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SUBROUTINE CAUCHY - COMPLEX ROOTS OF A FUNCTION

USING A CAUCHY INTEGRAL TECHNIQUE

C. O. Beasley, Jr. and H. K. Meier
Oak Ridge National Laboratory, Oak Ridge, Tennessee

ABSTRACT

A description of the subroutine CAUCHY, the program for finding
zeros of an analytic function f(z) within a contour in the z-plane,
is given. Examples of types of functions for which this program is
most advantageous as well as types of functions which show its

weaknesses, are given.

1. INTRODUCTION

The purpose of this report is to describe in detail the sub-
routine CAUCHY and its subprograms. This routine is used to find
the zeros of an arbitrary function f(z) within a contour ¢ in the
complex z-plane.

The method used has been documented.l It relies on calculating

integrals of the form
M

1 N f'(z TN
Sy = 7 Z%(zgdz L %i-

i=1 J=1

S~
E:Z
G

]

where z, are the zeros and LA are the poles of f within c. Thus

gives the number of zeros, S, the sum

if there are no poles, S 1

0
of the zeros, 82 the sum of their squares, etc.

*
Research sponsored by U. S. Atomic Energy Commission under contract
with Union Carbide Corporation.
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This method becomes numerically practical when ¢ contains a
small number of zeros. Thus some knowledge of f is desirable, and
in principle, if sufficiently small integration steps are taken so
that the function is sufficiently smooth, the answer may be obtained
to arbitrary accuracy. Since the method does not rely on iteration,
it will work even when well-known iteration methods will not.

The problem is then to perform the integral with suitable
accuracy. One straight-forward method is found in the programs
LSQNK1 and LSQNK2 from the Massachusetts Institute of Technology
Information Processing Center.2 The method used by these programs
is to integrate (1) by parts, and then use a Simpson's rule integra-
tion to perform the numerical integration around ¢. The program is
most useful when large numbers of points of ¢ may be calculated
and when a large number of roots may exist ( M < 4 for this pro-
gram). An automatic increasing or decreasing of step size along c
is included in the program.

In many cases of numerical interest, it is costly to compute
the function, and one would like to locate one or two zeros with
fair accuracy with a minimum number of points. The presence of
nearby poles or zeros in f introduces poles on the integrand of
equation 1 and may make normal integration procedures impractical
because of the large number of contour points required. It is
these cases for which the subroutine CAUCHY is designed.

In the next section, we will discuss the method. In the
third section, we describe the subroutines. The fourth section
gives some sample results, and the fifth a listing of the sub-

routine and its subprograms




II. METHOD
Suppose we are given three values of a function fj at three

points Zj' We can form a best-fit binomial

2
fapprox =az +bz+ec (2)

by determining a, b, and ¢c. Now we may factor f

approx
fapprox = (z - Zl)(Z - Zg) (3)
where
b+/C - F a c
Z b
1,2 2a
Then
7
approx (z - 22) t(z - Zl)
and
fl
approx _ 1 - 1 ()
f Tz -z Z -2
approx 1 2

So we may perform our integral over the segment of the contour c over

which (2) is valid; the integrals are of the form

Zy
n
S dz_____zf'z n=0,,2 ... (5)
. o
& 2 -z
=) n-o
a o
7. -7
b "«
= (Zb—za) - &<z -z ) n=1
a "o
7. -2
1 b o
=5 (zb—z )(zb+z -2z ) - 2(zb—z ) + &1(2 e > n=2
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However, (2) is not a good approximation to f if f has nearby
singularities. A much better approximation obtains if fj is known at
five points zj:

2
) cl + cgz + 052 (6)

Ch + c5z + c6z

f
approx

We may factor both numerator and denominator

. =(z-znl)(z-zn2) Sé
approx (z—zdl)(z—zdg) <

So

4

fapprox - 1 1 1 1 (8)
f zZ-2Z Z=2
approx nl n? dl

Thus in calculating the integral (5), one adds the contributions from
the roots of the numerator and subtracts those of the denominator.

