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SUBROUTINE CAUCHY - COMPLEX ROOTS OF A FUNCTION

USING A CAUCHY INTEGRAL TECHNIQUE

C. 0. Beasley, Jr. and H. K. Meier
Oak Ridge National Laboratory, Oak Ridge, Tennessee

ABSTRACT

A description of the subroutine CAUCHY, the program for finding

zeros of an analytic function f(z) within a contour in the z-plane,

is given. Examples of types of functions for which this program is

most advantageous as well as types of functions which show its

weaknesses, are given.

I. INTRODUCTION

The purpose of this report is to describe in detail the sub

routine CAUCHY and its subprograms. This routine is used to find

the zeros of an arbitrary function f(z) within a contour c in the

complex z-plane.

The method used has been documented. It relies on calculating

integrals of the form

M K

c 1 C N f'(z) , V N V N .,,
Stm = ^-^ § z „) < dz = > z. - / w. (1)N 2tti J f(z) L l L l K '

1=1 j=l

where z. are the zeros and w. are the poles of f within c. Thus
i i

if there are no poles, S gives the number of zeros, S, the sum

of the zeros, Sp the sum of their squares, etc.
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This method becomes numerically practical when c contains a

small number of zeros. Thus some knowledge of f is desirable, and

in principle, if sufficiently small integration steps are taken so

that the function is sufficiently smooth, the answer may be obtained

to arbitrary accuracy. Since the method does not rely on iteration,

it will work even when well-known iteration methods will not.

The problem is then to perform the integral with suitable

accuracy. One straight-forward method is found in the programs

LSQNK1 and LSQNK2 from the Massachusetts Institute of Technology

2
Information Processing Center. The method used by these programs

is to integrate (1) by parts, and then use a Simpson's rule integra

tion to perform the numerical integration around c. The program is

most useful when large numbers of points of c may be calculated

and when a large number of roots may exist ( M ^ h for this pro

gram) . An automatic increasing or decreasing of step size along c

is included in the program.

In many cases of numerical interest, it is costly to compute

the function, and one would like to locate one or two zeros with

fair accuracy with a minimum number of points. The presence of

nearby poles or zeros in f introduces poles on the integrand of

equation 1 and may make normal integration procedures impractical

because of the large number of contour points required. It is

these cases for which the subroutine CAUCHY is designed.

In the next section, we will discuss the method. In the

third section, we describe the subroutines. The fourth section

gives some sample results, and the fifth a listing of the sub

routine and its subprograms



II. METHOD

Suppose we are given three values of a function f. at three
J

points z.. We can form a best-fit binomial

f = az+bz + c (2)approx ^ '

by determining a, b, and c. Now we may factor f
J approx

where

Then

and

*---- = (z " zx)(z " *2) (3)approx

b ± /b2 - ^ a c
z ~
Jl,2 2a

f' = (z - z0) + (z - zn)
approx v 2' K 1'

f'approx = 1 + 1 /m
f z - z, z - z~
approx 1 2

So we may perform our integral over the segment of the contour c over

which (2) is valid; the integrals are of the form

2h
V dz — n = 0,1,2 ... (5)
J z - z

z

•>&£) - - °
a a

=(vza)-4r90 n=!
a a

J (z. -z )(z.+z -2 z ) - 2(zv-z ) +Sm (-^—^)
2 v b a/v b a a' K \> b.' \z -z /

n = 2

a a



However, (2) is not a good approximation to f if f has nearby

singularities. A much better approximation obtains if f. is known at
J

five points z.:

2
c_, + c„z + c_,z

f =— 1-5 (6)approx 2 "• '% + c5z + CgZ

We may factor both numerator and denominator

So

(Z-2nl^Z-2n2J °J> f?)
approx (z-zdl)(z-zd2) cg t

f'
approx 1

z-z ,
nl

+ 1 .
z"zn2

1 1

f
approx z~zdl Z"Zd2

(8)

Thus in calculating the integral (5)> one adds the contributions from

the roots of the numerator and subtracts those of the denominator.

We must first solve for the c. We can make the numerical
i

computation more accurate by transforming to a coordinate system

where the center point of the five z., z , is zero: thus we know our

function at five points f p, f .., f , f , and f . We can then write

(6) as

c1+c2z. +c5z2=(e4+c5z. +c6z2) f. (9)

We note that (9) is a set of five linear equations for the six c.

