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ABSTRACT 

t A collision operator for the reaction H (hot) t Ho (cold). 

Ho (hot) t H (cold) is,derived from the Boltzmann integral 

, 

t 

and incorporated in the proton drift kinetic equation for a 

toroidally confined plasma in the banana regime. In addition to 

the proton diffusion, the relaxation of the radial electric field 

and the parallel flow velocity is calculated and. shown to 

occur in a few charge exchange times, much faster than 

via perpendicular ion viscosity. 
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I. INTRODUCTION .. 
Results from the ORMAK experiment indicate that the ion dynamics 

in plasmas of the TOKAMAK type may be described by the "banana-plateau" 

theory provided that the effect of charge exchange collisions of 

I 

1 

the type 

t 2 H (hot) t Ho(cold) - Ht(cold) t Ho(hot) 

a r e  included.2 A physical discussion of the plasma behavior due to this 

reaction is given elsewhere. In this papero we incorporate charge 3 

exchange effects into the neoclassical banana regime theory and pro- 

ceed to calculate certain modifications of the proton transport prop- 

erties. To keep the analysis simple we shall not include the effect of 

impurity ions here.4 The combination of impurity and charge exchange 

effects into a common theory is straightforward but cumbersome. 

In Section 11, a collision operator for  the process ( 1 .  1)  is derived 

e 

from the Boltzmann integral and the classical momentum - and energy 

loss  due to this operator is calculated. In Section 111, the neoclassical 

versions of the proton-proton and the charge exchange collision oper- 

ator a r e  specified, to f i rs t  order in ( r /R) ' l2  (where R/r  is the toroidal 

aspect ratio) and v c x / ~ p p  (the ratio of charge -exchange to proton-proton 

collision frequency.) In Section IV we solve the drift kinetic equation 

for  the protons. In Section V, we calculate the neoclassical momen- 

tum loss ,  the radial diffusion and the instantaneous flow velocity u,, of .. 
the protons parallel to the magnetic field. 

the relaxation of the radial electric field and of u,,, produced by the 

In Section VI we calculate 
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nonambipolar diffusion due to charge exchange. (We also allow an 

anomalous electron diffusion balanced by electron replenishment f rom 

ionization.) A summary and conclusions a r e  given in the las t  section. 

II. CHARGE EXCHANGE COLLISION OPERATOR, 

CLASSICAL FRICTION AND HEAT LOSS 

Starting from Boltzmann's integral we have 

x [f (v  ) f . ( v  ) - f  ( v ' ) f  (VI ) ] ,  p -p n -n p'-p n -n 

where p stands for protons and n for neutrals. The first t e rm 

describes the loss  of protons out of the velocity interval around v 

the second term describes the gain of protons into the velocity interval 
-Pa 

around v , from the reaction with all  protons and neutrals having 

v' 
-P 
the collision-dynamics for Coulomb scattering it is trivial for  the 

-P 
and 1; before the collision. While it is tedious to work out 

charge exchange process. We have simply 

v' = v v' = v 
-p -n' . -n -P' 

Furthermore, the energy- and directional-dependence of ucx can be 

neglected in the integrals for  proton temperatures less  than 10 keV and 

we get 
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Note that although Ccx conserves particle number it will not in general 

annihilate a Maxwellian proton distribution function. We will refer to 

the velocity integrals as the Rosenbluth potentials of f 

calculate them, f and f a r e  needed. The deviations of f from a 

Maxwellian have been calculated elsewhere 

and fn. To 
P 

P n n 
6 and a r e  neglected throughout 

this paper. For  the protons, anticipating a perturbation expansion of 

f in powers of v it will suffice to calculate P cx 

3 gfp) f f d vt 1v-v' I f (v1,vCx= 0). 
P - -  

The most general expression for f describing a plasma flow parallel 
7 

P 
to the magnetic field with velocityu,, < ( T  /m ) l l2  is given by the dis- 

placed Maxwellian 
P P  

f fp0(ltC) u v  

P 

Here, v2 = T /m and 
TP P P  

( 2 . 3 )  

( 2 . 4 )  



is a local Maxwellian for the protons. We assume the same shape, 

but a different density and temperature, for the neutrals. 

