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in a number of industrial and chemical processes.

tion, or eddy-current, process,

DESIGN OF INDUCTION PROBES FOR MEASUREMENT
OF LEVEL OF LIQUID METALS

C. V. Dodd C. C. Chengl

C. W. Nestor, Jr.2 R. B. Hofstra2

ABSTRACT

This report gives general analyses of eddy-current probes
for measuring the level of liquid metals. The case of a coil
encircling a level chamber and the case of a coil inside a
level chamber have been solved theoretically, and computer
programs are included in the Appendix for the latter case.

As a specific example, we have designed a probe enclosed in
molybdenum (a good conductor) to measure the level of molten
bismuth (a poor conductor). By using a computer analysis, the
sensitivity of the probe to level changes is maximized while
the sensitivity to undesirable variables, such as temperature
changes, is minimized. Experimental measurements demonstrated
that the level could be measured to within + 0.080 in. over a
level range from O to 13 in. within a temperature range of
600° to 650°C. The high degree of success achieved in the
probe design and measurements for this unfavorable cowbination
of conductors indicate that highly accurate eddy-current meas-
urements can be made with almost any combination of conductors.

1. INTRODUCTION

The ability to measure the level of 2 molten metal is very important

general problem of measuring the level of a conductive fluid by an induc-

The eddy-current probe consists of a

long bifilar coil, which can either encircle a chamber containing the
3

liquid wetal or be inside a tube mounted in the chamber containing

liquid level. We obtained integral solutions which were valid for the

chamber either empty or full, and, because of the probe length, we

assumed that the response of the probe to levels between these two

extremes was approximately linear. Later experimental measurements

showed this to be an excellent assumption.

lconsultant from the University of Tennessee.

2Mathematics Division.

We have analyzed the

the

A relaxation solution could



be used to calculate the probe responses to various levels of liquid
metal, but was judged to be too expensive to run for the additional
information gained. While the technique is very general and can be
applied to almost any conductive fluid, we analyzed a system that con-
sisted of a coil encased in molybdenum {a good conductor ) used to measure
the level of molten bismuth (a poor conductor ). The high degree of
success achieved in the probe design and measurements for this unfavorable
combination of conductors leads us to conclude that highly accurate eddy-
current techniques can be designed and applied for level measurements with

almost any combination of conductors.

2. THEORETICAL ANALYSTS

The general configuration to be considered is an axially symmetric
driving coil located concentrically with an arbitrary number of cylin-
drical conductors with arbitrary thickness, permeability, permittivity,
and conductivity. For simplicity, we assume that all media are linear,
isotropic, and homogeneous, and the driving current is time-harmonic with
{requency, w. Then, the current density E/and vector potential gawill

have only azimuthal components in cylindrical coordinates:

.

3(x) = 3(r7) &, (1)
and

A(x) = A(r,z) & )

where éG is an azimuthal unit vector. The vector potential at (r,z),
produced by a driving coil with a current density J(r',z") at (r',z'),

can be expressed as

Ar,z) = ‘Z]_ G(r,z;r',2") J(r',2z") dr'dz’ (3)
Driving
Coil

where G(r,z;r',z') is the Green's function for a unit ©-function current
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at (r',z'). 1In a linear, isotropic, homogeneous medium, the Green's

. A
function satisfies

N ) 2 .

&) [ B -2 —— — ,__Q___, — oy ) 1 t

R - 5t Tp T june v owiee) G6(r,zrt,zt)
¥ r 3z

=~y &(r-r') a(z-2") . (%)

where p, ¢, and 0 are the permeability, permittivity, and conductivity
of the medium. The solution of Eq. (4) for each medium must also satisfy

the proper boundary conditions.

We shall first comsider a &-function coil coaxial with k+k'-2
cylindrical conductors; k-1 of them inside the coil and k'-1 of them
outside the coil, as shown in Fig. 1. The general solution of Eq. (&)

in any region, n, may be obtained by separation of variables. Setting

G(n>(r,z;r‘,z‘> = R(r) z(z)

and dividing Eq. (4) by R(x) z(z) gives:

1 OR(r) 1 R(r) . 1 ¥z(z) 1
R(r) 2 " rR(x) or  z(z) e 2
2
twt e T jup o= 0 . (5)

The subscripts n on the permeability, permittivity, and conductivity

denote the values of these parameters in the region n. We shall chooge

)
the separation “constant'”, &, to be nezative and define
f ) 2

2 jal . 2
Q= O+ Jup 0 = w €
N n n n

3C. V. Dodd and W. E. Deeds, J. Appl. Phys. 39, 2829-2838 (1968).
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Fig. 1. Multiple Concentric Conductors in the Presence of a Delta

Function Coil.

Then we can write for the z dependence
p

J

A

Solving this differential equation gives:

2(z) = A sin u(z-zo) b B cos a(z-z ) .

We can drop the sine term due to the symmetry about z =

(7)
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The radial term has the following dependence:

2,2
rj Rlr)  mBl) (P2 Ly r(e) < 0 (@)

This differential equation has the following solution:

R(t) = CIl(wnr) + DK, (anr) s (9)
where Il(ﬂnr) and Kl(anr) are modified Bessel functions of first order.
The complete solution to the Green's function in each region is an

integral over the separation constant «:

G(n)(r,z;r’,z') :‘/chn(a) Il(unr)

O
+ Dn(a) Kl(an)] cos a(z-z') du (10)

forn = 1,2, . . . k; 1',2', . . . k'. The unknown constants are func-
tions of the separation constant & and different for each region. We
shall use the boundary conditions to solve for these unknown constants.
In order to obtain a very general solution for an arbitrary number of
cylindrical conductors inside and outside the coil, we shall use a

matrix technique.

In the innermost region the coefficient of Kl(dlr), Dl(@), must be
zero, and in the outermost region Cl’ must be zero in ovder for the
solution to remain finite. (The outer radius of the outermost region
is infinite.) We shall use the boundary conditions in order to deter-
mine the other constants. We have the following boundary conditions
for the Green's function (which are the same as those for the vector

potential ) between regions n and n+l shown in Fig. 2:

G(n)(rn,z;r',z') = G(n+1)(rn,z;r’,z') (11)

and



) we obtain:

. (10



e a [1,(xr ) a K, (xr )
n 1Y an d n 1
j’cn(a) F[Oér Yda T Il(OCr )] b D (Q)M[O/r
o n o It
_l.d “ Y > 1
A aa;;;-Kl(Ohrn) cos @(z-z' )da
o o T (e .t )
N ntl 1Y n4l n d
er Cn+l(a> (0 [@ T YAy T Il(an+lﬂn%
o el n+ln n+1"n
o K (x ¢ )
n+l 1Y n+l n d i
i Dn+1(@) H [@ ¥ TdaTy Kl<an11n%} cos Afz-z' )do
ntl ntl n nt+ln
+ 8(z-2") 5(rn—r‘) . (13)

We shall make use of the relations

N[

K (2)+ Sk () v K (2) and Lo () ¢ I () = 1 () (14)

and define

Ho 1/2

Mol M 2 _ 2 ;
2 ) o = ™ (™ jwp oW pngn) . (15)

Making these simplifications and multiplying both sides of Eq. (15)

by b, cos ot {z-2') and integrating from minus to plus infinity gives:
oo o

f f{cn@)anxo(anrn) -0, (@) K (2,5, )} eos az-at) cos o (a-z! Mud(z-z )

«w O

oo ~ co
i[~J[{?n+l(a)an+110(an+1rn) -Dn+1(a)ﬁn+1Ko(dn%1rn}8cos A(z~z')oos Hz-z" Had(z

+ HOJ(m s(z-z') 6(rn—r') cos G (z-z') d(z~-z") . (16)

-0
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We can reverse the order of integration of the integrals containing

Trssel functions and use the Fourier integral theorem,

%:[-f(w)g:/- cos t(z-z') cos &' (z-z') d(z"z')}dcxs flar) .
O -0

Fquation (1¢) then becomes:

3] 04 - i (X = 3 (9% —
CnlnLO(/nrn> Dnano(lnrn) Cn+1fn+llo(xn+lr ) b

n n+lﬁn+lKo<& 41" )

i

(L
ty ]
= -t (17)

A similar operation on Eq. (11) gives:

. . e . . o 5:2‘
CnIl(jnrn) DnKl(Anfn) Cn+111(un+1rn) ! DnilKl(un+lrn) - (18)

FEquations (17) and (1&) represent the relations between the constants
for any two regions inside the coil. We shall now solve for all the
unknown constants in the following manner. Since the innermost region

has only one unknown constant, C we shall solve for the unknown con-

1}
stants in the second region in terms of it. Next we shall solve for the
unknown constants in the third region in terms of Cl’ then the fourth,
until we reach the region containing the coil, k. We shall do the same
thing for the regions outside the coil, starting with the outermost and
working inwards, solving for each region in terms of Df, until we reach
the region k'. We shall then use Eq. (17) and Eq. (12) for the coil
regions k and k'. This will give two equations for the two unknowns,

C, and D

1 ]f’
write the expression for the unknown constants in any region.

and we can solve for them. This will then allow us to

Solving Egs. (17) and (18) for the unknown constants in any region,
n+l, in terms of the unknown constants in region n, where the coil is

not between Lhe regions, gives:



B
I Sy . o
Cn+1 - I\okmén+1 n) I (d r ) * Bn 1 I <a T ) K1<an+lrn)) n+l ncn
T
ﬁ
+ 1K (c - o * 5
) K5 ~ 22 6, ) 1y o, s 09)
n+1
and
O
— —— B “ ; ., b
Dn+1 B (Io(ahklrn) Il( ) 'n41 Io(unln) Il(an+1fn/) Qn+lrncn

B
n "
! (Io(anilrn> .( 1 n) * 3 1 Ko( n n) I ( n“lrn)) OCnvlrlrran (QJ)

!
he it

The denominators have been simplified by use of the Wronskian rela-

tion:

3 N } oo+l
Bn+1(10(‘ +1 ) K <u Ln) } Il(an+lrn) Ko(an+1ln), T o 10 )
-

We can write Egs. (19) and (20) in matrix notation:

a =T a
~n-+1 ~n+l,n ~n

Tll(u+1,n) Tle(n+1,n) Cn Tll(nﬁl,n)c Tlg(n+l,n)Dn

C
n+1 n

_ Tgl(n+l,n) ng(n+l,n) D T?l(n+1,n)cn + ng(n+l,n)Dn

(a1)

The elements of the 2 x 2 transformation matrix, T are simply the

n+l,n’
coefficients of G and D in Eqs. (19) and (20) and are
8

n . ,
) ! (O r ) n+1 IO(Qﬁln) Kl(an+lru)) (nll n (L?)

T 1(n+l,n) = KO(Q

W

n%l n
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P
vy . N S
Ko(un+lln> Kl(tnrn> B Ko(dnrn) Kl(dn+1rn>

“n+l

Tlg(n41,n) =

dn%lrn ’
(23)

T2l(n+1’n) - (Io<u rn) Il(ad+1rn)] un+lrn ?

) n )
afn) T ) T L :

n o'’
n+1l

(1)

5
v o 4o o :
ng(n+1,n) = Io(un+lfn> Kl(wnrn) i 5n41 Ko(lnrn) Il(un%lrn))

O r
n+l n
(25)
This transformation matrix gives the relation between the constants in
any two regions not containing the coil between them. It is the same
for regions inside and outside the coil, with the exception that n should
be replaced by n' for regions outside the coil to correspond to our

notation.

Starting from the innermost region (n:l) and going to the second

gives:
“
= = . 26
S R 1 (7€)
The constants in the third region can be obtained by:
. .
45,2 ~2 0 <52 ~e, 1 S (1)
and the constants in the fourth region by:

s Ty o Lo 3 (28)

The general expression for the nth region is

a = T T . . . T, ~ T a
~n ~n,n-1 ~n-1,n-2 ~5,2 ~2,1 ~1

To make our expressions shorter, we shall define;
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y(n) = ~n n-1 Ln- I,n-2 ° °° 25,2 32,1 ’ (50)
and when n = k we shall drop the argument. Thus we have
Cl
a = v(n) 2, and a,=v¥a =Y . (31)

U
2y =@ )a, anda, =02, =10 [DlJ (52)

where we have made a similar definition:

Un')=T7 T . . 3l
.V( ) Vﬂ‘,l’l‘*l ._,nl_l’nr_? Vﬁx’gx ng 1t () )
and we have dropped the argument when n' = k'. Thus, we can now write

the constants in any region in terms of the constant in the innermost

c 0
region, él - [01}, or the outermost region, a], sz [D ] by means of the
’ I

transformation matrices, V(n) and U(n). We shall write Egs. (17) and
(18) for the regions on either side of the coil, k and k'. Here we
e R . - . 5 _ _ — _ =

have r = r', so that o(r -r') = 1. Also Y= O, =0 and By =B,

= BO, so that the equations become:

fl

S (Oér’)—D)K (O/r')

e80T, (©@rt) = B R (@) —? (55)

and

CkIl (CZOK") + D K (O r') L (OC r') + k'Kl(aOr') . (j6)
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Using our matrix notation, we can write

2
N 2: Vg lanl = VG (57)
1 J::]_ J
D, = V. C (38)
“o = U (52)
and
P UopPye (+0)

Thus, by writing the constants in Egs. (%9 ) and (56) in terms of C, and

Dl‘ , we can get:

~ 1t o vt . oy o — o N
Cl[vlllo((kor ) VBIKO(JOf ﬂ N D].’[UIEIO(JLOr ) UE‘QKO(UOf )] * B

and

Gort) o+ ! = , o r! N o3 ’] . Lp
Cl[V1111<‘or ) 4 VK (g )] D1'[U1211( of' ) UK (ogrT) (42)
We now have two equations and only two unknowns. Solving these gives

oy 1 ! , !
[U1211(lor ) U’/,’Z/ZKI(XOf )] Hot

! VooV 7 VeVe

1

and

vt . 1 . !
D B [v1111<u0l ) f v?lel(Qof )] rior (hh)
r — - )
! Uo Vi 70V v

where the denominator has again been simplified by use of the Wronskian,

and the fact that BO = QO. Now we can substitute the values of the



constants in Eqs. (4%) and (L)) into Eqs. (31-) and (3%) to give the
constants in any region. We can write the CGreen's function for any

region inside the coil as

G(n)(r

,730' 2" ) =

cos Q(z—z')d@ .