We may write the c. as follows. We first note that at z =0,

cl =Vo (10)

Using this, we may write the other numerator coefficients cp and c.,

in terms of the denominator coefficients:



C2 =

+

2 z ff -f ) (z f - z f )
1 -1 l -1 1' , l 1-1 -1 1'

z, - z , b z., - z
Jl -1 1 -1

-— \— (f 1- f ) - — (Vf )1z . Lz _, v -1 o- z., ^ 1 o'J
1 -1 -1

c5 + (11)

Zlfl -Z-lf-l p +fl"f f,-f f „-f
•i m i r i o -l o"i „ /,0n

•z. - ~£ ct;
2 zi ~ z_i zi " Z-1 "i ~~ "-1 "~ "l "-1

If we put c,, c , and c in (9)and divide by z .,

where

AJ = B°

where

AJ c +BJ c6 = CJ c,, (j =+2) (13)

AJ =
(fi-f.!) _(^f.i-z^f^

Zl " Z-l zl " Z-l
(14)

= C° =

B J _ JZ.i(Zlfl-Z-lf-l) , V-l^-l'V z f
(15)

Zl " Z-l Zl " Z-l

f.-f
— [-i- (f -f)--I* (f f )~|
. zl_z_i Lz_i -1 ° z1 v 1 oyJ

rxi"'o _'-i " fo"| (16)z. ,-f, -f f
J

z1-z_1 _ „1

0 for j = 0, + 1. We now solve (13) for c and c^:

°5 DET

_i±_
°6 DET

2 2
C B

-2 -2
C B

2 2
A C

-2 -2
A C

2-2 2-2
DET = A B - B A

(17)

(18)

(19)

If we now set c^ = DET, we have a unique solution for the c

Problems do arise if DET = 0. This will happen when f is of the

form
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a + a z

P + Pnz k '
"o rl

We examine three special cases:

1) Qf1 =0 =0. In this case, AJ =BJ = C3 = 0. The simplest

solution is C. = 1, c^ = c^ = 0.

2) p^^ = 0. In this case, A3 = CJ =0^ BJ. Again the simplest

solution is to set c/= 1> cr = C/- = 0.

3) a ^ 0 ^ P-. In this case we are free to choose C/- = 0;

then from (13), AJc = CJc, , and since the determinant is zero (A~ , C~ )

2 2 2
equals (A , C ) within a constant factor so we can set c + C and

2
c. = A . One could, of course, set c and c,- to any numbers not equal

to 0; this would amount to multiplying numerator and denominator by the

same factor, provided the overall polynominal remained of degree £.2.

Once the coefficients c. have been obtained, the roots z n, z „,
i nl' n2'

z and z are easily obtained. The integral is then performed from
z + z z + z

za to z. where z = _- and z^ + p . If z is not a corner
2

point, that is, if A z/Az = 0, then the integral is performed in one
2

step: z to z : If A z/Az ^ 0, it is performed in two steps, z to z ,
an a o

and zq to z^. The integrals are performed in the transformed coordinate

system (z, = 0), the same one that the coefficients are found in.
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III. DESCRIPTION OF THE SUBROUTINE

A. CAUCHY

The main subroutine begins by initializing IND (D = double

precision), where N is defined in equation (1). The initialization

is necessary, since the subroutine which performs the integral adds

incrementally to IND.

IS
Setting C(l) =• 10 signals COEF" that it is the first time that

COEF has been called for a given contour (see description of COEF).

The array ZSC(I) is set equal to |AZ.|. If any ZSC(I) equals zero,

an error message is printed out and a return initiated.

A check is made to see if the contour contains at least five points.

If not, an error message is printed out and a return initiated.

The DO l6o loop is now started; this ultimately performs the incre

mental integral for each Z(I). Each set of five z = ZD(J) and
J

f. = FD(J), 1 ^ J ^ 5 are then set up, with special provisions at the

"beginning" and "ending" of the contour. For these five ZD(J) and FD(J),

the coefficients c = CD(L), 1 <. L£ 6, are calculated (see equation (6))

in subroutine COEF. The roots ZRN(l) and ZRN(2) of the numerator, and

ZRD(l) and ZRD(2) of the denominator, are calculated in R00T2.
o

A check is then made to see if A Z /AZ =- 0; if so, the point ZD(3) is

not a "corner point", and the integral is performed from [ZD(2)+ZD(3)]/2=Z1

to [ZD(3)+ZD(J4-)]/2=Z2. If ZD(3) is a corner point, the integral is done

in two steps: from Zl to ZD(3)> and from ZD(3) to Z2.

The integrals IN = IND, 0 £ N <• 2 are divided by 2rri and then a return

is made to the calling program.



