLOW, JUPM]
B89 AD(MeKeL)=AD (MeKelL)+AAF (Lo dsM) X (ZCJ+1)~Z(J)) /HEIGHT (K)
&7 CONTINUE
MMUP =MM-MMDN
CaannusieaREAD UPWARD ANGULAR FLUX
DO 92 J=lsJM
CALL WANDRLT(NAFT sAFLUX s IMAMMUPy2)
DO 93 I=1sIM
N=0
DO 93 M=1+MMUP
MOP=M+MMDN
IF (WGT(MOP) LEQ. 0.0) 60 TO 93
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85

N=N+1

AFLUX (T oN)=AFLUX (I M)

IF (AFLUX{IsN) JLT. D.) AFLUX(T#N)=0,
CONTINUE

NEWUP =N

Couvsnanaa AVERAGE UPWARD ANGULAR FLUX OVER RADTAL DIRECTION

96

95
92

DO 95 L=1sIREG
TLOW=LIRLO (L)
IUP=IRUP (L)
IUPMI=TIUP~-]

DO 96 M=1,NEWUP
AAF (LyJ sM)=0.0

DO 96 I=ILOW,IUPML
AAF(Lsd oM)=AAF (Lad »MI*AFLUX(ToMI*3, 141595 (R(T+])#u2-R(])%#52)/
1 AREA(L)

CONTINUE

CONT INUE

Crossaedsat AVERAGE UPWARD ANGULAR FLUX OVER AXYAL DIRECTION

99
97

DO 97 L=1sIREG

DO 97 K=1»JREG

JLOW=TZLO(K)

JUP=IZUP (K)

JUPMI=gup=-1

DO 97 M=1sNEWUP

MMM=M+NEWON

AD (MMMaKL)=0,0

DO 99 J=JLOWaJUPMI

AD(MMMoK ol ) =AD IMMMo Kol ) @ AAF (Lo JaMI¥ (Z(J+1)~7(J)) /HEIGHT (K)
CONTINUE :
DO 100 {=1+IREG

00 100 K=1+JREG

Coasavsnss COMBINE R-Z REGION INDICES La»K INTO ONE INDEXs!

120
100

61
€0

I=JREG* (L~1)+K

DO 120 M=1+NEWMM

COF (MaTal1G)=AD(MaRoL)

CONT INUE

CONT INUE

IK=IG+1~+116

WRITE (NOUe61) IK

FORMAT ('0GROUP*,T4492Xs " ANGULAR ADJOINT READ FROM TAPE")
CONT INUE :

crusaannte REVERSE ENERGY GROUP NUMBER OF THE POINT VALUE FUNCTION

1390

136

CG&&#

135

TGHALF=1G/2

00 130 I16G=1ls1GHALF

Kl=1G+1-116G

DO 130 I=14NREG

DO 130 M=1+NEWMM

DUM=CDF (Ms1457116)

COF(MsTeIIG)=CDF (Mg1sK1)

COF (Me K1) =pUM

CONTINUE

NREGM3=NREG-JREG

DO 135 11G=1.16

WRITE (NOUs136) I11G

FORMAT (fHls YTHE PQOINT VALUE FUNCTION OF GROUPY'.T4)
CALL WOT(COF({191e11G) +NREGM34NEWMM 19 *ANGL 9 *REGN? o ? v

wazas WRITE THE POINT VALUE FUNCTIONS ON NABC BY GROUP
WRITE (MABC) ((CDOF (MsIo11G) sMz1sNEWMM) o I=13NREG)
CONTINUE

sToP

END
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A.2 Input Instruction and Listing of the EVENT Program

The EVENT program consists of a main routine and subroutines,
PEASE and PCON. Like the POINT program, the input to the EVENT program
is written in the free-form of the FIDO format. The input instruction
and the 1isting of this program are presented as follows.
1$$ array: IGM, IM, JM, MM, NEWMM, IREG, JREG, NREG, LMAX, NIZ4,

NEVF T
IGM ~ number of energy groups
IM - number of radial intervals
JM - number of axial intervals
MM - number of directions in the angular quadrature set
NEWMM - number of directions with nonzerc weights in the angular
quadrature set

IREG - number of regions in radial direction

JREG ~ number of regions in axial direction

NREG - total number of regions, IREG x JREG

LMAX - the order of Legendre Polynomial expansion of the differential

scattering cross section

NIZ4 - Tlogical unit number for the scattering source tape

NEVF - logical unit number for the event value tape
2*% aprray: CST(IG), IG=1, IGM - total macroscopic cross section by

group (input in reversed energy group number)
3** array: R(I), I=1, IM+*1 - boundaries of radial intervals
4** array: Z(J), J=1, JM1 - boundaries of axial intervals
5** arvay: IRLO(L), L=1, IREG - mesh number of the lower boundaries

of region L in radial direction
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6** array: IRUP(L), L=1, IREG - mesh number of the upper boundaries
of region L in radial direction

7%% array: [IZLO(L), L=1, JREG - mesh number of the lower boundaries
of region L in axial direction

8** array: IZUP(L), L=1, JREG ~ mesh number of the upper boundaries
of region L in axial direction |

9%* array: WGT(M), M=1, MM - weights associated to the directions in
the angular quadrature set

10%* array: XMU(M), M=1, MM - direction cosines with respect to the
radial direction in the angular quadrature set

11** array: ETA(M), M=1, MM - direction cosines with respect to the

axial direction in the angular quadrature set
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C THE EVENT PRQGRAM

COMMON /BULKBU/ A{1) sl 1ol 20l 3al 6oL 5l 69l Tol 8eL. 9oL 10
1 eL11eb 120 13eL 140 15sL16«L 170 16:L19:L20
2 CNTINgNDU» IGMe IMe JM oMM NENMMY TREG s JREG+NREGLMAX
3 WNTZ4«NEVF

& SDUMMY (£4000)

DIMENSION LA(])

EQUIVALENCE (A(1)sLAC(L))

LENGTH=64000

DO S5 I=1.LENGTH

S A(T)Y=0,0

NIN=5

NOU=6

Ll1=24

L2=11+11

NERR=0

C#=READ 1$$% ARRAY

CALL FIDQ(2sIERRsNINsNOU)

L1P=L1+10

WRITE(NOUS100S) (LA(CI) «I=L1-L1P)

1005 FORMAT (*QPARAMETERS INPUT FROM CARDSceeceaseat/

# / v IGM  =',13+43Xs"NUMBFR OF ENERGY GROUPS!
& / IM =09 1343Xy INUMBER OF RANDIAL INTERVAL?
® /7 0 UM =1,13+3Xs *NUMBER OF AXTAL INTERVALS?

® /v MM =9,T13+3Xs *NUMBER OF DIRECTIONS?
® /0 NEWMM=1,13+3Xs *NEW NUMBES OF DIRECTIONS?
® / ¢ IREG ='y13+3Xs'# OF REGIONS IN RADIAL DIRECTION?
® / v JREG =t4y13+3Xy9'# OF REGIONS IN aAXIAL DIRECTION?
% / ¢ NREG ='413s3Xs tNUMBER OF REGTIONS®
& / v LMAX =1',13+3Xy "MAXIMUM ORDER OF SCATTERING!
# / v NIZ4 =',1343X9'L0G # FOR SCATTERING SOURCE TAPE?!
# / ¢+ NEVF ='31343Xs'L0G # FOR EVENT VALUE TAPE")
ISC=LMAX+]

LMz (LMAXZ (LMAX+3)) /2

LMP1=LM+]

KIM=2# L. MAX+]

WRITE (NOUs939) ISCyLMyLMPLlyKIM
999 FORMAT (10 ISC=0913+4Xy? LM=ty3I3s4Xe? LMP1I=?5T7344Xs

1 tKIM='413)

L3zL2+1GM

L4=1 3+IM+1

5= 4+IMe]

L6=L.5+1REG

L7=6+1IREG

LB=L7+JREG

LS=L8+JREG

L10=L9+MM

L11=L10+MM

L12=L11+MM

L13=L12+NEWMMHLM

L14=L13+UMP]I®*NREG

LIS=UL 14+ NEWMMENREGH [ GM

L16=L15+«NEWMM*TSC*TSC

L17=t16+KIM

LI8=L17+NEWMM

L19=L18+IMBIMEL MP]

L20=L19+IREG

LAST=L20+JREG

WRITE(NQUs1010) LASTHLENGTH
1010 FORMAT (v0#®v,T76s* DATA LOCATIONS REQUIRED VS.
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89

AVAILABEL 1416)
IF (LAST «GT. LENGTH) CALL ERROR(*LAST®,{ AST)
CALL FIDO(2+sIERRININSNOU)
NERR=NERR+TERR
IF(NERR ,L,GT. 0) CALL ERRO('DATA*+NERR)
WRITE (NOU1020)

1020 FORMAT (1H1510Xet WEIGHT 148Xyt MUI,9Xet ETA18X,

1

1

YRADIUS s TX s tHEIGHT )

CALL WOTB(A(LY) +MMeA(LL10) oMMaATLL11) sMMyA(L3) 9 IM41,
A(LG) e UM+1 4030904020004 NOU)

WRITE (NOUS1030)

1030 FORMAT (1H1410Xst CST?4B8Xs tTRLOY 98X TIRUPI$BXs*TZ{L 0Oy

1050

1
1

1
2

1
2

1
2
3
1

1

8XstI2UPY)
CALL WOTB(A(L2)sIGMeA(LS)yIREGeA(LA) 9y IREGsA(LTY) s JREGY
A(LB) s JREGs0»040+¢020904NOU)

CALL PEACE(A(L2)Y +A{L3)2A(L4) s ALLS) sA(LE)SA(LT)YSA(LB) s
A(LG)Y s ALI0Y 9A(LIL) »ACLIZ2)sA(L1I3)9A(L14)A(LIS),
A(LLIE) s ACLLIT)Y o ALL1IB) s A(LIG) sA(L20) o LMsLMP 1y ISCaKIM)

