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THEORETICAL AND EXPERIMENTAL DETERMINATION OF MECHANICAL

PROPERTIES OF SUPERCONDUCTING COMPOSITE WIRE*

W. H. Gray and C. T. Sunt

ABSTRACT

The object of this research is to characterize the mechanical

properties of a composite superconducting (NbTi/Cu) wire in terms

of the mechanical properties of each constituent material. For a

particular composite superconducting wire, five elastic material

constants were experimentally determined and theoretically calculated.

Since the Poisson's ratios for the fiber and the matrix material

were very close, there was essentially no (less than 1%) difference

among all the theoretical predictions for any individual mechanical

constant. Because of the expense and difficulty of producing elastic

constant data of 0.1% accuracy, and therefore conclusively determining

which theory is best, no further experiments were performed.

INTRODUCTION

The object of this research is to characterize the mechanical

properties of a composite superconducting (NbTi/Cu) wire in terms of

the mechanical properties of each constituent material. In 1973, the

Cryogenics Division of the National Bureau of Standards (NBS) published

an interim report in which a preliminary investigation of the mechan

ical properties of a solenoid coil composite was made. The coil inves

tigated consisted of epoxy, fiberglass, and composite superconducting

wire. Both theoretical and experimental elastic constants were tabulated

* This research was sponsored in part by the Engineering Research
Institute, Iowa State University, Ames, IA 50011, and in part
by the Energy Research and Development Administration under
contract with Union Carbide Corporation.

t Department of Engineering Sciences and Mechanics and Engineering
Research Institute, Iowa State University, Ames, IA 50011.



for a typical piece of coil cut out of a small solenoid. Our report

differs from this NBS work in that we consider only the mechanical

properties of an individual composite superconducting wire.

The theoretical predictions and the experimental procedures to

determine the effective elastic constants of the composite wire are

described in the next two sections of this report.

THEORETICAL INVESTIGATION

Most of the analytical work for predicting the mechanical and

thermal properties of fiber-reinforced composites in terms of volu

metric composition, geometrical arrangement of the fibers, and con

stituent material properties was done before 1970. There are five

approaches to predict the micromechanical behavior of fiber-reinforced

composites.* The essential characteristic of each is described below.

1.1 SELF-CONSISTENT MODEL METHODS

This method was originally proposed by Hershey and Kroner for

crystal aggregates, and was first employed by Hill to derive expres

sions for elastic constants. Hill modeled the composite as a single

fiber embedded in an unbounded macroscopically homogeneous medium,

subjected to a uniform loading at infinity. This uniform loading

produces a uniform strain field in the filament which is then used

to estimate the elastic constants. A similar model proposed by Frohlich

and Sack for predicting the viscosity of a Newtonian fluid containing

a dispersion of equal elastic spheres consists of three concentric

cylinders, the outer one being unbounded. The innermost cylinder is

assumed to have the elastic properties of the filaments; the middle

one has the properties of the matrix; and the outermost has the properties

of the composite. The solid is subjected to homogeneous stresses at

infinity. The resulting elastic fields are determined, and then are

* No attempt is made here to give a comprehensive literature survey
regarding this subject. More references can be found in Ref . 2.



employed to predict the elastic constants of the composite. Applications

of the self-consistent model methods can be found, for example, in

Refs. 7-9.

1.2 VARIATIONAL METHODS

In this method, the energy theorems of classical elasticity are

used to obtain bounds on the mechanical and physical properties of

filamentary composites. The minimum complementary energy theorem

yields a lower bound, while the minimum potential energy theorem yields

the upper bound. Using this approach, bounds for the elastic and

thermal properties of composites have been obtained by many investiga-
10-12

tors.

1.3 EXACT METHODS

By assuming that the fibers are arranged in a doubly periodic

rectangular array, a fundamental or repeating element can be estab

lished. The resulting elasticity problem can then be solved either

by introducing a stress function using a series development, or by

numerical techniques such as finite difference or finite element

methods. Once the problem is solved elastically, the resulting elastic

fields can be averaged to get expressions for the desired elastic con

stants. Typical applications of this method can be found in Refs.

13-18.

1.4 MECHANICS OF MATERIALS METHOD

By making simplifying assumptions regarding the mechanical or

thermal behavior of a composite material, the mechanics-of-materials

expressions for the equivalent elastic or thermal constants of unidi-

rectionally reinforced fibrous composite materials can be derived. For

example, to determine the longitudinal Young's modulus, one assumes

that the longitudinal strains in both the matrix and the fiber are the

same; in order to determine the transverse Young's modulus, one assumes

that transverse stresses in both materials are the same. This approach



usually is referred to as the "rule of mixtures." The "rule of mixtures"

expressions for elastic moduli and thermal conductivities can be found in

Refs. 19-21.