(45)

‘Qr'fm [V]_l(n JT (e ) + Vo (n )R (4 r )] [Umll(@’or' )+ UKy wor')]
I

o [U;az«zv 11" Ulzzvzzl]

The Green's function for any region outside the coil is

r
G<n )(r,z;r‘,z') =

cos Q(z-z! )dux

(u6)

1 ! - 'Y (O ty o ;o1
‘oF f[UIE(n )1 (0 7)) + U500 )kl(un’r)] [vl],Ilmor ) ‘V21K1(o‘o‘)]

i
° [Ueegvu Upo¥s L]

Once we have the Green's function, we can get the vector potential
by using Eq. (3). The most common type of coil is one of rectangular
cross section, as shown in Fig. 3. We added another region, that con-
tains the coil, and designated it region c¢. For a densely and uniformly

wound coil, the current density J(r',z') is approximately:
J(rt,2') = o L (41)

where n, is the number of turns per unit area, and I is the current per
turn. Substituting Eqs. (47) and (45) into Eq. (%) gives the vector
potential for any region inside the coil as
Y2 (T2
A(n)(r,z) = ncI G(n)(r,z;r',z') dr'dz' . (48)

£ r
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Fig. 3. Coil with Rectangular Cross Section Concentric with Cylin-
drical Conductors.

Reversing the order of integration and integrating over the dimensions of

the coil gives
nguo %1n a(z—ﬁl) — sin a(z-izﬂ[vll(n)ll(anr) + V21(n)Kl(anrﬂ

2
ad (U

22Y11 7 U1aV9p)

x [Ulzl(rz,rl) + U22K(r2,rlﬂ do (49)
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where we have defined the functions

r o r

2 o 2
] t | B l N 1 1 1
T Il(aor Ydr't = ) a,x Il(uor )daor
%
L Vo
rl=r, a r'=oa r,
uorz
_— X1, (x)dx % —= T(r.,r.) (50)
2 1 s 2 2071
o o
o 0
x=a r)
and
r2 1
[ [ | -
r Kl(uor Ydr' = a 5 K(rz,rl) (51)
Ty o

where ry and r, are now taken as the coil inner and outer radii, and

should not be confused with the outer radii of the first two regions.

The vector potential for any region outside the coil is

. 0 Nt _ . ,
A(n,)(r - nCIuo [51n o (z 21) sina (z 2“ﬂ[Ulz(n)Ilﬁxﬂr)+U2201)K1(aﬁrﬂ
? - i 2
] a0, WyoVyq = UppVsy)
( 2
X [VllI(rz,rl) + V21K\r2,rlﬂ da . (52)

The region of the coil requires special treatment. To find the vector
potential at a point in the coil region, r, we must add the solution of

A(k)(r,z) for a coil going from r to r, to the solution of
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]
A(k )(r,z) for a coil going fron ry tor. The results are
Ao - ncluo [51n a(Z“Ql) — sin a(z~£2ﬂ
2 UgyVq1 ~ Upa¥ay)
o
T
N L 1]
X [Ulzll(aor) + bzzKl(uorﬂ{&llllgwor ) + VZlKl(a r ﬂ r'dr'
1
2
- ry . ' [ '
+ [ 11 1(a r) + VZl 1(a rﬂ[ Ll(uor ) + U22Kl(a0r ﬂ r'dr')da
T
n In [sin a(z-2,) — sin o{z-%¢ g
. _¢c o 1 2
“ a(UyyVyq 7 UppVpy)
0
T2 i)
b 1] 1 ]
X levllll(aor)ll(aor Yr'dr' + 12? 21Kl(u r)K (a r'y'dr'
r r
r r,
T i ] 1 t 1] ]
UlZVZl[Il(aor) Kl(aor Yr'dr' + Kl(aor) Il(aor r dr]
r, r
r r,
| | ] T, T 'd ’] . 53
+ U22Vll [ Kl(aor)Il(aOr yr'dr' + Il(aor)ﬁl(aor Yr'dr da . (53)
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We shall use the definitions given in Egs. (50) and (51) for I(rz,rl)
and K(rz,rl), and we shall use the relations

r r

2
1
' (RIS B - —_ ot ' 1
Kl(aor Jr'adr 5 h(rz,rl) Kl(aol Yr'dr
g %o Y
and
r, T
1yt = e — ' ' '
Il(aor)Kl(aor dr'dr - 5 I(rz,rl) Il(aor dr'drx
T o r

1
Equation (53) then becomes

n Ip “Nsin alz-2.) — sin a(z-2,)
A(C)(r,z) - cTT 0 [ 5 1 2]

ol 2 (TyyVy,

—UppVsy)

X [ 12 11 l(a r) I(rz,r ) + U22 21Kl(cx r)K(rz,rl)

(J r)R(x ) + Ul° 21 l(a r)I(r )T ﬁ

Uio¥orly 221

[sin u(z—zl) — sin a(z~22ﬂ

o

<L
7

r
| 1] 1]
[ Kl(aor)ll(aor Yr'tdr

]

Iy

+ Il(aor)Kl(aOr')r'dr'] da . (54)

T
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We have shown in an earlier paperj that the integral of the expression

in the large square brackets is

. 1 uo(z—lz) ~ao(z~zl)
vl ) J(rz,rl) Jl(ur)[Z-w e — e ]du (55)
ao
o o
where
1 r2
;5~J(r2,rl) 2 rJl(ar)dr . (56)
1
Making this substitution gives:
() . nCIuO i [gln a(z~21) — sin a(z«lzﬂ[UlZVllIl(uOr)I(rz,rl)
A (r,z) - T 2

aa - WUyoVyg — UppVsp)

+ U22V21Kl(aor)K(r2,rl) + Ulzvzl(ll(aor)K(rz,rl) + Kl(aor)I(rz,rlﬁ]

N

i

20 2a
0

da . (57)

a (z-2.) ~a (z2-2,)
J(r2,rl)J1(ar)[2—-eo 2 —e ° 1]

We have now determined the vector potential for any region. Once
the vector potential has been determined, we can calculate any physically
observable electromagnetic induction phenomenon from it. The particular
parameters that we wish to calculate are the mutual impedance and the
self-impedance of two identical bifilar coils. The mutual impedance
between two coils, 1 and 2, is the voltage induced in one coil by a unit

current in the other:
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\Y

(1)
o' Ty
. ]
M, = Eﬂﬂﬁﬁj' A(L) ds, = E%IS‘ A(1l) 2nrdrdz . (58)
[
11

Since both coils are identical and occupy the same region, we can expand

Eq. (57) and perform the int=gration over the second coil to obtain

2 w, . o W 2,
y ~ 2n Uo Z[l cos a(%z ll%[LlZVllI (Iz,rl)
T12 7 2 2 2k

(2y=21)" (ry-ry) ara (UgnVyg ~U1pY95)

¢]

2, i , ) ]
+ U22V21K (zz,rl) + 2L12V211(r2,r1)K(r2,11)

2 o (=)
3 J (rz,rl)[go(zzmzl) + e ~1f Yda . (59)

+
o

The coil impedance is

= JuM,y, (60)

and since the coils are identical and in the same region, M12 = M22.
If we take the special case where there are no conductors outside the
coil we have [ = 1, the unit matrix. Then U22 = 1 and U12 = ( so that

Eq. (59) becomes
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2n

U Vv
2
M, = 2 2 [l-* cos alf. ~2 ﬂ *gl~K2(r ST, )
127 e e Ve d 27 v 2071
271 2 71 fo!
0]
w2 oy (yty) ]
4 5 J (rz,rl)Euo(szll) + e — 1|y da . (61)
(o]

A computer program, ENCMUL, to evaluate the integral part of this expres-
sion will be given in a later report. Or, if we have no conductors inside

the coil, we have V = 1, and Eq. (59) becomes

2n2u

U.
i 0 2 [ B B ] 12 2
My = - )2( — )2 5% 1 — cos a(Zz 21) a;g I (rz,rl)
2717 M “ %
0
—a (R,0.)
m 2 B 072 717 }
+ - 3a3 J (r2,rl){ao(22 21) + e 1 da . (62)
0

A computer program, INNMUL, to evaluate the integral part of this

expression is in the appendix.

Thus, by use of these programs we can calculate the mutual inductance
and coil impedance of coils in a liquid level probe, consisting of multiple
conductors inside or outside the coils. We shall now consider the effects

of the external electrical circuit.

The equivalent circuit of a liquid level probe is shown in Fig. 4.
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Fig. 4. Simplified Circuit Diagram for an Eddy Current Liquid Level

Probe.

We can write the following set of equations for the voltage drops around

each of the loops in the circuit:

=V
6 6
(63)
N N S — -
Il[ wc6] + IZ[ mc6 + R6 + ZD] 13[JmM] 0
(64)
—_— I p— --al__ — — ...AJ_.. -
12[3““} * 13{ZPU TRy 07} 4[ wC7] 0
(65)
_ — A A =
I3[ wC7J * 14{ ¢, R9] 0.



We can use determinants and solve for the current in the final loop,

I,, produced by an applied voltage V:

S R \
Ro wC wC N VO
& 6
(-%—~ :ci FRG 2 T M
3 - i LR~ o
O juM Zpu ‘ RT o i
(
O O - O
wC..
{
I, - (67)
R - 0 O
o) wC wC
€ 6
wC wC f R6 * ZD 1M N
6 6
0 —~ juM 7z 4R, —=l- b
pu L?C LU,Cr
S
0 0 — :cj £ R,
e o >
We shall solve for the current, I, multiply it by the resistance R9 to

determine the input voltage to the amplifier,

and then multiply by the

amplifier gain G to determine the output voltage:

MV R_G

, 0
vout - J

LUC 6CY

SIS s
i . _“J‘"“
]w M [Rs) wc,)
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Rearranging terms so that Eq. (68) clearly remains finite when the

capacitance goes to zero, we find that

o N . 22
VOut = JwHVORgG -{;wCGRO J)(wC7R9 Jrw™

+ [(wC6RO ~ )z, + R - jRO] [(wC7R9 ~ ) (Zpy + Ry) — jRg]} . (69)

From Eq. (69) we can calculate the phase shift between the voltage
driving the eddy-current probe and the amplified voltage received by the
phase shift detector. Since the driver coil and pickup coil are in the

same region and are identical, we have

JuM = 2, = Zo. (70)

where M will be given by either Eq. (61) or Eq. (62). To evaluate Eq.
(69), there is a computer program, ATTEN, which calculates the magnitude
and phase of the output voltage for various values of the terms in Eg.

(69).

The circuit parameters, Ro’ C6’ R9, and C, are values that may be

7

varied (within certain limits) with an external plug-in attenuator.

The attenuator, when properly chosen, has the following effects:

(1) The phase shift due to temperature drifts causing
variations in the dc resistance values of R, and

R7 can be essentially eliminated. 6

(2) The L~C network in the driving and pickup circuits
in Fig. 4 and the mutual coupling between the cir-
cuits combine to act as a band~pass filter that
reduces the noise in the instrumentation.

(3) A reduction in sensitivity occurs and the phase
shifts due to variations in the other parameters
increase. However, these effects can be made
negligible if the attenuator is properly designed.

The attenuator design will be considered in greater detail in the next

chapter.
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5. COMPUTER CALCULATIONS FOR A PROBE INSIDE BISMUTH

The type of liquid level probe analyzed in this report is shown in
Fig. 5. It consists of a long bifilar coil inside a molybdenum con-
tainer. The drawing is symmetric about the coil axis, so only half of
the probe is shown (in cross section). The probe is placed inside a
molybdenum cavity, and the level of the molten bismuth in the cavity
can be measured. A current flowing in the driving coil produces an
electromagnetic field that is modified by the presence of the conductors.
The pickup coil detects this field. 1In the design of this probe, we
used the following procedure. We first maximized the sensitivity of
the probe to changes in liquid level, then minimized the effects of the
undesirable variables such as temperature drift, and finally maximized

the sensitivity to error ratio.

ORNL-DWG 71-9737
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&§\§§§§
CERAMICNE

. . - - - BISMUTH -

F, R - - N — — e
TTTT=PICKUP - -

o T —
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Liquid Level Probe

Fig. 5. Liquid Level Probe Inside Conductors.
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We first calculated the magnitude and phase of the voltage out of
the pickup coil for a current flowing in the driver coil. The driving
impedance and pickup amplifier impedances are both taken to be infinite.
In Fig. 6, we show how the magnitude and phase of the voltage, with and
without bismuth, vary as functions of the wall thickness of the molybdenum
container. The bismuth region is taken to be infinite, since the outer
container has a very small effect, and was not considered in the pre-
liminary calculations. Also, the molten salt is equivalent to air as
far as resistivity is concerned. As the wall thickness is increased,

we see that the phases with and without bismuth cross, indicating that
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Fig. 6. Magnitude and Phase of the Voltage in the Pickup Coil as a
Function of the Wall Thickness of the Molybdenum Container, With and
Without Bismuth, at 10 kHz.
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with a wall thickness of approximately 15 mils, there is no change in
phase as the liquid level is varied. As the wall thickness is increased
further, the curves of phase with and without bismuth become quite far
apart indicating that there will be a lavge phase shift as the liquid
level is varied. The phase difference approaches a maximum at approxi-
mately 47 mils and then decreases again to zero as the curves cross at
142 mils, approach another maximun: separation, and then cross again.
The behavior of the magnitude curves of the voltage is very similar,
with the curves crossing and approaching a maximum and then crossing
again. The first maximum, which is not shown in Fig. 6, is the largest
and occurs at zero wall thickness for both the magnitude change and

the phase shift. Since this is impractical in our design, we elected
to concentrate on the second maximum. The value of wall thickness at
which this maximum occurs is also a function of frequency. 1In Fig. 7,
we have a very similar plot of magnitude and phase of the pickup coil
voltage as functions of the container wall thickness, with and without
bismuth, at a frequency of 20 kHz. Figure 6, which was run at 10 kHz,
is very similar to Fig. 7, except the values of wall thickness for
maximum magnitude and phase change are smaller at the higher frequency.
At 20 kHz the wall thicknesses for maximum phase and magnitude change
occur at 27 mils and 80 mils, respectively, compared to 47 mils and

110 mils, respectively, at 10 kH=z.

In general, we are able to plot optimum wall thickness for maximum
sensitivity against frequency, as shown in Fig. 8. 1In Fig. & we have
optimized the wall thickness for the maximum phase shift, and the
amount of phase shift we get at optimum is also plotted against the
frequency. Because the curves are rounded, it is difficult to exactly
determine the optimum wall thickness for a given frequency. The shape
of the curves varies with coil size, so we made similar plots for opti-
mum wall thickness for maximum sensitivity to both magnitude and phase
changes vs frequency using different size coils. A composite of these
plots for phase shift is shown in Fig. 9. From Fig. 9, we concluded
that a liquid level probe with a wall thickness of 30 mils would have

adequate sensitivity. Once the wall thickness has been fixed, then we
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can determine the optimum frequency for maximum sensitivity and the sensi-
tivity at that frequency for any size coil. 1In Fig. 10, we have optimized
for maximum phase shift, and we have made similar plots for maximum ampli-
tude change. From this plot we decided that we would have adequate sensi-
tivity if the coil form OD was 0.725 in. With this size coil operated at
a frequency of 16 kHz, we have 0.18 radians or approximately 10° phase
shift as the liquid level is varied from full to empty. While this is
not the most sensitive configuration, the sensitivity is much more than
adequate, and the compromises made thus far insure a good inexpensive
mechanical design. We shall now turn our attention to minimizing the

drifts.