STop

END

SUBROUTINE PEACE(CSTsR9Z2aIRLOYIRUPSIZLOs IZUPsWEBT 9 XMUy
ETAsPLsTsWyPNeBsCPsSSsAREALHETIGHT S
LMyLMPLeISCaKIM)
COMMON /BULKBUZ A{1)sl1sl 29L 3L 4sL5eL 69 TsLBsL9sL10
L1190 12s0L13sL144L15sL169L 1751180154120
sNINIMOU2» IGMe IMe JMa MM NEWMMy TREG s JREGNREGs L MAX
s NIZ4& s NEVF
DIMENSION CST(1)sR(1)eZ (1) +IRLOCYL) »IRUP (1) »IZL0(1)
TZUP (1) sWGT (1) s XMU(]1)2ETA(])
DIMENSION PLINEWMMoLM) s T(LMP1+NREG) «W(NEWMM+NREGL IGM) p
PN(NEWMMaISCaISC) o B{KIM) 4 CP (NEWMM) 2 SS{IMeUMyLMP1)
DIMENSION AREA(IREG) +HEIGHT (JREG)
CALL PCOM(XMUSETASMET «PL+PNIRICPsNEWMM, ISCeLMAX)
WRITE {(NOUs1050)
FORMAT(1Hl1e? TESTING PCON®)
CALL WOT(PLILMsNEWMMs 1o *ANGL Y4 PLMCtsr  ¥)

¢ ELIMINATE ZERO WEIGHT DIRECTIONS. & REORDER THE DIRECTIONS
THEN REFLECT XMU & ETA WITH RESPECT TO THE ORIGIN,

C

10
1000

1010

1020 FORMAT (1H1 ¢

1

N=0

DQ 10 M=1+MM

IF (WGT (M) «EQ. 04) GO TO 10

N=N+l

WGT (N)=WGT (M)

XMU(N) =« XM (M)

ETAIN)=-ETA (M)

CONTINUE

WRITE(MOU=1000)

FORMAT (141 MU & ETA AFTER REFLECTEDY)

WRITE (NOUS1010)

FORMAT (1HQ+10Xe? WEIGHRT 148Xt MUt sGXet ETAY)

CALL WOTHB(WGT e NEWMMe XMUSNEWMMETAINEWMMy
0909090304090, 040+0NOU)

CALL PCOM(XMUIETASWGTsPLyPNsBCPaNEWMMSTSCyLMAX)

WRITE(NQU«1020)

DISCRETE VALUES OF PLM(THETA)#COS (M#PS]) 1)

CALL WOT(PLsLMINEWMMal, *ANGL Y« *PLMCt, 0 ')
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CasCALCULATE THE EVENT VALUE FOR EACH GROUP
C#2NOTE THAT THE GROUP NUMBER IS IN REVERSE ORDER

PO 20 IG=1+IGM
READ(NIZ4) (C(SSUIadsll)oI=lsIMIsU=1odM) sl =1L MPY)

C#3AVERAGE SCATTERING SOURCE OVER REGION

25
23

27
26
20
1001
1002

1003

00 23 L=1+IREG

ILOW=IRLO (L)

TUP =IRUP (L)

TUPMI=TUP~-]

AREA(L) =3.141059%{(R(IUP) ##2 -~ R(TLOW)#%2)
DO 23 X=1+JREG

JLOW=IZLO (K}

JUP =1ZUP (K}

JUPML=JUP~1

HEIGHT (K =Z (JUP)Y -~ Z(JLOW)
NR=JREG#(L-1) +K

DO 23 LL=1.LHMP1

T(LLsNR)=0,0

DO 25 J=JLOW,JUPM]

DO 25 I=1LOW,IUPML

TILLeNRY =T{LLINR) + SS(IypJdellL)
TILLaNRY= T(LLeNRI/(HETIGHT (KY®AREA (L))
CONTINUEL

D0 26 NR=1yNREG

DO 26 Mz19NEWMM

W(MsNRs IG) =T (1sNR)

DO 27 LL=1stM

W(MINR$IG) =W (MsNRsIG) + PL(MLL)#T(LL+1+NR)
WIMeNRIG) =W (MsNRyIG) /(4.0%3.14159%CST(IG))
CONTINUE

CONTINUE

WRITE (NOUs1001)

FORMAT ('0 AREA OF RADIAL REGION?)
WRITE (NOU+1002) (AREA(L) «L=14+IREG)
FORMAT (464X 1PEL12.5)

WRITE (NOUs1003)

FORMAT (*0 HEIGHT OF AXTAL REGION?®)
WRITE (NOUs1002) (HEIGHT(K) +K=1¢JREG)

C=#REVERSE ENERGY GROUP NUMBER OF EVENT VALUE FUNCTIOM, ¥

30

IGMHLF=IGM/2

DO 30 IG=1,IGMHLF
K1=1GM+1~-1G

DO 30 NR=14NREG
DO 30 M=) NEWMM
DUM=W (M3 NRy IG)
WIMyNRyIG) =W (IMsNRoK1)
W(MyNRsK 1) =DUM
CONT INUE
NREGM3=NREG~3

DO 40 IG=141IGM

C2=2WRITE THE EVENT VALUE FUNCTION ON TAPEs NEVF BY GROUP

WRTTE (NEVF) ((W{M;NRyIG) sM=1 5 NEWMM) sNR=1yHREGM3)

Co#aPRINT THE EVENT VALUE FUNCTION BY GROUP

1030

40

WRITE (NOU«1030) IG

FORMAT (1H]1 < * THE EVENT VALUE FUNCTION OF GROUPY.14)

CALL WOT(W(1l41l9IG) yNREGMIsNEWMMs1 o tANGIL V9 tREGN 4 t)
CONTINUE

RETURN

END
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SUBROUTINE PCON (EMUSETA»WePLsPNsASCPyMMISCHISCT)
DIMENSION EMU(CL) 9ETA (1) 9W 1) 4sPL (MMa1) 4PN (MM ISCyl)y
1 Afl)sCP(D)

C ==~ PCON CALCULATES A(L+MeD) TERMS FOR INSCATTER INTEGRAL

c USING VARYING ORDER RECURSION FORMULA

[} REFERENCE EQ. 8.5.1 = ABRAMOWITZ & STEGUN
TFM = 22715CT+1
a1y = 1,0

DO 1010 I=2»1IFM
1010 A(I) = FLOAT(I-1)#®A(I~1)

D0 1030 M=19MM

El = 0.0

IF (W(M).EQR.0.0) GO TO 1015

£1 = SORT(1.0=EMU (M) SEMU(MI~ETA(M)*ETA(M))
1015 CP(M) = ATAN(EL/ETA(M))

IF (ETAIM) L T.0.0) CPIM) = CP(M)+3.1415927
PN{Mslel) = 1.0

PN{Me2¢1) = EMUI(M)

PN(Me297) = SORT(1.0-EMU (M) =EMU(M))

IF (ISCT.LE.1) GO TO 1030

ROOT = 1,.0/PN(Me222)

DO 1020 N=Zs1SCT

£l = 1.0 =1.0/FLOAT(N)

E2 = E£1+41.0

PN{MaN+141) = E2%EMUM) #*PNIM N 1) ~E1EPNIMaN-1,1)
DO 1020 J=lsN

I1 = N-J+!
12 = N+J=1
£l = 12
E2 = Il k
1020 PNIMeN4LsJ+1) = ROOTH(FLI*PN(MsNsJ) ~E2HEMU (M) #

1 PN{MsN+1+sd))
1030 CONTINUE
LtL = 0
DO 1040 L=2¢1SC
DO 1040 K=1lal
LL = LiL+]
DO 1040 M=1:MM
PLIMsLL) = PNi{MsL oK)
IF (K .EQ.1) GO 7O 1040
El = SQRT(2.0%A(L-K+1)/A(L+X-1))

g2 = K-1
PLIMsLL)Y = E1®PLI(MLLL)#COS(E24CP (M))

1040 IF {(ABS(PL(MyLL})LEL1L0E~5) PL(MsLL) = 0.0
RETURN

END



92

A.3 Subroutines of the Modified MORSE Code

In the modified MORSE code, the random walk subroutines COLISN
and NXTCOL were rewritten in order to incorporate the angular probability
biasing and the path length biasing techniques into the MORSE code.
Also, the subroutine REGION was introduced to track particle flight
trajectories so that path length biasing can be performed. The
subroutine INSCOR was written to read the point value tape, the event
value tape, or both the point value tape and the event value tape.
Finally, two SOURCE subroutines were written. The first one generated

source particle locations according to the source distribution which
was biased by the step importance function, and the second one generated
source particle locations according to the source distribution which
was biased by the DOT adjoint flux.
The listings of these subroutines are presented here in the

following order: SOURCE, INSCOR, COLISN, NXTCOL, and REGION.
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SUBROUTINE souRCE(IG.U.v,wqx-Y-Z,wATEcMED.AsgI§0UD,
1 ITSTR4NQT3IsDOF s TSRINMTG)

C SOURCE DISTRIBUTION BIASED BY A STEP FUNCTION

C

10

21

25

26

30

10

20

R1=10.0

RTOL=190.0

C=1000,0
XJ=(C~1.0)#*R12#R1/(RTOL#*RTOL) +1.0
XK=C#*R]1#R1/{(RTOL*RTOL®*XJ)
RAN=FLTRNF (0}

IF(RANL.GT.XK) GO TO 10

RAD=SQRT (RAN#XJ/C) 2RTOL
WATE=WATE=*XJ/C

GO 70 20

RAD=SORT (RAN#XJ*RTOL¥RTOL=-(C-1,0) *R1=R1)
WATE=WATE®XJ
THETA=2.0%3.14159%FLTRNF{Q)
X=RAD¥*COS (THETA)
Y=RAD*SIN(THETA)