Defining the errorfunction 

one finds 

where 

2 The function (+-x+y2x is tabulated in Spitzer,8 the f i rs t  t e rm in (2. 6b) 

is small for small and large values of x and could be neglected without 
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much er ror .  

the neutrals we obtain 

Using (2.3) for the protons and taking a Maxwellian for 

0 (2.7a) 

where 

v o s u  n a  (2.7b) cx cx 0 p' 

For a Maxwellian proton distribution function, uII  = 0, whereupon 

(2.7) is similar to a Krook-operator, having an energy dependent col- 

lision frequency. It is straightforward to prove particle conservation, 

, and to calculate the parallel momentum and heat loss, defined as 

2 m v  

Qcx = 1 d3v Ccx( $1 8 

2 

respectively. One finds, expanding in powers of T /T < 1, n P  

Rllcx = - ~ p ~ p ~ c x ~ l l p (  0 
81/2) [I 42  + 0($] 3(.rr) 

4 Q = - T n  v0 - 
CX p cx 1/2 
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(For details, see Appenax A.) An exact calculation yieldsQcx cz: 

-v n (T  -T ), .as e ~ p e c t e d , ~  having'the same asymptotic expansion '.- CXP P n r .'.a 

as in  2.9).)  This charge exchange heat loss  is in addition to (and may 

J .J 

0 

I 

exceed) the proton heat loss through ion heat conchctivity. In'a Tokamak, 
- c  

the proton temperature is balanced against these losses by Joule 
, $  

heating of the electrons an 

neutral temperature is maintained through the constant infLu of c 

ubsequent electron-ion c 

exchange neutrals.' The charge exchange friction will be worked out 

in the banana regime, subsequently. 
9 .  

_ .  
' - I  - 

., 
- V .  - 

1 E \ * . 1  - JTr. <;NEOCLASSICAL COLLISION OPERATORS: . 

I J, i , 4 , " - >  .. " 2  

We adopt the banana regime ordering fo r  the protons and assume 

the weak charge exchange limit, so that 
. . ' , , g ~ - c  f 

I /  i (3.1) A 
w >> v b pp >' 

where w^ is the average bounce frequency. (For typical paramet,ers, . 
b a r. .i. 

such a s  those occurring in  the ORMAK experiment, Tb s, 

T - s, and T l om2  s.) , 
i i  * L  

+ I .  L ,  y* , t ." '*" PP 1 1  . cx 
In steady state on the banana diffusion'time scale, the proton 

distribution func>tion f = f + f (we now drop tbe index p for the 0 1  
3- 

- r :  protons, but keep the, iqdex n for, the neutqals) ,solves7 ~ L: 
i 

t 3  / .  1 L ..s < 
-i, 
1 

* L  r 
J 

sion of f is in powers of the gyroradius and in addi- 
r .  ; 

tion we wil l  expand f in the collision.frequencies, according to ( 3 .  1). 1 
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10,7 For the proton-proton collision operator we take Kovrizhnyk's 

model operator 

c (f )  = V p p P ( f l )  t v - PP PP v2 0 
TP 

of Ref. 7, 
r , h =  1 t -  COS 0, R 

a a hl 1 = 2hq 5 Xq a, q = - = V 

The velocity p in (3.3) is determined a posteriori from momentum 

conservation, i. e., 

1 d3v mv C ( f )  = 0 ,  
11 PP 

(3.3a) 

or,  using (3.3a) and the identity 

1 d3v A(v) p ( f )  = - d vA(v)  f ;  f,  A(v) . . . arbi t rary s' 

Ccx(f) is given in ( 2 .  1 )  leading to an integral equation f o r  f. 

because of the ordering (3 .1)  one can expand f in powers of v cx and 

use f ( v C X =  0 )  (see Eq. ( 2 . 2 ) )  in the Rosenbluth potential, as mentioned. 