We must first solve for the c,. We can make the numerical
computation more accurate by transforming to a coordinate system
where the center point of the five Zj’ zo, is zero; thus we know our
function at five points f_2, f_

s fo, f , and f.. We can then write

1 1 2

2 2
c, te. .z, +tcec,z, =(c tcoz, +tcpz,) T,
(e 6%3)

1t % 2yt Ca2y 52 ; (9)

We note that (B) is a set of five linear equations for the six ¢

We may write the c, as follows. We first note that at z, = 0,
= 10
¢y Chfo (10)

Using this, we may write the other numerator coefficients c, and c

e 5

in terms of the denominator coefficients:




1 "-1 -1 1
208 =21ty £ -1 1 f1-f, o1,
3 = Tz -z ®6 T m -z S5 M z z Cy (12)
-1 1 -1 1 -1 1 -1
If we put ¢,, c,, and c, in (9)and divide by z
1" 2 3 3’
A9 S + BY cg = ¢’ <) (3 =+2) (13)
where
z, (£, =f ) (2, f -2 . f.)
Al . o L -1, - t =t e (14)
17 %1 17 %1 J
3 zj(zlfl—z_lf_l) zlz_l(f_l-fl) g
B = Z, - Z * 7 = 7 - J 3 (15)
1 -1 1 -1
£ -t z z
j 1 -
¢’ = g > - 7. -2 [zl (f 1 fo) - E—l (f] fo)]
J 1°-1 -1 - 1
z . - -
5 [fl o fa fo] (16)
7F1 - A1 2.1
ad -8 - - 0 for j =0, +1. We now solve ( 13 for cs and cg:
cu CE 2
¢ = fEw | ¢ p° (17)
cu A2 02
°6 = TET | A7 ¢ (18)
where
DET = 4% B2 - B A2 (19)

If we now set c) = DET, we have a unique solution for the cj.
Problems do arise if DET = O. This will happen when f is of the

form
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We examine three special cases:

1) ) =B, = 0. In this case, AY = B) = ¢d = 0. The simplest

solution is ch =1, 05 = Cg = 0.

2) ﬁl = 0. In this case, AY = ¢J = 0 # BY. Again the simplest

i

solution is to set ey = 1, c5 =cg = 0.

3) oy #0# Bl. In this case we are free to choose Cg = 03

then from (13), Adc -2

)

= Cqu, and since the determinant is zero (A-Q, C

5

equals (A?, Cg) within a constant factor so we can set c_ + 02 and

5

¢, = AQ. One could, of course, set c_ and c6 to any numbers not egual

5

to O3 this would amount to multiplying numerator and denominator by the

same factor, provided the overall polynominal remained of degree X 2.

Once the coefficients s have been obtained, the roots 2012 Zppo
Z31 and Zyp 8re easily obtained. The integral is then performed from
Zl+ZO ZO+Zl
Z, to Zy where Z, = %5 and zy + — - Ir z  is not a corner

point, that is, if Azz/Az = O, then the integral is performed in one
step: z, to 2y If A2z/Az # 0, it is performed in two steps, z, to Z s
and Zg to Zy The integrals are performed in the transformed coordinate

system (z3 = 0), the same one that the coefficients are found in.




III. DESCRIPTION COF THE SUBROUTINE

A.  CAUCHY
The main subroutine begins by initializing IND (D = double
precision), where N is defined in equation (1). The initialization
is necessary, since the subroutine which performs the integral adds
incrementally to IND.

Setting C(1) = lO15 signals COEF  that it is the first time that
COEF has been called for a given contour (see description of COEF).

The array ZSC(I) is set equal to lAZi|. If any ZSC(I) equals zero,
an error message is printed out and a return initiated.

A check is made to see if the contour contains at least five points.
If not, an error message is printed out and a return initiated.

The DO 160 loop is now started; this ultimately performs the incre-
mental integral for each Z(I). Each set of five 2y = ZD(J) and
fj = FD(J), 1 < J < 5 are then set up, with special provisions at the
"beginning" and "ending" of the contour. For these five ZD(J) and FD(J),
the coefficients c, = CD(L), 1 = L s 6, are calculated (see equation (6))
in subroutine COEF. The roots ZRN(1l) and ZRN(2) of the numerator, and
ZRD(1) and ZRD(2) of the denominator, are calculated in ROOTZ2.

A check is then made to see if AEZB/AZ5 >~ 03 if so, the point ZD(3) is
not a "corner point", and the integral is performed from [zD(2)+2D(3)]}/2=21
to [zD(3)+zD(k)]/2=z2. 1If ZD(3) is a cormer point, the integral is done
in two steps: from Z1 to ZD(3), and from ZD(3) to Z2.

The integrals IN = IND, O < N < 2 are divided by 211 and then a return

is made to the calling progran.
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B. COEF

Given the function F(I) at Z(I), 1 < I < 5, this subroutine cal-
culates the ¢, = C(J), 1 s J <6 as defined in (6).

A check is first made to see if C(1l) = 1015. If so, it is the first
call of COEF for a given contour, and all five Ifil = FM(I), 1<I=x<5
are calculated; if not, the FM(I) are set equal to the FM(I+1), 1 < I < b,
and FM(5) is calculated from F(5).