1.5 THE HALPIN-TSAI EQUATIONS

For designers, it is often necessary to have simple and rapid com

putational procedures for estimating the macromechanical properties of

a fibrous composite. Such empirical formulas have been developed by
22Halpin and Tsai based upon modifications of the results discussed

under approaches 1.1 and 1.3. By estimating the value of a factor

which depends on the geometry of the inclusions, spacing geometry, and

loading conditions, the composite elastic moduli can be approximated.

Reliable estimates for this factor can be obtained by comparing the

Halpin-Tsai equation with the numerical micromechanics solutions. If

used appropriately, the Halpin-Tsai equation can yield very reliable

results without elaborate calculations.

All the above methods make the following three basic assumptions:

(1) each constituent material behaves linearly elastically, (2) the fibers

are straight (without twist), and (3) there are no residual stresses.

For this investigation, we use several of the available theoretical equa

tions to predict the effective elastic mechanical properties of supercon

ducting composite wire. These equations are listed in Appendix I.

In general, a superconducting composite wire may be twisted to

minimize ac power losses in a superconducting magnet. Twisting of the

wire violates an assumption implicit in the derivation of all the

equations presented in Appendix I. However, we believe that this effect

is small (see Appendix II), and for engineering purposes can be neglected.

Other effects, such as inelastic behavior of the wire at higher loading

levels, and residual stresses in the wire introduced during fabrication,

may influence the results presented in this paper, and should be ana

lyzed more thoroughly.



EXPERIMENTAL DETERMINATION OF ELASTIC CONSTANTS

Assuming the NbTi/Cu wire behaves like a transversely isotropic

material, there are five elastic constants of significance. These

constants are: (1) Young's modulus along the direction of the fiber,

ET or E,, (longitudinal Young's modulus), (2) major Poisson's ratio,
Li J_X

V or V.,, (3) Young's modulus along the direction normal to the fiber,

ET or E„9 (transverse Young's modulus), (4) minor Poisson's ratio, VT
or V9„, and (5) longitudinal shear modulus, G or G^. Since the mate
rial properties in a plane normal to the fiber direction are assumed to

be isotropic, the transverse shear modulus G„ or G2„ can be determined

from the isotropic relation

E

G T (1)
T 2(1 + VT)

The particular superconducting composite wire chosen for our experi

ment was KRYO-210. This conductor has cross-sectional dimensions of

10.16 mm by 5.08 mm with a copper matrix containing 2640 Nb-45 wt % Ti

superconducting filaments. The copper to superconductor ratio is 6.

The elastic constants which were used for the comparisons are tabulated

below. All elastic constant measurements were made at room temperature.

Young's Modulus Poisson's Ratio Shear Modulus
Material (GPa) (GPa)

Cu 123 0.345 45.7

NbTi 84 0.33 31.5

* Registered trademark of Magnetics Corporation of America (MCA).

t Tradenames of material are used in this report for clarity. In no
case does such selection imply recommendations or endorsement by the
authors, nor does it imply that the material is necessarily the best
available for the purpose.



2.1 EXPERIMENTAL DETERMINATION OF E., AND V..

E,, and V-. can be determined from a simple tension test (see

Fig. 1). The direction of loading is parallel to the fibers of the

conductor. The longitudinal Young's modulus is determined from a a1

vs e, diagram where o\ is equal to the applied load divided by the

cross sectional area of the specimen, and £, is the strain along the

fiber direction of the conductor. Figure 2 represents an experimentally

determined plot of this diagram for KRYO-210 superconductor showing a

value for E^ of 119 GPa. A comparison of the theoretical prediction

and the experimental data is shown in Fig. 3 in this graph, as well as

the four normalized comparison graphs which follow; the legend refers

to the theoretical equations presented in Appendix I. Both equations

predict the same behavior, which deviates approximately 3% from the

experimental data.

The major Poisson's ratio is determined from the slope of the £

vs £ diagram during the same experiment, where £„ is the strain in

either transverse direction. The experimentally determined value was

0.347 (see Fig. 4). The normalized plot (see Fig. 5) showing the

comparison between theoretical prediction and experimental value again

demonstrates little difference between theories with the experimental

data differing from the predictions by about 2%.

2.2 EXPERIMENTAL DETERMINATION OF E 2 AND G„,,

E22 and G^o are determined from a test similar to that described in

2.1 (see Fig. 6). The direction of the applied load is normal to the

fiber axis. The transverse Young's modulus is determined from the a„

vs £2 diagram where o^ is the stress, and £„ is the strain in the direc

tion of the applied force. Figure 7 represents an experimentally deter

mined plot of this diagram for KRYO-210 superconductor showing a value

for E22 of 122 GPa. The experimental data are compared to the theoretical

predictions for E22 in Figure 8. An error of approximately 5% is observed.

Analogously the minor Poisson's ratio, and therefore G „, is deter

mined from an £3 vs £2 diagram. The experimental value for G _ is 43.1

GPa (see Fig. 9). Figure 10 compares this data point with the



theoretical predictions. An error of approximately 2% is observed.