Thus 

However, 

c 
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.- 
7 For vcx = 0 we write the standard solution of (3. 2) as 

f = fo t F t Hgz 

0 

where fo is Maxwellian, 

(30 4) 

(3.5a) 

(3.5b) 

. .  

with ne = )eIBe/m and Be the poloidal magnetic field. H is the step- 

function (equal to 1 for  circulating particles) and 

(3.5c) 

with 

RHH 
s =--+'2* 1 0  f '  

o "e fo VTp 
(3 .5d)  

Here, fb = i3fo/8r, 

is the flux surface average. On gz, the subscript stands for circulating par -  

ticles, the superscript for the order in the vcx-expansion. 

u = vII/lv, ,  I and (. . .) = JtH(d0/2n) (1 +$ cose) . . . 

uI ,  RHH is the 
parallel flow velocity of the proton-electron p r ~ b l e r n , ~  omitting 0[( r/R) 1/2] 

te rms  : 
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(3.6) 
,- 

-. 

+ I  = a+/ar is the radial plasma potential. 

At this point we mention that the "standard" solution ( 3 .  5) is 

incomplete: The neoclassical distortion f owing to friction between 

circulating and trapped protons has been omitted.ll This friction 

scales as v compared with the charge exchange friction 

scaling as vcx. 

0 * 
P 

PP' 
Since the ordering used in this paper is 

. '  
* 

one should retain the distortion f for a complete theory. Whereas 
P 

the corresponding fD for the electron distribution function has been 
* 
I * 

12' l 3  this has not been the case for f worked out P' 
Neglecting temperature gradients, Eqs. (3.5) combine to give 

simply 

1 f = fo t F . .  . for trapped particles 
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Since (1 d3v v I IF )  

to lowest order  in (r/R)’/z from (3.7) will automatically result  in 

(r/€t)3/2, the calculation of uII E ( 1 d3v vllf)/np 

( 3 . 6 ) .  We have calculated the Rosenbluth potential of distributions 

such as ( 3 . 7 )  in Section 11. 

Keeping the radial temperature gradient one finds the Rosenbluth 
0 

potential 

(3.8a) 

(for details, see  Appendix B.) Here, . 

where 

(3.8b) 

( 3 . 9 )  
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14 and y1 has  been defined in (2.6). 

n = 1.46 (r/R)’l2. Note that ullT depends on v and (r/R)’I2. The 

appearance of nT indicates a trapped particle effect. 

The fraction of trapped particles 
A 

T 
f i  

Using ( 3 . 8 )  and (2 .5)  we find from Eq. (3.4) fo r  the charge ex- 

change operator to first order  in vo and (r /R)  1 /2  c x  
- 

2 
TP 

V 

- 
(3.10) 

Pl 
where f = f t f Since (u;HHtu,,T) and f are of first order  

in the gyroradius we write (3 .  10)  as 
P PO Pl’ 

where 

c -l 

anu 

(C f )  = v  c x p  1 cx 

(3 .  I l a )  

( 3 .  l l b )  

Here we have defined the velocity dependent collision frequency 

c 
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(3. l l d )  

Note that (CcXfp), is even in Q and (Ccxfp)l is odd. (Ccxfp)o con- 

tains only known functions, ( Ccxfp)l resembles a Krook-operator. 

This completes the specification of the collision operators. 

IV. SOLUTION O F  THE PROTON KINETIC EQUATION 

We return to Eq. (3.2) with C given by (3.3) and Ccx by (3. l o ) ,  
PP 

(3.11). In the banana regime ordering (3.1) the solution is 7 

fl = ' gc + gT, 
a with F given by (3.5b) and r e  gc, 0. (C, T . . . for circulating, 

trapped protons.) 

equations' determining g 

Expanding in v / q ,  we find the usual constraint 

c, T' 

and 

where e 
In the derivation of (4. 2)  we used the even parity in u of (C 

vs  the odd parity of (Ccxfp)o/vI,. 

a r e  the turning points of the banana orbits, satisfying vII = 0. 1 , 2  

f ) /v,, cx p 1 

Note also, that (Ccxfp)l is first 
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order in m/e while (Ccxfdo is zero order in m/e. 

we assume v 

the circulating particles, the response gco to the driving term (Ccxfp)o 

is easy to calculate from (4. 1). 

