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ASSESSmm OF THE UISS OF RADIOACTIVE ISOTOPES FROM WASTE S O I D S  
TO TIEE: ENVIROXMEIYT. PART I: EACKGROUND AND THEORY 

H. W. Godbee 
D. S. :JOY 

ABSTRAC’T 

Assessrrients of the  amounts of r a d i o a c t i v i t y  from wast,e 
s o l i d s  t h a t  en ter  t h e  environment a r e  needed €or engineering, 
economic, and s a f e t y  evaluations of proposed waste treatment, 
storage,  t ranspor t ,  and disposal  systems. Nearly a l l  pro- 
grams on the incorporation of radioactive wastes i n  s o l i d  
media have included s tudies  to determine the  time dependency 
of losses  from t h e  products formed. Frequently, recourse has 
been made t o  empirical  and semiempirical r e l a t i o n s  i n  order 
t o  transpose t h e  experimental d a t a  t o  a broad spectrum of r e a l  
s i t u a t i o n s  and t o  extrapolate  %?lese r e s u l t s .  However, too 
much re l iance  on errrpirical and semiempirical r e l a t i o n s  tends 
t o  obscure an understanding of t h e  fundamental mass trarisport 
processes taking place i n  waste so l ids ,  and of ten  leads t o  
Lhe conclusion t h a t  mass t,ransport through waste so l ids  i s  
hopelessly complicated and not amenable t o  treatment by 
establ ished mass t ranspor t  theory. 

I n  view of the foregoing, t1zi.s report, presents several  
t h e o r e t i c a l  expressions based on mass transporl; phenomena 
t h a t  r e l a t e  t h e  rad ioac t iv i ty  escaping from such s Q l i d s  t o  
diffusion, d i sso lu t ion  processes, surface conditions, and 
radioac-r,ive decay, Representative avai lable  data  for radio- 
ac t ive  waste so l ids  incorporated i n  cement, asphalt ,  ceramic, 
and g lass  media a r e  analyzed using -the t h e o r e t i c a l  expressions 
presented. These analyses show t h a t  an expression taking 
i n t o  account d i f fus ion  and concentration-dependent dissolut ion 
gives good agreemen% with Lhe data  f o r  most of t‘ne products 
considered. I n  the  main, these  products can he categorized 
as waste so l ids  of low s o l u b i l i t y  incorporated i n  i n e r t  
matrices. The e f fec t ive  d i f f u s i v i t i e s  obtained a r e  i n  the  
range of mid lo-’? t o  mid 10-l” cm2/sec, t h e  dissolut ion 
r a t e  constants a re  i n  the  range of high lo-’ t o  low loe7 
see-’, and t h e  surface t r a n s f e r  constants a r e  i n  the range o f  
low lo-* t o  low 10-3 see f o r  the  products analyzed, Gnce 
determined, such parameters can be used t o  compare various 
waste products 2nd t o  estimate re leases  from these products, 
i n  p a r t i c u l a r ,  long-term releases .  
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1. INTRODTJCTION 

Estrimabion of the quant i t ies  o f  radioisotopes t h a t  are removed. from 

waste so l id s  as a funct ion of time and en ter  'ihe environment i s  an important 

considerat,ion i n  t h e  assessment of a waste treatriient, short-te-rm s'iora;e, 

transpoi-tation, o r  I..ong- term disposa-l program. It, st rongly influences t h e  

amoiant of additj-onal treatmenl;, containment, and. surveil.l.ance t h a t  i s  re- 

quired. Radioactive wast,es have been incorporated i n  cements, p las t ics ,  

asphal ts ,  ceramics, and i n  attempts t o  prepare s o l i d  products 

tha t  w i l l  hold v i r t u a l l y  a l l  r ad ioac t iv i ty  f o r  long periods of time and 

prevenl; contaminal;:.on of the environment. To determine how e f fec t ive ly  

t h i s  goal. may be achieved, t he  r ad ioac t iv i ty  -iiiat i s  leached from the s o l i d  

by wa-ter i s  usual.ly mea,s!.ired as a funct ion of 'Lbne, Recently rev ised  

In t e rna t iona l  A t o m i c  Energy Agency (LAEA) regulat ions f o r  the  safe  transpori; 

of radioact ive ma-i;erials include such leach r a t e s  ~iiioiig the c r i t e r i a  for 

t he  shipment of low-level s o l i d  and spec ia l  form radioact ive mater ia l .  5 

To permit intercomparison of various products from di fyerent  processes 
6 or di-fferent i n s t a l l a t i o n s ,  the IAEA has proposed. a standard. method 

measuring and report ing the  leaching, by water, of the  radioact ive compo- 

nen'cs i.n s o l i d  wsste products. 

steam, and o ther  f l u i d s  a t  temperatures t h a t  mi.ght be encountered dui-i-ng 

trea-Lmext, storage,  t ranspor t ,  and long-term disposal  must a l so  be con- 

sid-ered i n  -the f u l l  assessmenl; of a waste management program. For exaqYl.e, 

t he  remova.1 of t r i t i a t e d  wa'ier vapor and radioactive noble gases, such as 

krypton and. radon, by a i r  currents  i s  an impor-Lant consideration i n  some 

s i tua t ions  even though the  environment i s  dry.  

of 

'The removal of radi-oaet ivi ty  by a i r ,  

Most radioact ive waste s0J.id.s a r e  heterogeneous, and mass t r ans fe r  i n  

he.terog;eneous mater?-als i s  complicated by the  nurnerous processes t h a t  c a n  

occur simultaneously, Transport i s  possible along many paths: ins ide  

cyys ta l  l a t t i c e s ,  along c r y s t a l  grain boundaries, throiaglz pore volumes or 

i n t r x p z ~ t i c l - e  vori.d-s, a1oi-q pore surfaces,  through i n t e r p a r t i c l e  voids, 

e t  c . Chernfc a 1  re scti .ons,  vapor% zation-condens a t  ion,  di.s solution-precip- 

i b a t i o n ,  e t c . ,  may be Laking place also t o  a f f ec t  the t ranspor t ,  and t h e  

nobi le  species may be mov-ing i n  e i t h e r  the soI.id, l i qu id ,  o r  gaseous s t a t e .  
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When t ranspor t  i s  known Lo occur vi-a several. mechanisms, u.se ' 7 ,  

of Lm "effecbive i:Iifli'usivity, ' I  DC:, in the  mass t ranspor t  equation. 

i.s made 

Thts 

usage i s  analogous .to t ha t  of "ef fec t ive  tiienial. conductivity" i n  the 

heat t ransport  equations. 7 

thennal  conductivit,y must be determined experimentally and {;he question 

of t he  d i f fus ion  mechanism i s  not belabored. 

such usage i s  tha t  the t ranspor t  equations can adequately represent  the 

system. Solutions of t he  mass t ranspor t  equations Tor many c ~ s e s  of 

p r a c t i c a l  i n t e r e s t  f o r  diffusion,  diffusion plus convection, d i f fus ion  

plus chemical react ion,  d i f fus ion  plus heat t r ans fe r ,  etc., with v a i o u s  

i n i t i a l  and boundary conditions are  given i n  books such as r e f s .  7-13. 

Solutions f o r  other  cases of d i f fus ion  o r  f o r  d i f fus ion  plus  other mecli- 

aiiisms f o r  mass t ranspor t ,  w i t h  d i f f e ren t  i n i t i a l -  and boundary con& Lions, 

are  fi-equently tract,,able insing tlhe methods and suggestions given by such 

books. 

the present lack  of e f f ec t ive  d i f f u s i v i t y  data f o r  mos-i; waste solids of 

i n t e r e s t  makes it necessary t o  use estknated D 's,  or extrapol.ated. values 

of lescli  r a t e s  determined i n  sliort-term leaching t e s t s .  To i l l ins t ra te  

these  pofnts,  representa t ive  data  for asphalt, cement, ceramic, anti glass 

products a re  examined t o  detexmine the  behavior with -time. These da ta  

were chosen not only because they meet the present need but  a l s o  because 

iAey were obtained. from. su f f i c i en t ly  well-cha.racterizcd systems and are 

presented i r r  a most usable form1 ( i . e . ,  tabulizr). 

Gene ra lu ,  e f f ec t ive  ctiffi-Lsiv-tty a id  e f f ec t ive  

The only assumption m a d e  i n  

I n  design ealcul-ations on proposed syst,ems f o r  long-term disposal, 

1 l+ 
e 

The main purpose f o r  incorporating radioact ive wastes i n  asphalt  , 
cement, glass, o r  s imi la r  mater ia ls  and measuring the  ?mounts c~f radio- 

a c t i v i t y  t h a t  are Lost Trom t h e  r e su l t i ng  products is t o  obtain data  that 

will permit t he  assessment of any po ten tk i l  hazard that  t h e  short-te-rm 

storage,  t ranspor t ,  and long-term disposal  of such products may pose t o  

man. The aim of this  report  i s  Lo i l l u - s t r a t e ,  by looking a t  severa l  

waste products, t h e  use o f  da ta  gathered over short  periods of time to 

assess  the  re lease  of r ad ioac t iv i ty  t o  t he  eriv?.ronmerit, i n  p a r t i c u l a r ,  

over l.ong periods D f  time. Toward this end, t h e  r e s u l t s  o f  measixements 

ma,de over periods of .time ranging from a Tew months t o  severa l  y e w s  ?,?e 

u t i l i z e d  t o  d.etemine meciianisnis f o r  time dependency of losses arid t o  
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pred.-j_ct losses  f o r  severa l  cen-buries I Obviously, such extrapolat ion 

presupposes t h a t  a system maintains i t s  i n t e g r i t y  a.nd. t h a t  t he  mechanism 

f o r  -tilne dependency of losses  from t h e  sys-bem, as determined from shor-t- 

term data ,  holds f o r  -the longer span of Lirne. 

2. GM€j.HICAL METHODS FOR RErORTING TI-LF: FBSULTS OF 
-LEXCK TESTS AS A FUNCTION OF TIME 

Various methods for measu.ring "ne quant i t ies  of radioisotopes t h a t  

are  removed from radioact ive waste solids as a functiori of time, and 

sevei-a1 ways of eq res s i i l g  these r e su l t s ,  have been developed i n  lab-  
1-3 

ora io r i e s  i n  d i f f e ren t  countries.  

"This has led t o  d i f f i c u l t i e s  i i l  applying the data obtained 
i n  one set  o f  circumsta.nces t o  another s e t  of circumstances; 
and t o  d i f f i c u l t i e s  i n  communication with consequent con- 
fusion and wastage of e f f o r t  and ti.me." 

6 
The IAEA conclud.ed t h a t ,  

To improve this s i tua t ion ,  t h e  iAEA has proposed spec i f ic  leach t e s t  

methods and ways f o r  expressing and report ing t h e  resi i l ts .  

6 
The LWA recommends t h a t  leach tes-L r e s u l t s  be reported as a p lo t  

of Lhe quantity,  [ (cumulative f r ac t ion  of t he  radioacti-vity leached 

from the  specimen) x (specimen volume-to-exposed surface r a t i o ) ] ,  as a 

function of t h e  t o t a l  time of leaching, 

2 ( ) versus t n '  
0 

o r  cumulaiive f r a c t i o n  leached as a funct ion of the  square root of t he  

t o t a l  time of leaching, 

where 

a rad ioac t iv i ty  los-b during leaching period n, 
n 

C an :: sum of rad ioac t iv i ty  l o s t  during all leaching periods, 

A = i n i t i a l  radioacti-vity,  
0 

3 V = voI.ime of spectmen i n  cm , 
S = exposed surface area of specj.rrten i n  cm2, 
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1; = durat ion of leachant renewd period, and 
n 

n C t = swn of a l l  leaching periods. 

Leach results reported as (X an/Ao) s e  pecu l i a?  t o  t h e  sample since 

(C an/Ao) depends on t h e  surface-to-volume r a t i o  of t h e  sample. 

values of S and V (or  t h e i r  r a t i o )  must be reported along with (C aIl/AD) 

if meaningfbl comparisons and mathema%ical treatments of t h e  data are 

to  be made, I n  addition t o  one of t h e  above plots, t h e  IAEA s t a t e s  t’riat 

r e s u l t s  may also be expressed as a plot, of t,he incrementibl leaching rat,e, 

R as a function of time, t h a t  i s ,  

Thus, 

n’ 

where 

( > ) ( ) ( ) = Rn = ( f r a c t i o n  leached>(cm)(day-l), (4) 
0 n 

f; i s  t h e  elapsed time i n  days = C tn, and (t - t n / 2 )  s ig l l i f i e s  

t h a t  t he  value of Rn should be p l o t t e d  at a time representing 

t h e  middle of t h e  leaching period. 