2.3 EXPERIMENTAL DETERMINATION OF THE LONGITUDINAL SHEAR MODULUS G12

The simplest way to determine the longitudinal shear modulus G^2

is to use a tensile specimen with the fibers oriented at a 45 direction
24to the geometrical axis of the specimen. A realistic specimen of

a composite superconductor, however, would be very difficult and expensive

to fabricate. An alternate method to evaluate G experimentally is

outlined below.

From the two-dimensional anisotropic stress-strain relation, we

have

Sll S12 S16 '0

<e0+Tr/2 ) S12 S22 S26 JQ
(2)

'e s
LS16 S26 S66J •n>,

where E^ and en , /.-, are the axial strains of x' and z' axes. These lie
0 0 + TT/2

in the xz plane and make angles 6 and 9 + tt/2 with the x-axis respec

tively; Yfl is the shear strain of x' and z' axes, and Cq, Oq + <2 anc*
TQ are the corresponding normal and shear stresses respectively (see

Figure 11). The matrix [S] in Eq. (2) represents the compliance matrix

of the composite material in x'z' directions. In a simple tension test

with the applied load and the fibers oriented along the x direction, Eq

and e„ , ,o can be measured directly and YQ can be computed, using the
6 + TT/2 t)

data obtained from strain gage rosette readings. For axial tension,

0-q, ae + 7T/2 and T0 are given by

Or, = O COS Q
0 X

70-HT/2 a sin 0

T = -a sinQcos©
0 x

(3)



where a is equal to the applied force divided by the cross sectional

area of the specimen. The elastic compliances S--, S10, S„„, S..,, S„.,
11 ±2. 22 lo 2b _

and S are related to E , E22, v,2, and G by the following relations.

- _cos40 / 1 V12 \ .2„ 2„ ,sin4©
SU " ~E +2 G ~ sinGcos0+- (4)

^11 \ 12 bll / E22

S"1? =(lT- +IT- ~7r~) sin20cos20 --i2- (sin40 +cos40) (5)
V^ll 22 °12/ Ell

?«= (t+ft -4)sinecos3e +(t -ft -4)sin3ecose <7)

?26" fe+ft •4)sin3ecose +(4" ft •t)sinecos3e <8)

$66 "(4+4 +"ft "4) sl"2ecos2e +25- <sln4e +«-4e> W
Since E^, E22> and v^ are determined from tests (2.1) and (2.2), and

e9> e0 + tt/2' ^0» °Q> °Q + tt/2' anci T8 are °^tained either from direct
measurement by strain gages or from Eq. (3), the only unknown in Eq. (2)

is G,2. Thus G „ can be computed from any one of the three equations in

Eq. (2). Its value is found to be 44.8 GPa which is within 5% of the

theoretical predictions (see Fig. 12).

CONCLUSIONS

The goal of this experiment was to determine which theory of com

posites best predicted the elastic mechanical behavior of a supercon

ducting (NbTi/Cu) composite wire. Examination of each elastic mechanical

property reveals that all theories examined are capable of predicting

experimental data to within 5%.



Since the Poisson's ratios for both the fiber and the matrix material

were very close, there was essentially no (less than 1%) difference among

all the theoretical predictions for any individual mechanical constant.

Because of the expense and difficulty of producing elastic constant data

within 0.1% accuracy, and therefore, conclusively determining which

theory is best, no further experiments were performed.

In conclusion, for a superconducting composite wire, NbTi/Cu, a

simple, fast, and reliable engineering estimate of its elastic mechanical

behavior can be made by using the "rule of mixtures." It is unnecessary

to use one of the more rigorous theories.
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NOMENCLATURE

Symbol Definition

E - Young's modulus

G - Shear modulus

V - Poisson's ratio

K - Bulk modulus in plane strain

V - Volume fraction

f - Fiber material (NbTi)

m - Matrix material (Cu)

L - Composite material constants along the fiber direction

T - Composite material constants along a transverse direction

12



APPENDIX I

This appendix presents the various theoretical equations which were

used to predict the elastic mechanical properties for the superconducting

composite wire studied in this report. Their alphabetic index refers to

the legend on the particular graph where a comparison with experimental

data was performed. Also included in this appendix is the reference

in which these equations may be found.

A program which numerically tabulates all of these equations is

listed in Appendix III.

13
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1. Longitudinal Young's modulus E.

(a) ET = E V + ECVC (10)
L mm f f

Source: Reference 2

(b) EL - (Vm +VfJ * (ID
Em (Dl " °3Fl) + Ef(°2 " °4F2)

(f, =
E (D, - D.) + E,(D, - D.)
mv 1 3' fv 2 4'

1 + V,

D = 1 - V, D = —-—- + V
1 f 2 V m

m

V
2 2 f

D, = 2v, D. = 2V V
3 f 4 m V

m

V V^E£ + V^V E
_ m f f f m m

1 V.E.VC + V E V.
f f f m m f

Vf
F = —- F
2 V 1

m

Source: Reference 10
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2. Major Poisson's ratio VL

V-E.L.. + V E V L_
f f 1 m m m 2 /10.