Z=+0.0001

CALL GTISQ(UyVeW)

W=ABS (W)

RETURN

END

SUBROUTINE SOURCE(IGaUsVeWaXsYeZaWATE«MEDIAGYISOURY
1 ITSTR+NQT3+DDF« ISBoNMTG)

SQURCE DISTRIBUTION BIASED 8Y DOT ADJOINT FLUX

REAL®4 MlsM2

M1=0.13155

M2=0.021675

Pl=0.954236

P2=0.040994

RNLI=FLTRNF (0)

IF{RNL «GT. P1) GO TO 10
RADIAL ZONE 1 IS SELECTED
RNZ=FLTRNF (0)

RAD=8B.0#*SORT {RN2)
WATE=WATE®*0.00298086

GO TO 111

PlP2=P1+pP2

IF(RN1 .GT. P1P2) GO TO 30
RADIAL ZQNE: 2 IS SELECTED
RN3=FLTRNF (0}

IF(RN3 .GT. 0.48165) GO T0 25
SELECT FROM S®EXP (-MS)
ETAL=EXPRNF (0)
ETA2=EXPRNF (0)
S=(ETAl+ETAZ) /ML

IF(S «GT. 42.00 GO TQ 21
GO TO 26

SELECT FROM EXP(~MS)
ETA=AMOD fEXPRNF (0) s42.0%ML)
S=ETA/M]

RAD=8.0+5
WATE=WATE#D,25337324EXP (M1#S5)
60 70 111

RADIAL ZONE 3 IS SELECTED
RN4=FLTRNF (Q)
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IF(RN4 .GT. £0.39911) GO TO 35
C SELECT FROM S#EXP(-MS)
31 ETAI=EXPRNF (0)
ETA2=EXPRNF (0)
S=(ETAlL+ETAZ) /M2
IF(S «GT, 100.0) GO TO 31

GO T0O 36
c SELECT FROM EXP (-MS)
35 ETA=AMOD (EXPRNF (0) +100.,0%M2)
S=ETA/M2

36 RAD=50.0+5
WATE=WATE*63,343297#EXP (M42%3)
111 THETA=2.0#3.14159#FLTRNF (0)
X=RAD*CQS(THETA)
Y=RAD*SIN(THETA)
Z=+0.0001
CALL GTISO(UgV W)
W=ABS (W)
RETURN
END

SUBROUTINE INSCOR

C  INCLUDF NEXT LINE IF PATH LENGTH BIASING IS EMPLOYED
COMMON /STEAK/ EVENT(146512+14)
COMMON /ANGUS/ TGMsNRGsNEWMM,NPASPOL (25) 9 IPOLST (25}

1 s JOHNs XMU (146) 2ETA(146)
C INCLUDE NEXT LINE IF ANGULAR PROB. BIASING IS EMPLOYED
2 sCDF(146512414)
1GM=14
NRG=18
NEWMM=146
NABC=13
C INCLUDE NEXT LINE IF PATH LENGTH BIASING IS EMPLOYED
REWIND 14
REWIND NABC
READ (NABC) (XMU(M) oM=1 «NEWMM) 5 (ETA (M) sM=1 s NEWMM)
NM3=NRG~6

DO 100 T1G=1.1IGM

€ INCLUDE NEXT LINE LF ANMGULAR PROB. BIASING IS EMPLOYED
READ (NABC) ((COF (MsToTIG) sM=1 s NEWMM) s I=19NM3)
C INCLUDE NEXT LINE IF PATH LENGTH BIASING IS EMPLOYED

READ(14) ((EVENT(MsT+TIG)sM=1sNEWMM) »I=14NM3)
100 CONTINUE

C DETERMINE THE COSINES OF POLAR ANGLES POL(N) FROM ETA
c AND THEIR STARTING LOCATIONS IPOLST(N) IN NEWMM
c IPOLST(N) IS THE STARTING LOCATION IN THE QUADRATURE
C SET OF THE NTH POLAR ANGLE

N=1

POL (L) =ETA (L)

IPOLST (1) =1

DO 10 M=2+NEWMM
IF (ETA(M) .EQ. POL(N)) GO TQ 10
N=Ns+1
POLIN)=ETA (M)
IPOLST (N) =M
10 CONTINUE
NPA=N
C NPA IS THE TOTAL NUMBER OF POLAR ANGLES
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WRITE(6,4105)
105 FORMAT (*0POLAR ANGLESs POL{N)Y)
WRITE(6.106) (POL (N) sN=1oNPA)}
106 FORMAT (2Xs1PBEL14.5)
WRITE(6.107)
107 FORMAT(*QINDEX OF STARTING POLAR ANGLES, IPOLST(IN) )
WRITE(Hs108) (IPOLSTIN) oN=14MPA)
108 FORMAT (2X+8114)
RETURN
END

SUBROUTINE COLISN(IGsUsVeWsWATE, IMED,NREG)
THIS ROUTINE IS CALLED AT EACH COLLISION
IT CONVERTS INCOMING GROUP NO., DIRECTION COSINES AND
PARTICLE WEIGHT INTO POST COLLISION PARAMETERS
COMMON /ANGUS/ 1GM,NRGsNEWMMyNPASPOL (25) s IPOLST (25)
1 s JOHN s XMU (146) sETA(146)
2 sCDF(146912514)
COMMON /USER/ JUNK(22) yNMTG
COMMON /NUTRQN/ DUMI{13)sXaYs7Z
COMMON/LOCSIG/ISTART 4 ISCCOGs INABOGY IGABOG, IFPORG,
IFNGP+IFSPOG+ IDSGOG IPRBNG+ IPRBGG ISCANGy ISCAGG
ISPORG ISPORT s INPBUF » ISIGOG INFPOGY IABSOG,ITOTSG,
NGP yNDSyNGGINDSGy INGP s INDSyNMED e NELEMaNMIX s NCOEF »
NGCTaMTSsNTG s NDSNGP s NDSNGG TADJINMESLOCy INGS s INSG
11910 KKK IXTAPE S IDEL » ITEMLy ITEMG» IRSG IRDSCG ISTRy
IPRING IFMUGIMOM IDTF s ISTAT s TPUNSNUS NGNS THT ¢ INUS,
INUSNLINGNy INGNP o INNN 3 GGG
COMMON SIGT (1)
DIMENSION SICK(5)+PDF(5)+A{5)sB(5)+1C(5) 9sKNOX(5)
DIMENSION NSIG(1)
EQUIVALENCE (STIGT{1)sNSIG(1))
CALL GTMED(IMED,MED)
TGMED=(MED~1) *ISPORG+1G
PNAB = SIGT{IGMED + INABOG)
WATE = WATE®PNAB
IF {1IG-NGP) 10+ 10s15
10 IH=16
NOSK=NSIG(INNN+IG)
1S=(MED-1) % ISPORG+IFSPOG+NSIGINGS+IG)
MNADDPG=0
ITE=NSIG (INGS+IH)
GO T0 20
15 NADDPG=IPRBGG-IPRBNG
IH=TG~NGP
NDSK=NSIG(IGRG+IH)
ITE=NSIG(INSG+IH!
IS=(MED-1)#ISPORG+IDSGOG+ITE
20 1F (L0C 125425435
2s C9=0.
R = FLTRNF(O)
DO 30 I=1sNDSK
C9=CO+SIGT(IS+1)
IF(C9~R)I 30540440
30 CONT INUE
1 = NDSK
60 TO 40
35 IND=L.0C +NTG* (NREG~-1)

[aXeNel

~N R AP
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CALL GTIOUT(ISsIsNREGINDSKsIGsWATE4IND)

16=1G +I-1-NUS

IHO=IG

CHECK IF POST COLLISION ENERGY BELOW CUT-0OFF ENERGY
IF (IHO.GT,.IGM) RETURN

SELECT OUT GQING DIRECTION

IF(NSCT)Y45945450

CALL GTISO(U,V,eW)

RETURN

II=(MED~1)*ISPORG+IPRBNG+( ITE +I-1)*NSCT+NADDPG
IF (SIGT(1I+]1) +LT.0.) GO TO 45

DO 1 J=1.NSCT

IF (J=1) 29243

SICK{(JY=SIGT(II+J)

GO 10 1

SICK(J)= SIGT(J+II)=-SIGT(ITI+J=~1)

CONTINUE

DO 60 J=1eNSCT

I13=(MED-1)*TSPORG+ISCANG+( ITE +I~1)#NSCT+J+NADDPG
FM =SIGT(I3)

SINPST =SQRT (1.0-FM %FM )

CALL AZIRN(SINETAsCOSETA)

STHETA = 1.6G-UsU

IF(STHETA) 70470965

STHETA =SQRT (STHETA)

COSPHAI= V/STHETA

SINPHI= W/STHETA

GO 70 75

COSPHI=1.0

SINPHI=0.

STHETA=C.
B(J)=VAFM+URCOSPHI#COSETA#SINPSTI~SINPHI#*SINPSI®#SINETA
ClU)=WHFM+URSINPHI#COSETA#SINPSI+COSPHI®*SINPSI®SINETA
A(J)=USFM-COSETARSINPSI#STHETA

S=1.0/SQART (ALY ®A(J) +B(JY®BLJ)+C(J)H*C(J))
ACJ)=ALD) ®S

BtJ)=B(J)*S

C{Jr=C(J) =S

PICK A POLAR ANGLE NUMBER NFLAG NEAREST T0 C(J)
APPLE=3.0

DO 80 N=z=lsNPA

ORANGE=ABS (POL (N)-C(J))

IF (ORANGE .GE. APPLE) GO TO 890

APPLE=ORANGE

NELAG=N

CONTINUE

RDETERMINE THE BEGINNING AND THE END LOCATIONS OF THE

AZTMUTHAL ANGLES CORRESPONDING TO THE SAME POLAR ANGLE

IN THE QUADRATURE SET

IBEGN=TPOLST (NFLAG)

IF (NFLAG .GE. NPA)Y GO TO 81
JEND=TPOLST(NFLAG+1)~1

GO 70 82

JTEND=MEWMM

CONTINUE

COMPUTE OMEGAROL FROM A(J)s AND B(J)s THEN PICK
XMU(KFLAG) WHICH IS CLOSEST TO OMEGAROL.
SINPHE=Y/SQRT (X#X+Y*Y)
COSPHE=X/SQRT(X#X+Y®Y)
ROL=SQRT (A (J)#*A{J)+B(J) #B(U))
SINKAI=B(J)/ROL
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COSKAT=A(J) /ROL
RMU=ROL* (COSKAI®COSPHE + SINKAI®SINPHE)
G=3.