From the FM(I), a scale factor is formed by finding the largest
FM(I). If Max (FM(I)) =0, F(I) =0, 1 =TI <5, and the scale factor
is not needed; otherwise the scale factor SCF = 1/max(FM(I)).

All FM(J) are now multiplied by SCF. Then the second largest FM(I),
TSCFM is found. If it is O, then the largest F(I) = F(J) is a singular
point, and the points of the contour have to be redefined. Hence an
error message and stop are provided. If two or more FM(I) are equal to
the maximum FM(I), or if the TSCFM # 0, the program proceeds. Note
that the presence of two singular points at two contour points (within
five consecutive points) would cause the program to fail without any
error message.

The program now proceeds to calculate the Aj, BJ, Cj defined in

equations (1k4), (15), and (16) (A—2 = AN2, etc.). From these, C(4),
C(5), and C(6) are calculated. We now test to see if C(4) = DET = O.
Since we have used the scaled FF(I) to calculate C(4), we define "OQ"

as a small number to take care of roundoff errors in subtraction. If

lC(h)| = "0", then we have a function of the type shown in equation (20).
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We then set C(5) = C2 and C(4) = A2 as discussed in case 3). 1In
addition |C(5)| = 0, we have either case 2) or case 1), and in either
case, the denominator is a constant, set equal to 1. The numerator co-

efficient C(1), C(2), C(3) are then calculated, and the return is made

to CAUCHY.
C. ROOT2

This program calculates the roots ZR(1l) and ZR(2) of f = A¥ZE + B¥Z + C.
Roots at infinity are set to 1027. The subroutine then calculates

7(1) = = B+ JfB7 - B¥A%C and 7(2) = - B - 7 - bwaxc. If T = [Z(1)] =0 and
T2 = |Z(2)i = 0O special cases must be treated. 1In that case, if
A = 0, then f = constant, and the two roots are at "infinity"; a return

is made. If C = O also (which could not happen in CAUCHY, but might

arise in some other use of ROOT2), an error stop and message are in-
stituted. If A = O when T, = T22O, then both roots ZR(1) = ZR(2) = 0.

it noﬁe of the special cases occurs, we determine the larger of
T1 and T2. The larger Z(1,2) is then used to calculate ZR(1) = 2c/z(1,2) .
A check is made to see whether the second root is at "infinity",

corresponding to A = 0. If it is, a return occurs, if not the second

root is calculated: 2ZR(2) + z(1,2)/2A.

D. INCIN
Incin increments the IO’ Il and 12 integrals by forming
IR
+ FND Y AL (21.1)
=1 Lo "os’ '
J=1
IR
I, =1, +FND - Y1 AL.. , (21.2)
1 1 L 2J



and

where

and

Ay

AIlj

Algj

zl, Z2, FND, 1¢,

tained from

Z, =
J
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IR

= + . . )
I I, + FND EZ Algj (21.3)

3=1

_ dz
= S -z Z‘J.) (22.1)

2
Z dz
= i (E—:—Z;) (22.2)

z dz
-\ (22.3)
I1l, I2 and IR are arguments of INCIN. The Zﬁ's are ob-

7C + ZR(J) (23)

where ZC and ZR(Jj) are additional arguments of the subroutine.

Starting with equations (22), AIlj can be expressed as

72
I..= d
A 1j S z

and

z1

z2
lad
)
yAR

il

DZ

[(z2) +2,]

-z,
(z J)
7. 4
J
a1+ 72 |
J
(z2 - 71) + 7, AL,
+ 24,
Zs My, (2k.1)
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Z
2 [(22 - Zi) + Z?]
= dz
o S (z - 2,)
7 J
1
Z
J 2
= d + +
S z [z + 7, p— Zj ]
21
1 2
=3 (z2 - 24 ) + Z, (Z2 - Zl)
+ 2 AT
J 0J
= DZ + . + 7, AT
ZB Z DZ Z 03
=D + 7,
Z ZB ZJ A IlJ
where
DZ = 22 - Zl
and
1
Zy =5 (20 * Zp)

So the only difficulty is the evaluation of AIO. If
1

z =35 DZ X t+ ZB
is substituted into equation (2.1) it is seen that
1
dx
Aoy = S 2(Z %y, )
-1 X - _._.._J.__._
DZ
or 1
S A - S
A Io_ = x~-a=-1Db

(24.2)

(25.1)

(25.2)

(26)




where

2 .-
a+1ib= ——£§%:ﬁiz (28)

and

a and b are real.