B. COEF

Given the function F(I) at Z(I), 1 £ I £ 5> this subroutine cal

culates the c. = C(J), 1 £ J £ 6 as defined in (6).
J

A check is first made to see if C(l) = 10 . If so, it is the first

call of COEF for a given contour, and all five |f.| = FM(l), 1 £ I <. 5

are calculated; if not, the FM(I) are set equal to the FM(I+1), 1 <• I £ k,

and FM(5) is calculated from F(5)»

From the FM(I), a scale factor is formed by finding the largest

FM(I). If Max (FM(I)) = 0, F(l) = 0, 1 <. I £ 5, and the scale factor

is not needed; otherwise the scale factor SCF = l/max(FM(I)).

All FM(J) are now multiplied by SCF- Then the second largest FM(I),

TSCFM is found. If it is 0, then the largest F(I) = F(J) is a singular

point, and the points of the contour have to be redefined. Hence an

error message and stop are provided. If two or more FM(I) are equal to

the maximum FM(I), or if the TSCFM ^ 0, the program proceeds. Note

that the presence of two singular points at two contour points (within

five consecutive points) would cause the program to fail without any

error message.

The program now proceeds to calculate the A , B , C defined in

2

equations (1^), (15); and (16) (A- = AN2, etc.). From these, C(4),

C(5)> and C(6) are calculated. We now test to see if C(h) = DET = 0.

Since we have used the scaled FF(I) to calculate C(4), we define "0"

as a small number to take care of roundoff errors in subtraction. If

|c(M| = "0"> then we have a function of the type shown in equation (20).
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We then set C(5) = C2 and C(h) = A2 as discussed in case 3). In

addition |c(5)| = 0, we have either case 2) or case 1), and in either

case, the denominator is a constant, set equal to 1. The numerator co

efficient C(l), C(2), C(3) are then calculated, and the return is made

to CAUCHY.

C. R00T2

2
This program calculates the roots ZR(1) and ZR(2) of f = A*Z + B*Z + C.

27
Roots at infinity are set to 10 . The subroutine then calculates

Z(l) = - B+ ,/B2 - 4*A*C and Z(2) = - B - Jb2 - 4*A*C. If T = |z(l)| =0 and

Tp = |z(2)j =0 special cases must be treated. In that case, if

A = 0, then f = constant, and the two roots are at "infinity"; a return

is made. If C = 0 also (which could not happen in CAUCHY, but might

arise in some other use of R00T2)> an error stop and message are in

stituted. If A = 0 when T = T 20, then both roots ZR(l) = ZR(2) = 0.

If none of the special cases occurs, we determine the larger of

Tl and T2. The larger Z(l,2) is then used to calculate ZR(l) = 2c/z(l,2).

A check is made to see whether the second root is at "infinity",

corresponding to A = 0. If it is, a return occurs, if not the second

root is calculated: ZR(2) + Z(l,2)/2A.

D. INCUT

Incin increments the I , I and I integrals by forming

IR

Z0 =X0 +™ ' I L103> <21-X)
3 = l

IR

I1 =I1 +FND •V AI2d , (21.2)
J*=l
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and

IR

!„ =!«+ FND •Y AI2. (21-3)-2 ^2 "" L "^2j

d=i

where

and

AIoj

Z2

r dz

Zl

12(f" z dz
AIij =.) T^~^.) (22-2)

zi J

Z2 2

Zl J

Zl, Z2, FND, 10, II, 12 and IR are arguments of INCIN. The Z'.'s are ob-

tained from

Z .= ZC + ZR(J) (23)
J

where ZC and ZR(j) are additional arguments of the subroutine.

Starting with equations (22), AI . can be expressed as
J-tJ

f [(z-Z ) +Z ]
AIn . = \ dz . J /

1J J (z - Z )
Zl J

Z2

and

Z .
r>

= \ dz 1 + t—%-*J L (z-Z ) j
Zl J

J n

(Z2 - Zl) + Z . AI,„
v y 3 10

= DZ + Z AI1Q (2^.1)
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2

r2 C( £ ~Zj) +^1
AI = \ dz ±—-—2—A2j ) (z - Z )

Zl '
Z. ?
J z2

=\ ^z [z +Z. +-^4— ]
Zl

=|(Z22-Z12)+Z^Z2-V

+ ZJ AIoj

2
= DZ • Z + z. • DZ + Z. AI .

B j J Oj

= DZ • Z^ + Z. • AI,. (2^.2)

where

DZ = Z2 - Z1 (25-1)
and

zB=±(z1 +z2). (25-2)
So the only difficulty is the evaluation of AIn- If

z=\ DZ 'x+ZB
is substituted into equation (2.1) it is seen that

1

AI0j =\ ^27VB ) (26)
-1 x -

DZ

or 1

^I0. =\ x-^ - i b (2?)
J -1
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where

2 (Z.-Z.)

and

a and b are real.