I n  the  past,, leaching data  have been reported using variously defined 

leach r a t e s .  One i s  an incremental leach r a t e  based on the mass of’ the  

specimen, 

where 

( 2 ) ( ) ( $- ) = rn = ( f r ac t ion  leached)(g/ern2)(day-l), (6) 
0 n 

M = mass of specimen i n  g. 

The div is ion  of expression. (4)  by (6) shows t,hat 
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where 

M 
v p = - = d-ensity o f  t h e  specimen i n  g/cm’. 

Another i s  a.n incremental leach r a t e  based on the  mass of waste solids 

incorporated i n  t h e  specimen, i . e . ,  

a ( e )  ( ) ( + )  versus (t  - t n /2 )  , 
0 n 

where 

I ( 2 ) ( $ ) ( $- ) = rn = ( f r ac t ion  leached) (g/cm2 )(day-’ ), 
0 n 

m = mass of waste so l ids  i n  the  specimen i n  g s  

The di.visioi1 of expression ( 4 )  by (9)  shows tha t  

where 

m 
M 

@ = - := mass fyact ion of waste so l ids  i n  the specimen. 

Thus, r by means of  t h e  densi ty  of  the specimen while 

r i s  converted t o  R through t h e  d-ensity and. t h e  mass f r a c t i o n  5f waste n 11 

so l id s  i.n the specimen. This cornparisoil of severa l  leach r a t e s  lends 

support t o  t h e  IAKA recommendation r e l a t i v e  t o  t h e  reporting of leach 

t e s t  resU.lts, ria;cnel.y, t h a t  information concerning the  sample should be 

reported. along with -the r e s u l t s  of leach tes.ks. 

(for each nuclide leached),  V ,  S ,  M, 111, and composition allows mani.pulation 

of un i t s ,  as above, and more meaningful comparisons o f  leach r e s u l t s  and 

prodxc’is. 

t he  substance t o  which the  g r m  un i t  r e f e r s  (vj-z. ,  t he  incorporated waste 

so l ids  or t h e  t o t d .  waste product) ,  

how they are averaged with time, has caused some confusion i n  the i n t e r -  

pretatior,  of  leaching r e su l t s .  

is converted. t o  R n n 
I 

Information such as A 0 

The use of incremental Leach r a t e s  t h a t  do not c l ea r ly  s t i p u l a t e  

the nuclide -io which A 0 r e fe r s ,  o r  
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Data f o r  an asphalt-sludge product15 and a cement-sludge product 

=e p l o t t e d  as ( C  a /A(,)(V/S) vs t, i n  Fig. 1, as (E an/Ao) vs tu2 i n  

Fig.  2, and as (an/Ao)(V/S)(l/tn) YS (t - t n / 2 )  i n  Fig. 3. The data,  

as (arl/Ao) (M/S) (l/tn) as a funct ion of time, adre given f o r  the asphsl t -  

sludge product i n  r e f .  15 and as ( 
time for t he  cement-sludge procluct i n  r e f .  16. 
product contained 39 w t  % dry waste sol ids  plus  61  w t  ($ asphalt  and. had 

a dens i ty  of 1.47 g/cm”. The sample had a volume of 1.8 x LO6 cm3 ; t h e  

surface a rea  i n  contact with water was 1.7 x lo4 cm’. 

product contained 9 wi; $, dry waste so l ids ,  43 wt $ water, and 48 wt $ 
dry cement. 

t o  water was  619 em2. 

reported,  but a value of 2 g/cm3 seems reasonable f o r  such a prod.uct and 

f.s therefore  assumed i n  t h i s  study. The asphal-t-sludge product and the  

n 

(m/S) (l/tn) as a funct ion of 

The asphalt sludge 

The cement-sludge 

The sample had a volume of 1049 em3; the  surface area exposed 

The densi ty  of t h e  cement-sludge pmduct was not  

cement-sludge product contained 3.7 x LO-“ pCi/cmn3 and 2.2 x SO-” pCi/cm 3 

respect ively.  

aged f i s s i o n  products, fo r  which a h a l f - l i f e  of about 30 years should be 

representat ive.  Thus, over t h e  time span of da ta  co l lec t ion  in these  

tes ts ,  radioact ive decay would make no noticeable d i f f e r e m e  i n  t h e  r e s u l t s .  

However, i n  leach t e s t s  with products containing isotopes with haU-lives 

t h a t  a re  short  i n  comparison with the  sampling period, radioact ive decay 

f o r  each isotope which occurs i n  t h e  specimen and also i n  the leachant 

must be taken i n t o  account, ind iv idua l ly  i f  the  leaching mechanism i s  t o  

be co r rec t ly  in te rpre ted .  O f  course, when r e s u l t s  from leaching t e s t s  are  

extrapolated t o  times t h a t  a re  severa l  orders of magnitude grezter than 

t h e  h a l f - l i f e  of an isotope , radioact ive decay becomes increasingly impor- 

t a n t  in assessing t h e  amount of t h e  isotope tha t  has been leached and i s  

i n  tlie environment (see Sect.  4).  

The radioact ive content of these products was a m-ixture of 

The amount of r ad ioac t iv i ty  removed from the spechen at ar~y time 

during t h e  t e s t  is readily obtained from Fig. 1 or 2. D3ta presented i n  

t h e  mamer of Fig. 2 can be misleading, as they are i n  t h i s  case, i f  the 

e f f e c t  of d i f f e r e n t  surface-to-volume r a t i o s  i s  not kept i n  mind. Data 

presented as i n  Fig. 1 or Fig. 2 a re  monotonic with time, a. f a c t  that, 

f a c i l i t a t e s  comparison. A disadvantage of using “cumulative €fraction 
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Fig .  1. Cumulative Fract ion Leached Multiplied by t h e  Volume- 
to-Surface Rati-o Plo'ited Against Time for an Asphalt-Sludge Product, 
(Ref. 15) and a Cement-Sludge Product ( R e f .  16) I 
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Asphalt-Sludge PrGduci (Ref, 15) and a. Cement-Sludge Produci 

16). 
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leached" i s  t h a t  t he  da t a  poin ts  a re  coupled. I n  other  words, any e r r o r  

o r  b i a s  i n  a given da ta  point  i s  c a r r i e d  by the  s m w  process ink0 a l l  

subsequent da ta  poin ts ,  

An advantage of presenting "incremental f r a c t i o n  leached, " as i n  

Fig. 3, i s  t h a t  t he  da ta  points  a re  not coupled; that i s ,  any e r ro r  o r  

b i a s  i n  a da ta  point  i s  not c a r r i e d  i n t o  subsequent da t a  points .  The 

true average curve for each of t h e  sets of da ta  points  shown i n  Fig. 3 

i s  monotonic. However, such i s  not always the  case for leach r a t e s  vs 

time ( e . g . ,  see r e f .  17).  I n  addition, graphical  or numerical in tegra t ion  

i s  usua l ly  required t o  obtain t h e  amount of a c t i v i t y  removed from a. 

specimen when the  r e s u l t s  a r e  avai lable  only as  a p l o t  of incremental 

leach r a t e  as  a funct ion of time. For exmple,  i f  only t h e  average 

curves f o r  t h e  sets of da t a  poinLs i n  Fig.  3 were avai lable ,  the  radio- 

a c t i v i t y  leached from t h e  products a t  any time, 8, would be obtained 

from an expression of t h e  form 

- = -  ' an f Rn dt, . 
0 

v ,  
0 

A 

The value of t h e  i n t e g r a l  i n  Eq. (11) would, i n  most cases, be obtained 

by graphical  in tegra t ion .  Care should be exercised i n  using values of 

leach r a t e  t o  compare waste so l id s  since,  as  pointed out,  they may not 

c l e a r l y  ind ica t e  t h e  substance t o  which t h e  gram u n i t  and A. r e f e r  and 

how they are  averaged with time; i n  addition, Lhey may not be monotmic 

with time. 

achieve f u l l  s ignif icance,  namely, t o  revea l  how much t o t a l  r ad ioac t iv i ty  

w a s  leached before a given Rn was obtained. 

A s  Eq. (11) brings out,  they must be in tegra ted  over time t o  

3. ANALYTICAL METHODS FOR REPORTING ATSD EXTRA_POIATIJ!TG 
THE RXSULTS OF LEACH TESTS AS A FUNCTION OF TIME: 

As mentioned, estimates of t h e  quantiLies of r ad ioac t iv i ty  from 

waste so l ids  t h a t  en ter  t he  environment over long periods of time are 

needed. f o r  engineering, economic, and sarfety evaluations of proposed 

waste treatment,  storage,  t ranspor ta t ion ,  and d isposa l  systems. One 



12 

method used f o r  cstimating the  m-ou.nt re leased from a s o l i d  over periods 

o f  Lime t h a t  are  much longer than the  span over which the da ta  were taken 

i s  t o  f i t  the  da ta  with various functions and imtui t ively extrapolate the 

rresul.-Ls. A b e t t e r  way i s  t o  a t texpt  t o  model -the system using m a s s  traris- 

port  equations wi.t,?i d - a t a  ob-tained over a peri.od of time suffi-cien’i to 

es tab l i sh  the  va1i.dity of the  model. 

wi-th a grea te r  degl-ee of confidence. 

Such r e s u l t s  may be extrapolated- 

3.1 Empirical Curve Fi’cting 

A l i n e a r  least-squares regression of  the  asphalt-sludge data  plot ted 

in Fig. I t o  a n  eqimtioii of the  form 

where cy i s  a constant, gives 
0 

where t h e  constant i s  expressed i n  -the uni.ts (fraction. leached) (cm) (day-u” ) .  
A similax regression of the  cement-sludge da-La plot-Led i n  Fig. 1 t o  an 

equatton of the fom 

a2 Y = C Y 1 X  , 

where and a r e  constants, gives 

where cy1 has the dimensions ( f r a c t i o n  leached) (cm) (day-’” 6 7 4  1. 
t h e  fits t o  the  data  given by E q s .  (13) and ( 1 5 )  a re  not unique since,  as 

i n  my curve-f i t t ing probl.em, t h e  data cam be f i t k e d  t o  other  functions, 

wi-Lh more constants, and by other techniques than used above. Also, it 

should be borne i n  mind t h a t  equations obtained i n  the manner of (13) and 

(1.5 ) gexierally have not properly considered radioactive decay and w i l l  

n o t  correcily account f o r  the a c t u a l  geometry of a system if  the f in . i te  

s i z e  becomes impoi-tant. I n  adrl.i.tion, extrapolation of such f i t s  beyond 

O f  course, 



t h e  da ta  bounds can give misguided r e s u l t s .  The purpose of t h i s  s t r i c t l y  

mathematical treatment i s  not t o  encourage empiricism but, t o  point  out 

t h a t  t h i s  approach may, of necessi ty ,  be needed f o r  data t h a t  seem t o  rii; 

no v a l i d  model based on transport pYLenomens. 

3.2 Modeling with Transport; Equations 

Several  models based on t ranspor t  phenomena a re  presented i n  the  

following sect ions t o  describe the leaching of r ad ioac t iv i ty  from waste 

so l id s .  Concentration changes i n  t h e  s o l i d  due t o  diffusion,  ClizsaIuLion, 

and a surface condition are considered. I n  a l l  cases, the so l ids  are 

t r e a t e d  as semi- inf ini te  media and the  e f fec t ive  d i f f u s i v i t y  as a can- 

s tan t .  Expl ic i t ly ,  for a given product, t he  e f f ec t ive  d i f fus iv i ty  and 

d isso lu t ion  r a t e  constant a r e  considered t o  be independent of pos i t ign  

but dependent on t h e  nuclide leached and the  temperature while the  

surface condition i s  corlsidered t o  be dependent on t h e  thickness and 

e f f ec t ive  d i f f u s i v i t y  of t he  surface f i l m .  