(a) VL "VfEfL, HEL, (12)
f f 3 m m 2

Ll " 2VfI1 "Vm2)Vf +VmlX +VmjVm
L2 =I1- vf - 2vf2)vf

(1 +VV

L3 =2l1_V-2)Vf +(1 +Vtn)Vm
Source: Reference 10

(b) VT = V V + v,V, (13)
L mm if

Source: Reference 2
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3. Transverse Young's modulus E

E,E
f m

(a) ET =T E£V + E V,
f m m f

Source: Reference 23

i + 4>nv.
(b) E,, =T 1 - r|Vf m

m

Ef

m

n =

<j) = 2 for circular fiber

<)) = 2It-) for rectangular fiber

bC I 1 E„, = E
T x

Source: Reference 2

(c) ET =
Mf(2Mm + Gj - Gm(Mf - Mjv
fm m ml mm

(. ri _ V ^.n t u j — u Vile J.1 V
\ i fv m my mv f m'

Vf " Vm m 2M + G + 2(M, - M)V
/ J m m f mm

m
M„ =f 2(1 - Vj

M =
m 2(1 - V )

Source: Reference 23

(14)

(15)

(16)



(d) ^ =
m

-2l^) +if tt / a

a = 21 -S-l

17

h-

Source: Reference 23

Source: Reference 23

V V, V, \ E Vm " Vf

^ ET_Em Ef"Ef Vf
V E

m m

+ 1

tan"

a-a2v, 1+|/*Vrr
> (17)

•

(18)
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4. Transverse shear modulus Gn

(a) Gm (lower bound) = G
T m

2<! " VJ
1 1 - 2 V f 4

m

where A. is obtained by solving the following
4

equations

Ai i

[p] < >=<

0

0

0

0

0

v. -/

where

[P] =

^2,

,-1

0

.. 4V -3
1 m

V£ 3 - 2V
f m

1 1

0

4v -3
m

3 - 2V
m

1
3

3 - 2v
m

n
1

3 - 2v
m

Source: Reference 10

V'

-2V,

-2

-3

V,

1 - 2V
m

1 - 2v
m

1 - 2v
m

-1

1 - 2v
m

-1

0

ff
G

0

-1

3 - 4v,

3 - 2vf

3 Gf/Gmr m

2vf - 3

G./G
f m

3 - 2v
f J

(19)
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(b) G (upper bound) = G
2(1 " VJ a

1 + -. T-2 V,Aa

and A, is obtained by solving

[R],

where

[R] =

>

r *s
r *\

A, 1
1

A2 0

A3 0

A? \-\ 0 1
4

R, 0
1

B2 0
^ J

3 1

3 - 2v V,
m f

-1 1

TT- -3V

3 - 2v V,
m f

4V -3
m

3 - 2v
m

3

3 - 2V
m

1

3 - 2v
m

2V

-2

-3

Source: Reference 10

1 - 2v f 4
m

1 - 2v
m

-V,

1 - 2v
m

1

1

1 - 2V
m

1

1 - 2v
m

-1

1 - 2V
m

-1

0

ff
G
m

-1

3 - 4vf

3 - 2vf

3 Gf/Gm1 m

2vf - 3

Gf/G™i m

3 - 2v^

(20)
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2GJK + G V£ + 2G G„V + K V G + G,f \ m m/ f m f m m mVm zj
(C) GT = Gm 2G Ac +G V, + 2GGJ + KV A3 + G,\ (21)

™lm mf mfm mmm f' v/

Source: Reference 7

Vf
(d) G (lower bound) = G + (K + 2G V ) (22)

1 m m m
G, - G + 2G (K + G )

f m mmm

Source: Reference 11

V

(e) GT (upper bound) = Gf + ——rj-r^—rr- (23)

G7^+2Gf(Kf + Gf)

Source: Reference 11
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5. Longitudinal shear modulus G

G, (1 + Vf) + V
t r m

(a) GT =
L G,

-i- V + 1 + V
G m 1
m

Source: Reference 10

G,G
f m

(b) GT =
L V G. + V,G

m f f m

Source: Reference 23

(c) GT =
i + (|>nvf
l - nvf m

m 7 x m

+ - t;
ft

for rectangular fiber

I—I

I 1

4 y

(j) = 1 for circular fiber

Source: Reference 2

(24)

(25)

(26)