This can then be expressed as

1
- + 3
Aloj _ S dx (x2 a : i b)
R (x-2)" + b
1 1
1 [ 2 2] . dx
= - + 2
2% (xa) b-l+1bgm (9)
-1
1
iw[gl-a22+b2’|+ bg dx
S 27 L14a)P® A 3 (x-a)"4= 7
-1
and 1
C dx
e I =L (30)
-1
Now make the substitution
x=a+ |b| tan @ (31)
with
l+a
tan (p_l= - .b F}
l-a
tan ¢ = |b| s
and -
lo] <% ) (32)

into equation (30).

It is now seen that

il

Im AIOj
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Sirce-1l < 1 it follows from equation (31) and (32) that
- <
0= P - P =T
hence

IImAIOjl <. (34)

Starting again with equation (26) it follows that

/' TR Z .-Z )-l
o7 ( B

- (F )
EZ— ZJ.-ZB) + 1

with the branch specified by equation (3k).

If
2(Z .~ Z
=
Dz

)
Bl <4

define
2(z.-2.,)
- _—J B
R = D7 . (56)

and then

1-R
(

B Ios =tni\Teg ) *od-1)

and
1-R\ .

B Io; =@"(I+—R/ - im . (37).

Tt makes no difference which branch of g -1) is used here since
the imrginary part of A IOj is adjusted to satisfy equation (34) by

adding or subtracting 2m i1 to the final result.
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If 2 (Z, - Z
1=

then R is defined as

DZ
R = (28)
2(Zj ZB
and 1
i 1
AT, .= WI(I———4>
OJ + 1
'iR R
- in (155) (39)
This is the same as equation (37) without the - i m term.
(Z.-Z
The program sets R according to the value of |—5%——El to either

the R.H.S. of equation (36) or(38) and A IOj to - im or 0. Then in

either case the fortran statement

1l - R)
= + -
A IOj A IOj CDLOG <l -
produces A I .. If R is less than .1l an expansion of the @1/5—:—B> is
0] : \T= R

used otherwise a fortran supplied subrouting computes the value. The
imaginary part of A IOj is adjusted to satisfy equation (34) by adding

or subtracting 2 mi. Then AI,. and AIQj are computed from equations (24)

13

and the integrals are incremented.
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IV. SAMPLE RESULTS

In Table 1, we show results for various functions when inte-

grated around a square in the complex Z-plane
-2 s Re, Im(Z) s2

While the function does not provide an exhaustive examination, it
does illustrate several important points
1) There is a dramatic change in the winding number (I0)
as a zero or pole crosses a contour. In all examples,
this zero or pole was chosen to lie halfway between two
grid points by choosing an appropriate y. "
2) The error in any two runs should decrease as (%%%k%%g}fa H
for the larger errors, this is borne out in practice.
3) Even a crude number of points, with zeros (or poles) right

on the contour yield an interpretable IO.

In Table 1, the first column shows the function calculated.
Results are listed for three different AZ. Below the calculated

result is the correct result for comparison.
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Table 1A
£(z) 10 Il 12
1 -2 1.0000+0.00001 1.0000+0.00001 1.000+0.0001
1+01 1+01i 1+01
sin (z/h) 1.0001+0.00001 -0.0000+0.00001 -0.000+0.0001
1+01 0+01 0+01i
sin (z/U4) -0.0002~0.00001 -1.0003+0.00001 -1.005+0.0001
z =1 0+01 -14+01 -1+01

sin (z/4)
z - 1.99 - iy

sin (z/4)
z - 2.01 - iy

sin (z/4)
(z - 1)(z + 1)

sin (z/4)
z -1

-0

L05(1+0.00481

0+01

.8860-C.06081

-1+01

.0020+0.00001

-1+01

.0329+0.00411

0+01

.0332-0.00371

1+01

.0009+0.00001

-1+01

.0002+0.00001

-1+01

0.8695+0.48141
.99+.51

-0.7420-0.06591
-1+01

-1.0026-0.00001
-1+01

-2.0586-0.50811
-1.99-.51

0.0675+0.00911i
0401

0.0000-0.00001
0+01

-1.9992+0.00001
-2401

2.468+1.8921
2.710+1.991

-0.457-0.0051
-1+01

-1.00Lk+0.000i
-1+01

-3.850-2.0411
-3.71-1.991i

0.124+40.0521
0+01

-1.985+0.0001
-2+01

-1.979-0.0001
-2+01
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Table 1B
] .5

f(z) 10 T1 i)
l1-2 1.000+0.0001 1.0000+0.00001 1.000+0.0004

1+ 0i 1+ 0i 1+ 0i
sin(z /&) 1.0000+0.00001 -0.0000+0.00001  =0.0000+0.000

1+ 01 0+ 0i 0+ 0i
E&E&%ZEI -0 .0000+0. 0001 -1.0000+0.0000i  =1.000+0.000i

sin[?-l.99—iy]

z -1

sin[z-E.Ol-iy]

z -1

sin[gﬁé]
T z- 1

sin(z /&)

z-1.99-1y

sinnghz

z=2.01-1iy

sin(z /4
Z-1) (2 1)

sin(z{h)