DO B85 K=T8BGN,IEND
H=ABS { RMU~XMU(K) )

IF (H .GE. G ) GO TO 85
G=H

KFLAG=K

CONT INUE

POF (J) = CDFIKFLAGsNREG IHQ)
KNOX (J} = KFLAG
CONTINUE

IMPORTANCE SAMPLING THE ANGULAR PROBABILITY
C9=0.

StUM=0,

DO 90 J=1laNSCT
S0=SICK (J) #PDF ()
SUM=SUM+S0

R=FLTRMF (0)

R=R=SUM

DO 95 J=1sNSCT
C9=CO+SICK (D) *PDF (W)

IF {C9-R) 95295499
COMTINUE

J=NSCT
WATE=WATE®SUM/PDF ()
U=A(J)

V=B (J)

W=C (Jd)

JOHN=KNOX (1)

RETURN

END

SUBROUTINE NXTCOL

THIS ROUTINE IS FOR BIASING OF NEXT COLLISION SITE BY

EVENT VALUE FROM DOT CALCULATION

COMMON /STEAK/ EVENT(146912+14)

COMMON /ANGUS/ IGMsNRGsNEWMMLNPALPOL (25) 3y IPOLST (25)

1 s JOHNS XMU (146) ‘

COMMON /RIBEYE/ NEWREG(20) sARG(2D0) 9 XX (20) 4YY (20} s
1 22(20) +CSET(20) 9 IZONE(20) sMED (20)

COMMON /APOLLO/ AGSTRYsDDFsDEADWT(S) yETASETATHIETAUSD,
1 UNIPsVINPSUNIPoNTSTRT yXSTRYyYSTRTyZSTRT 4 TCUTXTRA(10)
2 109 11sMEDTAsIADUM ISBIAS ISOURI ITERS s ITIME«ITSTRy
3LOCWTSyLOCFWL «LOCEPRYLOCNSCALOCFSNeMAXGPyMAXTIMIMEDALB
4 MGPREGsMXREGINALBINDEAD (5) s MEWNMINGEOMsNGPQT L2 NGPQT2,
5 NGPQT3+NGPOTGINGPQTNINITSyNKCALC s NKTLL o NLAST ¢ NMEMy
6 NMGPoNMOSTaNMTG+NOLEAK s NORMF ¢ NPASToNPSCL (13} sNQUIT»

7 NSIGLINSOURGNSPLTZNSTRTSNXTRA(10)

COMMON /NUTRON/ NAME «NAMEX, 16y IGOsNMEDSMEDOLD s NREG
1 UsVeWsUOLDYYOLD«WOLDIXs Yo ZeXOLDsYOLD9ZOLDWATESOLDWT,
2 WIBC.IBLZNs IBLZO+AGEsOLDAGE

COMMON VEL (1)

DIMENSION PROB(20),Q(20)

1F ANGULAR PROB. BIASING IS5 ALSO EMPLOYEDs INCLUDE

THE FOLLOWING 3 LINES.

DATA NM/Q/

IF (NAME .EQ., NM) GO TO 99
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s XeNeNeNe}

80
Caeas
Cont
CQQQ
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NM=NAME

PICK A POLAR ANGLE NUMBER NFLAG NEAREST TO WOLD
APPLE=3,0

DO 80 N=14NPA

ORANGE=ABS(POL (M) ~WOLD)

IF (ORANGE .GE. APPLE) GO TO 80

APPLE=QRANGE

NFLAG=N

CONTINUE

DETERMIME THE BEGINMNING AMD THE END LOCATIONS OF THE
AZIMUTHAL ANGLES CORRESPONDING TO THE SAME POLAR
ANGLE IN THE QUADRATURE SET

IBGN=TPOLST(NFLAG)

IF (NFLAG .GE. NPA) GO TO 81

TEND=TPOLST (NFLAG+]1) ~]

GO 70 82

81 TEND:=NEWMHM

82 CONTINUE

Cant COMPUTE RMU FROM UOLDAND VOLDs THEM PICK XMU(KFLAG)
ce#® WHICH IS CLOSEST TO RMU,.

85
ceus
crE®

99

SINPHE=YOLD/SQRT (XOLD*XOLD+YOLD#YOLD)

COSPHE=XOLD/SQRT (XOLD#XOLD+YQLD#*YOLD)

ROL=SGRT (UOLD*UOLD+VOLD=VOLD)

SINKAI=VOLD/ROL

COSKAT=UOLD/ROL

RMU=ROL # (COSKAT#COSPHE + SINKAI*SINPHE)

G=3.

DO 85 K=IBGN,IEND

HZABS ( RMU=XMU (K) )

IF (H «GE. G ) 60 TO 85

G=H

JOHN=K

CONTINUE

IF AMGULAR PROB. BIASING IS ALSO EMPLOYEDs INCLUDE

THE FOLLOWING LINE,

CONT INUE

WTIBC=WATE

CALL REGION(XOLD+YOLD+ZOLD+UOLDsVOLD»WOLD»IGOsMEDOLD
1BLZNsNREGs IRGs IESCAP)

IF (IESCAP.GE.1) GO 70 999

TESCAP EQUALS TO 1 WHEMN DIFFICULTY OCCURRED IN TRAGCKING
THROUGH THE GEOMETRY IN SUBROUTINE REGION

THUS TREAT THE PARTICAL AS AN ESCAPE

IRG IS THE NUMBER OF REGIONS THE TRAJECTQRY WILL 60
THROUGH BEFORE REACHING THE EXTERNAL VOID

55

100

120

NR=NEWREG (1)

M=JOHN

IF (ARG(IRG) + 0.000001) 5559995999
PEXT=EXP (ARG (IRG))
QELI=EVENT (MaNRs IGQ) * (1. Q0-EXP (ARG(1)))
DO 100 I=2+IRG

NR=NEWREG (I}

QILY=EVENT (MeNRs IGO) ®* (EXP(ARG(I~1)) ~EXP(ARG(I)))
CONTINUE

QsStim=0.0

DO 110 1I=]1+1IRG

QSUM=QBUM+Q (]}

FNORM=QSUM/ (1.0-PEXT)

D0 120 I=1.IRG

PROB(I)=Q(L)/FNORM

PROGB(IRG+ 1) =PEXT
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130

140

CG&!—’”

Ccoan
145,

C PAR

150

160

@99

t ESC

99

IRGP1=IRG+1
ORTANCE SAMPLING THE NEXT COLLISION POINT
C3=0.0

SUM=0.0

DO 130 I=141RGPI
SUM=SUM+PROB (I}

R=FLTRMNF (0)

R=R=SUM

DO 140 I=1,TRGPI
CO=CI+PROB (1

IF (C9~R) 1401409145

CONT IMNUE

I=IRGP]

*1t IS THE ITH REGION ALONG THE PATH WITHIN WHICH THE
NEXT COLLISION TAKES PLACE

IF (I GT. IRG) GO TO 999
TICAL ESCAPES WHEN I IS GREATER THAN IRG
IF (1.6T.1)y GO 70O 150
DELARG==-ARG{1)
FREEPH=AMOD (EXPRNF (0) 2 DELARG)
DIS=FREEPH/CSET(I)

X=XpL D +UDLD®DIS

Y=YQLD +VOLD*DIS

Z=20L0 +WOLD*DIS

GO TO 160
DELARG=~ARG (1) +ARG(I-])
FREEPH=AMOD (EXPRNF () +DELARG)
DIS=FREEPH/CSET (I}

X=XX (I-1)+UOLD=DIS

Y=Yy ({~1)+VOLD*DIS
Z=2Z(1~-1)+WOLD*DIS
IBLZN=TZONE(])

MMED=MED (1)

NREG=NEWREG (1)
WATE=WATE*FNORM/EVENT (Ms NREG, IGO)
RETURN

WATE=0.0

NPSCL(BI=NPSCL (B8] +1

CALL BANKR(8)
APE

RETURN

END

SUBROUTINE REGION(X1IsY14Z1yUsVeWsIGgMEDIUM, IBLZ vMREGN
1 IRGsIESCAP)

COMMOM /RIBEYE/ NEWREG{20) yARG(20) 4 XX (20) «YY(20)

1 ZZ (201 +CSET(20) ¢ IZONE (20) »MED(20)

REAL®8 XBsWByWP s XP«RINYROUTSPINFSDISTDISTOS
COMMONZPAREM/XB (3) +WB(3) s WP (3) o XP(3) «RINIROUTSPINF

1 DISTyIRsIDBGIIRPRIMyNASCHL SURFINBOSLRILROYKLOOP,

4 LOOP«TTYPEINOA

COMMON /ORGI/ DISTOsMARKS1IBR

COMMON/GOMLOC/ KMAJKFPD oKLCR«KNBDsKIOReKRIZ«KRCZeKMIZs
1 KMCZsKKRLoKKRZeKNSRaKVOLsNADDsLDATASLTMASLFPDsNUMR Y
2 IRTRUsNUMB4NIR

COMMON NN {1)