N
v
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In the calculations to minimize drifts, we included the outer molyb-
denum container as shown in Fig. 5. We assumed that both the coil sheath
and the outer container were infinitely long; the coil was actually 13.62%

in. long.

The major contribution to drifts is the wide range of operating
temperature of the probe. The tewmperature contributions can be broken

down into the following:

(1) There is a change in the ac field due to changes in the
resistivity of the molybdenum and bismuth. This causes
a change in the self-impedance of both the driver and
pickup coils and the mutual coupling between them.

(%) Thermal expansion of the coil and conductors also
causes a change in the impedances and mutual coupling.

kel

) There is a change in the dc resistance of both coils.

We shall consider each of these factors separately.

In Fig. 11 we have plotted the phase of the voltage of the pickup
coil against frequency for various temperatures. We can see that these
curves intersect at a certain frequency, which means that the tempera-
ture coefficient of the phase is essentially zero at that frequency.
These zero temperature coefficient points occur at approximately 25
kHz for the case in which the liquid level probe is empty and at about
50 kHz for the probe being full of bismuth. More exact calculations
with an external circuit attached to the probe for an operating fre-

)

quency of 24.000 kHz are shown in the table below.

Table 1. Calculated Phase Shift Values (in Degrees)
with Bismuth and Air at Several Temperatures

Temperature (°C)

Material 550 600 650 700

Bismuth

-
—
=

AN

\C
=
=
-
s

7

(09

NN

Air 50,75 20,058 50.50 50.5
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In the temperature range of particular interest, 600° to 650°C, we have

chosen our parameters so that we have exactly the same positive slope

of phase with temperature (+0.06°/50°C) in bismuth as the negative slope
-0.06°/50°C) in air. These two end points represent the worst tempera-

ture coefficient, and it is expected to decrease to zero for the case of

the probe being half full. This worst case of the calculated temperature

coefficient is equivalent to +0.0015 in./°C error in the liquid level

measurement .

Similar calculations were made for the magnitude of the pickup coil
voltage, but there is no frequency at which the magnitude remains constant

with temperature changes.
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We next considered the variation in phase due to changes in dc resis-
tance of the coil. As we discussed earlier, a value of capacitance and
resistance in the driving and detecting circuits can be chosen that will
give essentially no change in phase as the dc resistance of the coil is
varied, and will also act as a filter to reduce the systewm noise. However,
when the R-C network is adjusted to give exactly zero temperature drift
with the bismuth present, it will not give exactly =zero drift with the
bismuth absent. Therefore, the network is adjusted to give small drifts
of opposite signs in the two cases. But the more we filter to reduce
system noise, the greater these small drifts become. In addition, the
phase shifts due to variations in the capacitance and resistance values

in the circuit increase as we reduce the system noise. Therefore, we

must compromise between the system noise and drifts. The following table
summarizes the drifts between 600" and £-0°C, using 56.% i for the series

resistance of the driver circuit and the shunt resistance of the pickup

circuit and %8%0 pF for the shunt capacitance.

Table 2. Summary of Phase Shifts Due to Variations
in Various Circuit Parameters

Variation .
. .. Phase Shift
Parameter Varied in Parameter

(%) (degrees)

Driver Coil Resistance 10 0.002
Pickup Coil Resistance 10 0.002
Driver Shunt Capacitance 1 0.008
Pickup Shunt Capacitance 1 0.0CH
Driver Circuit Series 1 0,004

Resistance

Pickup Circuit Shunt 1 0.00k
Resistance

(]
—

Operating Frequency 0.001

The phase shifts given in Table 2 are the absolute maximum values

that occur anywhere in the temperature range with or without bismuth.
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The final contribution to dirfts that we considered was thermal
expansion of the system. Including thermal expansion effects, a tempera-
ture variation from 600° to 650°C caused a 0.05° difference in the phase
change between the two temperatures, which can be compensated for with

a small frequency change.

Additional information on the design of this probe is given in

b
other reports.

4. MEASUREMENTS ON LIQUID LEVEL SYSTEM

Three different sets of measurements have been performed on the
liquid level probe. The first set of measurements was performed at a
frequency of 10 kHz and at room femperature. The primary purpose of
these measurements was to test the linearity of the probe, and the
second purpose was to check the accuracy of the calculations. The
probe consisted of the coil enclosed in a molybdenum sheath, but with-
out any outer molybdenum container. The bismuth was reolaced by 12
rings of Inconel, each machined to 1 + 0.0l0 in. thick. The phase
shift was recorded to within 0.01° as the riogs were added, simulating
an increasing liquid level. A least-squares f£it was made of the phase
shift vs thickness, and the maximum deviation of any reading from a
straight line was 0.009° or 0.0}l in. The measured slope of the line
was 0.599°/in. compared to the calculated slope of 0.5%1°/in. There-
fore, we concluded that the probe was extremely linear over at least

the first 12 in. of level.

For the next set of measurements, a prototype liquid level probe
was constructed by personnel of the Chemical Technology Division, and
joint experiments were performed with them. The prototype was essen-
tially identical to the one shown in Fig. 5, except that the outer
container was made of carbon steel. The carbon steel outer container
has no effect when the probe is covered with bismuth, but decreases
the phase reading by approximately 1/2 a degree when the probe is

emply .
N

L. E. McNeese et al., Enginecering Development Studies for Molten~-
Salt Breeder Reactor Processing No. 12, ORNL-TM-3775 (in preparation).
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The measurements were made at a frequency of 27.7 kHz for various
levels of bismuth and at various temperatures between 550°C and 70C°C.
The results are plotted in Fig. 12. The phase shift is a linear function
of liquid level over a range from zero to about 13 in. The slope of the
curve varies slightly with temperature, with the minimum temperature

coefficient occurring between 600°C and 650°C.

The temperature coefficient of the level reading was 0.009 in./°C
for the chamber empty and 0.0024 in./GC for the chamber full of bismuth.
The higher temperature coefficient with the chamber empty was probably

due to the ferromagnetic outer casing.

A series of more accurate calculations, considering more different
parameters, showed that more accurate measurements could be made at 2k

kHz for the temperature range of 600°C to 630°C. The level in the probe
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Temperatures Measured at a Frequency of 27.7 kHz.



was set at the maximum, determined by the amount of bismuth in the system
at the time. The manometer reading indicated 10 in., but later measure-
ments indicate that the actual level was about 1%.5 in. Table 3 shows
both calculated and measured values of magnitude and phase. The actual
calculations were made with the probe e¢ither full or empty of bismuth,
and the 10-in. calculations represent a linear interpolation between zero

and 13.625% in. of bismuth.

The regsistor values are those of both the driver series and the pickup
shunt resistances, and these can be varied to achieve a "fine tuning” in
the temperature coefficient of the probe. The phase difference is the
phase at the lower temperature subtracted from the phase at the upper
temperature. In the ideal case, the phase shifts between 600°C and 650°C
would be equal but opposite in sign with the probe full and empty, as
shown for the calculated values using 36.3 Q. However, the measured
phase difference was +0.12 rather than +0.06 calculated for the 10-in.
level. By increasing the values of the resistors in the attenuator, we
are able to decrease both the calculated and measured phase differences.
The best value of resistors to give minimum drift would probably be
slightly larger than 36.% Q. The level was also varied using the 75-0
resistors in the attenuator. The temperature coefficient of the phase
varied from +0.0028°/°C (+0.00%2 in./°C) with the chamber empty to 0.00°/
°C with the chamber full. By decreasing the value of the resistors, it
should be possible to obtain a temperature coefficient of +0.0016 in./OC
with the chamber empty, -0.0016 in./OC with the chamber full and zero

with the chamber half full.

The calculated slope at 600°C was 0.843°/in. compared to a measured
value of 0.866°/in. Part of this error may be due to the fact that the

magnetic permeability of the outer container is only approximately known.

With the information gained in these measurements, we will be able
to calibrate the probe used in the loop with an outer container of molyb-
denum, as shown in Fig. 5. The lower calibration point for the probe
can be obtained before bismuth is ever added to the system. To get the
upper calibration point, the bismuth level must be raised over the top

of the probe, and the phase reading recorded. If 0.40° is subtracted



Tabie 3. Calculated and Mcasured Values of Magnitude and Phase with

P

Different Temperatures and Different Attenuator Values

Tem 56.3 9 750 121 9
(oc%' Resistance 10 in. 10 in. 10 in- 10 in. 10 in. 10 in.
Bi Air Calculated Measured Bi Air Calculated Measured Bi Air Caiculated Measured
550 Magnitude 1.36 1.53 1.h4s5 1.64 1.4% 1.%2 1.49
Phase L1.36  30.76 45.88 40.88  30.25 L5.Th LO.57 29.92 h5.55
phase +0.05  -0.i7 +0.01 -0.16 -0.01  -0.22 -0.03 +0.0k4 -0.0k  -0.24 -0.06 0
Difference
600 Magnitude 1.32 1.51 1.4% 1.6k L.hy 1.32 1.5t
Phase 41.39  30.59 L6.0k 4L0.87  30.03 45.78 L4o.5%  29.68 L5.55
Phase +0.07  -0.07 +0.06 +0.12 +0.02  -0.10 +0.02 +0.0% -0.01  -0.14 -0.01 -0.06
Difference
550 Magnitude 1.27 1.47 1.40 1.63 1.41 1.31 1.52
Phase hi.h 30.52 46.16 40.89  29.93 45,81 L0.52  29.54 45.49
Phase +0.135  +0.02 0.1k +0.03 +0.09  -0.02 +0.09 -0.07 +0.06  -0.05 +0.06 ~0.13
Difference
700 Magnitude 1.23 1.44 1.38 1.6% 1.38 1.30 1.50
Phase 4i.59  30.5L 46.19 L0.98  29.91 L5, 7h 40.58  29.49 45.36

. -2, .
Magnitude = volts rms x 10 ~; Phase = degrees; phase Difference = upper temperature--lower temperature.
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from this phase reading, this gives the value of the phase when the liquid
level is 1% in. The phase will be a linear function of the bismuth level
between O in. and 1% in. During the nipe moaths of testing of the probe,
the zero point appeared to move, but the slope was essentially constant
(within 1.4%). Therefore, by assuming a constant slope, it is possible

to recalibrate the probe by raising the bismuth level over the probe.
There was a considerable amount of corrosion in the loop which probably

accounted for the shift in the zerc level point.

A passive RLC phase calibrator was constructed to eliminate instru-
ment variations. It gives two measurements of the instrument gain (slope)
and two independent wmeasurements of the zero peint. The long-term sta-

bility of the calibrator is approximately 0.01°.

[
Additional information on the linearity tests,” the initial measure-

6 )
ments~ in the test loop, and the final measurements' in the test loop

are given in other reports.
5. SUMMARY AND CONCLUSIONS

The problem for a coil either encircling or enclosed by an arbitrary
number of conductors has been solved. Accurate and versatile computer
programs have been written which numerically evaluate these solutions.
Good agreement has been obtained between the calculations and experiments.
These programs have been applied to desiga very accurate liquid level
probes even though we are looking through a good conductor (molybdenum)

and measuring the level of a poor conductor (bismuth).

-
‘L. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 1%, ORNL-TM-3776 {in preparation ).

6L. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 14, ORNL-TM-L018 (in preparation).

TL. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 16, ORNL-TM-4020 (in preparation).




58

6. ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of C. C. Lu in the
preliminary programming, the assistance of H. 0. Weeren, L. D. Chitwood,
and 0. E. Conner in performing the measurements, W. E. Deeds and L. ¥.
McNeese for editing the report, Janice Shannon for preparing the final
manuscript and Jerry Roth and L. E. McNeese for providing overall

guidance.



APPENDIX A



Lo

APPENDIX A

Computer Programs for a Liquid Level Probe
Inside Coaxial Conductors

I. INTRODUCTION

This computer program is used to calculate the normalized coil imped-
ance of both the driver and pickup coils of an eddy-current probe, sur-
rounded by multiple coaxial cylindrical conductors. The programming
consists of a fundamental subroutine named INNMUL, which is called into
execution by a main DRIVER program. INNMUL branches to eight other new
subroutines during execution. TINNMUTL itself is adapted from an earlier

program in the BASIC language.

The FORTRAN-1IV computer language is used, with REAL*E arithmetic, on
the IBM/56O computers. New work was done to carry out the needed calcu~
lations with sufficient accuracy in the case of a "thin" region among
the conducting media. 1In connection with this, some special subroutines
were also developed for the calculation of the necessary modified Ressel
functions, with accuracy of at least 15 significant decimal digits for

real arguments, and 10 significant digits for complex arguments.

An outline of the program follows, with discussion and program listing
of each separate routine. The eight subroutines required by INNMUL are
named XTINT, XJJINT, GAMCAL, GCALC, MODBES, CMDBES, COMKB, and CMI. They

are needed for integrations of XJl(x) and xI (x), for calculation of the

gamma factor, and for the modified Bessel fuictions.

Last an interactive program will be given for generation of the data
block file, which must be submitted with the program for execution on
the IBM/56O computer. This program, named TELINC, is stored on the PDP-10
disk, and may be used from the teletype to prepare the data in the neces-
sary format for the DRIVER. The data could, of course, be set up for

execution of the program by any ofther convenient method.
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II. DESCRIPTION OF INNMUL

A. DRIVER Program

The DRIVER main program reads the data for the cases to be executed
by the INNMUL subroutine. After receiving the data and making preliminary
calculations if necessary, the DRIVER then branches to INNMUL. After the
calculation of normalized coil impedance is completed by INNMUL and its
other subroutines, then the DRIVER program prepares & summary printout,

gshowing data and results.

Data must be given to the DRIVER program for the coil dimensions, for
the air normalization factor, and for information about each conductor

outgide the coil. The inner radiug, the relative permeability, Hepr? and
5 B
the value of the quantity wpofﬁ are needed for each conductor.
. 3 . » *‘2
The DRIVER program is written to receive the quantity, WOT in any

one of three different ways. First, the value of the quantity may be

given directly for each conductor. Second, the factor ¢ may be given for
-7

each conductor. In that case, the permeability, y, is br x 10 ' x MRpr

Then the operating frequency also is given in order to obtain w for the

coil, and T , in meters, is either given or calculated for the coil.
m

Third, the resistivity, o (uf-cm) may be given as data for each con-

o]
" 1(‘)U/p. Then the

ductor. The relation between p and 0 is given by: o

_2 IS
quantity wparm is calculated as 0.5093979 x freq. x fﬁ X MREL/D' The
constant is a product of conversion factors = (2 )(0.0254 )(kr x 10){10).

Therefore in this third case, the known data mwust include the driving
frequency (Hertz ), and T (in.), as well as relative permeability. The
details of setting up the data for submission with the computer program

will be given in the last section.

Following is a list of the program DRIVER.