GL " GXZ



(d) G, =
2G, - (G - G ) V

1 1mm

L 2G + (Gr - G ) V m
m f m m

Source: Reference 10

(e) GT (lower bound) = G +
L m

22

1 + m
G, - G 2G
f m m

Source: Reference 11

(f) G (upper bound) = Gf +
m

1 + f
G - G. 2G„
m f 1

Source: Reference 11

(g) GL= 2m 4 - TT + TT(j)
+ ±

(J) (4 - TT) + TT

* =

Gc (tt + 4V-) + (G tt - 4V.)
f 1 m r__

G. (tt - 4V.) + (G tt + 4V.)
f f m f

Source: Reference 23

(27)

(28)

(29)

(30)



APPENDIX II

Whitney has investigated the influence of twist on graphite fibers

in an epoxy matrix. He derived an equation for the reduction of the

longitudinal elastic Young's modulus for graphite as a function of the

geometry of the fibers. This equation is directly applicable in esti

mating how twisting affects a superconducting wire.

If the initial and reduced moduli are E and ER, respectively, then
25

their ratio can be expressed as :

ER

EI 1 + 4tt2N2R2 ,
o '

where N is the number of twists per centimeter and R is the radius of
o

the fiber in centimeters.

For the superconducting wire analyzed in this report,

N = .132 cm"1
o

R = 3.17 x 10~3cm,

which yields

1 + 4tt2N2R2 1 + 6.87 x 10~6
o

1.

Clearly, the effect of twist for this superconducting wire can be

neglected.

23
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c
C PROGRAM FIBERC.VIA
C
C LAST UPDATED: 1APR76
C
C AUTHOR: U. H. GRAY
C P. 0. BOX Y 9204-1
C OAK RIDGE NATIONAL LABORATORY
C OAK RIDGE, TN. 37B30

C
C LANGUAGE: DECSYSTEM-10. FORTRAN-10
C
C SUBROUTINES REQUIRED:
C
C MINV - STANDARD IBM SCIENTIFIC SUBROUTINE PACKAGE.
C

IMPLICIT REAL <K)
REAL NUF-NUM
DIMENSION U(6.6).RES(6).L(6).M(6).A(6)
DIMENSION UINVC6.6)

• DIMENSION ELEM(2),XNULT(2).GLGM(7).GTGM(5),
1 KTKM(4).ETEM(5)

DATA PI/3.1415926/
DATA IORED.IOURT/5.5/

C
C BEGIN PROGRAM FIBERC.VIA
C
C QUERY THE USER FOR THE MATERIAL PROPERTIES

URITEUOURT. 11)
11 FORMATC//' FIBERC.VIA DOCUMENTED IN 0RNL/TM-533r/

1 ' INPUT IN THE FOLLOWING ORDER:'/
2 ' EF(FIBER YOUNGS MODULUS)'/
3 * EM(MATRIX YOUNGS MODULUS)'/
4 ' NUF(FIBER POISSONS RATIO)'/
5 ' NUM(MATRIX POISSON RATIO)'/
6 ' VF (FIBER VOLUME FRACTION)'//
7 ' ORDER IS EF.EM,NUF,NUM,VF F0RMAT(5F)*/
B ' REMEMBER A SPACE DELIMITS THE INPUT VARIABLES'/)

READUORED. 10)EF.EM,NUF.NUM, VF
10 FORMAT(SF)
989 CONTINUE
C
C CALCULATE THE SHEAR MODULI I

GF-EF/(2.*(t.+NUF))
GM-EM/(2.*(1.-HHUM))

C CALCULATE THE MATRIX VOLUME FRACTION
VM-l.-VF

C
C CALCULATE THE BULK MODULI I

KF-EF/(3.*(1.-2.*NUF)>
KM-EM/(3.*(1.-2.*NUM))

C
C CALCULATE THE FIBER-MATRIX RATIOS.

GMGF-GM/GF
GFGM-GF/GM
EFEM-EF/EM
EMEF-EM/EF
GMEM-GM/EM
KMGM-KM/GM
KFGF-KF/GF
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KFGM-KF/GM
C ECHO INPUT DATA

URITE(I0URT.29) EF.EM.NUF.NUM.VF.GF.GM.EFEM.KF.KM.GFGM
29 FORMAT(//' INPUT DATA'//.

1* EF - '.T10.1PE11.4,/.
2' EM - '.T10.1PE11.4./.
3' NUF - '.TIB. 1PE11.4./.
4' NUM - '.TIB. 1PE11.4./,
5' VF - '.T10.1PE11.4./.
6' GF - '.T10.1PE11.4./.
7' GM - '.T10.1PE11.4./.
8' EF/EM - '.T10.1PE11.4./.
9' KF - '.T10.1PE11.4./.
.' KM - '.T10.1PE11.4./.' GF/GM - ' .T10.1PE11.4)