COMMON/APOLLO/DUM(28) ¢ 10

DATA PN/Y L/
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DATA NC/0O/
MARCHZ0
IESCAP=0
XB(l)=X1
XB(2)=Y1
XB(3)=21
WB(1)Y=U
wl(2)=V
WB(3) =W

NMED = MEQTUM
MED (1) =NMED
NEWREG (1) =NREGN
DIST=0.0
IR=18BLZ
TZONE (1) =1IR
NASC=-1
DISTO=PINF
IRG=1

C

20 JF(NMED-~1000) 40+.304+40

30 SIGT=0.

GO TO 50
4Q CALL NSIGTA(LG+NMEDSTSIGsPN)
SI1GY = ~TSIG

CSET(IRG)=TSIG
S0 CALL Gl (SeNN(KMA) sNN(KFPD) «NN(KLCR) +NN(KNBD) s NN (KLOR) «
. NN (KKRT) oNN (KKR2) )
IF (IRPRIM.EQ.~3 .OR.IRPRIM.EQ.Q0) GO TO 110
ETAUSD=S
IR=IRPRIM
1ZONE (IRG+1)=1IR
NEWREG (IRG+1)=NN(KRIZ+IR-1)
MED (TRG+1)=NN(KMIZ+IR-1)}
NMED=MED (IRG+1)
IF (NMED.LE.0) MARCH=-1
IF(IRG.GT.1) GO TO 60
ARG (IRG) =SIGT*ETAUSD
GO 7O T0
60 ARG (LRG)=ARG(IRG-1)+SIGT#ETAUSD
70 XX(IRG)=XB(1)+WB(1)#*DIST
YY{IRG)=XB(2)+WB(2)*DIST
ZZ(IRG)=XB(3)+WB(3)*#DIST
IF (MARCH +EQ. -1) RETURN
IRG=IRG+1
GQ To 20
110 NC=NC+1
c SOME DIFFLCULTY HAS OCCURRED IN TRACKING THRQUGH THE
C GEOMETRY, TREAT THE PARTICLE AS AN ESCAPE
IEScAP=1
IF(NC.GT.5) CALL ERROR
IF THIS OCCURS MORE THAN 5 TIMESy THE J0B IS
TERMINATED
WRITE(I0e1010) IRPRTM
1010 FORMAT (BHQIRPRIM=+164+15H IN REGION #s#us )
RETURN
END

(g e]



APPENDIX B
COORDINATE TRANSFORMATIONS

The purpose of this appendix is to describe how the components
of the direction vector & are transformed from the cylindrical
coordinate system to those of the rectangular coordinate system, and
vice versa.

The direction vector Q at a point P(x,y,z) can be expressed in

terms of its components in the cylindrical coordinate system as

+ 0 e +0e
¢ 6 zz

g ep R (B-1)

where éR’ é¢ and e, are the unit direction vectors in the cylindrical

coordinate system. From Figures 7, page 36, and Figure 17, it can be

seen that

p = ﬁ-;R = cosy % ¢ (B-2)
2, = ﬁ-ez = cosy # 1 (B-3)
Y
d P R
1/2
22
.. Q¢ t(Qp - QR)

101
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Figure 17. The Direction Vector @ and Its Components.



103

Substituting Qp = siny and 9 = ¢ into the above equation gives
2, = .+.(s1'n2Y - g2)1/2
= #(1 = cosPy - 2)1/2
= +(1 - CZ _ 62)1/2. (o0
The position vector of the point P is

~

xi + y3 + zﬁ

o
[t

{f

Rcose i+ R sing 3 + ZE.

The tangent vectors to the R, ¢, and z curves are given respectively

%%3 %%3 and %E«where
%%. = €08 i+ sing 5
gg. = -R sing % + R cos¢ 5

The unit vectors in these directions are(24)

3P
- aR N .7 . .
€ T 13l T COS¢21 u s1ng 31/2 =.¢c0S¢ 1 + sing j (B-5)
L (cos™¢ + sin“¢)
oR
~ . 24 _ -Rsinyg i + R cosy J o en »
S T = -sing i + cos¢ j
¢ 2P (RZ sin2¢ + szcosz¢jT72
o (B-6)
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e - k. (B-7)
Substituting Equations (B-2) through (B-7) into Equation (B-1) yields

1/2 . A ~
-e") (-sing i + cos j) + ¢k

(e cos¢ ;/i_g2_€2 sine) i+ (e sine t/]-gz-az CoS¢) 3 + QE.

0 = e(cose i + sing j) =(1 - CZ

<
il

1

Hence, the components of Q in the rectangular coordinate system is

Qx Y 1

= & COS9 1/4;g2—52 sing (B-8)
0 =8 .3
2y, j

= ¢ sing t/ﬁ-gz—ez CoSo (B-9)
Q=8 .k
z

(B-10)

¥

J and cosg¢ = X

/77 S
X
+y i

where sing =

Equations (B-8), (B-9), and (B-10) are the relationships for transfor-
mation of the direction vector @ at the point P(x,y,z) from the cylindrical
corrdinate system to the rectangular coordinate system. Note that for
each set of cylindrical components ¢ and =, these are two corresponding

sets of rectangular components 2y Qy’ and 2. In a DOT calculation
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with R-Z geometry, ¢ and ¢ are respectively the direction cosines
with respect to the Z-axis and the R-axis.

Given the rectangular components 2y Qy, and 2, of the
direction vector & at the point P(x,y,z). The transformation of @
from the rectangular coordinate system into the cylindrical components
¢ and = in the cylindrical coordinate system is performed as follows.

From Equation (B-10), ¢ is simp]y equal to e Furthermore,

from Figure 17,

e = Qp = Qp cos(x-4)

= Qj(COSxCOS¢ + sinysing) (B-11)
£
where
Q o)
cosy = =%, siny A
o “p
and
coS¢ = X » Sing = - J
24y (2,2

Substituting the above quantities into Equation (B-11), gives

m
]
|5

b
+
|
<
L—t

= A (B-12)

Equation (B-12) along with Equation (B-10) provides the transformation
for the direction vector & from the rectangular coordinate system to

the cylindrical coordinate system.



APPENDIX C
COMPARISON OF x* AND W

In this appendix, a comparison of the point value x* and the
event value W is presented. Three particle trajectories are chosen,
and their importance functions in different regions along the
trajectories will be discussed. All three trajectories are for
neutrons of group one energy and are shown in Figure 18, The corre-
sponding x* and W in different regions are presented in Table 8.

It can be seen from Table 8 that in the same region W is
smaller than x* by one to two order of magnitude. This is not
surprising because the value of a particle entering a collision is
reduced by the absorption probability and the collision process
before the particle emerges with the same energy group and direction.
The relative x* and W in Table 8 were obtained by dividing the
importance functions in different regions by the importance of the
region where the trajectory originated. From trajectories I and II,
it can be seen that the W is a stronger importance function than x*.
Hence, W would encourage more deep penetration than x*, particularly
for trajectory 1. Finally, for trajectory III, W suggests that
regions 7 and 7° are about a thousand times more important than
regions 1 and 1°. However, x* suggests that the value of a particle

approaching the duct is roughly ten times of the value Teaving the

duct.

106
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Figure 18, Particle Trajectories in the Geometry of the Standard
Problem.
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TABLE 8

COMPARISON OF y* AND W°

Trajectory X X RELATIVE W NRELATIVE
I. Region 4 5.41-8" 1 2.41-10 1
Region 5 4.83-7 8.93 3.73-9 1.55+]
Region 6 2.59-6 4.79+1 8.35-8 3.4642
II. Region 10 1.72-7 1 1.24-9 1
Region 11 1.05-6 6.10 9.30-9 7.50
Region 12 5.47-6 3.18+] 1.05-7 8.47+1
11I. Region 1 1.37-10 1 1.17-12 1
Region 7 4.29-9 3.13+] 1.46-10 1.25+2
Region 7- 6.42-10 4.69 2.20-10 1.38+2
Region 1- 1.38-11 0.10 3.40-12 2.91
a

x* and W have the dimensions of response/neutron.

bread as 5.41 x 10'8.



APPENDIX D
PLOTS OF ADJOINT DOT CALCULATIONS

The plots of adjoint fluxes of the adjoint calculations with
axial adjoint source and off-axial adjoint source are presented in
this appendix. Figures 19 through 26 are adjoint flux plots from
the adjoint DOT calculation with axial adjoint source, and Figures
27 through 34 are adjoint flux plots from the adjoint DOT calculation

with off-axial adjoint source.
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Figure 19. Total Adjoint Flux Contour of the DOT Calculation with
Axial Adjoint Source.
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Figure 27. Total Adjoint Flux Contour of the DOT Calculation with
0ff-Axial Adjoint Source.
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Figure 32.
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APPENDIX E
NEUTRON CROSS SECTION FOR CONCRETE

This appendix contains the 22 group P3 neutron cross section set
for the concrete used in the standard problem. The compositions of
the concrete are presented in Table 9 along with the percentage of

the atomic density for each element.
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TABLE 9
CONCRETE COMPOSITION®

Element Composition (atom/b-cm)  Atomic Density in Percent
H 1.065(-2)P 13.71%
c 1.310(-4) 0.17%
0 4.084(-2) 52.58%
Na 1.071(-3) 1.38%
Mg 1.620(-4) 0.21%
Al 2.822(-3) 3.63%
si 1.332(-2) 17.15%
K 8.280(-4) 1.07%
Ca 2.426(-3) 3.12%
Fe 5.428(-3) 6.99%

aDensity of composition = 2.62 gm/cc.

bRead as 1.065x10'2 atom/b-cm.