C PROGRAM Td RUN CASES ON SUBRGUTINE INNMUL

IMPLICIT KEAL*E8 (A~-MHou-2)

REAL#*8 LoMUsL1

DIMENSION RHOC10)

DATA P1/3+1415 92653 58979 D0O/,CUNST1/70.0254D0/
DATA MU/ 4.0D-7/
COMMUN/REGION/RCIOIe EM(10), PERMCIO)sKLIM

C
C FIRSYT DATA IS READ bOK THE COIL AND ITS DIMENSIUNS
C IAIK=0 IF AIR VALUE NORMALIZATIOUN FACTOR IS NeT GIVEN DATA
C IAIR.L.T«0 F@R THE END @F ANY ADDITIONAL COILS ~ END OF RUN DATF
G NURMAL=1 MEANS THE COIL DIMENSIUNS ARE NORMALIZED AS GIVEN DAT{
C A9=AIKR VALUE FACTOR FOR NORMALIZATION OF COIL IMPEDANCE
C
MU=MU*PI
RINT 1
1 FORMAT(® SAVS')
NCYIL=0

100 KEAD 6, IAIRsNIRMAL
IFCIAIRLT«0)GY TO 190
NCASE=0
IFCIAIR«GT0)YREAD 35 A9
NCOIL=NCOIL+1]
PRINT 2,NCOIL
2 FORMATC(/ 6K " SUMMARY QUTPUT FOkR C3IL. NU.'s13)
READ 3,R1,R2sL,L1
3 FORMAT(5D15.8)

RI=INNER COIL RADIUS C(INCHES UR NURMALIZED)

R2=0UTER COIL RADIUS (INCHES OR NORMALIZED)>

L=LENGTH @F CBIL C(INCHES @GR NORMALIZED)

L1=DISTANCE FROM BOUTTYM UF COIL TO Z=0C PLANE (INCHES BGR NORMe)
IF L1 IS NOT O THEN L IS DISTANCE FROM TOP OF COIL T Z=0

acoagaad

L=L-L1
IF(NURMAL «NE«0XGE TG 105

c NORMALIZATION OF COIL AND CoNDUCTBRS IS BY MEAN C4IL RADIUS

RBAR=(K1+KR2)*0.5D0
R1=K1/RBAK
R2=R2/ RBAR
L=L/RBAR
105 IFCIAIR.EQ«O0XCALL INNMULC(RI»RZ2sLsAF IAIR,ZRESZIMD
PRINT 4,ik1,R2,L,A49
4 FURMAL(6Xs " INNER CWIL RADIUS (R1) ='5F15.9/
1 6Xs"QOUTEK COIL RADIUS (R2) ='"sF15%.9/
2 13X, 'CIL LENGTH (L) ='5F15.9
3 /14Xs "AIR VALUE (A9) ='5F15.9)

NEXT SET WF DATA GIVES INFORMATIIN ABBUT THE CONDUCTORS
N=NUMBER OF CONDUCTBORS

NeL.T.O MEANS END BF ANY ADDITIUNAL CASES WITH GIVEN CoOIL DATA
IHAVEM=1 MEANS DATA IS GIVEN FUR EM=OMEGA*MU*SIGMAXRBARSO
ITHAVEM=0 MEANS EM MUST BE CALCULATED BY THIS FORMULA
IHAVEM==-1 MEANS EM MUST bBE CALCULATED FROM RESISTIVITY

ccoaoao
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125
130
135
140

145
150

READ 65N, IHAVEM

IF(NSLE-0OXGY TY 100

NCASE=NCASE+1

PRINT 5sNCASE-NC2IL

FUhMAT(/6Xs "CASE NB-"5135" OF COIL NU«.'>137)
FORMATC(415)

KLIM=N+1

PRINT 72N

FORMATC 11357 CONDUCTERS BUTSIDE CUIL'/5Xs 'INNER RADIUS®
1 510X, "M%58Xs "PERMEABILITY > 3Xs "RESISTIVITY ™)
IFCIHAVEM.GT.0XGW T@ 130

EMCI) IS5 THIS VALUE FOR EACH CONDUCTBR I=1sN

RCIY IS THE INNER RADIUS 9F EACH CONDUCTOR C(INCHES UR NORM.?
PERMCI) IS RELATIVE PERMEABILITY ©F EACH CONDUCTOR

FREQ IS FREQUENCY @F THE DRIVING CURRENT (KHZD

UMEGA 15 ANGULAR FREQUENCY 8F THE DRIVING CURRENT,=2PI*FREQ*E3
MEAN C@IL RADIUS RBAR GIVEN WITH DATA IF IHAVEM=0.NORMAL.NE.O
MU IS PERMEABILITY GIVEN FER EACH COANDUCTZR 1IF IHAVEM=OD

SIGMA IS CBNDUCTIVITY GIVEN FOR EACH CUNDUCTER IF IHAVEM=O0

READ 3, FREQ

IF(NORMAL s NE+» 02 READ 3s RBAR
IFC(IHAVEM«LT-02GE TU 120

PMEGA=2. 0D3%PIHFREQ
CONST=(RBARKCONST 1) **2

DG 115 I=1-N

READ 3,R(1), SIGMA,PERM(I)

EMII) =0MEGAXMUXSTOMAXCONSTHPERMCI)
g TY 140

NUMBER 0509397903 IS5 A FREODUCT UF CONVERSION FACTURS.
(2kPT4D33* (4R PIkD~TIR(DBI*(« 0254%%2)

CENST=0e5093979D3*%RBARKRBARXFREG
pg 125 I=1sN

READ 35 RCIJ)-RHUCI}s PERM(ID
EMCId=CONST*PERMCII/RHO (LD

G T@ 140

D@ 135 I=1sN

READ 3, RCII-EMCI)»PERMCI)
IF(NORMAL-NE-0)GD T2 150

pe 145 I=1,N

RCID=RC1)/ KBAR

[FCIHAVEM-GEG)GB T 160

D@ 155 K=1laN

PRINT 8K RUKISEMIKDI» PERMIK) » KHI (K )
CONTINUE

Gy 1@ 170

Pg 165 K=1s-N

FRINT GoKsRIK)» EM(K)» PERM(K)
FORMATCLI3, 1P4D15.6)

CeNTINUE

PERMIKLIMI=1.00

EMIKLIMI= 0.DO

PRINT 1

CALL INNMUL(RILRZ2,L2A95IAIRsZREL,ZIM)
PRINT 1



PRINT 9
9 FUORMAT(6Xs "NURMALIZED CUIL IMPEDANCE ™)

PRINT 10s ZRE,ZIM
10 FORMAT(6Xs "NORMALIZED REAL PART ='s 1PD16.6/

I 6Xs "NURMALIZED IMAG PART ="»1PD16e6

LABS=DSURTCZRERXZRE+Z IM*Z 1)

IFCZRED180,1755 180
175 ZARG=PI*0«5D0

Gg TV 185
180 ZARG=DATANCZIM/LRED
185 CeNTINUE

DEGR=ZARG*180+.0D0/FP1

PRINT 12,2AE55ZARG» DEGK

Gy 1Y 110
190 PRINT 11
11 FORMAT(6Xs 'END UF CASES RUN ON INNMUL PROGRAM')
12 FORMATCLITKs "MAGNITUDE ='1PD16.6>

1 /10Xs' PHASEC(RADIANS) ='D16+6

2 /10X, PHASE(DEGREES) ='D16+6)

PRINT 1

STu P

KND



45

II. (B) INNMUL

The formula which is calculated by the INNMUL subroutine is the
normalized coil impedance,

(=]

U
-3l 12 - 12 .2
Zn = j { 3 [l cos(a(lz—ﬁlﬂ] T I (rz,rl)
a 22
0
02 —0(Ry=ty)
+-;E-J (rz,rl)[a(zz—zl) + e q do
—a(zz~zl)

L

2
s J (rz,rl)[a(zz-zl) + e —-;]du, (71)

0o

of both the driver and pickup coils in a bifilar coil surrounded by

multiple coaxial conductors.

The quantity
) [72
I(rz,rl) = q, rIl(ur)dr

1

is given by Eq. (50). It is calculated by a branch to the XIINT function

subprogram. Similarly, the quantity,

r
2 2
J(rz,rl) = q rql(ur)dr ,

1

is given by Eq. (56) and is calculated by the XJINT subprogram. The
ratio, UlZ/UZZ’ or gamma, is calculated by a branch from INNMUL to the
GAMCAL subroutine.



The XIINT, XJJNT, and GAMCAL subroutines will be discussed separately.

The integrand in the numerator of the impedance formula in INNMUL

. . w L
contains a term with the factor (0L + E — 1), where I, = ﬁg -~ £,. For

1
values of OL less than 0.5, this factor is calculated by the rational

approximation,

2

(oL )" 180

5 N
1 -} Q_{I.IJ AL i\iﬁ;L_z.—_
3 30

(72)

This is derived as a continued fraction approximant from the Pade table

associated with the power series,

(a —1 + e—a)/i- 248 2
!

2 2 5k
9:(1 T T e T ')W”

-
If GL is larger than 20, e L is dropped from the calculation of (O +

-G
e ¢ —~ 1). For 0L between 0.5 and 20, e A is evaluated by the exponential

function subprogram available in the IBM/%60 FORTRAN library.

The quantity (1 — cos(01.) which appears in one term of the integrand

is obtained by the half-angle formula from sin(%%).

The overall infinite integral is approximated in INNMUL for an upper
limit of 16. The average of the integrand is calculated for 10C equally-
spaced points from O to 1. For each of the remaining 15 intervals of
unit length, the average of the integrand for 20 equally spaced points
is used. This has been found to give a sufficiently good approximation

to the integral and is named I7 + jI8 in the prograum.

At the same time during this calculation in INNMUL, integration is
performed independently on the second term of the integrand to obtain
an estimated air value, named I9. The air value contributes to the real

part of the integral, IT7, and is by far the slowest part to converge. We

8Alston S. Householder, A Glossary for Numerical Analysis, ORNL-270L,

pp- (3-Th.
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calculate the air value in a separate program and give the value as part

of the data to this program, as A9. The air value depends only on the

on the coil dimensions and not on the conductor, and is

(o]
-2, -4 )
1 .2 21
R B (rg,rl) {a(£2~z1) e -
o
O

1] aor (74)

>
O
i

O]

(This term appears both in the numerator and the denominator.)

Therefore, we can obtain the completely converged real part of the inte-

gral by adding the difference between A9 and I9. The completely con-

verged veal part is I7 + (AQ-IQ). The normalized impedance is

Z_ = j(IT + A9 — I9 + JI8)/A9 . (75)

A listing of INNMUL follows.
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leNoRe!

100

105

L8

SUBRBUTINE INNMULC(RI»RE2sLsAGs TAIKs ZRESZIM)
IMPLICIT REAL*8 (A-H,0-4)

HEAL*¥8 Ls175,185195J75J8,d9
CYMMUN/REGIGN/RCI0) s EMC10)» PERMCTIO) KL IM
CAMMON/ALPU/ XKs Q1502

DATA PI/3.1415 92653 58979D0/ KK/ 50/

CALCULATES MEAN COIL IMPEDANCE, ZRE + I*ZIMs, FUK
CoIL INSIDE COAXIAL CYLINDRICAL CuNDUCTBRS

K1 = INNEx COIL RADIUS / MEAN CDIL RADIUS

Re = QUTER CWIL xADIUS / MEAN CUIL RADIUS

L = CYIL LENGTH / MEAN COIL RADIUS

A9 = NERMALIZING AIR VALUE REQUIRED FUR INNMUL
IAIR.NE.1 IF INNMUL IS T¢ BE USED 16 CALCULATE A9
IAIk = 1 IF VALUE OF A2 IS5 PASSED T0 INNMUL IN CALL
N = NuUMbER OF CONDUCTURS QUTSIDE COIL

SEE IF AIR VALUE HAS BEEN CALCULATED
IFCIAIR.EQ. 12686 T8 120
COMPUTE AIR VALUECA9)

IAIR=1

KK=150

PRINT 1

FORMAT(6Xs 'A's14X5 "AIR VALUE'//)
H1=001DO

H2=1.0D0

I19=0.D0

G1=0.D0

G2=H2

J9=0.D0

X=G1+H1*%0.5D0

Q9 =x*xL

@l =K%X

Q2=Q1«Q1

Q6=02%W1

L1=K#pl

L2=X¥R2
S4=KJINTC(L1,225KK)
IF(Y9.GT-0.5D00G2 T 110

FO=Q9%@A9% 0« SDO*CCA9/ 180.D0)*E3+1.D0)/(QP%(«1D0*F9+1D0>/3.D0+1D0

Gy TY 115

F9=0u9-1.0D0
IF(Q9.GT.20.0D00G8 T¥ 115
Fo=F9+DEXP(~G9)
S4=54%3539%F %P1
J9=d9+54/u6

K=X+H1

IF(X.LE«G2)GY T 105
19=19+H1*%J9%

Gi=G2

G2=G2+HE

W3=X+H1%0.5D0

PRINT 4,03519

Hi=0.05D0
IF(XeLTe155D00GW T2 100
H1=0.1D0O



ho

IFCXLT»199.5D02GY T@ 100
A9=19
KK=50
PRINT 2,A9
2 FORMATC(C® O AIK VALUE ='1PDI5.8)
KK=50
RETURN

INITIALIZE STEP SIZEs, UPPER LIMIT> INTEGRALS

lvEeNe!

120 N=KLIM=-1
Hi=.01D0
He=1.D0
I17=0.D0
I8=0.D0
19=0.D0

COIL IMPEDANCE- I9=AIR VALUEs, I7=RE(Z/JY, IB=1M(Z/J)

[oRvRe]

G1=0.D0
Ge=Hz
PRINT 3
3 FURMATCEX> "X"'5 14X5 "AIR VALUE" s 5Xs "REAL PART'56Xs 'IMAG PART’//)

c
G BEGIN L¥@P ON ALPHA, WHICH IS5 THE VARIABLE NAMED X
C

125 J7=0.D0
J8=0.00
J9=0D0O
A=GE1+H1%0e5D0

130 Q9=X%L
@Gl=X%X
R2=Q14Q1
ST FEL Ja )|

CALCULATION @F 1 AND J INTEGRALS

aao

Z1=X¥K1
Le=X*R2
S3=XIINT(Z1sZ25KK)
S3=53*%DSINCO5D0%EI)>
53=33+33
53=53%53
S4=XJJINTC(Z 1222 KK)
IFCR9GT«05D0) G T 135
FI209%@9%0« 5D0% ((QEP/ 180 D0I*E9+1+D0)/ (9% Co IDO*QI+12D0)/3.D0+1 0]
GY TY 140

135 F9=u9~1.D0
IFCQ9.GT+20.D0) GY TY 140
F9=F9+DEXP(~09)

140 S54=54%54%F9%pP]

c
c CALCULATION OF GAMMA (CONDUCTURS GUTSIDE CUIL)
C

145 CALL GAMCAL(G6sGT)
C
C RLEGAMMAYI=G6s IMCGAMMA) =G7



150

50

JT=JT+(SA+(G6%53)/06
JB=JB+SB*GT/ 06
J9=J9+354/ 06

X=X+H1

IFCRLEG2) G TY 130
I7=Hi#Jd7+17

I8=H1*J8+18

I19=H1+J9+19

ul=ue

G2=02+H2

W3=X+H1*0.5D0

PRINT 4:93,19.17,18
FORMAT(F9.0210X53E15.7)
Hi=0.05D0
IF(XLT«155D0) GU T9 125
ZRE= ~18/A9
ZIM=C(A9-19+17)/A9
RETURN

END



IX. B(l and 2) XJINT and XTINT

These two function subprograms evaluate the expressions,

ar,
le(x) dx

7ar
1

and
(@12
xIl(x) dx

| Jarl

respectively. These are equal to the values given for J(rg,rl) in Eq. (56)
and I(rg,rl) in Eq. (50). The method of integration ia both cases, for an
upper limit not greater than 5, is the summation of a power series expres-
sion until the last included term is less than 10-8 times the current sum.
If the upper limit of the iantegral is greater than 5, asymptotic formu-
las” are used in both subroutines. In general application, we assume in

these subroutines that both limits are nonnegative and the lower limit is

less than or equal to the upper limit on the integral.