However, since 

< 1 we order (Ccxfp)o as shown in (4. 1), (4. 2). For CX/yPP 

However, since ( C c x f p ) o / v P ~ , l  is odd in 

will be even in u and can therefore not contribute to uII o r  I?. =, gco 
(The contribution of gco to r, i. e., ( I d3vvDrgco) has the right sym- 

metry in  IJ but the wrong symmetry in the poloidal angle 0, since 

ag /a0 E 0.) Consequently, we will ignore gco henceforth. Similarly, 

for the trapped particles, the even parity of (C  f ) in (4. 2)  produces 

To a nonzero response g which is even in u and 0, so that again g 

cannot contribute to uI, and r and we neglect gTo also. 

co 

cx p 0 

To 

It remains to solve for gcl, the response to (Ccxfp),, from the equation 

v v  -(;) gcl =({F +fop,2 t (ccxfp) PP ” ’ 

P 

TP 

(4.3) 

(We drop cl’  with the last term given by ( 3 .  l l c ) ,  where f 

the subscript on gC1, from now on.) 

= F t g 
’ P l  

q E Iv,, I/.* Defining the smallness parameter v = v cx/Vpp’ 
* -  

A 
and using the identity (v/vll ) = -2u (aQ)/ak, 

O P  ’ (qh)  = Q, g g/f 

we get 

A A A 
ag Q‘ ag A Q‘ A so t v s l  

- x -  a t - A -  + V u g = - ( ? )  Q ’ ax ax Q a x  (4.4) 

where . 
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(4.5a) 

n 

2 8 

V 
TP 

and, for brevity, we wrote 

(4.5b) 

I .  

. 

A 
!$Ac) = 0. (4 .6)  

Equation (4.4) is to be solved in the subspace of circulating particles. 
A A .  

0.7 A s  

The boundary conditions a r e  (i) A ax 
the transition layer. 

can be concluded from (4. Z), gT is of O[(vcx /vpp) ( r / R ) l l 2 ]  (the 

factor ( r /R) ' I2  deriving from the magnitude of the support region, 

i. e., the trapped particle subspace.) Short of solving the kinetic equa- 

tion in the transition layer we neglect gT(Ac) and use the boundary 

condition 

= 0 and (ii) g(X=Xc) = gT(Xc) at 
. sal,., 

In the charge exchange f ree  case gT 

A 

This l imits our theory to neglecting O[vcx(r/R) 'I2] everywhere. 
A 

We solve (4.4) by iteration. For v = 0, Eq. (4.4) rever ts  to the 

standard proton-electron problem with solution 
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We note that S as given in (4. 5) contains the selfconsistent value 

of the momentum restoring-velocity p contained in the proton-proton 
0 

operator C In the absence of charge'exchange, p = uII RHH results 
PP' 

f rom condition (3.3b). 

a power ser ies  in Y a s  will become apparent. 

determined from 1 d v v C 

However, for vcx > 0, one cannot expand p in 
A 

(Recalling that p is 
3 (f ) = 0, all processesconcerning the 

" PP P 
proton momentum balance matter equally for p, magnetic particle 

trapping being only one. Thus, a proper expansion would be in powers of 

v/(r/R) 1/2 rather than in powers of v.) Thus p is treated a s  a f ree  
A A 

parameter, to be determined later. 
A A 

Inserting 9 from Eq. (4.7) into the te rm v(Q'/Q) g in (4.4) pro- 

duces a solution 

and one finds 

A 
For the velocity moments needed lat e r ,  a knowledge of X (  ag/aX) is 

sufficient. hi fact, one needs only 

(4.9a) 



17 

where the elliptic integrals of Eq. (4.8) a r e  worked out in Appendix C. For 

value of completeness we l is t  also the well known result  for g 
A0 

$. dh X - a2 = -3 2av SoG -1.46 (r/R) 
ax. 