(2-1)

0+ 01

-00052+0.00101
0+ 01

-0.9941-0.00121
-1 + 0i

-1.001+0. 00001
-1+ 0i

=0.0011+0.0031
0+ 0i

1.0012-0.00051
1+ 01

~1.0002-0.00001
-1+01

~1.0001+0.00001
-1+01

-1 + 01

0.9793+0.25081i
.99 + .251

-0.9878-0.00111
-1 + 0i

~1.0002-0.00001
-1 + 01

-1.992%-0.24981
-1.99 - 0.251

0.0025-0.00031
0+ 01

0.0000~0.00001
0+ 01

-2.0001-0.00001
-2 + 01

-1 + 01

2.875 + 0.9941
2.898 + 0.9951i

-0.976+0.0011
-1 + 0i

-1.000-0.000
-1+ 01

~-3.903-09951
-3.898-0.9951

0.005+0.0001
0+ 01

-1.999-0.000i
-2 +0

-1.998-0.000i
- 2 +0i
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Table 1C
IAZ' .25
f(z) 10 11 12
1-2 1+ 0i 1+ 0i 1+ 0i
1+ 0i 1+ 0i 1+ 0i
sin(z /%) 1+ 0i 0+ 0i 0+ 0i
1+ 0i 0+ 0i 0 + 0i
sin(z/l) 0 + 0i -1 + 0i -1 + 0i
z -1 0 + 01 -1 + 0i -1 + 0i
Sin[z-l.99—iy]
n -0.0003+0.00011 0.9894+0.1251i 2.943+0.4981
z -1 0+ 0i .99 + .1251i 2. 9hl+0.4981
Sin[z-Q.Ol-iy]
I 0.9996-0.0001i -0.9993-0.0001i =-0.999-0.0001
z -1 -1 + 0i -1+ o0 -1+ 0i
sin[zﬁé] -1+ 01 1+ 01 -1+ ot
7z - 1 -1 + 0i -1 + 0i -1 + 0i
sin(z/4) .0000+0.00001  -1.99901-0.1250i -3.945-0.4981
z-1.99-1y 0 + 0i 1.99-0.251 -3.94l-0. 4981
sin(z/4) 1+ 0i 0 + 0i 0 + 01
z-2.01-1y 1+ 0i 0+ 0i 0+ 0i
sin(z /L) + 0i 0+ 01 0+ 0i
(z-1)(z*1) 1+ 0i 0 + 0i 0 + 0i
sin(z /L) -1 + 0i -2 + 0i -2 + 01
(z-l)2 -1 + 0i -2 + 0i -2 + 0i
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V. PROGRAM LISTING