C
C THE EQUATION NUMBERS GIVEN IN THE REST OF THIS CODE REFER
C TO ORNL/TM-5331

C
C CALCULATE THE LONGITUDINAL YOUNG'S MODULUS
C
C EQUATION 10

ELEM(1)-VF*EFEM+VM
C EQUATION 11

IF(VM.NE.0.0) GO TO 21
ALPHA-1.
GO TO 20

21 CONTINUE
F1-(NUM*VF*EFEM+NUF*VM)/(NUF*VF*EFEM+NUF*VM)
F2-NUF*F1/NUM
Dl-l.-NUF
D2-(1.+VF)/VM+NUM
D3-2.*NUF*NUF
D4-2.*NUM*NUM*VF/VM
ALPHA-D1-D3*F1+EFEM*(D2-D4*F2)
ALPHA-ALPHA/(D1-D3+EFEM*(D2-D4))

28 ELEM(2)-ELEM(1)*ALPHA
URITEU0URT.25)

25 FORMAT(//.' LONGITUDINAL MODULUS'/)
C OUTPUT DATA ON DATA FILE

DO 801 J-1.2
801 ELEM(J)-ELEM(J)*EM

DO 30 J-1.2
JJ-J+9
URITE(IOURT.24) JJ.ELEM(J)

30 CONTINUE
24 FORMATdX.'EQU. '. I2.4X. 1PE11.4)
C
C CALCULATE THE MAJOR POISSON RATIO
C
C EQUATION 12

XL 1 -2. *NUF* (1. -NUM*NUM) *VF+NUM* (1. -HftJM) *VM
XL2-VF*(1.-NUF-2.*NUF*NUF)
XL3-2.*C1.-NUM*NUM)*VF+(1.+NUM)*VM
XNULTA-VF*EFEM*XL1+VM*NUM*XL2
XNULT(l)-XNULTA/(VF*EFEM*XL3+VM*XL2)

C
C EQUATION 13

XNULTC2)-VF*NUF+VM*NUM
URITECIOURT, 225)

225 FORMAT(//,' MAJOR POISSONS RATIO'/)
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C OUTPUT DATA ON DATA FILE
DO 31 J-1.2
JJ-J+11
URITEdOURT. 24) JJ.XNULT(J)

31 CONTINUE
C
C CALCULATE THE TRANSVERSE YOUNG'S MODULUS
C
C EQUATION 14

ETEM(1)-1./(VM+EMEF*VF)

C
C EQUATION 15

ETA-(EFEM-l.)/(EFEM+2.)
ETEM(2)-(1.+2.*ETA*VF)/(1.-ETA*VF)

C
C EQUATION 16

XMF-EFEM/(2.*(1.-NUF))
XMM-1./(2.*(1.-NUM))
PART-2.*(1.-NUF+(NUF-NUM)*VM)
PART-PART*(XMF*(2. *XMM+GMEM) -GMEM*(XMF-XM1)*VM)
ETEM(3)-PART/(2.*XMM+GMEM+2.*(XMF-XMM)*VM)

C
C EQUATION 17

ALPHA-2.*(EMEF-1.)
C
C CHECK FOR A POSITIVE RADICAL FOR SORT.

IF(1.-ALPHA*ALPHA*VF/PI.LE.0.) GO TO 160
XNMR-SQRT(1.-ALPHA*ALPHA*VF/PI)
TANSTF-ATAN2(XNMR.(1.+SQRT(ALPHA*ALPHA*VF/PI)))
SQ-4./SQRT(1.-ALPHA*ALPHA*VF/PI)
ETEM(4)-1.-2.*SQRT(VF/PI)+(PI-SQ*TANSTF)/ALPHA
GO TO 161

160 CONTINUE
ETEMU) — 1.

161 CONTINUE
C
C EQUATION 18

SQ-(EFEM*NUM-NUF)**2*VF/EF
ETEM(5)-VM/EM+VF/EF-SQ/(VF*£F/VM/EM+1.)
ETEM(5) -1. /(ETEM(5) *EM)
URITEdOURT. 625)

625 FORMAT(//,' TRANSVERSE YOUNGS MODULUS*/)
C OUTPUT DATA ON DATA FILE

EHG-AMAXKEF.EM)
ELU-AMINKEF.EM)
DO 8B5 J-1.5

805 ETEM(J)-ETEM(J)«EM
DO 32 J-1.5
JJ-J+13
IF(ETEM(J).GT.EHG.OR.ETEMU).LT.ELU) GO TO 82
URITEdOURT.24) JJ.ETEMU)
GO TO 32

82 URITEdOURT.83) JJ
83 FORMATC EQU. '.12.' NOT APPLICABLE')
32 CONTINUE
C
C CALCULATE THE TRANSVERSE SHEAR MODULUS
C
C EQUATION 19
C



30

C BEGIN TO SET UP THE COEFFICIENT MATRIX
U(l.l)-1.
U(2.1)-0.
U(3.1) = l.
U(4.1)=8.
U(5.1)-l.
U(6. l)-0.