An explanation follows for the summation method, which is used in the

case that the upper limit is less than or equal to 5.

For the purpose of explaining the general method of integration, let

f(x) be any function of a real variable with the Taylor series expansion,

) cnxn
fx) = z: = . (76)
n=0
Termwise integration yields
b
o c n+1 n+1
. n b - a
£6) dx = L ( nt )
N
a
n-1 n+l
- ﬁf o b —a ) 17)
n (n+1 )1

n=0

9w. A. Simpson et al., Computer Programs for Some Eddy-Current
Problems — 1970, ORNL-TM-3295 p. 259 (June 1971).




Introduce a new sequence,

and it is seen that qozl, q1:b~a, q and so on. In relation

2T 2

to this sequence, our integral may be written as

8

“q 9n1 - <78)

This is the series to be approximated.
Recurrence relations may be derived to get the terms of the g-sequence
in the following way. Use the algebraic identity

n-2 ~

b —a = (a+b)(bn_l "~an—1) — ab(b _»an-«) : (19)

n

e . n \ ) _
This gives, with nlq = (b” —a ), nlq = (a+b ){(n-1)! 9.4 ab(n-2)t 9o

Then division by n! and simplification gives

ab g

n-2
qn = [(a+b )q[l_]_ - m:l //n . (80)
Similarly, one can start with the identity
bn — an o (ap*i‘bg)(bn—p . an-2> _ 32b2(b11—1+ - an—LL) (81)

to obtain a second useful recurrence relation,

~

AN

e 2 @
q = [ka +b )qnmg ”‘nggjzgjgj] /n{n-1) . (&2)

n

In the functions XJJNT and XIINT, the second recurrence relation is used
for n greater than 3, since alternate terms are zero for the power geries

of le(x) and xIl(x).
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N

In order to apply this integration procedure, look first at the

power series ” for I](x):

) 1/2 x .
L (=)= ggg rl (cil)t (€5)
Then
) 2r+2
XL, (x) = 3, S : (84)
L r=0 27 oy (r+1 )
Let s=tr+l,
f w\(23
xI, (x) = e (85)
! s=1 277 Hgi1 ) gt
Let k=2s,
3 5" (k)
xT, (x) = 3 — : (86)
k=2 25T (k/2-1 0 (k/2 ) (k)

(even values only

In the preceding expression, (k!) has been multiplied into numerator and

denominator, to coincide with the Taylor series

Then it is easily seen that the coefficients for an even number k are:

e, =1, ¢ = 3/2, cp = 15/8, with

o

K
At /o1 )t (1/2)

C o

k (87)

These even-indexed coefficients are related by Ck+°/ck = (k+1)/k. All

other coefficients, ¢ « « «» are zero. The same coeffi-

O} 5)

cients hold for

1OH. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics,

p- 5Tk, Cambridge University Press, 1950.




le(x) dx ,

OLI'l

with the exception that the terms are alternating in sign.

The summation method, which is described above, is combined with the
9
asymptotic formulas”, for the case that the lower limit is less than or

equal to 5, but the upper limit is greater than 5.

Listings of XILINT and XJJNT follow.
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105

FUNCTILN YTINTOX1sX2sKED

COMPUTES INTEURAL FREM X1 16 ¥2 b ¥4110¥2.

Pl ¥PellEabs METHODL USEDL IS
BY SUMMINC A PLELER SERTES EXPRESSETLN UNTTL

LAST INCLUDFD TEREM IS LESS THAN leE-8 TINMES

IVFLICTIT hREALSE (DH=-Hol-7)
DATA X5 7/ 16043506808/

X5 IS THE INTEOGRFAL FReld 0O Tk De

CHECK SIZE Wik X2

TR (X2 0TebeL0Y (0 TG 300

INITIALIZE TERME IN SUMsDENLMINATLRSGSFTIC.

JRLAG=D

AEX 1%, 500

NPz LR D

Pz=X2¥xe H10O
Ro=kddp

Pr=pR-p

C=R+ N

pe=0%p]

D=k h

Gl D=CsFa~-DF
Pa=CrCwlli-D*xPe
C=0e5D0F CCHPA-DACCLD)
C=Fe+pp
D=k ay
SUv=0LL D73« D0
H1=2«D0
DR=€es0

b=Le

INPO=5 D0
T=0/7TNF3

REGIN &LV

Ll 105 K=i,Kk

LUV =T4+ELN
CNER=CCxC-L*CL)L D/7R1)2D2
TNF3=INF3+2 .00
T=0NERZTNTS

TEST CONVERGENCE

TP CI/780K oL.Te 1el-8) (L T 110
CulLD=0C

C=CNE R

Di=De

De=DAa+E

E=bE+2-.00

ConNT INUE

PRINT NON-CONVERCENCE MESSACE

1L

THE

SUN -
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FEINT 1sKKs¥1a¥2s 7 SUN
1 FeFvATCOXTINT DID NCT CONVEFCE IN'5>TRs " flEMETs
1' Y1 ='1FPE 145" Y2 ='5F14a5%s" T="5F1465,% SUF ='sF1445)
FRINT S0
50 FLIMATCY SAVE")
S0k
110 ¥XTINT=4,D0O* CEUNM+T )
TECTRLACEC«OIRETURN
e 106 320

ASYNMPTLTIC SERTES PLE Y2e0Te5
(CENL TN =23295%, FPel¢2)

300  X¥=¥xg
Ttw=]

305 Bx=1 110/ 7 ¥
FRzCCOCCCCIEEQ 19 al CrEY=1T37e D0 6N0IXEX+0LTa C€692D0XA} Y
1 + 11 &lE0CAD0I* N -3Re THIECECDOIFEX+He 1CFACPLOYFE X ~e € IRNGRLIDIF Y
2 ~0eBB3E0RBENOIF X+ ZOETTERD0
F3=PRXDEXP X IA LT (XY

309 CL T (310,3159)5 100

310 Th(X1eNF et DO L TE 311
7IINT=FC
FETURN

311 xx=¥1
bL=F3
JTGL =P
TF(XY e CTebeDOOYLLE T 205
TFLAC=]
TrT=¥e
¥2=5. 00

L 1L S0
300 PF3=xL=¥TINT
xe=11
315 XTINT=L~-F3
BETURN

FNL
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FERESSTLN
THAN tef-¢

Sa [D0ss
s0s

Uit T
TIMvES

INTTIALTZE TERMS TN SUNMs DENENINATLRSSETC.

TFLAG=D
A=X 1% 500
AD=pE*D

pe=C*p

fr=Fap
CeL.D=C*F2=-Dxp]
FaAa=CsCLlLL-D*}'P
N=0e SDOF (CH Fa~D%CLLD)
C=Fp+p0
[i=pespp
Sub=CellDs3.00
Di=2.00
pe=¢. 0

F=0e
STIN==-1.0L0
TNF3=5.00
T=~=0/7INF3

FEGIN St

b 100 K=tk

Sty =T+ SUyV

ONEY = ((Xx0=-DF 0D/ )/ D2
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II. B(3) GAMCAL

The GAMCAL subroutine is used by INNMUL to compute gamma ratio, Ul2/

UQP’ which appears in the first term of the integrand of interest in
INNMUL.

It is necessary in the calculations of GAMCAL to have given the quan-
tity, wpkdkfﬁe, named Mk’ for each conductor. In this product fﬁ is the
mean coil radius in meters. The angular frequency of the driving current
is given by w. The other variables Hy and o, are the permeability and
conductivity, respectively, of the conductor. For each conductor,

[ 2 .
Olk = (04 -+ JMk_ 3

where & is the variable of integration in INNMUL. Then,

RI (o ) =:V/{;2(Q2 +<VA;H~:T;i;§;

(% ) = 1/2 Mk/Rl(Oék) . (88)

The inner radius and relative permeability must also be known for
each conductor for the calculations to obtain gamma. Caution must be
exercised in the case of a large permeability that the calculations do

not lead to computer overflow or underflow.

The use of the zero-th and first order modified Bessel functions
has been seen in the chapter dealing with theoretical analysis. New
subroutines have been written to secure more significant figures than
previously available in the calculations of GAMCAL. These subroutines,

names MODBES, CMDBES, COMKB, and CMI, will be described individually.

A distinction is made between a normal conductor region and a "thin"

conductor region. A region is classified as thin if

(rk*l -rk)/rk_1 < 0.1



The elements of the T-matrix at r the outer boundary of region k,

k-1’

are

Tll(k,k-l) = ZKO(Z)Il(Qk_lrk_l) (89)
i) S oGt K ()

Tlg(k,k—l) = zKO(z)Kl(ak_lrknl) (90)
= (b)) Ty Ko me ) Ky (=)

Tgl(k,k-l) = ZIO(Z)II(QF—lrk—l) (91)
~ ) Ao TG e B )

and

ng(k,kml) = zIO(z)Kl(ak_lrknl) (92)
ol ) AT Kol qme ) I ()

where 7 = O r . (93)

k k-1
For crossing a normal, or "thick" region, these matrix elements are

computed by GAMCAL according to the above relationships.

However, if the region is '"thin", a special procedure is used. In

that case, note that at the inner boundary, r of the region k, the

k}
matrix elements are

T, (k+1,k) = ak+1rkKO(ak+lrk)Il(z+h) (9h)
+ (Mk+l/pk) (z+h) Io(z4h) Kl(ak+lrk) s
Tyo(krlk) = o Ko (G g1y K, (240) (95)

~—(Hk+1/pk) (z+h ) Ko(z+h) Kl(ak+1rk) R
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-+ 96
31(k 1,k ) = %1k O(l rk)Il(Z h) (96)

"'<“k+r/“k) (z+h) I,(z+h) Il(ak+1rk) ’

and
T, L(k+1,k) = % 15T (u _1rk)Kl(z+h) (o7)
+ k l/uk (z+h) K, (z+h) L ( 1 k)
where h = Qk(rk .-rk*l)' (98)

To cross region k, the T-matrix is the product T‘!1 " wk = gp;1 Kol
\’",’ ~ 4

In the following equations we will drop the (k+1,k- 1) f01 convenience.

The matrix elements of the product are then

T, = Tl](k+1,k) T11<k,k~1) + C(km k) T, (k,k-l) , (99)
Ty, = Tpp (el k) Ty (k1) o+ T S (k1 k) T, (ks k-1) (100)
Ty = Tgl(k+1,k) Tll(k,k—l) + ng(k+1,k) Tgl(k,k—l) s (101)
and

T, = Tel(k+l,k) Tlg(k,k~1) 00(k+1 k) TWD(k k-1) . (102)

This matrix multiplication yields the following complex elements of the

product matrix:
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T, = % T Ko (O T T (O 2[R (2)1 (2+h) + T (2 )R, (2+h)] (105 )
Qg R O 7T o D2 o)1 (2R () = K (2 )T (7))
(M1 P 171 T O Ty P 1o Gy 7 [Ky (21 () = T (2 )k (0

+ (Hk+1/pk—l nk-lrk—llo(ak-lrk—l )Kl (O/k+lrk)(z+h)|:lo(z-+h )Kl (z) + Ko(z%—h )]’.1(zﬂJ

T, = G T T (0 T )Il(Qk_lrk_l)Z[KO(Z)Il(z+h) + IO(Z)K1(24T1H (105)

- (pk+1/pk)ll(ak_1rk_1)Il(ak+1rk)z(z+h)[Ko(z)Io(z+h) 1 (2)K (2h)]
G/ e P T Y0 O iy ¥ Tt (G LK (21 ) — 1) () (2]

- (p‘k+l/pk-1)ak—lrk—llo(ak-lrk—l)Il<uk+1rk)<z+h)[Io(z+h)K1(z) * Ko(“h)ll(z)]’

T, = r K. (o )T (zh) + I,(z )k, (z+h)] (104 )

12 % Y FiKo (% oy K O‘1<11<1)7[K
# (/g Ky Gy Ry Oy g Je (e[ (208 (2m) = 1 ()R (2 0]

= (/v 1 29 Ko (O Ti % g g Ko (O g Ty [T (2K (=) - L) (2K, (z+h)]

= (er /ey 17180 1o Ky (G ) [T (K, () + 1 ()R (et )
and
Top * sk Cen T Ky O 2[R ()1 (0] 4 T (20K, (0 )] (106)

= (g /1 Ky (0 x0T (@ 7, )z (2 )[Ry (2)T (240 ) = I (2 K, (2+h )]

= (e P 1T 1 R0 G P P B o G k)[K (2)1) (2+h) — Il(z)Kl(z+h)]

Gy /P % 7 1Ko @ Ty )T (@ g7 ) (0 [T (2K (2) + 1, (2)K, (z+h)].
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Note that the functions in the square brackets in each matrix ele-

ment are just four combinations of modified Bessel functions:

Gl(z,h) =2 z[KO(z)Il(z+h) + Io(z)Kl(z+h)], (107)
G, (2,h) = z(z-'rh)[KO(z)Io(z-Fh) — L,(z Ky (z+h 1, (108)
G5(Z’h) = [Il(z+h)Kl(z) —'Il(z)Kl(z+h)], and (109)
6, (z,h) = (z+h)[IO(z4h)K1(z) + Il(z)KO(z+hj]. (110)

These functions are calculated by a subroutine named GCALC, which will be

described separately.

The matrix elements are, then, in the case of the thin region, n,
Tll N OLrHl nKO( n+l n)I ( -l)Gl(Z’h) (111)

* (Hn+1/un)Kl(an+1rn)11(ah—lrn—l)GE(Z’h)

G /i 1 2 1 T (0 g7 P K (97, 065 (251)
* (“n+1/‘n 1% -1%n-1%0 <mn—1rn~1>Kl(an+1rn)Gh(z’h) ’

T12 = OCnil nKO( n-1 n)Kl(an~1rn-1)Gl(z’h) (112)
+ (“n+1/u )k (x NEN )K ( - 1rn-1)G2(z’h)

N‘(Mn/un— uﬁ%lrn O(a <1rn)ah~1rnolKO(an—lrn-l)Gﬁ(z’h)

——(Hn+1/pn—1)jn—lrn—lKO(Qh—lrn-l)Kl(un+lrn)cﬂ(z’h) ?