3.2.1 Diffusion 

To explain t h e  mount of ma te r i a l  leaving per  un i t  surface from t h e  
18 

of the asphalt-sludge product, DeJonghe e t  a1.l' employed the  solution- 

t ranspor t  equations f o r  a semi- inf ini te  medium of urii€orrn i n i t i a l  con- 

cent ra t ion  of mobile species with t h e  surface concentration equal t o  

zero f o r  time g rea t e r  than zero, namely, 

where Da i s  defined as  e f fec t ive  d i f f u s i v i t y .  

t o  t h e  case of d i f fus ion  with simultaneous conversion of a l e s s  mobile 

forni of t h e  species t o  a more mobile form ( the  inverse of t h i s  case i s  

given i n  r e f .  19) where t h e  concentrations of t he  two forms are d i r e c t l y  

pro-porttonal. That i s ,  i f  the  concentrations of t h e  less and more mobile 

f o r m  a re  23 and C, respect ively,  t he  re la t ionship  between them i s  P = KC. 

The constant of propor t iona l i ty ,  K, i s  included i n  t h e  I) of E q .  (16) .  
I n  t h i s  context, i t  i s  worth noting that, t h e  i n i t i a l  amount of a species 

This solut ion also appl ies  
L 

e 
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t h a t  i s  f r e e  t o  d i f fuse  a t  time zero may o r  may not be equal t o  the 

Lotal amount of tha'i species.  I n  any event, t he  ini t : i .a l  amount which 

i s  mobile a t  time zero, A may be expressed as a f r ac t ion ,  p, of the 

tota.1 amount of  t h a t  species,  Ao, i n  t h e  sample a t  time zero ( i . e . ,  

A 

a t  time zero which i s  an i n i t i a l  and boundary condition i n  solving the 

t ranspor t  equations. A s  shown i n  Appendixes A and i3, t he  f r ac t ion  can 

be included i n  13 as wel l  as other  parameters of the  solution, and need 

not '02 of concern unless the  concentration oT t h e  mobile species as a 

funct ion of posi.ti.on and time within the  sample i s  needed, 

om' 

= @Ao).  It i s  concentration based on t h e  amount f r e e  t o  d i f fuse  om 

e' 

The LAEA has emphasized t h i s  square-root re la t ionship  of time. 396 

A fac-t t h a t  should- be equally emphasized is k h a t  t h i s  syirare-root 

re la t ionship  f o r  t he  amount leaving per  unTt surface from a semi-infi.ni.te 

medium of uniform i n i t i a l  concentration does not hold i f  other  i n i t i a l  

and boundary conditions (e.g. ,  a r a t e  of change of surface concentration) 

are  imposed or i.f other  processes (e .  g ,  , nonlinear sorption-desorption 

and chemical- reac t ion)  are taking place i n  t h e  n;ed.iun. 
20 

.If the slope of Eq. (13), 6.14 x lo-", i s  equated t o  the  slope sf 

Eq. (16), 2 ( D  /n)l / ' ,  and the  resu l t ing  expression i s  solved f o r  I) 

a value of 3.0 x lo-' cm2/day i s  obtained. f o r  D . 
was obtained i n  r e f .  15 by a d i f f e ren t  curve- f i t t ing  technique. This 

va.l.ue i s  equivalent t o  3.5 x l.Bi4 cm'/sec. 

from cm2/day t o  cm2/sec as t h e  u.ni-'is f o r  expressing d i f fus iv i ty ,  i.t i s  

worth noting t h a t ,  t r a d i t i o c a l l y ,  dLffus iv i t ies  are  given ti1 cm2/sec i n  

t he  staidard works of t h e  f i e l d  such as r e f s .  9-12, engineering textbooks 

such as r e f s .  '7 and 8, and i n  engineering handbooks such as r e f .  21. 

e e'  
The same value of De e 

With regard. t o  t h i s  change 

A per t inent  observation mule i n  r e f .  22 concerning the  square-root- 

of--iime re la t ionship  i s  t h a t  effeckive d. i f fusivi t ies  have been reported 

tha-t were obtained from da ta  which, though l inea r  w i t h  t h e  square root 

of  time, d id  not go through the  o r ig in  as required by Eq. (16). This i s  

tantamount t o  f i t t i n g  t'ne data  t o  a more general  equation 



1 5  

where t h e  y- intercept ,  [ (c an/Ao)(V/S)lo, i s  not zero. 

a pos i t i ve  [ (E  an/Ao) (V/S)  1, could represent, an amount of r ad ioac t iv i ty  

(due perhaps t o  f ac to r s  such as an espec ia l ly  act ive,  contaminrzted, 01- 

nonrepresentative sur face)  t h a t  is leached o r  r e a d i l y  washed o f f  over ~1 

r e l a t i v e l y  shor t  per iod of time. 

correspond t o  a time ( the  value of a x- in te rcept )  t h a t  represents  a delay 

o r  l a g  i n  t h e  leachin;; due perhaps t o  f a c t o r s  such as a passive smface  

o r  the f i n i n g  of voids. In many cases, [(Z an/~-o)(~/~)]o represents a 

small  f rac t ion15 of t h e  t o t a l  leached during the experiments, or  t h e  'c;ime 

lag i s  a s m a l l  por t ion  of t he  t o t a l  time of the  experiment. However, 

if t h e  i n i t i a l  amount leached i s  a s ign i f i can t  portion" of t h e  t o t a l  

mount leached or the  time lag  i s  a s ign i f i can t  por t ion  of t he  t o t a l  time, 

these phenomena cannot be ignored and an attempt t o  account f o r  them i s  

necessary. 

t i ons  e 

Spe.aking broadly, 

A negative [ (E an/Ao) (V/S)]* would 

22 

This would also apply t o  any so lu t ion  of' t h e  t ransport  equa- 

The f l u x  (rmount t r ans fe r r ed  per u n i t  surface per  u n i t  time) a,t the 
18 

surface of t h e  medium f o r  t h i s  model i s  

where q i s  !he amount leaving per  un i t  surface.  The intensive property, 

q, o f  t h e  semi- inf ini te  medium can be expressed i n  t e r m  of extensive 

proper t ies  of t h e  f i n i t e  s m p l e ,  as follows: 

where a i s  the  amount removed at any time t. If t h e  leachant renewal 

periods a re  s u f f i c i e n t l y  short  o r  t h e  leach r a t e  i s  reasonably l i n e =  

over the leachant renewal period, then 

i s  a good approximation. If an/tn i s  taken -to be a t  the m i d d l e  of the 

(20) 

leachant renewal period, t h a t  i s ,  a t  time 
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the subs t i t u t ion  of Eqs .  (19)-(2l-) i n t o  Eq. (18) gives 

(z) 

Thus, incremental- leach r a t e s  t h a t  s a t i s f y  the above r e s t r a i n t s  can 

approxi-mate t h e  f l u x  a h  t h e  surface of the  scam-@ and can be used t o  

evaluate De. 

of ti.me has been used. t o  evaluate D f o r  waste so l ids  i n  the  past  and. 

w i l l  be used i n  th5.s report .  However, f o r  each model presented, -the 

incremental leach r a t e  representat ion f o r  -the fl-ux a t  the  surface i s  

given so t h a t  t h i s  method of t r e a t i n g  leach da ta  may be evaluated. 

For the most pa r t ,  cumulative f r a c t i o n  leached as a funct ion 

e 

3.2 .2  Diffusion with a Concentration-Dependent Dissolutj-on Raie 

The model of  d i f fus ion  with concentration-dependent d i sso lu t ion  

suggested i n  r e f .  22 seem plausible  'io explain the mount of mater ia l  

leaving per u n i t  surface from .the cement-sludge product and i s  con- 

s idered here. The i n i t i a l  concentration of mobile forms of a species 

may be a t  a l e v e l  representing sa tura t ion  f o r  'chese forms i.n t h e  matrix. 

The r a t e  a t  which l ess  mobile forms of  the species are converted to 

more mobile forms ca.n be considered t o  be proport ional  t o  the difference 

i n  concentration between t h i s  sa-i;ura,tion concentration and t h e  average 

concentration of mobile species at any time, That i s ,  the  r a t e  can be 

expressed as k(Cs - C ) ,  where k i s  a d isso lu t ion  ra,te constant,  C 

t he  concentration of mobile species at saturat ion,  and C i.s t he  con- 

cent ra t ion  of mobile species a t  any time. 

16 

is 
S 

Solution (Appendrix A )  of t h e  t ransport  equations fo r  a semi- inf ini te  

medium with a uniform i .n i t ia1  concentration of t h e  mobile species, w i t h  

'ihe rnobrile species being produced a,t a ra-Le k ( C s  - C )  per  u n i t  volume 

per  u n i t  ti.me for time >O, and with the surface concentration of  mobile 

species maintained at zero for time >0, gives 



1 ( 2 ) ( ) ( -$ ) = (Jjek)u2 [e.P (kT)1/2 + bkT >” 2 

- k:L’ e 

0 n 

f o r  t h e  incremental leach r a t e  a t  t h e  surface,  and 

fo r  the t o t a l  mount leached. I n  these  equations, 

k = a d isso lu t ion  r a t e  constant,  see-‘ and. 

Propert ies  and tabula ted  values of t h e  error funct ion ( e r f )  are given i n  

r e f s .  10-32 and comprehensive mathematical handbooks such as r e f .  24. 

The da ta  f o r  t h e  cement-sludge product given in Fig. 1 were f i . t t ed  

by a searching o r  successive i t e r a t i o n  technique with Eq.. (24)  t o  give 

a D see-’. A comparison e 
of the  experimental values with t h e  amounts leached as predicted by 

E q s .  (15) and (24)  a re  shown i n  Table 1. 

predicted by E q s .  (15) and (24) agree well with the  data.  

ru l e ,  t h e  extrapolat ion of an empirical  equation such as Eq. (15)  beyond 

t h e  da ta  bounds i s  a questionable operation. 

relaAions such as Eq.  ( % l + )  a re  based on well-established pr inc ip les  and 

suggest techniques t h a t  might be inves t iga ted  systematical ly  f o r  corrob- 

orat ion.  

determination of the d isso lu t ion  r a t e  constant,  k, for t h e  sludge so l ids  

alone. If  t h e  physicochemical proper t ies  of t h e  sludge a re  l a rge ly  

una l te red  by the  incorporation i n  cement, k would be ex-pected t o  be essen-. 

t i a l l y  the  same before and after incorporation. A corroborative procedure 

suggested by Eq. (24) i s  t o  determine the  r a t e  of approach of the d2ta t o  

t h e  asymptote required by t h e  model; namely, when k t  i s  la rge  so t h a t  

of 5.5 x 10-l” cm2/sec and a k of 1.5 x 

For t h e  most part, .the results 

As a general  

On the  o ther  hand, t h e o r e t i c a l  

One corroborative experiment i n  t h i s  case might be an independent 

e r f (k t )1 /2  approaches uni ty ,  Eq.  (2lt) becomes“. ” 5 
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Table 1. Comparison of the Amounts Leached from a Cement-Slud-ge 

Ehipirical Equation and an Equation Based on 
Transport Phenomena 

Product" a t  Ambient Tempersturrs t o  Those Predicted by an 

1 

2 

3 
6 
'7 
14 
21 

28 

35 
42 

50 

56 
64 

70 
84 
91 

( 2) (;), ( f r a c t i o n  leached.) (em) - 
Predicted by Approach t o  

Empiric a1 Transport A sympt ot e d 
Data" Eq.  (15P Eq. (24)' (% ) 

7.2 
1.1 m3 
~4 
1.9 x io-" 
2.1 iow3 
2.9 x 
3.7 
4.5 id3 

5.2 

6.0 I - o - ~  

7.4 1.d3 

8.0 
8.4 io-" 

9.4 ioe3 

6.8 x 

9.8 x IO-" 

7.1 x lo'-" 
1.1 

1.3 iom3 
2.0 

2.2 J - o - ~  

3.2 x ioe3 
4.1. 
4.8 id3 

5.4 I .o-~ 

6.0 

7.1 
7.7 
8.1 
9.0 

9.4 

6.7 x i om3 

7.8 lo-" 
1.1 1.6~ 

1. )-I- x 10- 

2.0 x lo-" 

2.1 

3.1 

3.9 id3 

4.6 
5.3 
5.9 ios3 

r ~ . s  

7.8 
8.3 
9.5 iom3 

6.6 x id3 

l.0 x 

23 

35 
43 
54 
59 
70 
79 
86 

90 
95 
98 
100 

99 
99 
98 
96 

a Data from r e f .  16 converted t o  the  above u n i t s  assuuing the  density of 
the  cement-sludge product = 2 g/crn3. 