U(3.2)-l.
U(3.3)-l.
U(4,3) — 2.

U(5.3)—3.
U(6.3)-2.
U(3.4)-l.
U(1.5)-0.
U(2.5)-8.
U(3,5) — 1.
U(4.5)-0.
U(6.5)-0.
U(1.6)-0.
U(2.6)-0.
U(3.6) —1.

U(1.2)-1./VF
U(4.2)—(3.-4.«NUM)/(3.-2.*NUM)
U(2.2)-U(4,2)/VF
U(6.2) — l./(3.-2.*NUM)
U(5.2)—3.*U(6.2)
U<1.3)-VF*VF
U(2.3)—2.*U(1.3)
U(1.4)-VF

U(4.4)-1./(1.-2.*NUM)
U(2.4)-VF*U(4.4)
U(5.4)-U(4.4)
U(6.4)—U(4.4)
U(5.5)—GFGM

U(4,6)-(3.-4.*NUF)/(3.-2.*NUF)
U(6,6)-GFGM/(3.-2.*NUF)
U(5.6)—3.*U(6.g)

C

C STORE THE COEFFICIENT MATRIX INTO UINV
DO 71 IH-1.6
DO 71 JH-1.6

?l UINV(IH.JH)-UdH.JH)
C

C FORMULATE RIGHT HAND SIDE
Ad)-1.
A(2)-0.
A(3)-0.
A(4)-0.
A(5)-0.
A(6)-0.

C

C INVERT THE COEFFICIENT MATRIX. SUBROUTINE MINV IS THE STANDARD
C IBM SCIENTIFIC SUBROUTINE MATRIX INVERTER. STANDARD

CALL MINV(UINV.6.D.L.M)
C

C OBTAIN THE SOLUTION VECTOR
DO 69 MK-1.6
RES(MK)-0.
DO 69 ML-1.6

69 RES<MK)-A(ML)*UINV(MK.ML)+RES(MK)



31

GTGM(1)-1.-2.*(1.-NUM)*VF*RES(4)/(1.-2.*NUM)
C
c
c
c

EQUATION 20

BEGIN TO SET UP THE COEFFICIENT MATRIX
U(l.l)-1.
U(2.1)-0.

U(3.1)-l.
U(4. l)-0.
U(5.1)-l.
U(6,l)-0.
U(1.2)-l.
Ud.3)-1.
U(2.3)—2.
U(3.3)—3.
U(4.3)-2.
U(1.4)-l.
U(1.5) —1.
U(2.5)-0.
U(4.5)-0.
U(5.5)-0.

U(6.5)-0.
U(1.6) —1.
U(5.6)-0.
U(6.6)-0.
U(4.2) —l./(3.-2.*NUM)
U<3.2)—3.*U<4.2)
U(2.2)-(3.-4.*NUM)*U(4.2)
U(5.2)-U(3.2)/VF
U(6.2)-U(4.2)/VF
U(5.3)—3.*VF*VF
U(6.3)-2.*vF*VF
U(2.4)-1./(1.-2.*NUM)
U(3.4)-U(2.4)
U(4.4)—U(2.4)
U(5.4)-VF*U(2.4)
U(6,4)—U(5.4)
U(3.5)—GFGM
U(2.6)-(3.-4.*NUF)/(3.-2.*NUF)
U(4.6)-GFGM/(3.-2.*NUF)

c
c

U(3.6)—3.*U(4.6)

STORE THE COEFFICIENT MATRIX INTO UINV
DO 81 IH-1.6
DO 81 JH-1.6

81 UINVdH.JH)-U(IH.JH)
c
C FORMULATE THE RIGHT HAND SIDE.

Ad)-0.
A(2)-0.
A(3)-0.
A(4)-0.

A(5)-l.
A(6)-0.

C
c INVERT THE MATRIX.

c
c

CALL MINV(UINV.6.D.L.M)

OBTAIN THE SOLUTION VECTOR.
DO 89 MK-1.6
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RES(MK)-0.
DO 89 ML-1.6

89 RES(MK)-A(ML)*UINV(MK.ML)+RES(MK)
GTGM(2)-1./(1.+2.*(1.-NUM)/(1.-2.*NUM)*VF*RES(4))

C
C EQUATION 21

KMGM1-(KMGM+1.)*VF*2.
GFGM1-(GFGM+1.)*VM*KMGM
GTGMC-GFGM*KMGM1+2.*GFGM*VM+GFGM1
GTGM(3)-GTGMC/(KMGM1+2.*GFGM*VM+GFGM1)

C
C EQUATION 22

GTGM(4)-1.+VF/(1./(GFGM-1.)+(KMGM+2.)*VM/(2.*(KMGM+1.)))
C
C EQUATION 23

FRAC-((KFGF+2.)*VF/2./(KFGM+GFGM)+1./(1.-GFGM))
108 GTGM(5)-GFGM+VM/FRAC

URITEdOURT. 425)
425 FORMAT(//,' TRANSVERSE SHEAR MODULUS'/)
C OUTPUT DATA ON DATA FILE

DO 803 J-1.5
803 GTGMU)-GTGM(J)*GM

DO 33 J-1,5
JJ-J+18
URITEdOURT.24) JJ.GTGM(J)