V. CALCULATION OF u,,, and Rl lcx  

We now calculate the quantities 

using 

d v = z ? ; -  2rr E dE dA 3 

0- mz Iv,, I 

and 

(4.9b) 

where we employed the boundary condition (4.6). The last integral 

has been worked out in  (4.9). : 
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After a lengthy calculation one finds from Eq. (5. 1) 

P =  

0 
cx V A 

K4 n t- T v  
PO 
0 
cx V A 

n T t  7 K3 
PO 

4 2 5 dx x exp(-x ) - - 
PO 

Srn P P  P 2 v  
- 

K3 - 
3(11)'/2 O 

and 

(5. 2) 

0 F o r  vcx = 0,  one recovers the standard result, but notice that one must 

keep to O[(r/It) 1'2] although p is of O(1) in the aspect ratio expansion. 

Fo r  vZx > 0, (5. 2 )  shows an expansion of p is possible only if  an 

ordering in t e rms  of A f vo has been assumed. It is r ea -  

sonable to assume that A < 1 over most of the radial extent of the 

plasma, in the banana regime, and in this limit (5. 2 )  takes on the 

A 

C X ~ ~ P O  "T 

form 

RHH 
It p = u  

1 

(5.3) 
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Finally, uII follows from (5.1) as 
,4 

r' 

1. 

. 

2 
V 

- n  A T a g  T p ' ( A  1 2 2  S Z A )  

7 where as usual 

For brevity, we also define 

. (5.4a) 

2 - v  

Furthermore,  

' 8  K2 = 
3(n) 1'2 

(5.4c) 

2 lrCX 

vPP 

4 dx x exp(-x ) - 

3 

dx x exp(-xn) - V - 3 
ap Y,(XP) 

PP an Yo(Xn) 

4 2 VCX 

P P  

are evaluated in Appendix D, as a function 1, 2 , 3 , 4  
The integrals K 

of Tn/T Again, for .vo / v  << nT, P' cx  PO 
A 

T' 
1/2 RHH - 1.7 (r/lt) 

IeIBe 
u I I  = 

0 
RHH VCx 

- V 
PO 

(K1 -I(2-K3+K4) t O(A). - u I I  (5.5a) 
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Compared to Eq. (148) of Ref. 7, the second t e rm in Eq. (5. 5a) has 

been omitted there. The third term shows the modification of the 

parallel flow velocity due to charge exchange. As shown in Appen- 

* 

'0- 

dix D, 

r- m I n K1 - K2 - K3 t K4 = 3.01 
( * ) ] a  

(5. 5b) 

We can now write down the proton momentum loss  R l l c x  due to charge 

R I I  cx 
1/2 exchange collisions, correct  to first order  in v 

consists of the classical piece derived in Section I1 plus two neoclassical 

pieces proportional to ( r /R) ' l2  apparent in  (3.10). Using f = F t Hgo 

and Eq. (5. 3)  for p, it is straightforward to calculate 

and (r /R)  . cx  

Pl 

. 

Rllcx = (S d3v mpVI,Ccx(fp) 

= -  8 v 0 m n {u;HH(l tit) - 1.46 (r /R)  1 /2  Tb 
let Be  cx P P 

3(*)1'2 

(5. 6 

(Here, a s  in Section I1 we have evaluated the velocity integrals involving 

v only in the limit (Tn/T ) < 1, see Appendix A.) 

The f i r s t  t e rm in (5. 6)  corresponds closely to the classical  result  
cx  P 

in  (2.8) .  The second t e rm in (5. 6)will give r i s e  to an additional proton- 

banana friction due to charge exchange collisions. As can be seen from the 
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.. 

7 neoclassical momentum balance equation 

both t e rms  give r i s e  to a charge exchange driven proton diffusion, rex. 
Comparing the diffusion due to the first te rm in (5.6) with the proton 

diffusion in the absence of charge exchange and impurity ion effects 

(cf. Ref. 7 )  we find the scaling 

a number which may exceed unity for the usual ordering ( v ~ x / v  ) < 1. 
PP 

VI. RELAXATION OF PROTON- PARALLEL FLOW VELOCITY 

AND OF RADIAL ELECTRIC FIELD 

As  Equation (5.5a) has shown, the radial gradients give r i s e  t o a 

toroidal bulk flow of the plasma. 

the relaxation term (8f/8t) in the kinetic equation, thereby implicitly 

assuming that such a relaxation occurs on a time scale slower than 

the e€fective collision time in the banana regime. 