1. 0.6'74 bThe consiant i n  E q e  (15) i s  7.07 x 

d[Data./Eq. (25)] x 100 wTth De = 5.5 x 

( f r a c t i o n  leached)(cm)(day- 

Equation (24) with De = 5.5 x 10-l" cm2/sec and k = 1.5 x 

sec-l .  

see-'.  C 

cm2/sec and k 5 1.5 x lo-"' 



The amount leached from t h e  product approaches within 7@ of t h i s  as3mptcite 

ai; 1~4 days and remains within 95 to 10% during the  i n t e r v a l  from 42 +,r, 

91 days (Table 1). 

and s t i l l  remained near t h e  asympto-be, it would tend  to confirrri more 

foreefiiUy t h a t  t h e  model describes the  behavior of t h e  scmple. Leach. 

rate da ta  f i t t e d ,  with Eq. (24) for other  cement- and asphalt-sludge 

products described i n  r e f .  16 gave equally good agreement between observed 

and ca lcu la ted  values.  Solutions of' t h e  -transport equations used t o  

describe the  results of leach  - t e s t s  a r e  based most of ten  on l i n e a r  flow 

i n  a semi- inf ini te  s o l i d  o r  i n  t h e  s o l i d  bounded by two p a r a l l e l  planes.  

Parametric s tud ies  t h a t  compare these  solut ions with so la t ions  f o r  ac tua l  

geometries can be c a r r i e d  out i n  t h e  manner i l l u s t r a t e d  by r e f .  26 ( f o r  

the ease of  d i f fus ion ) .  Such s tudies  can provide valuable ins ight  tha t  

a-ids i n  the  design and evaluation of leach tes-t;s as well as i n  the ex- 

tension of these  r e s u l t s  t o  ac tua l  d i sposa l  conditions.  

If da t a  had been co l l ec t ed  f o r  severa l  more months 

16 
Naturally,  t h e  question a r i s e s  why t h e  prodixb discussed by Smith, 

which inco-rporates a sludge of low so lub i l i t y ,  seems t o  f o l l ~ w  Eq,. (24)  
15 

while t h e  product; of Dejonghe e t  a l e ,  also incorporating a. sludge of 

low s o l u b i l i t y ,  seems t o  follow Eq. (16) given -in Sect.  3.2.1. T h e  

answer may be that,  t he  l a t t e r  sludge i s  of even lower solubi.litji than the  

fo-rmer and t h a t  t he  da ta  of Dejonghe e t  a l .  do f i t  Eq.  (24), which f o r  

very small kt, approaches Eq. (16). 
lowing discussion. When kt i s  small, Eq. (24) becomes 

'This may be demonstrated i n  the  f o l -  
25 

For s m a l l  k at s m a l l  t, Eq. (26)  approaches Eq. (16) and, for k = 0, 

reduces to Fq. (16). To i l lust , ra t ,e  t h i s  point, t h e  dat-1. f o r  the 2sphnlt- 

sludge product of Dejonghe e t  81. were f i t t e d  w i t h  Eq. (24)  by a searching 

tcchnique. The amounts leached from t h e  asphalt-sludge product as given 

by t h e  data ,  and as predicted by Eq. (16) with a, De of 3.5 x crI?/sec 



20 

and by Eq .  of 3.3 x lo-’’ cm2/sec aiid a k of  7.7 x 10”” 
see , ai-e shown i n  Ta.hI.e 2. ‘The t ab le  a l so  shows the approach ~f t he  

d a t a  t o  -the asymptote. This appyoach i s  much slower wi.t’o. the  aspha1.t- 

sl.,udge pi-oduct -than with the  cement-slin:Qe product (%&].e 1) because of 

t he  lower k. for t h e  asphalt-sludge product. Over t h e  time span shown, 

the r e s u l t s  predicted by Eqs. (16) 

t h e  d.ata .  

p red ic t s  a l a rge r  f r ac t ion  leached than does E q .  

about 58% more at 10 years and a f ac to r  of 4.2 more a t  100 years (‘l’ahle 2). 

This difference e f fec t ive ly  i l l u s t r a t e s  a -point made i n  r e f .  22, namely, 

t h a t  extrapolations concerning the  leaching of  sparingly soluble so l ids  

based on L q ,  (1-6) should. be viewed with reserve.  Consideration of the 

1/2 kt  t e r n  i n  E q .  

several. years )  a?-e needed t o  d.i.scern k when i t s  value i s  srnall 

16’ see-’). 

(2b )  wj.th a D e 
-1 

and ( 2 4 )  agree equally wel l  wiLh 

(2)-t) However, when extrapolated t o  much longer times, Eq .  

(16), for ex<mple, 

(26) shows ’ihat long leaching periods ( a  year ’io 

t o  

The leaching of commercial glasses by aqueous solut ions has been 

s tudied extensively using a wide va r i e ty  of experimental techniques and 

conditjLons. ’7-29 Many of these t e s t s  a re  ca r r i ed  o u t  i n  a manner such 

ths’ t he  r e s u l t s  are  spec i f ic  w i i h  regard t o  the  sample, techiiique, and 

conditions.  However, a purely empirical  expression29’ 30 that  explains 

much of the  leachi-ng r e su l t s ,  espec ia l ly  s l l - icate  glasses ,  i s  of the  

Yo rm 

wheye F i s  t h e  t o t a l  f r ac t ion  leached amrl b and c are  empirical  constants,  

with b always considera’Dly la rger  than c .  

t o t a l  f r ac t ion  leached var ies  with the  squ.a,re root of time a.t short  times 

and becomes l ine.zr with t h e  a t  longer trimes. The d i f f e ren t i a t ion  of  Sq. 

(2’7) w i t i i  respeci; t o  time gives 

Equation (2’0 shows t h a t  - the 

- 
dE;’ 
d t  
- -  

which shows thai; the r a t e  o f  leaching var ies  w l i t h  t he  reciproca.1. of the  

square root of time a t  short  times and zpproaches a constant value a t  

1.ong times. This i s  t he  behavior predicted by Eq .  (24) f o r  sparingly 
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Table 2. Comparison of the Amounts &ached from zn AsphaZt,-SluQe 
Product" at Ambient Temperatures to Those Predicted by Equations 

Based on Transport Phenomena withoutb and. r3ithC a 
Concentration-Dependent Uissoluti.on Tern] 

C an ( 7) (i), ( f r a c t i o n  leached)(cm) 
0 

Pr edic i ed by Approseh to 
Time Transport Transport A s.ymp'r, ot, c (1 

(dws 1 Data" Eq.  (16)b Eq.  (24)c (% ) 

14 
28 
42 
56 
60 
74 
88 
102 

116 
130 

144 
158 

365 
3650 
35500 

3.97 x 

3.45 lo-" 
4.13 
4.34 IO-" 

4.71 x 10- 
5.82 
6.11 io'-" 

6.42 io-" 

6.82 id4 

7.03 

7.30 

7.38 

End of Data 

2.32 m4 
3.28 16" 

4.02 IO-* 

4.64 x 16" 
4.81 lo-* 
5.34 id4 

5.82 

6.68 id4 

7.07 
7.45 

7.80 

6.26 x IO-" 

1.. 10 x 10- 

3.175 
1.19 x lo-" 

1.24 io-" 

5.92 

4.97 x lo-" 

?lata from r e f .  15 converted t o  t h e  u n i t s  indic;.zted. 

bEquation (16) with De =: 3.5 x lod1* cm2/sec. 
Equation (24) with De = 3.3 x lo1'* cm2/sec and k = 7*2 x lo-" sec-I. 

d[Data/Eq. (25) ]  x 100 w i t h  De = 3.3 x I O e i 4  cm2/sec and k = 7.2 x loe3 
sec-l . 

C 
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soluble substances. A t  short times, -the mount leached i s  given by 

Eq. (26) which, f o r  very small k t ,  fol.lows a square-root-of- the re la t ion-  

ship. For very long times, t he  amount I-eached i s  given by Eq.  (25), which 

follows a lrinear re1ationshj.p with time. The d i f f e ren t i a t ion  of Eq. (26) 

w i t h  respect t o  time when k t  i s  very small y ie lds  

and the  different i -a t ion of Eq .  (25) wj.t'n time y ie lds  

Equation (29), which i s  applicable a t  short; times, p red ic t s  a leach r a t e  

-that var ies  with the rec iproca l  of t he  square root of  time; Eq. 

which i s  applicable a t  long times, p red ic t s  a leach r a t e  t h a t  i s  constant 

with time. O f  course, these r e s u l t s  f o r  Lhe leach r a t e  can be obtained 

d.irectly from Eq. (23)  by evaluation a t  small k t  and large VI, respective1.y. 

The time variations given by Fqs. (29) and (30) are  the same as given by 

Eq.  ( 2 8 ) .  

(30), 

A phosphate-glass product3' (E-1) with a densi ty  of 2 .8  ,/em3 was 

chosen to i l l u s t r a t e  data  f i t t e d  wi-'ill Eq. 

I-t was composed nominally o f  t h e  foI.lowing const i tuents  ( i n  w t  $) :  
(24) for t h i s  type of glass. 

T'ne chief reason f o r  se lec t ing  t h i s  product t o  analyze i n  d e t a i l  i s  t h a t  

long-tern1 leachins da ta  f o r  it are  svai lable .  Mendel. and M c G l . r ~ y ~ ~  have 

c l ca r ly  s t a i ed  t h a t  these r e s u l t s  are  f a r  phosphate-glass products which 

are  cooled :rapidly (ca l led  "grab" san1ples3'-), t h a t  these produc-ts d e v i t r i f y  

when cooled slowly, and. tha'i the leaci iabi l l ty  of  these d e v i t r i f i e d  phos- 

phate products i s  increased. by a f ac to r  of  roughly a thousand. The Leach 



r a t e  da ta  f o r  most of t he  o ther  products given i n  ref. 31 were a l so  

s tudied  and were found, i n  general ,  t o  follow Eq. (2!4) reasonably well. 

The few exceptions were for data  that, covered the  shor te r  periods of 

time and had t,he most pronounced s c a t t e r ,  as we1.l. as f o r  d a t a  yielding 

t h e  higher values of De and lower .values of k. 

Data for t h e  leaching of 137Cs from t h e  phosphate-glass E-1 were 

f i t t e d  with Eq. (24) by- a searching tec’hnique %o give a D 

cm2/sec and a k of 4.7 x lo-* see-’. The mounts leached from +;lie 

product, as given by the da ta  and predicted by Eq.. (24) with t h e  I) 

and k given above, a re  shown i n  Table 3 ,and F ig .  4. Within the  s c a t t e r  

of t h e  data ,  t h e  r e s u l t s  predicted by Eq. (24) agree well  with the 

observed values.  

Table 3)  ind ica tes  t h a t  t h e  amount leached appears t,o be fo l lowi rg  t h e  

asymptote (within about *%) throughout t h e  per iod beginning a f t e r  a,p- 

proximately four  months and continuing t o  t h e  end of the reported da ta  

a t  31 months. I n  experiments ca r r i ed  out f o r  t h i s  length of -time, the 

decay of 137Cs begins t o  have an e f f ec t  on the  r e s u l t s  (see Sec t .  4) .  