This can then be expressed as

1

_ C dx (x - a + i b)

L°3\l (x-a)2+b2
1 1

jU[(x-a)2+b2] +«,$ ^^ (29)
-1

1 „ T(l-a)2 + h2~| . . . C dx

and ,

, T dx „.v
Im AX0j =b i (x-a)^b^ • <50)

-1

Now make the substitution

x = a + |b| tan cp (31)

with

(1+a)tan cp_1= -^- ,
1-a

tan *i = m >

and

into equation (3D).

It is now seen that

91

Im AIod =p( $ dcp

=-^|- (cPl -9-l) • (33)
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Since-l < 1 it follows from equation (31) and (32) that

0 ^ cp, - cp, ^ TT

hence

|lm AIQj| ^tt . (3*0

Starting again with equation (2.6) it follows that

2 I1=te(x-s(Z.-ZB) j^

= M

•1%Z3-ZB) '

.h(|^»i)

with the branch specified by equation (3*0 •

If

(35)

l2(zrzB}l,i
1 DZ '

define 2(Z-Z )
E . -J-2- . (36)

and then

aioj =*i(i^-;+fl<-1)'
and

loj -m (i^rV (37).

It makes no difference which branch of 0r(-1) is used here since

the imaginary part of A I . is adjusted to satisfy equation (J>k) by

adding or subtracting 2tt i to the final result.



and

if 2 (Z. V
1 £

DZ

then R is defined as

DZ
R =

^vv

A I_. = Sm
03

Sm (i_^)
\1 + R/

•ih.

(38)

(39)

This is the same as equation (37) without the -in term.
(z.-zB

The program sets R according to the value of |-=j* 1to either

the R.H.S. of equation (36) or( 38) and A IQ •to - irr or 0. Then in

either case the fortran statement

Az03 -A jot+ CDL0G (HD
'1 - R\

a + r/
produces i I . If R is less than .1 an expansion of the 2m \-

used otherwise a fortran supplied subrouting computes the value. The

imaginary part of i I . is adjusted to satisfy equation (3^) by adding

or subtracting 2 tri- Then AI-, •and AI© .are computed from equations (2k)

and the integrals are incremented.

is
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IV. SAMPLE RESULTS

In Table 1, we show results for various functions when inte

grated around a square in the complex Z-plane

- 2 <. Re, Im(Z) <: 2

While the function does not provide an exhaustive examination, it

does illustrate several important points

1) There is a dramatic change in the winding number (10)

as a zero or pole crosses a contour. In all examples,

this zero or pole was chosen to lie halfway between two

grid points by choosing an appropriate y.

2) The error in any two runs should decrease as (•-- Run B) •
\|AZ| Run A/ '

for the larger errors, this is borne out in practice.

3) Even a crude number of points, with zeros (or poles) right

on the contour yield an interpretable 10.

In Table 1, the first column shows the function calculated.

Results are listed for three different AZ. Below the calculated

result is the correct result for comparison.



f(z)

1 - z

sin (zA)

Msin (z

z-l

sm
z-i.99-iy"

z-l

. rz_2.01-iy]

z-l

sin

z-l

sin (zA)
z - 1.99 - iy

sin (zM.
z - 2.01 - iy

sin (zA)
(z - l)(z + 1)

sin (zA)
(z-l)*

10
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Table 1A

1.0000+0.0000i

1+0i

1.0001+0.OOOOi

1+Oi

-0.0002-0.OOOOi

O+Oi

-0.0571+0.00U8i

0+0i

-0.8860-C.06o8i

-1+Oi

|az| = 1

II

1.0000+0.OOOOi

1+Oi

-0.0000+0.OOOOi

O+Oi

-1.0003+0.OOOOi
-1+Oi

0.8695+O.U8lUi

•99+-5i

-0.7^20-0.0659i

-1+Oi

12

1.000+0.OOOi

1+Oi

-0.000+0.OOOi

O+Oi

•1.005+0.OOOi
-1+Oi

2.1+68+1.8921

2.710+1.991

-0.1+57-0.0051

-1+Oi

-1.0020+0.OOOOi -1.0026-0.OOOOi -l.OOU+O.OOOi

-1+Oi -1+Oi -1+Oi

-0.0329+O.OOUli
0+0i

1.0332-0.00371
1+Oi

-1.0009+0.OOOOi
-1+Oi

-1.0002+0.OOOOi

-1+Oi

-2.0586-0.508li
-1.99-.5i

0.0675+0.009H
0+0i

0.0000-0.OOOOi

0+0i

-I.9992+O.OOOOi
-2+0i

-3.850-2.0l+li
-3.71-1.99i

0.12U+0.052i
0+0i

-I.985+O.OOOi
-2+0i

-1.979-0.OOOi
-2+0i



f(z)