CROSS SECTIONS AS READ FOR CONCRETE

GeP

[o R R« R R VVRL YR

0

10
1y
12
13

146

16

17

13

2

21

22

ABS xSEC
1.6428-02
1.961E=02
l.601E=D2
1.125E-02
5.026E-03
4.848E-073
1.624E~02
5. 522E-C4
3.315E-06
1.894E-04
6.530E~-05
4.895€-0S
5+ TQOE~05
2.3928-04
1.019€~-03
2.575e=04

5.233E-04

9.081E-04

1.595€-03

2.77T9E-03

4.574E-C3

2.005E-02

N

188 TOTAL
1426 7F-01
1e274F-01
1e 195€=-01
1, 199E-01
1e347E-01
1.579E~C1
1.991E~01
1. 500E-C1
1.216E~01
1. 688E-01
2.198E~C1
2. 823E-01
3.751E-01
4.231E-01
44.946E-01
4o T34E-01

4.763E-01

4.768E-01

4.T7TE-01

44792E-01

4.813E-01

44 9T3E~01

coerr1ctent 1 (P

FROM GROUP TRANSFER

9.867E-02
S.4b5€=02
4.5TaE-02
4.697E-02
6.820E=02
7.821E-02
1.195E-01
7.051€~-02

3.1036~02
1.111E-03
9.013g-02
2.879¢-013
1.539€-01
7.186E-03
2.159£~01
4.8582€6-03
3.1458-01
3.199E-03
3.502F=01
T.2128-04
3.779E-01
1.813E-D5
3.971E-D1
4.519E-06
3.326E-01
8.371E-07
1.030E-07
3.147€-01
2.6456-07
2.547TE-08
3.3328-01
2.049E-07
1.202E-08
3.155¢-01
1.399E-07
B.443E-09
3.1539E-01
3.149E-07
3.902E-09
4.744E-01
6.1T4E-06
2.830E~-09

7+829E~03
1.789E-02
2.1828-02
2.934E~02
2.630F-02
4.083E-02
4.357E~-02

1.815€~-02

5.5208-02
44900803
S5.467E-02
4 491E-~03
4.900E~027
3.856£-02
5.8086-02
3.551€E~03
5.903E-02
54289E-04
44792E-02
1.8G7F-05
9.793k-02
3.135E-06
8.664E-02
6.9328-07

9.739E-02
24124E-07
2.610E-08
1.218E-01
1. 099E-07
1.0585-0¢8
9.T31€E-02
5,200&-08
3.050r-09
1,104E-01
5.1425-08
34104E~09
1.608E-01
1.8338-07
2.272¢-09

o)

PROBARILIT IES

2.352E-03
3.450E~03
3.9591E-03
6.289E~03
1.241E-02
84173E-03

2. 280€E~-03
2. 891E-02

1.410E-02
5.835€~-03
L. 040F-02
3.378E-03
L.379E~-C2
1.834E-03
7.973E-03
5e412E-04
1.228E-03
1.522F-05
TalB4E-03
34293E-06
1. 270€-02
4.705€-07

1. 857E-02
1.759E~-07

3.263E~-02
B.826€-08
1.085€-08
2e492E-02
2.789FE-0¢8
2.686E-09
2. 886E-02
le912E-08
1.121E-09
5.058€E-02
2.993F-08
1.807F-09

6.5106~03
2+955E~03
2,739E-0C3
4.561E-03
4.092E-03

2.1726-03
T.150E=-C3
1.0568-02

9.223F-03
4.3445~C3
1.1338-C2
1.866E-03
2.931F-03
2.118F~C4
2.022E-C4
1.211E-05
2.133%-04
2.56435-06
1.078E-C3
4494 36-C7

3.2226-03
1.194E-C7

7.716E-03
T43095-C8

8.281F-C3
2.240E-C8
2.752E-CS
9.1636~03
1.025F~C3
9.874F~- 10
1.680E-C2
le113F-C8
6.527-10

54891E~03
5. 116E-03
44 362E-03
2. B49E~03

T1.433E~04
7.203€-03
1. 272802
i.410E~02

1. 027E-02
2. 723£-03
2.032£-03
2.075:-04
71.455E~05
4.393E-06
3.488E-05
2. 103E-006
3.201E~05
3.967E-07

2.736E-04
1.2548-07

1.339E~-03
4. 950E-08

1.958E-03
1.855€-08

3. 0644E-03
€.235E-09
1.012E-09
S50 334E-03
5. 569€~-09
5. 748E~-10

2.789E~-03
Ta462E-03
4a303E-03

7o 248E-04
3.855€-03
60 BOSE-03
64 426E~03
5.482€-03

1.376F~03
2. 872E-0%
4e 00TE~05
3. 8B97E-06
1.295E~05
7.601€-07
5.227E-06
3.1565-07

8. 123E~-06
1. 007E-07

le 137E-04
5. 212E-08

3. 398E-04
1.259e-08

7. 199E-04
6. 819E~-09

1. 772e-03
4o T94E-09
5.891€~10

5¢447E~C3
2.811E-C3

1.019E-03
3.231E-03
5. 746E-03
5. 583E~-03
4.825E-03
1e 1326-03
3.211E-05
4, 061F-06
6.945E-06
6. 7T03E-07
1. 943E-0s
1.140£-07

1.326E-06
8.007e-08

3.3756-06
4. 183E-C8

2. 8856-05
1.323e-08

1.249E-04
4.628E-09

4. 191E-04
3,9708-09

4.,032E-C3
T.504E-04
5.788€-03
5.695E~03
4,521E-03
3.337€-03
B. 896E-04
2.672E~-05
5.578E-06
6.890E-07
1.042E-06
1.004£-07

4.931E-07
2.892E-08

5.5118-07
3.327e-08

8.5565E-07
1.061£-08

1.061E-05
4.862€-09

1.272E~05
2.694E-09

8¢l



CROSS SECTIONS AS READ FOR CONCRETE

oP

WO NP, -

0

10
11
12
11
1%
15
16

17

18

19

20

21

22

ABS XSEC

CQO0DOOQC

NU*FISS

0.0

0.0

[~ ReReNeloNe
.

[»NeX»BoNeNeol

o
.
[~}

0. 0

TCTAL

1.267E-01
1e274E-0%
1.195-01
1. 199E-01
1.347€-01
1.579E~01
1.9%1E~01
1. 500E-01
1. 21 6E-01
1.688E-01
2.1986~-01
2. 823F8-01
3. 151E-01
4.231E-01
4. 9%6E~01
4. T34€-01

4.763E-01

44 T68E-01

HeTTTE-OL

4. T792E-01

4.813E-01

4. 973E-01

COEFFICTENTY z

FROM GROUP TRANSFER
1.368E-01

1. 2548E=01 6.785€E-04
1.061E-D01-Tu944E-03
3. 999E-02-5. 470E-03
1.313€-01~1.165E~02
1.622E-01-1.019E-02
2.114E=01-9.403E~03
1.212E~01-3.266E-02

(P1>

PROBABILIYIES

1.980€-03
2+330E-03
3.941E~03
4.163E-03
4.029E-03
5.393£-03

T.6308-02 T.260E-03-6.T34E-04

7.632€-05

1.398E-01 l.667F-02-14552E~02

5.54%E-04 3.2026-04
Le637E-D1-2,212E~03
1.045€-03 6.383E-~04
1.8026-01-1.688E-03
1e114E-03 6.0680E~04
Lol23E-01 5.445E-02
8.939E~04% 5.450E-04
3.2118~01 6.443€~02
1.269E~04 B.BT4F~05
3.168E~01 5.T44E~02
1.270€E~-06 7.191E~07
3.1736-01 1.299E-~01
1.524€~07 9. 190E~08
2.809€E~-01 Lk .175F-01
1.289€-08 1.008E~08
2.433E-~10 -
2.563E-01 1.352E-01
2.426E-09 1.812E~09
5.948£-11 3.431€~11
2.811E-01 1.691E~01
1.354E-29 5.9058~10
2.370E-11 l.448E~11
2.556E-01 1.351E-01
T«119E-10 1.905E-~10
5.1008=12 1.342E8~12
24568E-01 1.531E~01
1.916E-39 1.587E~190
0.0 0.0
4.826F=D1 2.033E~0Q)
9.322E-08 5.506E-10
6.,130E-13 0.0

1.9356-02
3.683E-04
1.515E-02
3.713€~04
1.7016-02
2e3THE-04
5.308E~03
S54411E-0%
3.726E-04
4e342€E~07
4.5068F-03
5. 2076-08
T 404E-03
6.0B3E-09

1.828E-02
1.418€-09

3.716E-02
4.413E-10
6.841E-12
2+0686E-02
B84306E-11
0.0

3.4018-02
44248811
0.0

5.026E-02
4.562E-11
0.0

2.037E~Q23
2.%35E~03
2.299E~-03
44364E-03
3,2646-03

1.077E-03
7.931E~C3
1.520E~-02

1.1326-02
2014 2€E-C4
T%140~03
1.817E~Q4
l.6L88E-03
2.954F =05
3.,087E~C5
24646507
2.698E~05
3.1450-C8
3.021E-Q4
3.443E~09

1.323-03
B.556E~10

4.4506-03
3.450E~-10

5.226E8~-C3
6.208E~11
0.0
5. 938E-03
laB52E=-11
0.0
Y. 1T4E~03
t.221£-11
0.0

1.405€-03
1. 404E-03
2.383E~-03

1.990€-03

6, 504E~04
4¢520E-03
3. 183E~03
8,851E~03

beb41E-03
1. 049E-04
1. 36CE~04
1. E04E-05
8. 262E-06
14 445€-07
24 235E=-006
1.917E-08
1. 7T84E~-06
2.080E~09

4. 249E-05
4.B44E-10

3. 220E-04
2.082E-10

6. 259E-0%
4e 853E~-11

1. 165E~03
1.383E-11
C.0
1. 721E-0D3
5. 322E-12
0s 0

8. 105E~04
1.455E~03
1. 086E~03

3.966E=04
24 T29E~03
54 199E~=03
54342E-03
4. 332E~013

5.500E~04
1.041€-05
3.602E-06
8. 828E-08
5.983F =0T
1.047E~-08
1.478E-07
le268E-09