A linear least-squares  regression of t h e  E-1 data  t o  Eq. (16) gives a 

De of 1.5 x Id’” cm2/sec. A comparison of  t h e  da ta  with t h e  mounts 

leached as  predicted by Eq. (16) with this D i s  given i r i  Ta,ble 3 and e 
shows t h a t  the predicted amounts are grea-Ler than the  experimental re-  

s u l t s  a t  shor t  t b e s  and l e s s  than t h e  experimental r e s u l t s  at long 

-Limes. 

of 6.2 x e 

e 

The approach of t h e  dxta  Lo t h e  asymptote (given i n  

A boros i l ica te -g lass  product31 (SS-l-2 j with a densi ty  of 3.0 g/cm3 

was chosen as t h e  product t o  i l l u s t r a t e  t h i s  type of glass. It was 

composed nominally of t h e  following cons t i tuents  ( i n  w t  % ) :  



Table 3. Compwison of the Amouits of 137Cs ]Leached E r m  a Phosphate-Glass 
F?roducta a t  25OC t o  Those Predicted by an  Equation Based on Trm1splx-t 

Phenomena withoutb and with" a Concentration-Dependelit 
Dissolution Term 

( = an ) ( ), ( f rac t ion  leached)(cm) 
n 

Predicted by Approach t o  
Transport Asymptoted 

2 Eq. (24)' 
Time Trnnspor 
(days ) D a t  aa Eq. &6) 

'7 

14 
2 1  

28 

35 
42 

49 

56 

63 

70 

77 
814 

91 
38 

105 
7.12 

ll-9 
126 

168 

196 
224 

2 52 
280 

364 
4J+8 
5 32 
616 

672 

756 
854 

938 

5.5 x lo+ 

1.-2 x 10"' 

1..4 

1.7 x 1.6" 

9.0 x loe6 

1,5 x 

1.8 x io-' 
2 .1  x 

2.2 x lo-' 

2.4 x lo-" 

2.6 x 16" 

2.9 x ioF6 
2.'7 x IO-" 

3.0 x 

3.1 x lod6 
3.3 x lo-" 
3.4 x 1d6 

3.5 x 

4.2 x 

4.5 x lo-" 
5.0 x 16' 
5.5 x 16" 

7.7 x 16" 

8.4 

5.8 x 

9.0 x lo-" 

1.03 x 16" 

1.14 IO-" 

1.28 x io-' 

1.65 x IO-" 

1.43 x 

1.1 x 

1.5 x lo+ 

1.9 x IO-" 

2.2 x lo-" 

2.4 x lo-' 

2.'( x 

2.9 x 
3.1 x 16" 

3.3 x 16" 

3.4 x lo-" 
3.6 x lov6 
3.8 x 16" 

3.9 x 10- 

14.2 x lo+ 

4.4 x 

11.5 x 

4.6 x 

5.3 x 15' 

4.1 x 

5.8 x 16' 

6.5 x 16' 

6.2 x ioP6 

6.9 x 16" 

7.3 x 

8.7 x Id6 

9.5 x lo+ 
1.0-2 io-* 
1.07 lo-' 
1.13 

1-20 16" 

1.76 

7.0 x 

9.9 x 

1.2 x 

1.4 x 

1.6 x 16" 

1.9 io-' 
1.8 x 10"" 

? * J -  x lo-' 

2,? x 

?"4 x 16' 
2.5 x 

2.7 x 16" 
2.8 x 

2.9 x 

3.0 x lom6 
3.2 x 16' 

3.3 x 

3.4 x 

4.1 x 

'4.5 x 10- 

5.0 x lo -6 
5.4 x lo+ 

7.7. x lo+ 
5.9 x 

8.4 x 10"' 

9.6 x iox5 
1.09 x 10- 

1.17 16" 

1.~30 

1-44 x lo-& 

1.56 iom4 

29 
44 

56 

63 
64 

70 

71. 

79 
80 

84 

88 

88 

92 
92 
92 

95 

95 

95 

98 
96 
90 
99 

93 
107 
100 

93 
94 
% 
99 
99 

105 - .yl 

%ata (Product ~ 4 3 ~  converted t o  t;be units inficated. 

blkp.mtion (16) with De = 1.5 x 

'Equation (24) with De = 6.2 x lo-'' cma/sec and k = 4.7 x lo-' sec-'. 

'[Da'ca//Eq. (25)] x 100 with De = 6.2 x 

m2/sec. 

ema/sec and k = 4.'7 x J.O-* sec-'. 
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‘The boros i l ica te -g lass  products ( ca l l ed  coye-dri l led s a ~ % . p l e s ~ ~ )  were not 

cooled rap id ly  and had. i;ime-te;riperat;ure treatments (long periods of time 

a t  high temperature) cl-osely simulating those envisaged. f o r  the proaucts 

obtained by s o l i d i f i c a t i o n  of high-level radioact ive wastes. 

‘The parameters i n  Eq. (24) f o r  the boros i l ica te -g lass  proC‘l.uct a re  

of 8 .4  x cm2/sec and a, k of 1.1 x 16’ see . The amounts -1 
a De 
leached from t h e  produc”i, as  given by the  da ta  and predli.cted by Eq .  (24), 
are shown i n  Table I+ xnd Fig. 5 and are  i n  good agreement,. 

appear t o  be following the  asymptote a f t e r  about t h ree  months (Table 4 ) .  

The da ta  

3.2.3 Diffusion with a Concentrat ioi?-D~endcrl t  Dissolution Rate and 
Linear Surface-Tramsf Pr 

-____I_ 

Frequently, t h e  surface of a body has or develops a condikion o r  

f i l m  which can affec’i t he  r a t e  of t r ans fe r  of diffusing substance. An 

assumption cornonly made, which of ten  represents t h e  fac1;s qui te  well, 

i s  t h a t  t he  r a t e  of t r ans fe r  across t he  surface i s  d i r e c t l y  proportionaJ 

t o  the  difference i n  concentration between t h e  surface of the body anii 

t h e  surrounding medium. I n  heat t r ans fe r ,  t h i s  re la t ionshin  i s  sometimes 

re fer red  t o  a.s “Newton’s law of cool ing,“  Speaking broadly, the  e f f ec t  

of surface fi.Ims of  low d i f f u s i v i t y  can be very marked. for maicria1.s of 

high diffusivi . ty ,  while it i s  much l e s s  important for materials  of low 

dCffusivity . 

9,10,32 

Solu i ion  (Appendix R) of t h e  t ranspor t  equations f o r  a semi-infrihite 

med.i.iun with a u.ntform i n i t i a l  concentration of t he  mobile species,  with 

t h e  mobile species being produced a t  a r a t e  k(Cs - C )  per u n i t  vol.ixne per 

u n i t  ti.me f o r  ti.me >0, and with l inear  mass t r a n s f e r  a t  t h e  surface gives 

f o r  t he  incremental leach r a t e  at the surface,  and 



27 

Table 4. Comparison of -the Amounts of 137Cs Leached from a 
Borosil icate-Glass Product" at 25°C t o  Those Predicted 

by a31 Equation Based on Transport Phenomena with a 
Concentration-Dependent Dissolution Term 

X a  (9) (i), ( f r a c t i o n  leached)(cm) 
0 

Predicted by Approach t o  - 
Time Transport A synp t o t ec 

(days 1 Data" Eq.  (24)b @ 1 
1 

7 
14 
21 

28 

56 
84 
112 

2.6 x 
7.4 x lo+ 
1.19 x 

1.91 x id4 

2.64  SO-^ 
3.30 

4.21 id4 

1.56 x 

3.0 x lo-6 
8.2 x 10- 
1.19 x lo-4 
1.11.8 

1.75 io--* 

.3.45 
2.66 x 10"~ 

4.2G x 

140 5.09 10"~ 5.02 x 

168 5.82 5.77 
1% 6.50 x IO-* 6.52 x 

End of Data 

3,650 9.76 10-3 

365,000 9.62 x io-' 

36,500 9.64 x 16" 

18 
47 
68 
81 

90 

93 
92 

97 
101 

100 

100 

?lata (Product SS-12)31 converted t o  the  u n i t s  indicated,  

bEquation (24) with De = 8.4 x crn2/sec and k = 1.1 x lo-? szc  -1 . 
[Data /Eq.  (25)] x 100 w i t h  De = 8.4 x 
see-'. 

cm2/sec and k := 1.1 x lo-? C 
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for t h e  t o t a l  mount leached. I n  Eqs. (31) and (32), 

4, = a surface t r a n s f e r  constant,  see-’, and 

e r f c  u = 1 - erf u. 

The solut ion i s  va l id  for both pos i t i ve  and negative (4 - k )  but not  f o r  

(.e - k )  equal t o  zero. 

The da ta  f o r  t h e  phosp2iatc-glass31 (E-1) were f i t t e d  by a searching 

technique with Eq.  ( 3 2 )  t o  y i e l d  a De of 6.5 x 

lt .5 x lo-’ sec-’, and an The mounts leached from the  

product, as given by t h e  da ta  and predicted by Eq. (32) with t he  panmeters  

above, a r e  shown i n  Table 5. A s  seen, t he  values a re  i n  good agreement. 

The values predicted for  PG-1 by E q s .  (24) and (32) axre very nearly t‘ne 

same and show t h a t  t h e  surface film has no s ign i f i can t  a f f ec t  on the 

:mount leached ( c f .  Table 3 with Table 5 ) .  

are 5.57 x SO--*, 5.40 x lo-”, and 5.39 x lo-’ as predicted by Eq. (24), 
and are  5.54 x LO-”, 5.37 x 
a-t 10, 100, and 1~,000 years,  respect ively.  

cm’/sec, a k of 

of 3.7 x lo‘-” see-’. 

Tine values o€ [ (C %n/Ao)(V/S)] 

and 5.35 x 16” as prediced by Eq. (32) 

The da ta  f o r  t he  b o r o ~ i l i c a t e - g l s s s ~ ~  (SS-E!) were f i t t e d  by a 

searching technique with Eq. (32) t o  y i e l d  a De of 8.6 x Id1‘ cm /see, 

a k of 1.1 x LO-’ see-’, and a.n 

leached from t h e  product, as given by the data and predicted by Ey. ( 3 2 )  

with these  parameters, a re  shown i n  Table 6. A s  seen, t he  predicted 

values and t h e  data are i n  good agreement. The amourits leached f-rom 

SS-12 as predicted by Eq. (24) are l e s s  than 0.5% Ereater than those 

predicted by Eq. (32)  at 10, 100, and L,O(30 years (cf. Table 4 2nd 

2 

of 2 , r [  x sec-’ . The amounts 



Table 5. Comparison of the Amoimts of 137Cs Leached from a 
Phosphate-Glass Producta a t  25OC t o  Those Predicted by an 
Equation Based on Transport Phenomena with a Dissolution 

Term plus a Surface Coiidition 

Predicted by Approach to 
Time Transport 

(days  1 Dataa Eq. (32)b 

'7 5.5 x 6.7 x 
14 9.0 x IOs6  9.8 x 1.0"~ 
21 1..2 x lo-' 1.2 x 7.d6 

28 1.4 x 1.4 x lo-' 
35 1.5 x lom6 1.6 x 
k 1.7 x lo-' 1.8 x lo-' 

49 
56 
63 
'70 

'77 
84 

91 
98 
105 

13.2 

13.3 

7.26 
168 

1% 

2 52 

364 
4-48 

532 
616 
672 

224 

280 

1.8 x 16' 
2.1 x 16' 

2.2 x lo-' 
2.4 x lo-' 
2.6 x iom6 
2.7 x lo-' 
2.9 x IO-' 
3.0 x 16' 

3.1 x LO-' 

3.3 x lo-' 
3.4 x lo-' 
3.5 x lo-' 
4.2 x lo+ 

lc.5 x lo-' 

5.5 x lo-' 

'7.7 x lo-' 

9.0 16' 

1.03 
1.14 10"~ 

5.0 x lo-' 

5.8 x 

8.4 x IO-' 

1.9 x 

2.1 x 

2.2 x 

2.4 x l.0-6 

2.5 x 
2.7 x lo-' 
2.8 x 
2.9 x io-" 

3.2 x io-" 

3.3 x 
3.4 x 
4.1 x 1.6' 
4.6 x Lo-6 

5.4 x lo-' 
5.9 x 
7.1 x 16' 

8.4 x 16' 

3.0 x 

5.0 x 16' 

9.6 x 16' 
1.09 
1.17 

756 1.28 x ~ 2 9  x io-* 

854 1-43 1.44 x lo-" 
938 1-65 1.56 x lo-" 

28 
44 
55 
62 

63 
69 
70 
78 
79 
83 
87 
87 
31 
91. 
91 
94 
94 
95 
97 
95 
97 
99 
97 
107 
7.00 

93 
95 
97 
33 
100 

106 
~- 

?Data (Product E-1)31 converted t o  the  uni t s  indicated, 

bEquation (32) with De = 6.5 x cm2/sec, k 4 ,5  x lo-' sec-l, and 
.C = 3.7 x iom4 sec-l. 