Tgl 1z an+1rn:[o<@n-§<1rn )Il( ]_ n- I)G (Z h) (1]5)
TN S C RN NP S CPLIDCCIY

+ ('un/un- r )G (z,h)

) n- 1 n-1 O( n- 1 n- l)an+lrn10(an+l

-<Hn+l/un—l> n-1 n IIO( n- 1 n- 1) (an+lr >G (z h)’ and

T . = O r I/(OL

)
oo ¥ Py TnTo (O r R (@ g )6, (2,h) (114)

= Gy /e R (e e T (e 06, (2,h)
w‘(pn/un-l) n-1"n-1 O( n-1"n- l) n-+1"n O( rn)Gﬁ(z’h)
+ (Hn+1/un»1)gn 1 n- lKO( n- 1 n-1

)Il(ah+lrn)Gh<z’h) .

A listing of GAMCAL follows.



oReNw

C
C

o

100

105

110
115
120

1

SURROUTINE GAMCAL (GAMKE, GAMIM)
IMPLICIT REAL*8 (A~H, O-7)

COMPUTES THE KREAL AND IMAGINARY PARTS €F GAMMA
DIMENSION T(B)Y,UCA,VI3),F(BY,G(B)YZ(H)
COMMON /REGION/ ROIM EMOTIDI L, PERMOT10) ,KLIM
COMMON /TEMPS/Z AC39)

THE FOLLOWING EOQUIVALENCE CONSERVES STORAGE
FOUIVALENCE (TC1)YsAC1)) s (FC1),AC9)), (GCIXLACLITI),

(ZC1YLAC25)), CUCTIYAC33Y)s (VIT)LAC37Y)
COMMBN /ALPO/ ALFA,ALSE, ALFU

NREG NUMBEKR OF CONDUCTORS BUTSIDE CATL
KL IM ONFE MORE THAN NREG
RCI) INNER RADIUS

EMCID CGMEGA*MUCTI Y% ST GMACI Yk RBAR, %
PERMCIY PERMEABILITY (MU}

ALFA ALFPHA, VARIARLE @F INTEGRATION
AL sSe ALFAx. 2
ALFQ ALFAX¥ 4

Ucty=0. DO

uez)r=0. O

Ue4d=0. DO

Ue3r=1. 00O

A1=DSOKRT (e SDOXKCALSC+DSORT(ALFA+EMC1I%%2)))
AP=. SDOXEMC 1Y /AL

Al = KECALFAC1))Y, A2 = IMIALFACIY)D

K=o

BEGIN LOOP ON RKEGIONS

Bl=Al®KR{(K~1)

R=ARxK(K~1)

TF(R2.NFE. 0. DOY G& T 110

CALLL MODBES(RILFC(I)SFC3),F(D),F (7))
FC1I=FC(1)YxB]

FO3)=F(3)%xB1

DO 105 I=2,%,02

FCId>=0.D0D0

G T 115

CALL. CMDEES(B1,B2,F)

b 120 1=1,8

ZC¢Iy=FCI)

A3=DSOERTC 5DOX CALSO+DSORT(ALFO+EMKI¥%2)))
A4=e SDOXEMIKDY /A3

ITF(K« EQa KILIMY GB TG 140

CHECK FOR THIN KREGIGN

TREL=(R(K-1)-K(KII/R(K=~1)
IF (TREL.GT. . 1D0Y GO T3 140



THIN KEGICN - EVALUATE RBESSEL FNS OF ALFAMK+1)*R(K)

AS=DSERT (e 5DO* (AL SCH+DSOKTCALFO+EM(K+1)%%x2)))
Ab=e SDOKEM(K+1) /A5

BS=AL%RIK)

B6=N6x Rk (K)

IF(R6.NEL 0. DOY GO 10 130

CALL MODBES(RS,FCI)SF(3)>»F(S),F (7))
FCid=FC1)*%xBS

F(3)=F(3)«R5

DO 125 1I=2,8,2

FCIY=0e DO

GO TO 135

CALL. CMDRES(EBS,B6&,F)

CALLCULATE G FUNCTIBONS
CALL GCALC(A3,A4,K, ()
CALCULATE EFLEMENTS @F T MATRIX AT K(X)

Ct=PERM(K+1)/PERMK)
C2=PERM(K) /PERM (K=~ 1)

C3=C2%C1
Z1=Z(0¥xGC1Y~7C63 5GP
Z2=7(0)3kGE2)+Z2(63%GC1)
TCI1Y=71%kF(3)-Z2%F(a)
TC2Y=7 1R F(AY+Z2%F (3)
TEOY=Z1.F (1) -72%F(2)
TCEY=Z1RkF(2)+Z2%F (1)
Z1=7CTH)*GC1)-7(8Y* ()
22=7.CTIRGI+Z(RY%GC)
TO3Y=Z1%F(3)-72%FC4)
TCaY=71%F4Y+7.2%FC3)
TCIY=71%F(1)-72%F(2)
TCRI=Z1REF(LI+72%F (1)

71270 %GC-ZCXRG4A)
Z2=Z(OYRGEC+7 ()Y RGECRD
TCI=TCI+CIK(ZN1*F(TI~72%F(5))
TC2Y=T(PI+CI¥ (Z 1% F(8I+Z2%F (7))
TCSI=TCHY~CIR(Z 1% FCOY-7ZPxFC6))
TCEY=TCEI-CIR(Z1kFCEI+Z2KkF DY)
Z1=ZCT)RCCRY=Z(BYRGCH)
Ze=7CTykECLY+Z(R)¥%GC3)
TCHI=TCII+CIR(Z1xF(TI-72%F (&)
TCO=TCH+CIR (71K F(BY+ZPxFCTI)
TCTOD=TCII-C1R(Z1%F(D)-Z2%F(6))
TCRIZTCRI-CI. (Z 1 F (6 HZ2%F(5))
A EVASDEICIG-DEVAG-DE JCEED
Zo=ZC1)RGEHITZC2IRGIS)
TC=TCI+C2k (Z T, F(B3)~ZE%FCA))
TC2)=TC2Y+C2k (Z 1% F(D+Z2%xF(3))
TEI=TII+CER(ZIRF (1) -Z2%F(2))
TCOI=TCEY+COR(Z 14 F(2Y+Z2%F (1))
ZI1=7C3IXRCOI-ZCH*GCH)
Z2=7(MxG(OI+Z(3I*xGC6)
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TR =T -C2x(Z1xF(3)-72%F4))
TCO=T(H-CP*(7IXFCL+7PxF(3))
TCH =TT -C2%(Z1*xF1Y-Z2kF(2))
TCEI=TCRI-C2% (Z I F(2)+72%F (1))
ZI=7C10%GCTI-7(2¥*%G(R)

Ze=Z (12X GI8Y+7 (L)% GCT)

TCI=TC1+CBRZIRFCTY -7 2% F (&)Y
TC2Y=TE2I+ 0% (Z T F(BI+Z 2K FCT))
TCOI=TEOI-CR4(TI*F(DI-Z2%F(6))
TCHI=TCEY-CBR (71X F(EI+Z2%F (D))
A EVAGOOLIC QB EFAEDEICLIED

Z2=7 (3, G(RBI+Z (LI GCT)

TC3)=TC3Y-Ck(ZNI%F(TI~Z2%F(E))
TCO=TCA-CBx(Z IR F(EIFZ24F (7))
TCH=TCI+C3%(Z IR FIDI-Z2%F(6))
TEI=T(8I+CIR(Z1*FCEI+Z24F(5))

UFPDATE K AND ALFHA

K=K+2
A1=45
A2=A6
G T 160

THICK REGIAN - CALCULATE BESSFL FNS @F ALFA(KI*R(K-1)

140 CONTINUE
B3=A3*xR(K-1)
Ba=Ab4kR(K-1)
IFCB4.NEs 0e DOY G@ TE 150
CALL MOBDBES(B3,FC1I>F(3Y,F(5)F (7))
FC1I)=F(1)%B3
F{3>=F(3>%xB3
D@ 145 1=2,8,2

145 F1)=0. DO
G@ T 155

150 CALL CMDRESCR3, B4, F)

CALCULATE FLEMENTS @F T-MATRIX AT R(K-1)

155  P=PERM(K) /PERM(K=1)
TCII=FCBIRZ () =F (%7 CEI+ PR (FCTIRZ (1) =FC(RI*7(2))
TC2I=F(3IRZCEI+F (A7 COI+PRCF(TIRZ () +F (RI%7 (1))
TC3I=F(3IKZ CTI=FCA k7 (BI=Px(FCTI*Z(3)~F(RI*7C4))
TCA)=F {3 KZ(RI+F (I *ZCTI=PRk(FCTIXRZCL+F(BI%7 (3))
TCSYZFCIIR7 C5)=F(2)%7 (6)- Pk (F(5) 47 (1) -FC6I%Z(2))
TCOY=FCIDRZCEI+FCRIR7 (S -PRIF(S5I*7 (2 +F (EI%7 (1))
TCTI=FCIIRZ CTI-F (2% Z (B34 Pk CF (5K 7 (3 =F C6IK7 (4))
TCRI=F (1 K7 CBY+F (Y%7 CTI+PRCFCSIRZC A +F (6 %7 (3))
K=K+ 1
A1=A3
AR=A4

MULTIPLY TU = V, STOKE V INTOQ U

160 CONTINUE
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VI STOD U =T(2 U2+ T IR U3 -TCLYRUCH)
VI2I=TCDIHUC2XI+T2IRUCII+TODI*UCAO+TCL)RUCI)
VEDI=TEDAUCDI =T RUCY+TCTIRUCII-TIBYRUCD
UCL=TEDIHRUCI+TCO*UCII+TCDHUCAY+T8Y KU
Ue3)y=ved
CPI=vea)d
Ue1y=ven)d

CHECK FOR MARF RFEGIANS
ITF(K: LF« KILLIMY G& T3 100
CALCULATE GAMMA

TEMP=UC4Y 7UC3)
DENG=TFMPxUCaY +UC3)
GAMRE=(UCIY+TEMP+UC2))/DEND
GCAMIM=CU(2Y~TEMPxUC1))/DEND
RETURN

FEND



II. B{3a) GCALC

This subroutine is used to implement a special procedure for "thin”

conductor regions in the computations of GAMCAL for the gamma factor,
Uy /o

GCALC computes the real and imaginary parts of the four functions,

G, (z,h) = Z[Ko(z)ll(z+h) + Io(z)Kl(z+hi], (115)
G, (z,h) = z(z+h)[KO(z)IO(z-+-h) = I, (z K (z#]], (116)
G5(z,h) = [Il(z+h)Kl(z) —~11(z)K1(z+h)], and (117)
6, (z,h) = (z+0)[T, (240K (2) + 11(2>Ko(2+h)]- (118)
In the above functions, z = ¢ r, , and h = ork(rk - rk~1) in keeping

with definitions in the rest of this report.

To preserve accuracy in the calculation of the G functions for h
small compared with z (i.e., a thin region), we expand the Bessel func-

tions at z+h in Taylor series about z:

o k
I (2%h) - kgo r (e (119)
0 k
I, (z+h) = égg Il(k)(z)ET , (120)
o K
Ky (zh) = k};O k), (121)
and o K
K, (a+h) = gg% Kl(k)(z E; (122)

where Io(k)(z) = (%E-Io(z)>k
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Derivatives are needed for these Bessel functions at z. Use at made of

the known relations,

1,86 -6 e, (125)
nMe) 1) — L6, (124)
kU0 = 1 ), an (125)
x, M) -k 2) - Lx (=) (126)

For k = 1, Eq. (124) is a case of the general relation,

[ 0y o kg 1)

o)+ 1,0y kg KRy (127)

This can be verified by induction on k. Replace k in Eq. (127) by k+l,
and compare the result obtained by differentiating Eq. (127) and adding

1/z times Eq. (127) to the result.

Similarly, Eq. (126) is a special case, for k=1, of the relation

- 7

), () S gy —x B - §55l1~Ko(k"2>(z) . (128)

To continue with preparations to compute the Taylor series, Egs.

(119) through (122), assume

1,0 = s (ng(e) 1 (2) 1, (0) - (129)

For k = 0, 1, and 2, and using Eqs. (123) and (124), then

So(z):l, To(z):O
Sl(z) =0, Tl(z) =1
s,(z) =1, T,(z) = — é .

Ly, Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, 1965, p. 376, formulas (9.6.27 and 9.6.28).




Tl

To determine four~term recurrence relations for Sk(z) and Tk(z), substi-
tute the expression in Eq. (129) with appropriate k~values into Eq. (127).

,(k+l)(z), and the result is

First, use Eq. (123) to replace o k)(z) by I,

S (2)0(2) + 1, (2T, () = “'Slék(z)lo(Z) + Tk(z)Ilﬁaﬂ
+ 8, (2)1(e) + 1y 4 (2)1(z) + 5§l{$k_2(z)lo(z) + Tk—Q(Z)Il(zﬂ' (13

By equating the function coefficients corresponding to Io(z), and also
Il(z), it is seen that Sk(z) and Tk(z) both satisfy the four-term recur-

rence relation

S (2) = "S'Sk(z) F Sy (z) Kk:l).sk_2<z) . (151)

Z

The same recurrence relations in Eq. (131) can be derived by using direct

differentiation on Eq. (129).

The parallel procedure can be carried out to develop expressions

Pk(z) and Qk(z) so that

,U6) = B () K (0) + 0 () K (=) - (152)

In this case, using Egs. (125) and (126),

PO(Z)=1, QO(Z):O)
Pl(z):O; Ql(z)z -1,
and
1
P(2) =1, o (s) = L
Substitution of Eq. (132) into Eq. (128), using Kl(k)(z) = -K0(k+1)(z)

from Eq. (125), yields four-term recurrence relations for both Pk(z) and

Q(2):

Poq(z) =~ (z)+ B (e)+ SEp (a) . (133)
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From the initial conditions, we identify
Pk(z) = Sk(z) and Qk(z) = Tk(z) .
Then Eq. (132) is replaced by
£ 0y Ls () kR (2) ~ T (2) K (2) . (15k)
0 k 9 k 1

Further, by Egs. (125) and (123%),

k +1) _ﬂ
K ) - =k ) = = s ) k() T () K (=)
and
ey s ey S () 1) v () 1 ()
The expressions in Eqs. (119) through (122) in terms of the Sk(z) and
Tk(z) are:
oo k o0 k w0 k
oen) = 01 el = ) Losell ) B oneliy s 059)
o k o0 k 00 k
I,(zh) = gg% 11(k>(z>57': L,(2) ggg Sk+1<z)%T'+ L (=) ggg Tk+1(Z>ET ’
(136)
o] k 0 k « k
yeih) = ¥ @ =k, (2) PRENG e A I NENCY - L
oo k © k o k
Kl(z+h) = ggg Kl(k)(z ET': —~Ko(z) ggé sk+1(z)%?-+ Kl(z) ggg Tk+l(z)%T .