1 - z

sin(z A)

sin(zA)

z-l

z-l

msm

z- 1

sin(z A)
z-1.99-iy

sin(z A)
z-2.01-iy

sin(z A)
(z-l)(z+l)

HM.sim

(z-l)'
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Table IB

10

1.000+0.OOOi

1 + Oi

1.0000+0.OOOOi

1 + Oi

-0.0000+0.OOOi

0 + 0i

-00052+0.OOlOi

0 + 0i

-0.99+1-0.0012i

-1 + Oi

-1.001+0.OOOOi

-1 + Oi

-0.0011+0.0031

0 + Oi

1.0012-0.0003i

1 + Oi

Az .5
II

1.0000+0.OOOOi

1 + Oi

-0.0000+0.OOOOi

O + Oi

-1.0000+0.OOOOi

-1 + Oi

12

1.000+0.OOOi

1 + Oi

-0.0000+0.000

O + Oi

-1.000+0.OOOi

-1 + Oi

0.9793+0.2508i 2.875 + 0.99+i

.99 + -25i 2.898 + 0.995i

-0.9878-0.OOlli -0.976+0.OOli

-1 + Oi -1 + Oi

-1.0002-0.OOOOi -1.000-0.000

-1 + Oi -1 + Oi

-1.9923-0.2^98i -3-903-0995i

-1.99 - 0.25i -3.898-O.995i

0.0025-0.0003i 0.005+0.OOOi

O+Oi O+Oi

-1.0002-0.OOOOi 0.0000-0.OOOOi -1.999-0.OOOi

-1+Oi O+Oi -2+0

-1.0001+0.OOOOi -2.0001-0.OOOOi -1.998-0.OOOi

-1+Oi -2 + Oi - 2 +0i



f(z)

sin(zA)

sin(zA)
z-l

rz-1.
sin •M]

. rz-2.01-iy~lsin(—tj J

-Hnfl

sin(zA)
z-1.99-iy

sin(zA)
z-2.01-iy

sin(zA)
(z-l)(z+l)

(zAlsmi

(z-l)'
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Table 1C

|Az| .25

10 11 12

1 + Oi

1 + Oi

1 + Oi

1 + Oi

0 + 0i

O + Oi

1 + Oi

1 + Oi

O + Oi

O + Oi

-1 + Oi

-1 + Oi

1 + Oi

1 + Oi

O + Oi

O + Oi

-1 + Oi

-1 + Oi

-0.0003+0.OOOli 0.989^+0.12511 2.9+3+0.+98i

O+Oi .99 + -125i 2.9^++0.+98i

0.9996-0.OOOli -0.9993-0.OOOli -0.999-0.OOOi

-1 + Oi -1 + Oi -1 + Oi

-1 + Oi -1 + Oi -1 + Oi

-1 + Oi -1 + Oi -1 + Oi

0.0000+0.OOOOi -1.99901-0. 1250i -3.9^5-0.+98i

O + Oi 1.99-0.25i -3.9+if-0.+98i

1 + Oi O + Oi O + Oi

1 + Oi O + Oi O + Oi

1 + Oi O + Oi O + Oi

1 + Oi O + Oi O + Oi

-1 + Oi -2 + Oi -2 + Oi

-1 + Oi -2 + Oi -2 + Oi
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V. PROGRAM LISTING

LEVEL 21.6 (UEC 72) Ob/360 FORTRAN H

COMPILER OPTIONS NAMt- MAIN,0PT*02,LINECM«o0,SIZE»0000K,
SOURCE,EBCDIC.NOLI ST,NOOECK.LOAD.MAP,NOlDIT.NOID.XREF

ISN 0092

ISN
TSN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

ISN

~TW
ISN

TSN

ISN

75^

ISN

ISN

TSN

ISN

ISN

ISN

~TSTT
ISN

ISN

ISN

ISN
ISN

-ror
ISN

ISN
ISN

ISN

ISN

"TSN"
ISN

ISN

ISN
ISN

0003

0004

0003

0006

00U7
OOOd

0009

0010

0011

0012

01)14

0015

0016

0017

ooia

0020

0021
0022

002J

0024

0OZ5

0026

UU2/

0024

0031

00)1

0034

0033

0036

0037

0038

0039

3040

0042

0044
0043

0046
0047

0046

0049

0050

0031

0052

0033

0034

SUBROUTINE CAuCHVI IMAX.Z.F,10,11,121

"X IAUCHY CALlULAItS THt INTEGRALS 10-INT IOILMIF 11/P7.1/2»PI»I,
C ll«INTtZ«U<LN<F))/0ZI/2«Pl»l. ANU I2>INT IZ*«2*0tLNIFI)/DZI/2«PI*I
C WHERE F IS DEFINED AT IMAX POINTS ON THE CONTOUR 7. IN COEF
C THE CURVE IS FIKST FIT TO A FURH (A«X»»2»0»X»C)/(D«X»»2»E»X*F),
C THE ROOTS OF THE NUMERATOR AND DENOMINATOR ARE OBTAINED IR00T2),
C AND THEN THE INTEGRAL IS PEKFURHEO IINCIN)