2.510E~-07
2.925E~-10

1. 034E-05
1. 17%E~10

4.529E~05
2.9298-11

1o 396E~04
1.082E-11

3434904
3.97T8E-12
0.0

8.398E~-04
6e636E-04

2. 165604
1, 664E=03
3.1396-03
3.025€-03
24 615E-03
44 3Q00F-04
2.692E-C6
5.0956£~08
2.6086-07
6. 393E~-09
3.956E~-08
6.922E-10

2.079E-C8
1.784E-10

6. 108E-08
T.1196-11

1. 455E-06
1. 658E~-11

1.010E-05
5.390E-12

4,01 1E-05
3.110E-12

3.829€E~04
14322604
9.085E-04
1.914E£-0)
1.826E-03
1.480E-03
2.596E-04%
2.104E-06
1494 9E=-07
3.689E-09
1.725E-08
4.228E-10

54565E~09
F.T36E-11

5.061E-09%
4434 1E-11

8.,591E-09
9.784E~-12

3.244E~07
2.07BE=12

2.902E=00
1.877E~12

YAl



CROSS SECYTIONS AS READ FOR (ONCRETE

6P ABS KSEL

IR ST N TR P

-3

¢
1
iz
13
14
15
i6

17

is8

19

20

2%

22

a.0

cooooCeC
v s a0 .
OO OO0Q

N

g.0

0.0

0.0

0.0

ss TOTAL
1.267E-01
1a274E=01
1.1956-01
1 199E-01
1,347E~01
Le 579E-01
1.991€=-01
1.500€-01
1.216F-01
1.5688F~01
2.198E~01
2. B23E-D1
3. 751E-01
4+231E-01
4e 94 6E-01
be TIGE~-Q1

4e T63E-01

6,763E~-01

4.777E-01

ha792E-01

4. 813E-01

4.973E-01

COEFFICIENT 3

FROM GROUP TRANSFER
1a692E-01

1931E-01 3.1467F-03
1.304£=01 4.882E-03
1a192E=-01 4.181E-03
1a477E-01 1.307E-07
1.738E-21 1.174E~02
24034E-01 1.631E-02
1093E-31 3.338E-02

H.577E~D2-2.489E-03
-7.3713€-05

1.265E-01 1.066E-02
“4.651E-04=3,799E-04

Le650E~01 3.929E-02

PROBABILIE

24 T04E-03
5+360€-03
3,715F~03
4,219t~03
1.073E-02
4.878E~03

5.208E~-03
1.811E~02

le738E-02

-1.109E-03-8.856E=06-6,490E-04

1«6303E-3}1 5.822E-02

~9.536€-08

3.927E-03

P,)

2
TIES

l1.363E~C3
1.508E-03
1.360£-03
2.700E-C3
1.8396-03

7.605F-04
Ta213E-03

1.091E-02

4,025€-04

44 042E~04~3.330C~05

5a811E-04~9,43TE-05~-3, 314E-04

4e 85 1E-04- 1. 468E-06-2,898BE-06~-2.957E~04

2443TE~04

2424 3E~03

24 273E-05-6.965E-05-8.272E-0GS

40 5G2F~004-2.469FE~04-44813E-04

2.420E~-03~-84317E~05-1. CT8E~(Q3~1.273E~D3

Se436F-C4-1.042E-03-2.4496-03-2,590E-03-~2.199E-03
= 1e733E-03-1.217F-03~8.834E~04~6.046E~-C4
1a79%E=01 2.094E-02-84139€~03-8.285E-C3~7.473E-03— 6. 656E~03~5.064E-03-3,592E-03
~2.50%E-03~-1.8226-03-1.LVTE~03-8.161E-04-5.381E-04
2.589€-01-3,405E~023-1,.475E~02~64334F-03- 34 564E-03=2, 89TE~03-24419E-03~1.665E~-03
~1e09UE-03-T7,431E-04-5.086E~04~3,1836-04-2,155E-04~ 1.4C4E~-Q4
3e020E=-D)1i-1e153E-02-2.96TE-03-4.9706-04~ 1. B55E-04-9.966E~05~-8. 00TE-(05~5.632E~05
b 503E~05-24914E-05-1971E~05-1.341E-(5-84344E-06~-5.595E-056-3.656E-08
3.041F=01 5.968F=03~1.516E-02-5.30 1F - 04~ 8. 694E-05-3.2356=-05~14735E~05-1.394E-D5
~1e154E-05-7.834E-06~5,068E~06-3.426f-06~24331E~06-1.4506-06-9.8286~07-84354€E-07
24854E=031 24323E-02~2.550E-02-2.616E-03-7.994E-05~-1,306E-05-4.858E-06~-2,606E-06
=2.0936=-06-14733E-06-1.176F~06-7.6076-CT-5.143€E-07-3.4699E=-07-2. LTI ~CT-1.475E~07

2.6598=01 6-1365-02—3.041E—OZ-?-573E-C3-6.7785-04-2.0305-05-3.316E"06-£-233E-06
~8e512F=0T=52310F~07~4,39TE~0T~2.984F~C7~1.9306-07-1.305E-07-8.877€-08-5.524E-08

=3.743E~38~2.420E-08

24858E-01 746T1E-02~4.433E-02~140699E-C2-3,278E-03~2,833E~04-8.43TE~06-1.3T78E~06
~5.123E-07-2.T48E-0T-2.207E-07-1.827E-C7~ 14240607~ 8.021€-08-5,4223E-08-3.68%9E-C8
=2.295F-08-1.5556-08-1.005F-08
2.662E=31 6. 410E-02-3.727E-02-1aT02E~C2- 4. T1TE-Q3- 8. 441E-04~-7.206E-05-2.141E-CH
~30497E~3T-1e300E-07~64973E-08~5.600E~-C(B~4.637E-08~3,147E-08-2.036E-08~1,37H6E-08
=92361E=09~5.825E-09-3.947E~09-2.552F-CS
2.565E-01 B 556F-02-3.T716F-02-1.9526-02-7.222F-03-1,776E-03~-3.11£%~04-2,651E-05
= 1e8T2E~DT~1a286E=0T~4% TT9E-D8~2.563E-CB8-2.059E-08~1.705E-08-14157E-08-7,483E-09
~54099€E-09-3.44%41E~09-2.141E~-09-1.4516-09-9.381E-10
3.288E=31 5.634FE=03-T,876E-02~34652E~C2~- 14 280E~02-44370E-Q3~1,0445~033-1,81T7E-04
~1eH43E~05=4.583F=CT~T4433E~0R~2, 7326~ C8-1.492E~08=1, 198E-0B-9.%24E~09~6, TISE-09
~4e358F=09-2494bE~09-2.003E-09-1.247E~06~8.447E-10-5.4561E-10

oclL



CROSS SECYIONS AS RFAD FOR (ONCRETE

GP

O RPNy

10
11
12
13
i
15
16

17

18

19

29

21

22

ABS XSEC
[+ 8

[~ R~ e ReReRoRe Ra

4]
0
o
0
v}
Y
0

.
-

0.0

NU*FISS
0.0

0.0
0.9
0.0
0.0

C.0

0.0

TOTAL
1.267€-01
L. 274F-Q1L
1. 195F~01
1+ 199E-01
1.3476-01
1.579¢-0¢
1.991E~01
1.5006=01
1. 21 6E-01
1.688E~01
2. |94F-01
2. 823E-01
3. 751F=~01
he231E-01
4, 9468-01
4.734E-01

4.763F-01

44 T68E=01

4, 7TTE-01

4.792€~01

4.813F-01t

4,973E-01

COEFFICIENT & (P_)

FROM GROUP TRANSFER PROBABILITIES

1+863E-D1

Le636E~01 245656-03

1o%23E~01 B.311E~03 3.862E~04

1.257E-01 9.960E~03-64172€-04-8,273E~C4

1.437FE=01 1.578F-02 6.987E~04~1.248E~C3~1,576E-03

1.458E-01 1, 787F-02 1.211F-03-1.312E~C3-1.573F-03-1.300E-03

1.524€=01 1.500E~02-1.906E-03~2,221E~03~2,85¢E~03~2,373E~03~1.5689E~03

Ta447E~02 1a032E-02 5.2836~04=-2.034E~03~2,368E-03- 1, 872E-03~1,3656-03~9,00LE~-04