Equation (5. 5) has been derived omitting 

As can be seen from 

the neoclassical moment equations (cf. Ref. 7), the gradients decay on 

the diffusion time scale 
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- _  
(rn . . . 

e i" '  

plasma radius, p . . . electron gyroradius in  the poloidal field, ee 
90" scattering time). However, due to the reflux of charge T 

exchange neutrals and ionization on one hand and Ohmic heating on the 

other, the density and temperature gradients are maintained in a quasi- 

steady state and the decay of u,, will  be determined by other mechan- 

isms. 

flow velocity due to perpendicular ion viscosity for an electron-proton 

Rosenbluth et a l l5  have treated the relaxation of the parallel 

2 
P 

plasma and found a very slow decay rate  scaling a s  x/r 
viscosity x 

v . .  11 (me/mi) /Tei 

where the 
2 2  2 0. 1 p .  v . . / L  with p.  the ion gyroradius in the total field, 

'/' and L the rotational transform. One expects 
1 11 1 

this decay to be somewhat enhanced in the presence of impurity ions, 

and/or nonaxisymmetric magnetic field variations' ' but here  we wish t o  

point out a much more rapid mechanism for this decay process, namely 

nonambipolar diffusion such as charge exchange driven proton diffusion. 

We s t a r t  f rom Poisson's equation for the radial electric field E r' 

div - aEr = -4alel .div (ri-r ), 
a t  e 

or, with div = a r and a natural boundary condition at  r = 0, r a r  

.. 
showing that only nonambipolar diffusion can affect Er. 

Ref. 1 5 ,  for each species the radial diffusion r in i ts  most general 

A s  shown in 
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form is given by 

i. 

4 

m 

._ 

mr " t O($) ( 6 . 2 )  r = -- ( S d 3 v v , , h  
eBe 

where 

2 
and E = -  

V a+ 
8 r  2 -  

The f i rs t  t e rm describes collisional diffusion which will be ambipolar 

to the extent that momentum is conserved in the collision processes 

under consideration. The second term is driven by mn(8ullT8t), 

clearly much larger  for the ions than for  the electrons. 

is driven by the decay of the radial plasma potential. 

The las t  t e rm 

Since, however, 

f = fo t f l ,  

where f is even in u and f l  - v f 
0 II 0 

vanishes for v = 0 and v = 00, 

this term cannot contribute to r. We obtain from (6. 2) 

3 where in principle the sum over the friction t e rms  R 

includes all  collision processes. 

+ Rie collision te rms  such a s  R ei 
nonambipolar momentum loss  mechanisms. In this paper we 

single out lzllCx for the protons, 

polar losses for the protons and lump all possible electron 

processes ( e .  g. , pseudo-classical diffusion) into RZ, where 

( I d vtrl1hCf)m 

However, since ordinary Coulomb 

cancel, ( 6 . 3 )  contains only the 

neglect any further nonambi- 
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the superscript stands for "anomalous." We wil l  further assume that 

RZ does not depend explicitly on the radial electric field, so that we 

can t reat  R a 
e 

We combine Eqs. (6. 1) and (6. 3) to get 

as an external driving term. 

I 2 w 

+- - 
P P  

(6.4) 

where the dot stands for (a/at) .  
surface separately. 

determined by a radial diffusion equation. Fo r  Tokamak plasmas, 

This equation is valid on each flux 

In contrast, for the problem of Ref. 15,  uII is 

2 2  
(upi/Qei) >> 1, 

fusion w i l l  produce a large relaxation rate for E 

reveals that the relaxation process for Er and uI,  wil l  continue until 

the source of nonambipolar diffusion, namely ( R l l c x t R ~  ), vanishes. 