C0MPLEX»16 Z0I5),FD(5),C0(6I,ZR'«I2).ZRD<2>,Z1,Z2,I0U,I 10.120
COMPLEXES Zl1011,F{1011,10,11,12
RcAL«4 ZSCI101)

I00"IO.OO,O.OOI

iiu«io.uu,o.uoi
I20>I0.U0,U.0U)

CDID-ll. D15.0.00)
DO 110 1*2,IMAX

zscm*ctBsizm-z(i-i)>
IFIZSCII I.NE.O. I iO 10 110
WRIIfc I1.3U1I

301 FORMAT I 19H ERROR IN Z-CUNTJURI

RETURN

110 CONTINUE

IF(IMAX.3E.5) SO TO 120

HKITE 11,5021

302 FURHtT UOH IHAX.LT.5)
RtTURN

120 IMAXMUIMAX-l

OU 160 I'l.IMAXMl

00 130 J-1.5
JJ«I-3»J

1HJJ.EU.-1) JJ=IMAX-Z
IHJJ.tO.O) JJ-IMAX-1

IFIJJ.ST.1MAX) JJ*2

ZO(JI=ZI JJI

130 FOIJI'FIJJ)

CALL COEFIZO.FO.CO)
CALL ROOT2ICD(1I,CDI2),COI3),ZRN)
CALL ROOT2ICOI4),COI5),CUI6),ZRU)
IP-U1
1M=I-1

lFIIM.Eg.O) IM-1MAX-1
IFICADSIZI 1P)«ZI IM)-2.«ZI I D.LT.ZSCI IP)»l.b-6) oj TJ 140
;i*(ZIII<2IIM|)*0.5
Z2*Z(1I

CALL 1NC|N(Z1,Z2,ZOI3),ZRN,2,IOU,110,120,1.001
CALL INCINlZ1,Z2,ZOI3),ZRD,2,100,110,120,-1.001
Zl-ZIII
Z2MZIIP)*Z(III*0.5

3U TO 139
140 Z1MZII)»ZUN)I«0.5

Z2MZUPI»Z(I))»0.5

150 CALL INCINIZ1.Z2.101)1.2>N.2.100.110.120.I.00)

CALL INCIN(Z1,Z2,ZD(3),ZRD,2,I0D,I10.120,-1.00)

ISN 0055 160 CUNTINUt

ISN 0036 10*100/(0.00.6.i83U5300)

ISN 0037 11*110/(0.00,6.2B318S3U0I
ISN 0058 12*120/10.00,6.283185300)

isn oo>9 return

ISY 0060 e^tj

DATc 74.060/12.21.46
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LCVCl 21.» <0CC 72) OI/3»0 FORTRAN H

COMPILER OPTIONS • NAnE" HAlN.OPT.f 2il.|NECNT««0,9UE-'(P('Ki
SOURCE, tBCnlC.NOLI•'•DECK, LOAD, NAP, NOCOI T.NOID.NOXREF

SUBROUTINE INCIN(ii,i2,i:,iR,IR,I(,Ii,I2iPN0)
IMPLICIT C0"PLE>*16 (A.H.O-*)

C INCIN ADOS THE INCREMENTAL INTEGRALS FROM 21 TO 12 TO THE
C INTESRALS 10. It, AND 12,
C I-SU8-N • I-5U8-N . PNO • SUM OVEN J.JiliIR OF INT(J), WHERE
C 1NT(J) • INTESRAL, MOM II TO 22 Or <0Z«(Z"N) /1i-K-IR(J) >