(138)

The Gl(z,h) function then becomes, using Eqs. (135) through (138),



3

k
2 T (20

—%K(AI(A)ZW“

Gl(z,h) = Z[KO(Z) Io(z) }: k{l

k , ok
81 (70 J

,1(z)h 2,
+ Io(z) Ky (2) Z '—l}““]—m = Ip(z) Ky (2) 15550 ke

o T, (z)hk
B Z[KO(Z) L (2) + 15(2) K1<Z>] 3 'k‘%;?f“” (139)

k=0

: IEAVRS
<0 Tk%l(é Jh

G, (z,h) = Y —— (140)

k=0
since the expression in the square brackets, the coefficient of the sum
is the Wronskian of the modified Bessel functions. Similarly, we find

o T (4 )h

G (z,h) = (z4h) Z , (141)

k
S (z )h
1 k+1
G, (z,h) = -~ o , and (142)
2 " k=0
k
S, (z)h
z-+h k )
Cbr(z,h) = = = (14%)
k=0
" o r X
Note that = = ~2 = & , which is real.
z ar . r
nn-1 n-1

These computations are performed in GCALC, making use of the four-

term recurrence relations derived for Sl'<z) and Tk(z).
AN

A listing of GCALC follows.



o0

SHBRGUTINE GCALCOASBNLBIGED
IMPLTICTT KEALXE (A-H>0~7)
COMMEN/ZREGION/FCIN) b F M1 0 PERMOTIO) s KLLI M
DIMENSTICN BL1GGOE)
X=fNkl(N=-1)

Y=B%[2(N-1)

T=RIN)~RK(N-1)

X1 =T%xA

XPXT =¥ T +X

ElTa=s] 413

YERET =t [A+vY

HO7 =T/ (N=-1)
BIGGCI)=1.D0-HG/
BIGGCTY=1.0100

BIGG(3)=Xx1
RIGG(S5)Y=BIGG(3)
BIGGC4Y=KETA
RIGGCEI=BTIEGC4)
HBIGG(2)=0.00

BIGGLXIY=0.D0

YK=2 .00

HYCHE = e SDO® (XTI ~ETAY X (XT+ETA)D
HKEOTM=XT%ETA

T=Y/Xx

izl «DO/ZCTRY+X)D

U= =lik]

FMMIM=Ey

TIV=-pF MM ™

AN |

L= - MM

CMOPERE =1 « DO

SRE=1400

TMIRE=1.D0

SM2TM=0.00

SMINE =010

GMY IM=0.00

SIM=0.D0

TMPRF =000

TM2TM=0.0L0

TMI IM=Q.D0

BEGIN LGCH &N K

DG 140 K=1,30

TO=0.120

T=TEERHKCRE ~TIMRHKOGIM
IF(BIGGC(3) «EC.0.D0XGE TG 100
TO=TC+DABS (L /7BIGGC3)Y)

100 BIGGC3X=BIGG(3X+T
T=TRERHKATM+T [MRHKGKE
IF(RIGG(AY .EN.0DOY GG 16 105
TO=T0+DABSCT/ZBIGGC4)Y)

105 BIGGCAI=RIGGC4)+]
T=SEERHKERE =S IM*HKETIM
IF(BIGGCTI)EOQ.0.D02GE T€¢ 110
TO=TO+DABSCT/ZBIGCECT )

110 BIGG(TI=BIGGCTI+]



o
3 0

—
A

T=SNE*HKEIM+S I MFHKERE
IF(BIGG(8YE0.0.D062GH 16 115
TE=T0+DARSCT/ABIGGELHEY )
115 HIGGOEI=BIGG(LKY+T
BV =R MMEE U
FMImv=FmMmImM+y
SPRE =FMMEE # SMERE =FMMINMASMZ IM+SMIKE +0 M1 M%5 T M= F Mixe kg
SR MR MmMp MR T M MM IMASMEFRASML IM-F M IM*BSRE~FME¥SIM
TPRE=FMMEF HTMERE ~FMMIMeTM2 IM+TMIRE+F MLk T ITM-p Mt &1 s
TRIM=FVMMELRTME LMAFMMAIM* T M2 R +TM] IM~F MMt~ Mish okl 1™
T=TPRERMCOP TR LM HKEIM
TFIRIGGEUI) EG.0.D0068 16¢ 120
TO=T0+DABSCT/ZBIGEOEY)
200 BIGGECIY=BIGGCLY+]
T=TPREFHKEIM+ TP IMERHKERE
IF{RBIGGECRY . FO.0.D0168 T8 125
TO=TO+DARSCT/BIGG(2Y)
125 RIGGL2I=RIGGL2Y+T
T=SPREAHKORE ~SPIMEHKETM
IF(BIGGECSY N 000066 TG 130
TO=TA+DABS(T/BRTIGES)Y)
130 BIGHISY=HIGGE(HY+T
T=SPREXHKE IMASP IMEHKERE
ITF(BIGGCEYWEG0.00360 T¢ 135
TO=TO+DARBSCT/RBIGGEEDD)
13 BIGGAI=RIGCGHI+T

TEST CONVELGENCE
TFCTNLT-1.0-1136G8 TG 145
DPDATE F@ER NEXT PASS

FMMRE =F Mk

FMMIM=FMIM

GLMOTR =M R

TRE
SMEIM=5MT IM
SV IM=51TM

TMINE=THE
TRE=TPRE
TMeImM=Tmt Im
TMI ItM=TIM
TiM=TPIM
XK=XK+1 00
T=(HKOREEAX T ~HKZTITMRETAY /XK
HKPBTM=(HKERERE TA+HKGIMAX 1) /XK
HAGRE =T

140 CONT INUE

NeN~-CONVERGENCE ALAKM

PRINT 1,70
1 FORMATC' 1 GCALC N@T CONVERGELD AFTER 30 TEKMS-TO="1r020.9)



76

MULTIPLY BY APPREPRIATE FACTERS

CENT INHE
T=BIGG(3)*XFXI-BI1GGC(4)*YFET
BIGGU4)=BIGG(3XkYPrT+BIGGE(4)kX1PX1
BIGG(3) =1
T=BIGG(SI*¥U-RIGGC6I kY
BIGGCEI=HIGGISIRV+BIGL(6)*()
BIGG(LH)Y=1]

T=1.D0+HG7
BIGGCT Y =T*BIGG(T)
RBIGGCEI=BIGGH)*]

FRT LN

FAND



II. B(%b) MODBES

The MODBES subroutine is used for real argument x to obtain the
modified Bessel functions IO(X), Il(x), Ko(x), and K](x). Rational

o)

function approximations = are used to give KO(X) and Kj(x) for all

12

values of x. Similar rational function approximations are used for

IO(X) and Il(x), when x is not greater than 1.
1f % is greater than 1, IO<X) and I](x) are calculated by a back-
- .
ward recursion system of Clenshaw?') which uses Chebyshev polynomials.
The accuracy of MODBES using the 360 computer and double precision

arithmetic is at least 15 decimal digits, as checked against the 608

1h
tables of Berger and McAllister (unpublished). b

A ligting of MODBES follows.

12
A. E. Russon and J. M. Blair, Rational Function Minimax Approxi-

mations for the Bessel Functions K (x) and K (x), AECL-3461, pp. 19-L5
- 0 1 -
(October 1669 ).

lJY- L. Luke, Mathematics in Science and Engineering, Vol. 1, pp.
327-29, Vol. 2, pp. 338-3L41, Academic, New York, 1969.

).

14B. S. Berger and H. McAllister, A Table of the Modified Bessel
Functions, University of Maryland, College Park, Md.
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NoJRVoIENoRINe N o BN Na CIE v S S SR O B I

O 0 O O D

WA -

LS

NeJENoIES (RNG BV, NG 4

SURKQUTINE

EVALUATES
FINCTIGNS T10¢X),

s

I1¢X)s

MODBES(X,BIO,BXO,RBI 1,EK1)

KOCX?

FINCTION APPROXIMATIGNS GIVEN BY A.

AECL-3461, BCT.

1969.

F.‘.

THE ZFEEKO-TH MND FIRST-ORDER MODIFIED RESSES,
AND K1(X),

UEING KATIZNAL
KUSSON AND J. M.

IMPLICIT

DIMENSION ANIODC15),

DATA ANIO /

DATA CNTO /

DATA BNIT /

REAL*H

(A-H,

127. 73343
190. 49432
H2e 48903
22. 27481
40 011677
0« 509 49
O. 4771

Ne 341

0. 19

0.

(&)

1. OCOK27T
Qe 4aa
017

0.

0

129.94511
181« 31261
62. 39591
16+ 33455
2e 07145
0e 287X 5
0. 2399
Qe 7

O.

0

B-7

CNIODc22>,

9g121
01727
27440
QP40 4
37601
33654
BT487
63317
24693
HT383
« 3260
0. 101
0.2

O

32054
51226
27006
12475
« 9135
0. 568
De 85
De 12
Oe
=Ce
-0
-0

0

RI032
60405
76337
05525
99063
55118
30791
30190
81567
32641
« 1119

ENT
811
428
2al
6223
79 349
399K 7
9K 174
66012
59 683
15496
21050
69126
(R 28
« 6098
0. 119
5% 740
LA920
3N
91099
81126
16965
13091
39425
29801
78956
33127
« 4497
« 1799
0e 965
O« 3%
0. 104
~0e 23
0.9
0. 4
-0.
38 &
703
3449
2207
47755
04672
478 40
15627
85754
38122
46284

1015y, DNI1C22)
D 00,
D 00,
D 0QC,
D 00,
D 00,
9 D o0,
14 D~01,
341 D~02,
1137 D~-03,

62236D~05,
STRIO 6D~ 6,
72769D-07,
128950D-09,
KILEOD~11>»
2Bo0R3D-12 /
D 00,
943 D~02,
5665 D-03s
2589 6D~-05,
BII02D-06,
KOR812D-07,
2228 5D= 08,
36400D-08,
67230D-10,
695 32D-10,
12763D~10,
338 64D-11,
79030D-11,
T4332D~12,
E0424D-13,
03934D-12,
95045D~-13,
55447D-14,

A44315D-14,~-0.85%864D-15,

TORTID-15,0.%676D-16/
D 00,
D 00,
D 00,
D 00»
D 00,
0 D 00»
55 D=01,
219 D-02,
16515D-04,
3098 6D-05,

56389D-06,

PLAT K,



COOCO0n

o)
o

oo

[oN ]

9

9 0. 32
9 0
2 O
9

DATA DNIT / 0« 27580 06023
~0s 2446 T4429
=0. 27 72053
0. 97321

-0 . 6297

- De £59

~0e 96

- (e 14

...0.

O

[

0

-0

-0

N tRScREXo RN JRN s BN o RN e e RN~ S o SN« Bl NP e NIRS I N % A BE

PT616
79290
« 167%
O« 30
2ELHD
63276
60763
46728
24238
61142
13872
01140
47563
71530
35408%
« 5102
« 1804
« 1023
~0e 52
0. 107
te 26
-0.9
-0 4
O

52023D- 0%,
55929D-10,
9I28D-11,

95296D~13 7/

9 D 00,
38 P-01,
8289 D-03,
02013D~05,
6398 1D~-06,
15424D-07,
?219420-08,
F0103D~ 0%,
16654D-10,
681070-10,
VAR 32D~ 10,
S56407D-11,
409 34D-115
594470-11,
6T7784D-13,
09419D-12,
11976D-13,
56129D~-14,

71335D-14,0.82924D-15,
TA262D-15,-0,8045D-16/

ANTIO AND CNITO ARE CHEBYSHEV COEFFICIENTS

TABLE 29, THE SPECIAL FUNCTIGNS AND THETKR

VBl.e 25, BY YebLs LUKES, FPFe.
ENI1 AD DNI1 ARE SAME F@Kk

33K~-339.

11X,

DATA C 7/ 0. 39894 22804 01432 7D 00/

TF{(X.GT. 1. DOY GO T8 100
XLOG=DLAGX)
T=X*%2

APPRUOX. 72 FOK 10 (PG. 2%

s AFCL-3461)

TARLE 30,

FOR TO(X) TAKEN FROI
APFROXIMATIONS,

PF. 340-241.

Q= (C(T-2. 506497244587 799D2)% T+ 2. 986571316305403D4)Y% T

1 ~1.612813630445819D6

P=CC(=1+ 641 445283729906D0% T-2. 9501 6578929588 4D2)% T
I =1 7984434409411 T7TD4AY%T= 3. 73337694448 4008D5) % 7T

2 ~1.612813630445819D6
BIO=pP/Q

AFPROX. 91 FOR 11 (PG. 31

s AECL-3461)

B=CCT=1» 9691448 625829399021+ T+1.914147162749989D4)% 7T

1 ~8.67326509597689405

P=C(=9. 015047822548 545D0% T~ 1. 1 6077805181711903)% T

1 4. 463717T103610666D4Y%T~4e 3366325479858 447D5

BI1=PxX/0Q

APPRODXe 28 F@R KOCX) + LNC(X) * T0¢(X)>

(FC.