6.6 15FE=-02=2.849E-03~14261E~03~3.653F~04= 6. 339E=04~ 5. 839E~04=4, 201 ~Q4=~2. 95 3E-04
~1.901E-24
T2983E=02 2.043E~03 1.68BE-02 T.146E~C4~34396E=03~3.S60E=03=2, 890E~03=1.948E=02
~1.331E-03-8. 398604
8.848E=-02 1.460E=03 L. T48E-03-4.414E=C03 8, 747E-03- 8.081E=03~bs 108E~03-4.310E~03
~2.8654E=03~1,736E~03=1.0606=03
62049E~02=1.L13E-02=1.704E~02-14b643E=02-1,4786=02~ 1,094E =027, 23 2E~03~4, 7T4E~03
~3,105E~0321.7956~03-1,1356~03=6.741E=04
$.505E-02-3.974E~02~3.345E=02=1.852E~02 1. 461E~02- 1.1 82E=02~7.550E~03~4,469E-03
~2,795E-03-1.T44E~03~9. 728E=04~6.0208 -4~ 3, 5L4E=04
G 801E-D2—8.56T4E-02-1.856E=02~5,423E= (32, 437E~03~ 1. 836E~03~1. 44 3IE~03-8, T46E-04
“5,014E~04~3,044E-04=-1,863E-064=1.021E~064-6.251E~05~3.615E~05
1943E=01~8.0756=02-10276E=03~1.0756~C4~ 2, BB4E=05~ Lo 2586 =05=94 407E~06=T.356E~06
=4 44 E=B6-2,515E=06-14519E=06~9.262E-G7-5.051E-0T=3.089E-07~1.783E-C7
1.941E=01=1.599E~0k=1.422E~02~F. 40TE=05~ 7, 81 7E=0b=2.093E =06~ 9. L26E~0T~6,820E~01
“5.333F~07~3,219E~07-1.822E~07- 1. 10 1E~07—6. TI0E=-08-3.6636-08~2.23 7E-08-1.291E~08
2.219F~01~1.269E-01-2.880E-02-1.036FE =03 6. 2406-06=5. 1 13E~0T~1. 3856-07-6.036E~0B
~4,511E~08=3.527E=08 20 129E~08=1205E~C8- 1o 279E =09~ 4.4386=09=2.42 26~09~1,480E=09
~8.537E~10
2.29BE=)1~1.067E=01=5.016E~02-4.456E~03-1.470E~04=Bo T82E=07~7,278E~08~1, 94 BE~08
- 8.492E=09~6.3440~09~44962E-09=2.994E =05~ L, 696E=D9~ 1. 024E~09~b4243E -1 0~3.408E~1 0
~2,082E-10-1.201E-10
2.219E=01-1,335E~01-9.344E=02~1,439E~02~1. 112E~03=~3, 612E~05=2,138E~07=1.771E~08
“4,T40E-39=2,067E~09-14545E-09~ 1o 207E~05 7. 289E~ 10~ 4, 126E~10~2, 492E-10~1.513E~10
“8.293E~11-5.067E-11~2.923E-11
2.099E=01~1.0T0E~0k=T o L4SE =02~ 1 6T5E~T2~2. 14 1E=03— 1. 579E~04~5, 0BBE—06-3.007EC8
“2.432E=09~6.668E=10~2.90TE~10~2, 1736~ 10-1.698E=10-1, 0256105, B04E~11-3.505E~11
=2 13TE~11=1416TE=11~6.596E~12-2.7936~12
2.300F-01~1.000F~01—8.402E~02~1.911F=02=3.652E~03- 40 BAAE-06=3.529F-05-1. 135606
~6.105E-09Y=54556E~10~1o4B7E~ 10~ 624826~ 11-4. 842E-11=3,T8BE-11-2,2B6E~11~1.294E~11
~T.254E12-2.999E-12-5.326E-13 Q.0 ¢.0
5.541F=02-2.302E=01-1.301E~01~ 3. 108E~ 025, 8586031, 161E~03=1.400E-04~1.0L5E~05
~3,2636-07~1.927F~09~1u59TE=10=%0273E= 11- 1. 863E~11=1.392E~11=1o083F=1]~6.570E=12
~3, 7196} 222.246F-12-1.3696=12 0.0 0.0 0.0

L€l



RBup
i

2

19

12
13
14
15

16
*

18
19
20
21
22

SIGY
1.267E-01

1.2745-01

1. 195F-01

1.199E-01

1.347E-01

1.579F=01%

1.9916=-01
1.5006-01
1.2168-01
1.688F=01
2.198F-01
2.823E-01
3.751E~01
44 231F-01
4.946F-01
4.T734E-01
4.763E-01
4.7688-01
4. 77701
4.T92E-01

4. 81 3E-01
4.8713-01

CRNSS SECTIONS FDOR CONCRETE

SIGST
1.2127E-01

1. 079E-01

1. 035€-01

1.086F=-01

1.267E-01

1.5318-01

1.975£-01
1.495E-01
1.2136-01
1.686E-01
2.197E-01
2.8228-01
3.750€-01
4e2295-01
4.936£-01
4. 731F-0C1
4e 75 TE~ 01
4, 759-01
4. 761E-01
4. 7656-01

4. 76T7E-01
4. T44E-01

PNUP
.0

0.0

0.0

0.0

0.0

0.0

PXABS
0. 8894

0.84617

0. 8661

0.9062

D.9628

0. 9693

C.9918
e 9964
0.9973
0.9988
0.9995
0.9997
0. 9998
0.9994
0.9979
0.9995
0.9989
0.9981
0. 9967
Je 9842

0.6906
09541

GAMGEN NU®FIS

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0D

0.0

0.0

0.0

0.0

0.0

Ja0

9.0

DOWNSCATTER PRUBABILITY

0.5205
0.0099
0.0000

045004
0.0267
040000

D.6518
0.0695
0.0000

0.4323
0.0449
0.0000

0.5257
0.0247
0.0000

0.51140
0.0047
0.0000

0.605Y
0.0001

G.6717
0.0000

0.2559
0.0C30

0.5346
0.0000

0. 7004
0.0000

0.7651
0.0009

0.8336
0.0000

0.8661
0.0030

0.7655

0.7548
06992
0.6612
0.6997
Qab622
0.6627
1.0000

0,0694
0.0435
0.0000

0.1658
0.0416
0.0000

0.2109
0.0373
0.0C00

0.2700
0.0327
0.0000

0.2028
0.0048
0.0000

042668
C.0001

0.2207
0.0000
0.1254
0.0000
0e4553
0.00C0
0.3242
0.0000
0.2231
0.0000
0.2058
0.00090
G.1574
0.0000
0.1133

0.1984

0.1831
0.2047
0.2559
0.2044
0.2317
0.3373

0.0209
0.0518
0.000C

0.0320
0.03132
0.000¢

0.0347
0.01177
0.0)00

0.0579
0.005¢
0.000¢

0.0957
0.0001

0.0534
0.000C

0.0115
0.0000
0.1934
0.0000
0eli63
c,p00¢C
0.0617
0.000C
0.0628
0.000C
0.6283
0.0000
0.1033

0.,0170
02257

0.0392
0.0686
0.0524
U.06006
J.1062

0.0578
0.0385
0.0000

00274
0.0173
€. 0000

0.0265
€. 0020
0.0000

0.0420
0.0001

0.0215
0.0000

0.0142
0. 0000

0.0362
C.0000
0.0707
0. 0000
0.0761
0.0000
0.0672
0.0000
0.0134
C. CO00
0.0007

0.0006
0.0025
0.0065
0.0163
0.0174

0.0193
0.0353

0.0523
0.0242
0.C0C0

0.0474
0.0019
0. 0000

0. 0422
0. 00C0O

0.0262
0.0000

0.0057
0.C000

0.0471
0.00CG

0.0644%
0.0000
0.0943
0. 0000
0.0847
C. 000¢C
0.0120
0. 0000
0.Q003

0.0001
0.0001
0.0006
0.0027
0.00641

0.0Cb64
0.0112

0.0247
0.0025
0.0000

0.0692
0. 0300

0.0416
0.00060

0.0067
0.0000

0.0297
0. 00CO

040445
0.0000
0.0325
0. 0000
0.0367
0. 0006
0.0114
. 0000
0.20062

0.0001
0.0000
¢.0000
0.0003
0.0007

0.0015
0.0037

0.0483
0.0000

0.0264Q
0. 0000

0.0098
0.00C0

0.0297
2.C000

006442
J.0CCO

0.0365
0.0000

0.0244
0. 0000
0.0076
0.0000
0.0003
0.0000
0.000¢C
€.0000
0.0000

0.0001%

0.03538
0.0000

0.0070
8. 0000

0.055%
0.0000

0.0524
0.0000

0.0349
C.00C0

Q.0218
0. 0000

0.0045
0. 0002
0.0002
0.0000
0.0000
0.0000
0.0000
0. 0200
C.0000

0.0001

¢el



96-97.
98.

99.
100-305.

INTERNAL DISTRIBUTION

133

ORNL/TM-5414
UC-79d - LMFBR
Physics

L. S. Abbott 41, J. C. Robinson

R. G. Alsmiller, Jr. 42. R. T. Santoro

D. E. Bartine 43. D. L. Selby

V. C. Baker 44. D. B. Simpson

J. A. Bucholz 45, C. 0. Slater

R. L. Childs 46-50. P. N. Stevens

C. E. Clifford 51-65. J. S. Tang

S. N. Crameyr 66. J. T. Thomas

G. W. Cunningham 67. M. L. Tobias

M. B. Emmett 68. E. T. Tomlinson

W. W. Engle, Jr. 69. D. B. Trauger

G. F. Flanagan 70. D. K. Trubey

W. E. Ford, III 71. K. R, Turnbull

T. B. Fowler 72. D. R. Vondy

S. K. Fraley 73. C. R. Weisbin

T. A. Gabriel 74. R. M. Westfall

H. Goldstein (Consultant) 75. J. E. White

H. M. Greene 76. G. E. Whitesides

W. 0. Harms 77. L. R. Williams

0. W. Hermann 78. M. L. Williams

T. J. Hoffman 79. A. Zucker

J. R. Knight 80. P. F. Fox (Consultant)

R. A. Lillje 81. W. W. Havens (Consultant)
J. L. Lucius 82. A. F. Henry (Consultant)

R. E. Maerker 83. R. E. Uhrig (Consultant)

J. W. McAdoo 84-85. Central Research Library

F. €. Maienschein 86. Y-12 Document Reference Section
G. W. Morrison 87-88. Laboratory Records Department
F. R. Mynatt 89. Laboratory Records, ORNL RC
B. Nakhai 90-95. Radiation Shielding Information
J. V. Pace, III Center

L. M. Petrie

H. Postma

W. A. Rhoades

EXTERNAL DISTRIBUTION

Director, Division of Reactor Development and Demonstration,

Energy Research and Development Administration, Washington, DC 20545.
Research and Technical Support Division, Energy Research and
Development Administration, Oak Ridge, TN 37830.

Director, Reactor Division, Energy Research and Development
Administration, Oak Ridge, TN  37830.

For distribution as shown in TID-4500, Distribution Category

UC-79d, Liquid Metal Fast Breeder Reactor Physics.

% U.S, GOVERNMENT PRINTING OFFICE: 1976-748-189/353