R£AL«a AR,PI,THUPI,rNO,TCST
COMPLEX*.i I«>U,I2,fR(l)
OATA PI/3.i41»92«939897«O(/iTNOPI/6,2a3l(9307l799(DI/
Oi.12-21
ie*<90(-(22*21)
00 »« JU.IR
iJ«IR(J>«2C
2RB«2,O0»I2J-<BI
R-IRR/Di
AR'COASSIR)
lr(AR.CT,l,O0) UO TO 10
OI>OCMPLX(0,O0,>PI)
SO TO 20
R.0I/2R8
AR-1.O0/AR
OI«((.O0i(,O0)
irlAR.CT, ,100 SO TO 33
IMAR.lT.l.0-291 CO TO 9?
RS*R*R
OI.OI-R*(2,O0*(it6666>6««t6(66«7O(«(,4D«*(,2t97l42(97l42(97O(

i •(.222222222222222200.,iaiaiaiaiaiaiaiao(tRS)tRS)«R3)»RS)iRS)
TCST'OINASIOI)
ir(TEST.tT.-PI) OI>0I*OCMPtX((,0«iT«OPI)
CO TO 40
OliOJ.COLOGl<1,OP-B)/(1.03«R))
TESTiOIHAGIOI)
lFlTEST.OT.PI) UI«OI-DCNPL"<(i°&iTWOPI)
iriTEsT.LT,.pii ni.oi*ocMPL»(a'0«,THOPi)
ij.ia.rNO.oi
0I«02*2J*91
U«Ii«FNn«OI
I2iI2.FND.<08»id.2j«0l)
CONTINUE
RETURN

END

isn aaa2
isn ttts

isn ((04
ISN (('9
isn »***
ISN 0817
isn aeea
ISN ai)09
isn aaia
ISN 3011
isn eai2
isn aai3
ISN til*
ISN an 16
isn m'
isn sate
isn sai«
isn («a
ISN 0021
ISN 0023
ISN (029
ISN (026

ISN 0(27
ISN (02(
isn e«3a
isn east
ISN 3(32
ISN 0«3
ISN 7039
ISN «(37
ISN 003B
ISN "/19
ISN 0*40
ISN ?F<1
ISN «'?«2
ISN i.'*i

10

2a

3(

4(

90

LEVEL 21.6 IDEC 72) OS/360 FORTRAN H

COMP

ISN 000 3
ISN 0004

ISN 3033

ISN 0006

ISN 0037
ISN 0038

ISN 0009

ISN 0011)
ISN 3011

ISl 0012

ISN 0014

ISN 0016

ISN 0018

TSN TT017-

ISN 0020

ISN 0021

ISN 3022

ISN 002 3
ISN 3024

~m 0075"
ISM 0026

ISN 3028
ISN 3329

ISN 0030

ISN 0032

ISN 30IJ
ISN 0034

* OPTIONS - NAMt* MAIN,OPI«02,LINECNT«60,SIZt-0000X.
SOURCE,EBCDIC.NOLIST.NODECK.LOAO.MAP,NOEOIT.NOIO.XREF

SUBROUTINE R00T2IC,B,A,ZRI

FINDS ROOTS 3> k*l**2*l*l*l —

CUNPLEX616 A,B,C.ZR(2),ZI2),RA0
RtAL*4 T1,T2,T0VFL

INFINITY - 1.027

ZRI1)'(1.D27,O.OOI
ZRI2)*I1.027,O.UO)
RA0*C0S3RTI8*B-4*A*C)
ZI1I*-B»RA0
ZI2I— 8-RAD
Tl*CD*B!>mlll
I2*C0A8SIZ(2)I
IFITUT2.NE.0.) SO TO 33
IFICOABSIAI.Nt.O.) SO IJ 20
IFICDABSIO.Nt.O.I GO TO 10
WRITE 131,531)

501 FORMAT I* cRRUR SIW
STOP

10 RETURN
20 ZRI1I*IO.UO,O.DO)

ZRI2)'(0.00,0.D0)
*tTU»N

A =

30 1-1
IFIT2.SI.I1I 1*2

ZR(l)*(C*:i/Z(I)
TOVFL'CDAbSIl.D-27«ZI1 II-CD46SIA«4>
IFITOVFL.ST.O.) RETURN
ZR(2I*ZII)/(A»AI
JETURN

END

OiTE 74,112/11,47.»9

DATt 74.O60/12.22.03
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LtVEL 21.6 (OEC 72) LS/360 FURTRAN H

COMPILER UPIIJNS - NAMF. MA IN.IIP T-02 ,L I Nf CNT -6 0 • SI Z E-D0U3K
S0URCE,E6C0IC,N0LIST,DECK,LUAU,MAP,N0E0IT,NOlD,XHtF

ISN 0002

ISN 0003
ISN 0004

ISN 0005

ISN 0006

ISN 0008

SUBRUUTINF CUEKZ.F.CI

PROGRAM IU FIND COEFFICIENTS FOR THE FUNCTION

F-ICI1I»CU)»Z*C( 3)»Z««2)/ICI4)*LI5)»Z»C(6)»Z«*2)
cIvEN The functiun f at five points z.