LEVEL 21.6 ({0EC 72) 057360 FORTRAN H DATc  T74.060/12,21.46
COMPILER OPTIDNS - NAMc=  MAIN,OPT=02,L INCCNT =00, S12E=0000K,
SOURCE +EBCDIC ¢NOLIST ¢NGOECK L OAD ¢ MAP,NOLDIT 4NDIDyXREF
ISN 0002 SUBROUTINE CAUCHY( IMAXZ,F,10,11,12)
c .
T CAUCHY TALCULCATES YRE TNVESRALS TO=zINTIUULNIFTI70ZY7 2¥P 131,
[4 FL=INTUZOO(LN(F))/0Z)/2%P1%],y AND 12=INT(L%#24D(LN(F))/DZ) /2P 1]
[+ WHERE F IS DEFINED AT IMAX PCINTS ON THE CONTOUR Z. IN COEF
C THE CURVE IS FIRST FIT TO A FURM {A®XS#24u8X9C)/{DOASS24ESXHF ),
- [+ THE ROOTS OF THE NUMERATOR AND DENDMINATOR ARE OBTAINED {(ROOT2),
C AND THEN THE INTEGRAL 1S PERFURMED (INCIN}
T -
1SN 0003 COMPLEX®*16 ZD15)3FD{5),CO(6)¢ZRNI2)o2ZRO(2}¢21422+1004110,4120
-7 ISN 0004 COMPLEX®E Z{101),F{101},10,11,12
1SN 0005 RcAL®4 ISCL101)
C
1SN 0006 100=(0.00,0.02}
TSN 0007 TID={U.UT, U, D07
1SN 0008 120=10.00,0.00}
ISN DOD3 CO{I¥={1.D15,0.00)
1SN 0010 00 110 I=2,1MAX
ISN DOI1 ISCUI)=CABSIZII)-2{1-1))
ISN 0012 IF(2ZSCLI)NELOW) GO TO 110
TSV 0UI% WRITE 11,5017
1SN 0015 S0l FORMAT (19H ERROR IN I-CONTUUR)
- ISN 0016 RETURN
ISN 0017 11D CONTENUC
1SN 0018 IF{IMAX.GEL5) GO TO 120
ISN 0020 WRITE (1,502)
T TSN U02ZT 502 FORWAY UIOH IHAX.(T.57
1SN 0022 Re TURN
T 777777 TSN 0023 120 THAXM]=]MAX-1
ISN 0024 00 160 I=l,1MaxMi
T 77 7 TSN DOZS 00 130 J=1,5
SN 2026 JJ=1-3+)
TSV 0027 TFUJJ ET.-1) JJ=IWAX-2Z
1SN 0029 [F{JJLEQ O} Ju=IMAX-1
TSN 0031 TFIJJ.GT.IMAK) Jd22
1SN 0033 044H=2(39)
TSN 0034 130 FOtJ}=aF(J))
ISN 0035 CALL COEF{Z0+F0,CD)
TSN 0036 CALLU ROOVZTCOTTT,COT27,C01 3, ZRN)
ISN 0037 CALL ROOT2(CDI4),COI5),C0L6)42RD)
ISN 0038 [P=le}
1SN 2039 In=1-1
ISN 004D IFUIM.EQ.0) [IM=jMAX-1
ISN 0042 TF(CABS(ZCIPIOZUIMI-2.9201)).LT.25CUIPI® L k-6 50 TJ 140
TSN 0034 IT=TZTI S ITIRYT30.5
ISN 0045 22=2(1)
ISN 0046 CALL INCINGZ1+2242013)92ZRNy2+100+4110,120,1.00)
ISN 0047 CALL INCINI21,2242003)42RDy2,50041105120,~-1.00)
1SN 0048 =21)
ISN 0049 22={2{1P)+l(1))1#0.5
TSV 0050 50 10 150
ISN 0051 1640 21={Z{1)e2(1M))*0.5
ISN 0052 I2={Z1IP)+211}))40.5
ISN 0053 150 CALL INCIN{Z1,22,2003)42RNy2, 100,110,120, 4.00)
ISN 0054 CALL INCIN(Z1422420(3)¢2RDy2+100411D41204-1.00)
PAGE 002
ISN 0055 160 CUNTINUE
ISN 0056 10=100/{0.0046.283185300)
ISN 0057 11=110/10.00,6.253185300)
ISN 0058 12=120/10.00+6.283185300}
1SN 0059 Re TURN
TSV U080 END
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LEVEL 21.6 (OEC 7D) 08/362 FORTRAN M DATE 74.112/1¢,47,53
COMPILER OPTIONS = NanEs  MAIN,OPTec2)LINECNTug0,S13CwBPBOK, Hersim 22 Ape 7Y