'[Data/Eq. (33)] x 100 with De = 6.5 x cm2/sec, k = 4.5 x 16' sec-l, 
and .C 3-7 x IO-" sec-I. 



Table 6. Comparison of t h e  Amounts of 137Cs k a c h e d  from a 
Borosil jcate-Glass Producta a t  25OC t o  Those Predicted by a 

Equation Based on Transport Phenomena with a Dissolution 
Tern Plus a Surface Condition 

(2) (i), ( f r a c t i o n  leached)(cm) 
0 

Predicted by Approach t o  
Time Transport Asymptote' 

(days ) D a t  aa Eq.  (32)b 0 

1 2.6 x lo+ 2.9 x io+ 18 
7 7.4 x 8.1 x ld6 47 
14 1.19 1.18 x Id4 68 
21 1.56 x 1d4 1.118 x 81 

1.74 lo-* 90 28 1.91 x IO-' 

56 2.64 lo-* 2.66 x IO-" 92 

3.48 x io-* 92 84 3.30 x 

97 11.2 4.22 x IO-" 4.26 
140 5.09 5.02 

168 5.82 x IO-' 5.77 100 

194 6,50 x 4.52 x IO--* 

100 

99 
End of Data 

3,650 9.72 

36,500 9.60 x 

365,000 9.58 x lo- l  

a 
D 3 ; t a  (Product S S - E ) ~ ~  converted t o  t h e  u n i t s  indicated.  

bEquation (32) with De = 8.6 x cm2/sec, k = 1.1 x l.O-? sec-', 
and & = 2.7 x 10"" see-'. 

C 
[DatalEq. ( 3 3 ) ]  x 100 w i t h  De_== 8.6 x 10-l' cm2/sec, k = 1.1 x I O e 7  
sec-' ,  and = 2 . 7  x loe3 sec 1 , 
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Table 6 ) .  

has no s igni f icant  e f f e c t  on ’ihe arnollilt leached. 

‘i‘hesf! result,s obtained. with SS-12 show that the  surface f i l m  

When k t  i s  1a:rge so t h a t  erf  (k-t)1/2 approaches uni-ty and. &ti. -is la. rg:e 

so t h a t  e (.e-k)t e r f c  (dt)l/’ approaches zero ( a  s e r i e s  approximation f o r  

e e r f c  u“/” will show t h i s  f o r  > k,  while t h e  l i m i t  i s  obvious f o r  

k > L ) ,  Eq. (32)  becomes 

U 

inspect ion of‘ Eq .  (33) shows t h a t  for small values of k/& Lhe equation 

reduces t o  Eq. (25), which i s  the asyirqtote f o r  t h i s  case without a sur- 

face  condition. 

t o  t h i s  asymptote i s  given i n  Table 5 and for t h e  borosi l icaie-glass  

SS-12 i n  ‘iable 6. 

The approach of t he  da ta  f o r  the  phosphate-glass E-1 

‘The expressions based on t ransport  phenomena presented i n  Sects.  

3 .2 .1 ,  3 .2 .2 ,  and 3.2.3 above do not give predicted val-ues t h a t  are  i n  

good agreement w i k h  t he  da ta  for severa l  of t he  phosphate-ceramic products 

(v i z .  SS-1, -2, -5, -6, -7, -3, and -10) described. i n  r e f .  31. This sug- 

ges ts  t h a t  xn expression t,aki.ng i n t o  accoilnt a mechanism, or combination 

of mechanisms, o ther  than those presented should be considered Lo expla5n 

the  leaching of these products. 

Solutions of the mass t ransport  equations t h a t  take in to  accouni 

d i f fus ion ,  concentration-dependent di-s solut ion,  l i n e a r  surf ace - t ransfer ,  

and a movinc boundary a re  presented i n  r e f .  33. 

4. ACCOUNTING FOR M D I O A C T I V E  DECAY 

I n  the  foregoing considerations,  the isotope being removed from the  

waste product has been considered- Lo be a s tab le  one. Sol.ui;ions of  t he  

rnass t ranspor t  equations accounting f o r  radioact ive decay of an isotope 

escaping from a product a re  o b t a h e d  readi ly  fi-om solut ions f o r  s’iable 

isotopes,  as shown i n  r e f .  26. 
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The amount of an isotope which has escaped from a waste s o l i d  

where decay of the isotope i n  the  source (waste product) i s  %&*en int:, 

account, but where t h e  isotope i s  considered to be stable a f t e r  it j - s  

re leased t o  t h e  environment ( leachant ) ,  i s  described, f o r  t he  modcl w i t h  

d i f fus ion  plus concentration-dependent d i sso lu t ion ,  by the  following 

equation: 

k + X  1/2 -At ,  - (7 ) e erf (kt)l / '  (34-1 

where 

J. = In  2/tu2 = radioacti.ve decay constant,  sec-l and 

til2 = h a l f - l i f e  of isotope, see. 

The der ivat ion of Eq. (34)  i s  presented i n  Appendix A.  

Eq.  (34) represents  t h e  manner i n  which experiments are  covlducted w i t h  

isotopes having r e l a t i v e l y  shor t  ha l f - l ives  as  compared with t h e  t o t a l  

time of t h e  leach tes t .  For example, consider a leach test; with 1 4 * C e  

( h a l f - l i f e  of about 284 days) t h a t  i s  ca r r i ed  out f o r  approximaf;ely a 

year with leachant renewal periods of a few days. 

the  leachant f o r  each renewal per iod is e s s e n t i a l l y  negl igible .  The 

acti.vity i n  each leachant may be considered "Prozen," or f ixed,  when 

removed. 

( s imi l a r ly  considered frozen at; t he  t k e  of removal). 

time span of  t he  experiment, decay of 144Ce  i n  t he  waste product i s  

s ign i f i can t  and must be taken into account. This i s  t h e  s i t u a t i o n  with 

respect  t o  radioact ive decay that i s  represented by Ey. (34). 

l n  m<my instances,  

Radioactive decay i n  

Thus, it may be summed with the  activFtjr of subsequent ZeacIiants 

However, over the 

The amount of a radioact ive isotope which has escaped f r o m  a waste 

product where decay of t h e  isotope i n  the  source and i n  t h e  environment 

has been taken i n t o  account for t he  model with diffusion plus concentratlon- 

dependent d i sso lu t ion  i s  given by 
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The der ivat ion of Eq. (35) i s  presented i n  AFpendix A and may be considered 

t r i v i a l  when Eq. (35)  i s  compared to Eq. (24) since the  r e s u l t  i s  intu-  

i t i v e l y  obvious. 

Sol-ution f o r  the  total .  amount of radioactivi . ty t h a t  escapes from 

the  source (waste product) and enters  the  environment ( leachant) ,  taking 

i n t o  accou-nt decay t h a t  occurs i n  the  envirorment but considering the 

isotope t o  be s-table i n  the  source, seems t o  be of l i t t l e  p r a c t i c a l  value 

and i s  no-t presented. 

The m o u n t s  of l Z 7 C s  ( h a l f - l i f e  of abou-L 30 years )  t h a t  Eqs. ( 2 k ) ,  

(34) ,  and (35) predi-et would be leached f rom a phosphate-glass product 

and would enter  t h e  environment, a re  showin i n  Table 7 as a 

f u n c t h n  of time. T‘ne waste product i s  considered t o  be in t h e  form of 

a 2 - f t - d i m  x 8-ft-long r i g h t  c i r c u l a r  cylinder (V = 7.12 x I O 5  em3) with 

all surfaces (S = 5.25 x SO”. em’) continuously exposed t o  f r e s h  water. 

The f r a c t i o n  leached, as predicted by E q .  (24) ,  increases from about 

5.3 x I.OS6 a t  one year t o  about 1.2 .x lo’-” a t  3000 years (‘Table 7), and 

w i l l  continue t o  increase with time for a s tab le  isotope escaping from 

a semi- inf ini te  medium. The frackion leached, as predicted by Eq.  (34), 
increases from about 5.2 x a t  one year t o  an approximately cons’iant 

value of  1 . 7  x loT4 a f t e r  about 200 years (Tahle ‘7) ,  indicat ing t h a t  

decay i n  t‘ne product has become -the control l ing f a c t o r  i n  the  mount 

leached. The f r a c t i o n  leached, as predicted by Eq. (35), increases from 

about 5.1 x loeE at, one year t o  about 6.0 x lo-“ between 30 and 60 years 

and then decreases t o  about 9.14. x ld3” at 3000 years (Table 7 ) .  

max<mum f r a c t i o n  of t h e  C s  ac’civity i n  the environment for t h i s  product, 

as predicted by Eq .  (35) ,  i s  about 6 .4  x IO-” at 43 years. Relationships 

such z s  Eq.  (35), derived t o  accoimt f o r  -the a c t u a l  geometry of  t‘ne sol-id 

i f  necessary, can gi-ve values needed f o r  determining t h e  environmeiitnl 

Tmpact of a waste product. 

The 
137 

The above solutions apply t o  independent a c t i v i t i e s  in the product, 

t h a t  i s ,  radioactive decay ’out not prod-uction. Solution for a case 
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, 
Table 7. Comparison of the Amounts of 137Cs Leached from a Phosphate-Glass 

Product" a t  25°C and i n  the Environment as Predicted by Equations Based 

and Decay of t h e  Product and the  Amount Leached 
on Transport Phenomena Considering No Decay, Decay of the Product, 

C a  ( +),(fract ion leached) 
0 

No Decay Decay i n  Product Decay i n  Product 
i n  Product But N o  Decay and Decay i n  Time 

l!i 
o r  kachant, i n  Leachant, Leachant 

(days (Years ) Eq. (24)b Eq. (34)' Eq. (35) 

91 
182 

365 

5,475 

10,950 

21,gao 

32,850 

43,800 

54,750 

65,700 

76,650 
87, Goo 

3,650 

98,550 

log, 500 

1,095,000 

1/4 
1/2 
1 

10 

1 5  

30 
Go 
90 
I20 

150 

180 

210 

2 40 

270 

300 

3,000 

2.05 x 16" 

3.19 x 16' 

5.27 x lo-' 

4.10 x 
6.09 x io-' 
1.20 

2.40 
3.59 

4.78 x 

5.97 x LO-* 

7.16 x 

8.35 id4 

9.54 10'~ 

1.07 10-3 

1-19 x io-" 

1.19 x io-' 

2.05 x lo-' 

3.18 x 

5.22 x 10- 
3.68 x 16' 

5.17 x loe6 
8.72 x 

1.30 id4 

1.52 

1.62 x 

1.70 

1.72 ( e )  

1.73 

1.73 x io-'(e) 

1.73 x 10-"(e) 

1.68 x I O e 4  

1.72 x 

2.04 x lo-' 
3.16 x ld6 

5.14 x 16' 
3.26 x 
4.30 x 16" 

6.02 x io-' 
5.49 x 

4.48 x 
2.99 x lo-' 

1.u x lo-B 
6.52 x 
3.73 x lo-6 

1.16 x lo+ 
9.40 

1.87 x 

2.10 x 

% d u e s  of De m d  k obtained f r o m  the leach resu l t s  i n  re f .  31 by f i t t i n g  the data  for  
The waste product i s  considered t o  be i n  the  form of a 2-f t -dim x E-1 t o  Eq. (24). 

8-ft-long r i g h t  circular cylinder (V = 7.12 x 10' c d )  with a l l  surfaces (S = 5.25 x lo4 
cm") continuous- exposed t o  water. 

bEquation (24) with De = 6.2 x lo-'' cm2/sec and k = 4.7 x lo-* sec-l. 

'Equation (34) with I), = 6.2 x 

%quation (35) with De = 6,2 x 

"Rounding of f  obscures the  s l i g h t  increase i n  these numbers. 

cm2/sec, k = 4.7 x lo-' see-', and tuz  of 137Cs = 

crn2/sec, k -- 4.7 x lo-* sec-l ,  and tu2 of I3'cs = 

30 yeaxs. 

30 years. 



including a parent and daughter i n  secular equilibrium i s  given i n  r e f .  

33. 
6 

The nature ol” the  -0rrect ion suggested by the  U!A f o r  radioactive 

decay during leaching seems obscure. Apparently, it is intended LO 

describe the s i t u a t i o n  with respect t o  radi-oactive decay represented 

by Eq. (34) f o r  t h e  model coilsidered i n  t h i s  section. 