Specifically, we write Eq. (5.5a) for uII a s  

showing that a small amount of nonambipolar dif- 

Generally, (6.4) r' 

h -  
( l - v o )  - 1. 17 nTAz, RNH 

= 

where Az has been defined in ( 5 . 4 ~ )  and 

0 
V 

V 
P O  

(6.5) 

Y 

From (5.6), 
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-, 

. 

h -  
R H H t m n v n ~  Rllcx = -m n v u 

P P 2 T 2  P P l I I  

where 

8 
cx 

- 8 v =  cx 
3 ( l P  

1 
3 ( l p  

i 

We recall that 

RHH where we )have defined u as the gradient driven par t  of uII , for 
g 

brevity. 

Assuming the density and temperature gradients and the poloidal 

field B a r e  constant on the charge exchange time scale vi:, e 
8 

and (6.4) bec.omes 

4 

Er Er A -  
- ( l - v 0 )  t v - = -v  u ' +  v n A t- l g  2 T 2  m n  Be 'e P P .  

showing a fast relaxation of the radial electric field and a time 

asymptotic solution 
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E v 2  A - Ra - =-u t - n ~  +e 
P P I  g v1 T 2  m n v  

valid after a few charge exchange times. Equation (6.6) exhibits a complete 

RHH= (Er/Be) t u  to zero order  in the ( r /R) ' l2  expansion. To f i r s t  decayof uI, 

order ,  however, there remains an effect E x2, and the anomalous electron mo- 

mentum loss. Inserting(6.6) in (5.5), we obtain for t >> (v(&)-' 

g 

uI,) = 1.46 ( r / R )  -1. 17 t ( l - v 0 )  
00 

8 0 

1/2 3(.rr) 

I-. ~ 

'-- 

I 

(6.7) 

. 
where v has been given in (6. 5). Thus, in the absence of a temperature 

gradient, Eq. ( 6 . 7 )  predicts a value for uI,  such that the proton momen- 

tum loss  due to charge exchange is balanced by the anomalous electron 

momentum 10s s. 

toroidal flow driven by (r /R) ' j2  (8T' /8r), a "banana" t e rm related 
P 

to thermal friction. Experimental evidence of a plasma flow consistent with this 

0 

Note that nonambipolar diffusion cannot relax the 

t e rm has recently been observed.'' The analogous O[(r/R) 1/21 - term 

has not been kept in the analysis of Ref. 15. Moreover, comparing 

the present result ( 6 . 7 )  with the t i m e  asymptotic value fo r  uII  due to 

relaxation by ion viscosity, one concludes that the relaxation ra te  due 

to charge exchange is fast enough to be observable in present 
Y 

experiments while the rclaxation clue to ion viscosity is not. 
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VII. SUMMARY AND CONCLUSIONS 

We have added to the standard neoclassical transport  theory in the 

banana regime the effect of proton charge exchange collisions with a 

Maxwellian population of neutral hydrogen produced by multiple charge 

exchange, in the limit of small charge exchange frequency to proton- 

proton collision frequency. A collision operator Ccx is derived from 

the Boltzmann integral, including 0[( r/Ft)1/2]-terms, i. e. , magnetic 

particle trapping. Charge exchange collisions produce significant momen- 

tum and heat l o s s  for the protons. 

regime results, the corresponding particle diffusion scales  a s  

Compared to the standard banana 

0 
2 V (R/r)'" (mi/me) l/i 

PP 
V 

and the heat loss a s  

where T is the proton/neutral temperature, rT [(l/Tp) (dTp/dr)]-l 

and p is the poloidal proton gyroradius. C has an even and an odd 

piece in (r (= vII/ lvll 1 ) .  
the trapped and the circulating proton distribution f which, however, 

do not contribute to odd moments of f such a s  radial diffusion r o r  

parallel flow velocity uII, because these moments vanish on the flux 

surface average. 

vanishing flux averaged moments, thus contributing to r and ull .  