Implicit Cumplex»16 (a-h.c-Z)
dimension zi5i.fi51,c(6),ff15)
REAL'S ZERO/l.U-10/,SCF,FM(5),TSCF15),TSCFM

UETERHlNb SCALE fACTuR I5CF) F(jR F So F IS OF UKOER ONE

IFlCOABSICIlll.NE.CDABSKl. 015,0. UOI ) ) GO TO 20
DO 10 ["1,5

ISN 000910 FM( I)-COABSIF(I))
ISN 0010 SO TO 40
ISN SOU 20 DO 30 I«1.4
ISN 0012 30 FMIll-FHI1*11
ISN 0013
ISN 0014

ISN 0015

ISN 0018

ISN 0019

ISN 0020
ISN 0022

ISN 0023

ISN 0024

ISN 0025

ISN 0027

ISN 00J8

ISN 0031

ISN 0033

ISN 0034
ISN 0036

(SN 0037
ISN 0038

ISN 003?

ISN 0040

ISN 0041

ISN 0042
ISN 0043

ISN 0045

ISN 0046

ISN 0047
ISN 0048

FM(5I-CDABSIFI5II
40 SCF.QHAXKFMI1) .FH(2),FH(3).FH(4).FH(5))

IF(SCF.NE.O.DO) SCF-l.DO/SCF

DEtERMINt IF FUNCTION IS SINGULAR (TSCFN-O).
FUNCTION IS CONSTANT AT TWO OR MORE POINTS.

00 50 1-1,5

TSCF(I)-SCF«FHIH
IFlDABSmcFIU-t.031.Gf.ZERO GO To 53
IISCF-ITSCF*!

J*I

50 CONTINUE
IFIITSCF.GE.2I GO TO 70

TSCFN-0 .DO
DO 60 1-1,5
IFI1.EU.J) SC TU 60
IF(TSCFII).OT.TSCFM) TSCFM-TSCKII

60 CONTINUE

IFITSCFM.GT.ZERUI GO TO 70
WRITE (51,501) IFH).I-1.5)

IF ITSCF.GT.l,

501 FORMAT ['

STOP

ERROR STOP - SINGULAR FUNCT1UNO*,/1P13E12.4)

70 DO 80 1-1,5

80 FF( l)-SCF»F(l)

ZN2*Z(1)-ZI3I

iNl-Zl2)-ZI3l
Z1-ZI4I-ZI3I
Z2-ZI51-ZI3)

GN2-(FF(1I-FFI3))/ZN2

GN1-IFF(2)-FF(3)I /ZNI
Gl-IFF(4»-FF(3lt/Zl
G2-IFFI5I-FFI3))/Z2

MHm HEPJBl;ysf»i7#M"
ZF1-Z1»FF(4)

ISN 0052

ISN 0053

ISN 0054

ISN 0055
ISN 0056

ISN 0057

ISN 0058
ISN 0059

ISN 0060

ISN 0061

ISN 0063
ISN 0064

ISN 0065

ISN 0067

ISN 0069
ISN 00 70
ISN 0012
ISN 0073
ISN 0074
ISN 0075

ZFIM1-ZF1-ZN1»FF(2)
G1M1-G1-GN1
RAT-I2N2-21)*Z0EN0M
AN2-RAT6F1M1-FF 11 ItfFKI
Bkl2.RAT«ZFlNl-ZN2»FF(l)»ZF1

CN2-GN2-G1-RAT«G1HI
RAT-(Z2-Z1I»Z0ENUM
A2-KAT-F1H1-FFI5)*FF(4)
B2-RAT«ZF1M1-Z2»FFI5)»ZF1

C2-G2-G1-RAT«GIH1

C(4)-A2«BN2-AN2»B2
CI5)-C2»BN2-CN2»B2

C(6)-A2»CN2-AN2«C2

TESl FDR CASES WHERE DENOMINATOR COEFFICIENTS VANISH.

IFIC0ABSIC(4)).G1.ZERUI GC TC 90
C(4)-A2

CI5)-C2

0161*10.00,0.001

IFIL0AbSICI5l).LE.ZERU) C(4)-(1.DU.0.U0)
90 C(JI»Z0ENaH»(GlNl»C(4)*FlMl*C<5)*ZFlNl«U6))

CI2 ) —Zl»C13l»Gl«C(4)»FF(4)»(C13)»Zl«C(o) I
C(1I"FF13)»C(4I
RETURN

UATt . 74.08

\/^|lV" *t rVTA.r7V

PAGE 002
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