5. CONCLUSIONS AND ilECOMMEPDAi’IONS 

Many d i f f e r e n t  met;hods have been used. f o r  expressi-ng the resul_i;s of 

leach t e s t s  on radioactive wastes incorporated i n  s o l i d  media. The TAU 

has recommended t h a t  such r e s u l t s  be reported a s  a y l o t  of the  quantity 

(7an/Ao) (V/S) o r  the quantity (an/L40) (V/S)  (l/tn) vs ti.rfle. Solutions of 

mass t ransport  equations lead readi ly  t o  expressions which give these 

quant i t ies  as functions of e f fec t ive  d.iffusi.vity as wel l  as other  

physicochemical parameters of  ’zhe system and time. 

t h e o r e t i c a l  significance,  these quant i t ies  are  unambiguous wLth respect 

t o  ixnits, and wider use of (Can/Ao)(V/S) and. ( a n / A - o ) ( V / S ) ( l / t n )  vs -time 

i s  encouraged. Cor reporting the r e s u l t s  of leach t e s t s .  While graphical  

presentat ion of  da ta  i s  valuable for showing a la rge  number of t e s t s  and 

qua l i ta t ive  trends concisely, t abular  presentat ion makes data  readi1.y 

avai lable  f o r  precise  matherriatical treatmeni;. Consequently, where 

feas ib le ,  more tabul.ar presentat ion of leach data  i s  reconmiended. 

I n  addition ’IO having 

Models based on establ ished t ransport  phenomena appezr t o  of fe r  a 

m e a n s  €or  achieving improved understanding of  the basic p-rocesses governing 

t h e  amount of rad ioac t iv i ty  escaping Yrom waste so l ids .  A t h e o r e t i c a l  

r e l a t i o n  based on data  taken over a perriod of iirne suf f ic ien t  t o  es tab l i sh  

the v a l i d i t y  of the model may be e x t r a p o h t e d  with a grea te r  degree of 

confidence than an empirical. or semiempirical re la t ion .  Tn addition, 

t h e o r e t i c a l  re la t ions  a l . l ow parametric s tudies  t o  be made. Sucli s tudies  

can provide valuable ins ight  t h a t  aLds i n  the  design and eval-uztio-n of 

leach - tes t s  as w e l l  as i n  the extension of these r e s i ~ l t s  t o  ac tua l  d-is- 

posal condi-Lions 
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Several  t h e o r e t i c a l  expressions based on mass t ranspor t  phenomena 

tha t  r e l a t e  t h e  r ad ioac t iv i ty  escaping from waste products t o  diPfusi.on 

and d isso lu t ion  processes, surface conditions,  and radioact ive decay 

were evaluated w i t h  representa t ive  avai lable  data .  I n  the main, Ynese 

products can be categorized as  waste solids of low s o l u b i l i t y  incorpora1,ed 

i n  i n e r t  matrices - cement, asphal t ,  ceramic, and glass .  The analyses 

show tha% an expression taking i n t o  account d i f fus ion  and concent,ra,tion- 

dependent d i sso lu t ion  gives good agreement with the  da ta  for most of  t he  

products considered. 

give good agreement with severa l  of t h e  phosphate-ceramic products con- 

sidered. Expressions taking in to  account mechanisms, c r  combina%ions of 

mechanisms, other than those presented should be considered f o r  these 

products . 

The expressions presented i n  t h i s  report do nol, 

These r e s u l t s  ind ica te  t h a t  systematkc appl icat ion of mass transport 

theory t o  leach  da ta  (from well-characterized systems and t e s t s  ca r r i ed  

{>ut for su f f i c i en t  time to es t ab l i sh  long-term t r ends )  for radioact ive 

waste products can y ie ld  s ign i f i can t  information concerning t h e  sui t -  

a b i l i t y  of these products i n  waste mancagernent progrxm. Tncludcd i n  

t h i s  information a re  physicochemical proper t ies ,  such as  e f f ec t ive  

d i f f u s i v i t y  and d isso lu t ion  r a t e  constant,  f o r  each isotope i n  the  

product. 

products. Coupled with solut ions of mass t ranspor t  equations, they 

provide 8 way t o  estimate the amount of each isotope escaping from a 

product as  a funct ion of timc,Ldcing i n t o  account ac tua l  geometries and 

decay of radioact ive isotopes.  Relationships s imilar  -to Eqs .  (24) md 

(32) provide theoretically sound r a t iona le  for es tab l i sh ing  los,,-of- 

r ad ioac t iv i ty  c r i t e r i a  f o r  waste products. 

These properbies a re  useful  when comparisons are made of severa l  

Thanks a re  due H. C. Claiborne and I. L. Thomas, of t he  Or& Ridge 
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Comments 
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OFTdL, gave significan'i assis-tance i n  t h e  ed i t ing  of the manuscript. 
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8. NOMENCIATURE 

ENGLISH ALPHABET 

A ,=1iount of Tadioactivity;  e q r e s s e d  i n  atoms, cur ies ,  sr grams as 
required f o r  dimensi0na.l consistency 

A = i n i t i a l  t o t a l  rad ioac t iv i ty  of a species 
0 

A = i n i t i a l  port ion of a species ’Ghat i s  mobile om 

a = mount of radi.oact,i_vi.t,y lost a t  any time t 

a = rad ioac t iv i ty  l o s t  during Leaching Feriod n 
n 

C an = sum of rad ioac t iv i ty  l o s t  during a l l  leaching periods 

b = empirical. constanl, i n  Eq. (27) wiih the  un i t s  ( f r ac t ion  
leached) ) 

C ::I concentration (amount per un i t  volume) of mobile species 

C i  I:: cur ie ,  t h e  quantity of any radioact ive mater ia l  i n  which Lhe 
nunber of  d i s in tegra t ions  per sec ts 3.7 x l o l o  

= i n i t i a l .  t o t a l  concentration of a species (A /v)  

= t n i t i a l .  concentration of that port ion of a species which i s  

co 0 

C 
mobile ai; ti.me z e m  (Aom/V) om 

Cs = concentration a t  a sa tura t ion  point 

c = empirical- constant i n  Eq. (27)  wi’ih the  u n i t s  ( f r ac t ion  
leached) ( t h e - ’  ) 

cm centimeker 

B ::: unmodified. [Eqs. ( A - l a )  and ( B - l a ) ]  e f f ec t ive  d i f f u s i v i t y  (cm2/sec) 

D 

e 

e 
= modiffed [Eqs. ( A - 1 4 )  and (B-13)] e f fec t ive  di-ffusivi-ty with -the 
units cm”/d.ay 01- cm2/sec as required f o r  dimensional consistency 

d = differen-Lia.1 operator 

d i m  I: diameter 

e = base of  na tu ra l  logari-thns, 2.71-82818 . . . 
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u . 2  
e r f  u = e r r o r  function; defined as $ e-’ dz 

e r f c  u = complementary e r r o r  function; defined as I - e r f  u 

0 

u exp u = representa t ion  f o r  e 

F = f r a c t i o n  leached i n  Eq.  (27 )  

f = concentration (amount per  u n i t  volume) 

f’ = concentration (amount per u n i t  volume) i n  Eq. (13-5) 

g = gram 

h = l i n e a r  surface- t ransfer  constant (cm-l) i n  Eqs .  ( B - l d )  and 
(B-3d) 

J’ = f l u x  at t h e  surface without a f i r s t -o rde r  process, used i n  
0 Eq. (B-4) 

K = constant of propor t iona l i ty  (dimensionless ) 

k = disso lu t ion  r a t e  constant (see’-’ ) 

lim = l i m i t  

I n  = na tu ra l  logarithm (base e )  

4, = surface t r a n s f e r  constant (see-’) defined by Eq.  (B-8)  

M = mass of specimen ( g )  

m = mass of waste so l id s  i n  specimen (g) 

11 = non-negative in teger  

P = concentration (amount per un i t  volume) of a less  mobile form 
of a species 

Q = in tegra ted  amount l o s t  per u n i t  of surface i n  time t 

q = amount l o s t  per  u n i t  of surface at any time t 

R = (an/A ) ( V / S ) ( l / t  ); an incremental leach r a t e  with the units 

= (an/L‘o)(M/S)(l/tn); an incremental leach r a t e  with -the uni t s  
( f r ac t ion  leached) (g/cm.’ ) (day’-’ ), based on the  mass of the 
spec h e n  

I1 
( f r a c t i o n  leache8) (em) (day-’ ) 

r 
n 



I 

r = (an /A ) ( m / S ) ( l / t n ) ;  an incremental leach r a t e  wibh the  u n i t s  
( f r a c t i o n  Leached) (g/cm2 ) (day-l ), based on t h e  mass of waste 
solids i n  t h e  specimen 

n 

2 S = exposed surface area of specimen (em ) 

sec I-: second 

'T = d.esignation for time representing the median of  successive 
leachant renewal periods (t - t n / 2 )  j.n days or sec 

t = elapsed time i n  days o r  seconds as required for dimensional 
consistency 

t = duration of leachant renew31 peri.od (days or  s e c )  
11 

X-t = sum of  a l l  leaching periods n 

tlI2 = h a l f - l i f e  of an isotope i n  years, d.ays, or sec as required f o r  
dimensional consistency 

u = a var iable  

v = volume of specimen (ern3) 

X = a variable  

x = length (em) and a space coordinate (x-axis) 

Y = a var iable  

z =: a var iable  

GREEK ALPHABET 

empirical  constant i n  Ey. 
(cm)(day"u2 ) 

(13);  6.11-t. x lo-' ( f r a c t i o n  leached) 

= empirical  constant i n  Eq. (15); 7.07 x LO-" ( f r a c t i o n  leached) 
) -0 .674 

( c d  (day 

CY, = empirical constant i n  Eq. (15); 0.5'74 

p == f r a c t i o n  of t o t a l  species which i s  mobile a t  time zero 
(Aom/Ao 

y = r a t i o  o f  sa tura t ion  concentration t o  i n i t i a l  t o t a l  concentration 

( C , / C o  1 
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A = f i n i t e  change 

8 = Lime (days) 

a = p a r t i a l  d i f fe ren t ia l  operator 

X = In 2/tv:! , defined as radioact ive decay constant (sec- l )  

p = micro-, the  f a c t o r  

- r ~  = 3.141592 . . . 
p = densi ty  of specimen (g/cm3) 

C = summation 

7 = time ( s e c )  

@ = m/M, mass fraction of waste so l id s  i n  specimen 
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APPENDIX A. S O L ~ I O N  OF MASS TWSPORT EQUATIONS FOR THE CASE 
OF DIFFUSION 'WITH A COflCENTRATION-DEPmm DISSOLUTION RATE: 

For a semi- inf ini te  medium with a uniform i n i t i a l  concentration of 

mobile species equal. t o  Cs, with mobile species being produced at a r a t e  

k(Cs - C )  per unit time per u n i t  volume for  time grea te r  than zero, and 

with t h e  surface concentration of mobile species maintained a t  zero f o r  

time greater than zero, t h e  law of conservation of mass equation (from 

a mass balance across a d i f f e r e n t i a l  sect ion)  t o  be solved i s :  

( A - l a )  

with t h e  I n i t i a l  and boundary conditions 

x > 0,  t = 0, c = c ( A - l b )  s 

x = 0, t > 0, C = 0, and (A-lc ) 

x = m  , t > O , C = C  , ( A - l d )  
S 

If the  var iable  

f ( x , t )  = c s - c ( x , t )  (A-2 1 

is introduced and subs t i tu ted  i n t o  E q s .  (A-l), the  transformed equation 

i s  

a2 f 
6 9 - - k f ,  

a f  
A -  a t  - e 8x2 

with the i n i t i a l  and boundary conditions 

x 0, t = 0, f = 0 

x = 0, t >  0, f = C and 
S'  
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The solution25 of Eqs .  (A-3)  i s :  

where 

U 
e x p u = e  , 

e r fc  u = 1 - e r f  u, and 

(A- 5 1 

(A-6 )  

R o p e r t i e s  and 

error  funct ion 

handbooks such 

1 c - c  
s .  

ta'oulated values of the e r ro r  func"iion ( e r f )  and complemc%tary 

(erfc) a re  given i n  r e f s .  

as ref. 24. Subs t i tu t ion  

10-12 and comprehensi-ve mathematical 

of  Eq.  ( A - 4 )  i n t o  Fq. (A-3) eivcs 

X ~ / 2  - (kt)l/"] 

(A-8) 

f o r  t h e  concentration of tile mobile species i n  

pos i t ion  and time. 