SOURCE,kBCOIC NOLIST,0ECK,LDAD, MAP,NOEDTIT,NO10,NOXREF
ISN 8092 SURROUTINE xnc1~<!;.iz.!:,iﬂ.xﬂ 18,11,12:FND)
ISN 9903 IMPLICIT COMPLEX®L4 (AaH,0d)
¢ INCIN AOOS THE [WCREWENTAL INTEGRALS FAOM 21 10 22 10 THE
[+ INTEGRALS 1d: 11, AND 12,
[ 18UB=-N 3 [aSUR"=N + rno o SUM OVER J,Juls1A OF INT(J), WHERE
¢ INT(J) & INTEGRAL FROM 21 TO 22 OF (DZec(ZeoN)/(E=2C-ER(J))
1SN 0004 REAL®S AR,PI,TWUP],FNOD,TEST
}:: ::g: gon:;g¥;ie xi;x:.lz:rntt)
AT .14199263935897908/,TWOP1/6,2831053071799808
1SN 9017 02e22-21 +2031853071793808/
1SN 008 108,5000(22021)
ISN 9#89 00 59 Jai, IR
1SN 0018 ENLTLTIRT 1]
1SN 3011 2RB=2, 000 (2J-20)
1SN 8012 ReRA/DE
1Sk 0413 ARSCOABS(A)
1SN (014 IF(AR.GT,1,08) GO T0 18
1SN 2016 D1eDCMPLX (@,00,P])
1SN @017 G0 To 20
1SN 9918 10 Rep#/2RE
1SN 9019 ARs},08/7AR
1SN en2e 01s(9.0v¥,2,03}
ISN 9221 20 IF(AR.GT, ,102) 60 To 32
ISN 9823 IF(AR.LT, 1,0=2%} Go 1O %2
ISN IBZ: RSsReR
ISN g0 DIs0l-Re(2,00e(,066666664600668700¢(,4DPe(,28571420571420%700
1 +(,222222222222222200+,1818181818181818D¢eR sRY)e
1SN 0027 TESTaQIMAG(DI) 1818D€+RS) 6RS) #RI) SRS ) #RS)
ISN 2928 IFCTEST LT, oP]) OlaDI+0CHPLX(R2:08,THOP])
1SN €930 GO YO 48
1SN 2031 38 0]e07+COLAGI(L, V@=R)/(1,029R))
1SN 9¢32 TESTapINAG(OD)
1SN 2933 IFC(TESTGT PI) UleQl-DCMPLX(@,DisTHOPI)
ISK 1238 IF(TEST LT, *P1) DIaDI+O0CHPLA(D:00,THOPT)
ISN 2237 40 12w10@+FNOep!
ISN 0038 DisD2ezJon]
16N 2r19 11l 3+FNTep1]
1SN 21240 12s12¢FnDe(D202deZ jopl)
ISN 2041 50 CONTINUE
1SN 2242 RETUAN
ISN 2243 END
LEVEL 21.b6 (DEC T2) 0S/36U0 FORTRAN H DATE T4.060/12.22.03
COMPILER OPTIONS - NAME= MAIN,OPT=024L INECNT=60, S12Zt=0000K
SOURCE » BCDIC s NOLTST JNODECK  LOAD s MAP (NOED1T,NOT O, XKREF
4
[ SNy 0002 SUBROUTINE ROOTZ2(CsBeAs2R)
4
T ~FINDS ROOTS JF AFLSZe38L4L
4
1SN 0003 CUMPLEX®16 AyByCydRI2)4212)4RAD
1SN 0004 REALee T1,T2,TOVFL
[4
C INFINITY = Ll.027
[+
ISN 202> IR(1)=(1.D274000)
1SN 0006 IR(2)=11.D27,0.00)
1SN 0037 RaD=COSART(Bed-42ASl)
ISN 0028 ZU1)=-BeRAD
1SN 0009 L12)1=~-B-RAD
TSN OOUI0 YIsCORBSTZITITY
ISN 30141 T2=COABS{Z(2))
ISy 0012 TF{T1+T2.NE.O.) GO TD 30
ISN 00L% IF(COABS(A).NE.D.) GD Tu 20
ISN 0Dls IF{CDABS{C).NE.U.) GO TO 10
ISN 0018 WRITE (51,501}
T ISN U019 T T T 50T FORMAT 1Y TRROR STOP = A = B = C = DY)
LSN 0040 sTO0P
ISN 0021 10 RETURN
1SN 0022 20 IR(L}=(0.00,0.DU)
1SN 0023 2R(2)»{0.D0,0.D0)
1SN J02¢& RETURIN
T TTISNTO0ES 30 T=1
1Sy 00206 JF{T2.6T.F1) I=2
ISV 2028 IRULI={CT+2)/ 2T
1SN 2229 TOVFL=CDABS(1.0-2T#2{1))-CDABS(A+A)
15N 0030 I+(TOVFL.GT.0.) RETURN
1SN 0032 IR(2)=LU1)/(AsA)
TSN 30313 RETURY