33 CONTINUE
C
C CALCULATE THE MINOR POISSON RATIO USING THE RULE OF MIXTURES
C TRANSVERSE YOUNG'S MODULUS AND EACH OF THE PREVIOUSLY CALCULATED
C TRANSVERSE SHEAR MODULI I.
C

E22-ETEM(1)
URITEdOURT, 79)
DO 75 J-1.5
JJ-J+1B

C
C EQUATION 1

P0I23-(E22/(2.*GTGM(J)))-1.
IF(PDI23.LT.0.0.OR.POI23.GT.0.5) GO TO 76
URITEdOURT.77) JJ.P0I23
GO TO 75

76 URITEdOURT.78) JJ
75 CONTINUE
7? FORMATC EQU. 1 USING EQU. '. I2.4X. 1PE11.4)

78 FORMATC EQU. 1 USING EQU. '.12.' NOT APPLICABLE')
79 FORMAT(//.' MINOR POISSONS RATIO'/)
C
C CALCULATE THE LONGITUDINAL SHEAR MODULUS
C
C EQUATION 24

GLGMd) -(GFGM*(1. +VF) +VM)/(GFGM*VM+1 .+VF)

C
C EQUATION 25

GLGM(2)-1./(VM+GMGF*VF)
C
C EQUATION 26

ETA-VF*(GFGM-1.)/(GFGM+1.)
GLGM(3)-d.+ETA)/d.-ETA)

C
C EQUATION 27
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GLGMD-2.*GFGM-(GFGM-1.)*VM
GLGM(4)-GLGMD/(2.+(GFGM-l.)*VM)

C
C EQUATION 28

FRAC-1./(GFGM-1.)
GLGM(5)-1.+VF/(FRAC+VM/2.)

C

C EQUATION 29
FRAC-1./(1.-GFGM)+VF/(2.*GFGM)
GLGM(6)-GFGM+VM/FRAC

C

C EQUATION 30

ALPHA-GFGM*(4.*VF+PD+PI-4.*VF
ALPHA-ALPHA/(GFGM*(PI-4.*VF)+PI+4.*VF)

UR?TE?lOl!RTa325PI^I^LPHft)/4'+4',WLPHfl''(PLPHft*C4'"PI)'H3I))
325 FORMAT(//.''LONGITUDINAL SHEAR MODULUS'/)
C OUTPUT DATA ON DATA FILE

GHG-AMAxl(GF.GM)
GLU-AMINKGF.GM)
DO 802 J-1.7

802 GLGMU)-GLGMU)*GM
DO 34 J-1.7
JJ-J+23
IF(GLGM(J).GT.GHG.OR.GLGM(J).LT.GLU) GO TO 85
URITEdOURT.24) JJ.GLGM(J)
GO TO 34

85 URITEdOURT.83) JJ
34 CONTINUE
C
C MORE DATA

URITEdOURT. 990)
990 FORMATC//' MORE DATA?'/

1 ' INPUT EF.EM.NUF.NUM.VF F0RMATC5F)'/
2 ' NEGATIVE EF STOPS THE PROGRAM')

READ(IORED.10)EF.EM.NUF. NUM.VF
IF(EF.GT.0.) GO TO 989
STOP
END
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FIGURE CAPTIONS

Fig. 1. Direction of loading for the determination of the longitudinal
Young's modulus and the major Poisson's ratio.

Fig. 2. a vs e diagram for Kryo-210 superconductor.

Fig. 3. Normalized plot of the longitudinal Young's Modulus versus
volume fraction of the fiber (NbTi): In this graph, as
well as the other normalized comparison graphs, the legend
refers to the theoretical equations presented in Appendix I.

Fig. 4. e2 vs e diagram for Kryo-210 superconductor.

Fig. 5. Normalized plot of the major Poisson's ratio vs volume
fraction of the fiber (NbTi).

Fig. 6. Direction of loading for the determination of the transverse
Young's Modulus and the minor Poisson's ratio.

Fig. 7. a2 vs e„ diagram for Kryo-210 superconductor.

Fig. 8. Normalized plot of the transverse Young's Modulus versus
volume fraction of the fiber (NbTi).

Fig. 9. e^ vs e2 diagram for Kryo-210 superconductor.

Fig. 10. Normalized plot of G vs the volume fraction of the
fiber (NbTi). ZJ

Fig. 11. Coordinate system for the determination of the longitudinal
shear modulus.

Fig. 12. Normalized plot of the longitudinal shear modulus vs volume
fraction of the fiber (NbTi).
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