DifPerentiation of Eq. (A-8) with respect 

concerltratioil gradient a t  x - 0, and inse r t ion  

Fick's l a w  give 

the  mediwn as a funct ion of 

t o  x, evaluation of t h i s  

of t h i s  gradient i n t o  
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In tegra t ion  of Eq. (A+) over time t gives 

(A-10) 

where Q i s  the t o t a l  amount of species t h a t  has l e f t  t h e  medium per uni t  

of surface i n  time t. 

The intensive propert ies ,  q, Q, and C , of the semi-infinite medium 
S 

can be expressed i n  terms of extensive propert ies  of t h e  f i n i t e  sample, 

v iz . ,  

5 q = -  
S 

A. C = -  
s V ’  

(A-11) 

(A-12) 

(A-13 

where y i s  a constant representing the r a t i o  of t h e  concentration at 

sa tura t ion  to t h e  i n i t i a l  total concentration of the species.  

l e t  

By def in i t ion ,  

D e = y 2 &  e , (A-14) 

If 

a 
n l im Aa ’) - d a  

At-0 ( ! dt - =  
tn 

(A-15 1 

i s  a good approximation and i f  an/tn i s  taken t o  be a t  time 

T = (t - tn/2)  , (A-16) 

( > ) ( ) ( $ ) = (Dek)If2[erf (kT)l/” + e 

0 n 



f o r  the  leach r a t e  representation of t h e  f h x  a t  the surface f o r  3. 

sparingly soluble makerial a t  time T, 

( A - l 3 ) ,  and (A-14)  i n t o  E q .  (A-10) yields  

The subs t i tu t ion  of E q s .  (A-12), 

for t h e  t o t a l  amount o f  t h e  mater ia l  which has Left the  medium i n  time t .  

The i n i t i a l  quankity, yA ips not generally knotm (or needed) for 
0’ 

waste products. 

t ransport  equations r e l a t i n g  the concentration of the mobile Species to 

pos i t ion  and time wit‘nin t‘ne product were used, i-t would require the 

unmodi.fied e f fec t ive  d i f f u s i v i t y  8 

diffusivi- ty  I) . 

However, i f  an expression [ e - g . ,  Eq. (A-8)] based on 

- not the  modified e f fec t ive  
e 

e 

The treatmelit above applies t o  a s tab le  isotope. Iiowever, solutions 

accountlng for radioactive decay of an isotope of mean or  averLxe  l i f e ,  

l/X, a x e  readi ly  obtained from solutions f o r  s tab le  isotopes as shown i n  

r e f .  26. 

Solutions for t h e  t o - t a l  amount of rad ioac t iv i ty  t h a t  i s  removed 

f r o m  a waste s o l i d  and i s  i n  the errvironment, taking i n t o  account radio- 

act ive d-ecay t h a t  occurs i n  t h e  waste solid but considering the isotope 

-Lo be  s t a b l e  once i-t i s  i n  the  environment, can be obtaineds6 by mul- 

t iplying the f l u x  out of the  s o l i d  for a s tab le  isotope [ Z q .  (A-9 )  i n  

t h i s  case] by e-Xt and integrat ing t h e  resu l t ing  expression with time. 

Since 

then 

(A-19) 

-kt t -  e sQ dy = C S (aek)v2 Jo e r f  (k t ) I f2  + (nkt ) U 2 - j  e-Xt dt , (A-20) 
0 

and 



v2 

k +  1 
- (7 ) e-Xt erf‘ (kt)IJ2 (A- 2 1.) 

Subs t i tu t ion  of Eqs. (A-U), ( A - U ) ,  and (A-14)  i n t o  Eq. (A-21) y ie lds  

1/2 
e 

C a  D 

( ) ( ) = ( k + ~  ) [ e r f  [ (k + X)tIv2 + { e r f  [ (k + x)t]’“ 
0 

k + X  - ( )”” e-ht er f  (kt)1/2 )r ] . (A-22) 

Equation (A-22) then represents  t he  amount of t h e  isotope which has l e f t  

t h e  waste solid i n  time t, where decay OS t he  isotope i n  %he source (waste 

product) has been t&en i n t o  account but where t h e  isotope i s  considered 

t o  be s t ab le  a f t e r  it i s  i n  t h e  environment. This amount i s  sometimes 

r e fe r r ed  t o  as  t h e  mount of a c t i v i t y  “discharged” from a source i n  

time t. 

Solut ion for t h e  t o t a l  amount of r ad ioac t iv i ty  t h a t  i s  removed from 

a waste s o l i d  and i s  i n  the  environment, taking i n t o  account radioact ive 

decay t h a t  occurs i n  the  s o l i d  and i n  t h e  environment, can be oistaineci 

by computing the instantaneous flux with decay out of the s o l i d  [Eq.  

(A-19) i n  this case] at time 7 ,  computing the  a c t i v i t y  remaining at some 

l a t e r  t i m e ,  t, gad in tegra t ing  7 from zero t o  t: 

Q = C s  [ (t + & ) e r f  (kt)1/2 + (&  ) e . (A-24)  

Subs t i tu t ion  of Eqs. ( A - Z ) ,  (A-13), and (A-14) i n t o  Eq. (A-2.4) yie lds  



Equation (A-25)  

(Dek)L/2 ( t -1- ) erf ( k t ) u 2  

represents t h e  t o t a l  mount of a sparingly sol-uble iso-tope 

t h a t  has been removed from a waste s o l i d  and i s  i n  t h e  environment ai; 

time t, where decay of t h e  isotope in t h e  source and i n  the  environment; 

i s  taken i n t o  account. 

irrimediaicly from Eq.  (A-18)  by multiplying by e . However, the 

in tegra t ion  i s  presented t o  emphasize the  difference between Eq. (A-22)  

and Eq. ( A - 2 5 ) .  

Equation (A-25)  could have been obtained 
-xr; 

Solut,i.on f o r  the  Lotal mount of rad ioac t iv i ty  that escapes from 

the source (waste produc-t ) and. i s  i.n t h e  environment (leachant ) , taking 

i n t o  account decay t h a t  occurs i n  t h e  environment but, considering the 

isotope t o  be s tab le  i n  the source, seems t o  be of l i t t l e  p r a c t i c a l  

i n t e r e s t  and i s  no-t presented. 
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APPEXIII’LX B. SOLUTLON OF MASS T M S P O R T  EQUATIONS FOR THE CASE OF 
D I F F U S I O N  WITH A CONCEXTRATION-DEPEXDENT DISSOLUTION RATE AND 

LINEAR S U R F A C E - T M S F E R  

For a semi- inf ini te  medium with a uniform i n i t i a l  concentration of 

mobile species equal to Cs, w i t h  mgbile species being produced a t  a rate 

k ( C s  - C )  per  u n i t  time per  u n i t  volume f o r  time grea te r  than zero, and 

with l i n e a r  mass t r a n s f e r  at, the  surface i n t o  another m e d i u m  containing 

none of t h e  mobile species (i. e , ,  with ?%/ax = hC a t  the  surface where h 

i s  a constant}, the l a w  of conservation of mass equation (from a mass 

balance across a d i f f e r e n t i a l  sec t ion)  t o  be solved i s  

with the i n i t i a l  and boundary conditions 

x >  0,  t = 0, c = c 

x = ”  , t > O , C = C  and 

S 

s’ 
ac 

x = o ,  t > O , - - - h C  . ax 

( B - l a )  

( E - l b )  

(€3-lc ) 

(B - Id ) 

If t h e  var iable  

(B-2) f ( x , t )  = c - c ( x , t )  
S 

i s  introduced and subs t i tu ted  i n t o  Eqs. ( B - I ) ,  the transformed equation 

is 

af a” f - -  a t  - &e - kf ’ 

with t h e  i n i t i a l  and boundary conditions 

x >  0, t = 0,  f = 0 

x = 03, t > 0, f = 0, and 

h (Cs - f) . x = O , t > O ,  - - =  
af 
ax 
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The flux at t h e  in t e r f ace  f o r  the above case cau be obtained readi ly  

using the  method developed i n  r e f .  32; v i z . ,  

(B-4) 

whe-ce 5’ i s  t h e  f l u x  a t  t he  in t e r f ace  f o r  t h e  same boundary conditions 

[ E q s .  (B-3b); (B-3c), and (B-3d)] without a f i r s t - o r d e r  process. The 

solution34 f o r  E q s .  (B-3 )  without t h e  f i r s t -o rde r  process ( k f )  i s :  

0 

where e r f c  u = 1 - e r f  11.. 

function (erf) and coniplementary e r ro r  funct ion ( e r f c )  are given i n  

r e f s .  10-1.2 and comprehensive mathematical handbooks such as r e f .  24. 

Differentia-Lion of Eq. 

cen t ra t ion  gradient at x = 0, and inser t ion  of t h i s  eoncentrati-on gradient 

a t  x = 0 in to  P ick’s  I.aw give 

Properties and tabulated values of  t h e  e r r o r  

(8-5) with respect t o  x, evaluation of t h i s  con- 

Sibs’Litution of E q .  ( B - 6 )  i n to  Eq. ( B - h )  aid in tegrs t ion  of ihe 

r e su l t i ng  expres s ion y ie lds  

e r fe  (h(&ei;)1/2) - k 1 (B-7) 
+ h2& e (h2ae-k)t 

e 

f o r  t h e  f1 .u  of f into -the me&i.um, which i s  t h e  flux of C ou t  of t h e  

medium 

Be def in i t ion ,  le’c 



where 4 i s  cal led a surface transfer constant (with the  units sec- I ) .  

over time In t eg ra t ion  of Eq. (a-7), with 4 subs t i t u t ed  f o r  h2h9 
e' 

t gives 

' 3 '  - ( $ )  t -  4, 
(.e - k)(k&)"2 

where Q i s  t h e  t o t a l  amount of species t h a t  has l e f t  the medium per unit  

of surface i n  time t. 

The in tens ive  proper t ies ,  q, Q, and Cs, of the semi- inf ini te  medium 

can be expressed i n  terms of extensive proper t ies  of the  f i n i t e  sample, 

as €0110~~: 

a q = -  
S 

(B-LO) 

-- >, a. 

s 
11 

Q = -  , and (3-11) 

(B-12) - A. cs - - V '  

where y i s  a constant representing the  r a t i o  of t he  concentration a t  

s a tu ra t ion  t o  the  i n i t i a l  t o t a l  concentration of the  species .  

de f in i t i on ,  l e t  

By 

D = y  2 
e e *  

If the r e l a t ionsh ip  

(B-14) 

i s  a good approximation and i f  an/t i s  taken t o  be at time 
n 



T = (t t,/2) , (B-15) 

( R - 1 6 )  

f o r  t h e  leach r a L e  representation o€ t h e  f l u x  at t h e  surface for a sparingly 

so1ubI.e mater ia l  at  time T.  The subs t i tu t ion  of  Eqs. (B-ll), (B-12), a.nd 

(R-13) i n t o  Eq. ( R - 9 )  y ie lds  

f o r  the  t o t a l  moun-t of the  ma-te-rial which has Left t h e  medium i n  time t. 

The sol..utions a re  v a l i d  f o r  both pos i t ive  and negative ( L  - k )  but not 

f o r  (4 - k) equal t o  zero. 

The iiiiti.al quantity,  yAo, i s  not generally known ( o r  needed) f o r  

waste products. However, i f  an expression [ e . g . ,  Eq. (B-9)] based on 

transport  CquxLions relating concentration of the mobile species w i - t l i  

pos i t ion  aild time w i . t h i n  the  product were Ilsed, i t  would. require the 

unmmdifizd effeeti.ve d-iffusivity 69 

diflfusivi-ty De. 

- not t h e  modified e f fec t ive  e 
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The treatment above applies t o  a s table  isotope. However, solutions 

accounting for radioactive decay of an Tscstope of mean or avel-age life, 

1/X, are readily obtained from solukions f o r  stable isobopes as shown in 

ref. 26 and i l l u s t r a t e d  i n  Appendix A. 
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