ISN 0034 cND
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LEVEL 21,6 (DEC 72) (S/300 FURTRAN H e ... LATE . T9.080/82020,30 =

CUMPILER UPTLINS - NAME= MAIN,UPT=G2 L INECNI=60.SIZEm0QR0K, Vi g 3 My 7Y
SOURCE, EBCDIC,NOLTST \UECK,LUAD /AP (NOEU LTy NGT Dy AREF . N

c
TSK 0002 SUBROUT INF CUEF [Z 4F4C) - T
[
[ PROGKAM TU FIND COEFFICIENTS FOR THE FUNCTION
C Fo(ClL) el (ZIsZoC3)0Lne2)/(CI4IeCI5I0LeClo)e2002)
T CIVEN THE FUNCTIUN F AT FIVE POINTS Z.
c
TSN 0003 TP LICTT CUMPLEX®T6 (A-H,C(-2} Tromm T T
ISN 0004 DIMENSTON £(5)F(5)4Clo) FF(5) e
TSN 0005 REAL®8 ZERU/L.U-1074SCFFM{5),TSCF{9),TSCFM
C
T DEYERWINE SCALE TALYUR (SCFJ FGR F S0 F IS OF URUER ONE
[
—  ISN 0006 TFICDABSTCILIV.NE .COABS((L.D15,0.0011) 0 TO 20
ISN 0008 DO 10 f=l,% o
TSN 0069 10 FM{ 1) =CDABS(FI))
1SN 0010 GO 1O 40
TSR 0011 Z0 DO 30 Tele%
ISN 0012 30 FMLT)=FMiTeL)
TSN 0013 FM(S)=COABS(FI5))
ISN 0014 40 SCFeUMAXLUFMULYWFME2) o FME3)FHLQ)LFNISI
TSN 0015 TF{SCF.NE,U,D0) SCF=1.0G/SCF
[
T DETERMINE IF FUNCTION 15 SINGULAR (TSCFM=0]., IF [TSCF.GT. 1,
C FUNCTION I5 CONSTANT AT TwO GR MORE POINTS,
T
ISN 0017 1TSCF=0
TSN 0018 DO 50 1=1,5
ISN 0019 TSCFII)=SCFeFMLI)
TSN 0020 TFTOABS{YSCFIIT-1.001.GT.ZERC) GO TO 5)
ISN 0022 ITSCFuiTSCFe]
TSN 0023 =1
ISN_0024 50 CONTINUE
TSN 0025 TFIITSCF.GE.2) GO TU 70
ISN 00217 TSCFM=0.00
TSN 0028 D0 60 [=1+5
ISN_ 0029 IFt1.Eded) GC TU 60
TSN 0031 TFUTSCF(1).GT.TSCFM) TSCFN=TSCF(T)
ISN 0033 60 CONTINUE
TSN 0034 TF{TSCFM.GT.ZERU) O TO 70
ISN 0036 WRITE (51,5010 UF(f)e0=1,5)
TSN 0037 S0L FORMAT (' ERROR STUP - SINGULAR FUNCTIUNO®,/71P1)E12.4)
1SN 0038 sTap
ISN 003§ TO OO 80 Isl,5
1SN 0040 80 FF(I)=SCFeFLI)
C
ISN 0041 IN2=2(1)-243)
TSN 0042 INT=Z(2)-2(3)
ISN_ 0043 Zl=ll4)=213)
TSN 0044 123L05)-2(3)
4
ISN 0045 GNZ=(FFIL)-FF(3)) /INZ
1SN 0046 GNL=(FF(2)-FF(3)) /INL
TSN 0047 GI=TFF{4&I-FF(3) 1711
ISN 0048 G2=(FF(51-FF(3) }/22
T

PAGE 0Q2
=1.00/841~2N1)
—+§ﬂ—88§8—- _ﬁn‘ E-FF(Q)-FF(U
ISN 0051 LF1=21*FF L&)
TSN 0052 IFLHL=IF1-INL1*=FF(2)
ISN 0053 GlM1=G1~GN1
TSN 0054 RAT=(INZ-Z1)#IDENCM
ISN 0055 AN2 =RATSF LML-FF (L) ¢FF (&)
TSN 0058 BNZ=RAT*ZFIML-INZ*FF{L)+LF1
ISN 0057 CN23GN2-G L-RATSGL M1
ISN 0058 RAT=(Z2-Z1)1%ZDENDM
ISN_0059 A2=RATSFIML-FF(5) +FFL4)
TSN 0060 BZaRAT#IFIN1-22*FF{3)¢2F]
ISN 0061 C22G2-G1-RATeGI ML
4
1SN 0062 Cl4)aA28BN2-AN2*52
&3 C{51=C2%BN2-CN2#82
ISN_0064 CL6)mA2%CN2-AN29C2
4
[ TEST FOR CASES WHERE DENGMINATOR COEFFLCIENTS VANISH.
C
ISN 0065 IFICDABS(C(41).6G1 oLERU) GC TL 90
TSN 0067 [ALYELY]
ISN 0068 Ci(5)aC2
TSN 0069 C(6)=10.00,0.00)
1SN 0070 IF(COABSIC(5))oLE o2ZERU) C{4)=(1.0v,y0.00)
50 C(3J=ZDENOM* (GLMI®C(4) +FLML*C(5)+ZFIML*C(0})
ISN 0073 CU2)m-218C{3)+G1eC (&) +FFL4)IO(CID)IZ1C o))
TSN 0074 CUII=FF{3)%C (%)
ISN 0075 REFURN

ISN 0CT6 END
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