P, n 

ei cx 
The even piece produces even distortions to both 

. P' 

P 

The odd piece of Ccx produces distortions with non- 
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Keeping terms of O[(r/R)1'2] in the Rosenbluth potential fo r  C,,, r 
and uII take on "banana termst1 of O[(r/R) "'1 besides their more  

easily predicted O( 1) te rms  following from the simple estimate Rex- 
d3v mpvllCcx(fp) - -m n v0 u p p cx 1 1 '  

The nonambipolar momentum loss  Rcx relaxes the radial  electric 

field Er of the toroidal plasma much more rapidly than the perpendicu- 
lar ion viscosity previously invoked. On a time scale of O[(vcx) 0 -1 3, Er 

and uI, adjust themselves so as to annihilate the sum of R l l cx  and other 

nonmomentum conserving friction terms such as the anomalous electron 

friction RE. Keeping to O[(r/R)"'], the time asymptotic value of uII 

does not vanish but remains at a finite value a ( r / R ) 1 / 2 J  given by the 

first term of (6 .7 ) .  Concerning RZ and the corresponding anomalous 

electron diffusion re. an upper limit for I?: may be determined by the a 

steady state requirement that the anomalous loss  be balanced by ioni- 

zat ion. 
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Appendix A 

To find the functions yo and y1 (Eq. (2. 5 ) ,  (2.6)) expand Iz-X'I 
in spherical harmonics.l8 Using polar coordinates (v, 4 , 0)  one 

obtains , 

where 

Exploiting the experimental fact Tn/T P << 1 we expand yo, y1 in  the 

ranges x-c 0, x-, 00, finding 

(l -+...) 2 ( $ t  ...), x y p = - -  
3 6  

x - 0  xyo(x)=- 1 +- 
1sR 

xyl(x) = -.- 1 (I - 2 1 -k . x-,  a xyo(x) = x(l  + -  1 + ..a 

2x 2x - )  2. 2x 

These limits can be used for the 

expressions for  R l l c x  and Qcx. Specifically, we  use the small  argument 

limit for x y (x  ) in # [x y (x  )], and the large argument limit for 

energy averages occurring in the 

P I  P n p l  P 
xny0(xn) in / [x y (x,)], where P n o  

n 
* L  

-X 
s = p , n  l; dxs xs 4 e '; 

Using integral tables19 the integrals can be calculated for arbi t rary values 

of T,/T P' 
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Appendix B 

The calculation of Y(F) proceeds along the l ines  of Appendix A. 

The integral underlying y2(x) defined in ( 3 . 9 )  follows from differentiation 

with respect to the temperature of the integral underlying y,(x). 

The result  is 

where A is defined in (5.4b). 
1 , 2  

7 To calculate y (Hgo)  we transform to the pitch angle variable 
2 

A = pB /E = h Sin 8. 
0 

The stepfunction H restr ic ts  A to 0 4 A 4 1 - r/R. The A-integration 

leads to elliptic integrals listed in Appendix C. The energy integration 

requires 

and 

-. 

i- 

where x = v / a .  The total result is given in ( 3 .  8a). 



31 

Appendix C 

As shown in'Ref. 7, Eq. (8O), Define I1 3 1, (qh). 'c dh 

- 1.95 f i t  O(E), dh 

where E = r/R. The first integral gives [ 2  t O(E)], tvhere upon 

h 
where hc = 1 - E .  With - kc dAA Define I2 2 lo - = - lOc  dA 1' dh' 

( qh) 'c (qh) 

z Here, M(h) = 2 A ~ / [ l  - A t  hE - E 1. 
The elliptic integral has been calculated in Ref. 7 and we obtain 

4 = -  [I - 1 . 4 6 6 1 .  I2 3 
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Appendix D 

Using (3 .  1 ld) ,  and the techniques of Appendix A, 
-J 

- ----to($ Tn Tp 3 G  5 

K j  is of 0 (%), which’we neglect. 

V p p ( X )  
4 where v (x) E - = e, a function we gave subsequent to 3 P O  X PP V 

Eq. ( 3 .  3a) and which is tabulated in Ref. 8. From Appendix A, 
T 

yo(xn) = 1 + ( d d x ; .  One finds numerically 
P 

5 -x2 A dx x e /vpP(x) = 1 2 / ~ r ’ / ~  = 6.77 

.rr t O(I‘:/Ti). 
and K1 = c1 f -  T ‘2 

P .  
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