19, AECL-3461)



~
o

o

o

coCcocoOooo

80

O=((T=-Pe PRERIVTILHTAIRTDOIX T+ 20 532571801 733452D4)% T
1 ~1+P875665024373463D6

P=C0((~3. 272279992574784D0k T~5. 1 35620533725094D2)% 7T
1 ~2.547074686782375D4)Y%T-3. S62T729 66%53%3909D5yx T
2 1. 4926953% 681 6498D5S

BRO=F/0-XILOGKBIO

APPROX. 50 FAK C(1/X)(K1(X)-LNCXDIT1I (X))~ 1/%X) (PG 23, AFCL-3461)

O=((T-2.814391575453873D2)% T+ 3 1264298 6T7206TTOND4Y %]
1 -2.2149374878324330D6

P24 81270704565 TEA44D=-1%T+99992137356742931D1)%T
1 +7e 18TO3R2A040R 450D T+ 1 TTHE1A46795090155D5) % 1

DG HPIZ2490198 21 3%T DS

FRI=X*FP/0+ 1. DO/ZX+XLOGKET

FETURN

Xe GTal

FEXFX=DEXFP(X)
SEEX=DSOKT(X)
D=EXPX#* 56 RX
T=1.D0/X

APPROXs 113 FER FXFOXI*SCRTXIAKOCX) (FCGe 37, AFCL-3461)

Q=0T+ 1. T2354T78937T60824D02)% T+ 3. 220845310178 108D3y* 1
1 +1eR89B3TIETAREIRI2KDAY % T+ 4 TA61R83671148535D4) %]
2 +5.801727020869990D4)%T+3. 6705146021 7T709D43%T
3 +1.201760212%0918204)« 7T+ 1. 9061351465789 01D3)% 7T
4 +1.13920564060955PL2
=0T 03025999029 462RD2+ T+ 2. 18155695128 444303)Y% 7
1 +1.9273R80098A00577DAYxT+5, PT759239666213026D4)Y%T
2 +ELTROEBITIC29 62336DAYx T+ 4. 423446358185698D4)* 1
3 414773247727 17615D)%T+2 37TT138K845157721D3y% 1
4 +1e 42TTRE5346%551302
BKO=P/ (0% D)

APFPROX. 136 FOR EXFOOD*SORTOXIRK10X) (PG. 45, AECL-3461)>

O=CCCCCCT+3. 01710376539510501))«T+2.281150883978967D2y*T
1 +6730124200199513D2X%T+9. 246057876003073D2) % T
2 160 3R5TPOBBR2RA594D2)k T+ 2. 244322524683622D2)% T

3 +3eT76TET1IT36TITIRTDIIKRT+2. 360LTISI2TTE3RS5DO
FE((CC(((6e982646013142394D=-2%T+6.94342949043755900)%1
1 +1.016245135256770D2)Y%T+5. 1902262767T4631402¥%1

2 +1.207119908800295D3)%T+1. 430398225341 416D3)%T

3 +9.005826147591565D2)%T+2.986452400790679D2)Y% 7T

4 +4. 833007694228 656D1)I%T+2.908171781643915D0

BK1=P/(G*D)

APPROXIMATIUNS FOR EXP(-X)%SORT(X)*I0CX)Y AND
APPRAXIMATE I0C(X)Y AND I1(X) FOR Xe Gl

USING CHEBYSHEVYV POLYNOMIALS AND BACKWARD KFECURSION SYSTEM
OF CLENSHAW, LUXKE, V@L. 1, PP. 327-329.
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OO0

81

IF (X.6T.8.D0) GO TO 115
CALCULATE T0CX)> AND T1¢(X)> USING TaNX/8)
FER 1elLTeX.LE.S

XOVERE = X/8&.D0

TPz XOVERS®x%x2

S = TP + TP - 1.0DO0O

ALFK = - S - 8§

K = 15

BKP110O = 0.DO

BKFP2I0 = 0. DO

BKP1I1 = 0.DO

BKP2I1 = 0.D0

105 BKIO = -~ALFK«BKP1I0 - BKP2I0 + ANIOCK)

BKI1 = -ALFK*BKF1I1 ~ BKP2I1 + BNI1(K)

TF(K. LE. 1) G T@ 110

K = K~1

BKF2I0 = BKFIIO

BKFII0 = BKIO

BKFZ2TI1 = BKPIILI

BKP1I1 = BKI1

GO T 105

110 CONTINUE
BIO = BKIO - S5«BKPIIO
BIl1 = XOVERS8*%(BKI1 - SkxBKPIID)
G T9 130

CALCULATE TO0CX) AND T1¢(X) FOR X.GT.8& USING TN(&/X)
115 CONTINUE

EGVERX = 8. D0O/XK
S = EQVERX + EOQVERX -~ 1.D0

ALFK = - 5 ~ §
K = 22
BKFP1IO = 0.DO
BKP2I0 = 0.D0
BKP1T1 = 0«DO
BKF2I1 = 0.D0O
120 BKIO ~ALFK*¥BKP1I0 ~ BKP2IO + ONIOMK)

Hou

BKI1 “ALFKxBKP1IT - BKP2I1 + DNI1(K)
[F(K.LE. 1Y G T¢ 125

K = K-1

BKP2I0 = BKP11O0

BKP1I0 = BKIO

BKP2I1 = BKPI1T1

BKP1I1 = RBKII

Ge T2 120

125 CONTINUE
D = EXPX¥C/SORX

BI0O = BKIO ~ S5¥BKP1IO
BIO = BIOXD
Bil = BKI1 ~ S¥BKPI111
BI1 = BII*D

130 CONTINUE
RETURN
END



II. B(3c ) CMDBES

The CMDBES subroutine is used for complex argument, z = x+iy. Let

b y2 be the absolute value of z. For R less than or equal to

& KO(Z) and Kl(z) are computed by a rational approximation method. This
is done by a subroutine named COMKB. 1In the same vange of R, Iﬂ(z) and
Il(z) are calculated by backward recurvence in a subroutine naméd CMIL.
Asymptolic series in CMDBES are used for R greater than & to obtain

approximations of IU<Z), K {z), Il(z), and Kl(z). Accuracy is at least

O

10 significant digits for these functions of a complex argument z, checking
. . . 11 2 -

against tables for the Kelvin functions (p. 379 and pp. 430-31), and

L

also checking against approximate values in ORNL-TM-%29%.

Following is a listing of CMDBES.
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e BeNeNeRe

e 2

L2

[ Re]

C

100

105

83

SUBROUTINE CMDBESC(XsYsF)D

IMPLICIT

CoMPULTES FCO1)
F33
FOh)
FOT)

GF THE

DIMENSION FO&)
R=EDSORTCXEX+YkY)
Ci=X/R

S1=Y/k
PHI=DATANCS1/C1)
IF(RGT.8.D0) GG

FER Halle8
AND BACKWARD

cal.l
FO3)=BKZK
FCa)=BK/II
FO7)=BKOR
FOs)=BKal
CalLL
FO1Y=h1Irk
FC2d =171
F(5)Y=RTIOR
FCes)=B101

G T 125
ASYMPTETIC
DG 105 1=2-8,2

FCI-1)=1.B0
FO1)=000
DD =1 .0
T=1.D0

11=1 D0
P=1.D0
SIGN=-1.D0
V=e125D0/1
C=C1

5=51

DO 110 N=1,L5
RA=~GDDNEDD

57 =Y/

T=GTHS6%T

U=tk (4 DO+36I%5T
T1=C%1
FOI)=T1:SIGN+F (1)
FO32=T1+F(3)
Ti==5%T
FO2)=T1HSTGN+F (2D
FC4)=T1+F C4)
T1=Cx*t

+
+
+
+

TG

LS=3+IDINT(20.D0/R)

REAL*XE (A-H,

G9-73
J ok FC2) = 7 % 100D
J R FC4) = 7 ok KOGZ)
Jow FCe) = I11(Z)
J ok FU8)Y = K14z
Zo= X o+ J %y

CoMPLLEX ARGUMENT

160

USE RATIGNAL
RECURRENCE

SERIES

FaR

COEMKBIXs Yo BKZESBKZLsBKOR>BKOL)

CMICHsYsBIZRsBIZ71,BIGR,BIGI)

Folk ReGT o8

APPROXIMATION FER KOCZY AND K1(ZD

I0CZY AND 11CZ)



C
C

[N

[l R

FOS)Y =1 0TGN+ CO)

T
1=
P OA
A
S16G

(=
[SE02D]
Ce=

[R—_

Yl +a (7D
Y=
AN I N )
INE R RERY
+1 et
=i g
[ e

(IR IR

[

0 e
=
RS
1

N
S

ARG

g
L

N
M
150
-
PO
o

Tt
Delp ()
1ajiv/0 6

[ FA N T

LI R S A

iy

Te?n33 14137

TR A

eS0T

SOHSCAIG)

SINCARGD

el by

11 O NaEP ™

IOERE

By

FROTONFE (6D

MY 2352710

DRI IPIVE

UGl Al

Do N HD =k (o~ 1 Y

-1 =1

CONT FAE
SEINCTI
GELEINCGY)

De

O
RO

VUL LY

I

120 N=1s554
T=FONYRC=F (N1 D RY
+1 HOPCNFIIFCHEONDIES)D

)=

NS . BY

T=r (N+2 )0 +F N3 S

PN
o
Con

+3y =t
4+ =
TINUE

S

MU 1LY

[

T=Xkp (1) =yap (2D
FO2Y= ()Y il (23 &K

1

) =1

T=Xkp C3)~Ykr (4)
FOAY=F{3d%Y+HE (45K

(3

DN

B

)=T

R

CEIYANT RN

8k

(SR
S1711

N OO A L LS ol U]

SO YO Ry )

T Cr N EZ Y RC - ONHE ) HRE)D

FUNCTIENS

AN

BY ¢

AN

JoF LINCEHIZE)D

K

Sl (P L/

Pl

FNG .

175001 0L

v

Y

STHFEAPC=JdAaY)
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IT. B(3ci) COMKB

The COMKB subroutine is used to obtain the modified Bessel functiouns,

KO(Z) and Kl(z), for complex independent variable z = x+iy. The absolute
value of z must not be greater than 8 to insure that the rational
[y

; " .
approximation ’ method is successful.

A listing of the COMKB subroutine follows.

1>Y. L. Luke, "The Special Functions and Their Approximations,” p.
229 in Mathematics in Science and Engineering, Vol. 2, Academic, New
York, 1969.




C

C

C

SO

LEUT YN
IMPLICIT

i

COMKBC Xs Yo BHZI, BXZI, BKORs BKGL )
tALEE (A=-H, ©-7)

COMPUTES THRE KEAL & IMAGINARY PARTS GF THE MOUIFIel
BiS Gl
BY THE MrTHEOD GF Yelo LUKk, THE SFECIAL FUNCT
AND THETE APPROXIMATIENSs VELeZ2s, PGe 229.

DIMIENS TON
DIMENSION PICNC16Y5, P2ENC16), P3ENC16)s WIGNCLO)

DATA

DATA

DATA

5
DATA

W A -

[ORN S

DATA

Ui W -

DATA

ConWON -

F17E

F37E
E
2>
2
>

2

017k

W M e NN

P1aN
>
>
P4
>
s

FP2ON
»

>

s
3
P36N

>

FUNCTIONS KOCZY & K1Cz)s WHeERE 2 = K o+

P17EC16)s P2ZECLI6)s P3ZECLE) S, §1ZIC162

/3%0«D0
“1.59863945576D 00,-1918518518520 00,
-0 L,2491T81T2260 00, ~2.347878781T880 00,
~D L A4B32H8TIE52KD 00,-2.53181272509 00
~2.0605790476190 005,~2634639470390 00>
2. 681273364940 00/
/3% .00
6.32653061224D~01, 1072074074070 00
1603550295861 00, 177333333333 00,
2.013%50415510D 00, 2.102040681633D0 00,
2.234400000000 00» 2.292106106996D 00
P«37T9812695111 0GQ/
/3%0«D0
“3.40136054422D~025~1+55555555556D-01,
~3454372123603D~015-4-254545454550-01»
=5.3056325002310-015-5.70228091236L-01.,
~6e32609523810L~01,-657541599571D-01»
-6.9%539330173D-01/
/3%0 .00
1.63265306122D0 005, 1.382716049380 0UU»
1041420118340 005 9244444444440 -01 s
TeH346260368780~C1,s « 8934240362801
H.EKEO00000000D~015 5486966449930 -01»
4828303850160 ~017/
/3%0.D0
-] WBEESEREEEHEID 005 ~2.0909090%90910 00,
~2¢33333333333D 00,-2.411764705880 00,
-2.523809523810L 00s-2.565217391300 00,
~D.629629629630 00,-2.65517241379D 00
~2.6969696969TD QG/
/3%0 D0
TeTTTTTITTTTIED~015 1e181818181G2D 00>
1.6666666666T7T0D 005 1.82352941176D 00,
2.047619047620 00, 2.130434782610 00
D2e025925925926D 00, 2.31034482759D 00»
2393939393940 00/
/3%0.D0
1.11111111111D~015-9.090909090391D-~02,

»~3.33333333333D~015-4411764705582D~01,

>
Ed
>

010N

-5.238095238100~-015-5.65217391304D-01»
—6+R29629629630D-015~6.55172413793D-01»
~6.969696969700L-01/
/3%0 D0
1T«7TTTHTTTITTED D02 1454545454550 (U»
1.066666666670D 00, 9.411764705880-01,
7.61904761905D-01s 6.95652173913D-01»
5.92592592593D-015 5.517241379310-01,
4o 8AK4BAK4848D~-017

I1xY,
1GNNS

~2.114021341790 0U
~2e4234761T7TT800 00
~2.571982887270 00
2659548100690 00

1.38016028926D UU
190657 43944060 00U
24175803402650 UVU
2e3308882268300bL 00

—2.6056434474621-01
~d4.53098216662L-01
=6 03820515372L-01
~6H47193341260400-01

1190082644630 00
Be30449526990u~-01
6351606800291 ~01
5136741973840 -01

-2.23076923077D 00
-2 473684210530 00
~2.60000000000L 00
-2 677419354840 U0

1.46153846104p 00
1.94736842105D 00
2.200300000000L 0O
2354838709680 00

~2.30769230769L-01
-4.736842105260-01
-6.00000000000L-01
~6eT774193545839H~01

1230769230770 00
Bea210b263158D~-01
6+4000000000GD-C1
5.161290322580-01
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100
105

(9]

c

OO0

C

C

87

DATA C/1.25331413731550 00/

DIMENSION RTEST(S)Y, NTELT(S?

DATA RTEST/ 1.D0s 4.005 16.D0s 36,00, 644007
DATA NTEST/ 15, 10, 10, 65 6/

FIND NTERM, THE NUMBER BF TERME
Wi ASSUME THE ARGUMENT HAS BEEN CHECKED To INSUKRE

HS0 = X*%k2 + Y&
D 100 1 = 2, 5

IT =1 -1
IF(RSO LT« RTESTCIY 3 G2 T8 103
CONTINUE

NTERM = NTEST(IT)?
INITIALIZE FK-1s FK=-2, AND FK-3 F@r N=0 AND N=1

FKM3KZ 1.D0
FKM3RE = 1.D0

i

PRM3EZ = 1.00
PKM3RG = 1.DO
FKM317 = 0.D0
FRM3IEG = 0.D0
PKM31Z = 0.00

PKM3IG = 0.D0O

WY = X%16.D0

FKMRRZ = (HX + 9.D0)/9.D0
PEMERZ = (HX + 7.D0)/79.D0
FR o= X% 3.2D0

FHM2RD = FX + 1.D0

PRKM2RE FRMZEE + 1.2D0
FKMPIG = Y*3.2D0

PRKM2IO = FKMZ2IQ

HY = Y% 16&6.0C

FKM21IZ = HY/Z92.DO

PKM212Z2 = FRMRLZ

HYS = HY®%*2

T = HX + 25.00

FRMIFZ = (HX*T + 75.D0 ~ HYS3)Y/75.00

FUMEITZ = HYH(HK + TI)/T75.00

T = HA + 23.D0

PKMIRZ = (HX*T + 43.D0 - HYSI/75.D0
PKMITIZ = HYX(HX + 1T)/75.D0

T = HX + 21.DC

FHMIRE = (HX¥T + 35.D0C - HYSL)/Z735.D0
FrRMIIQ = HY®{HX + TX/35.D0

T = HX + 27.D0

PKMIEC (HX*T + 131.D0 =~ HYS)/35.D0
PRMITO = HY®(HX + T)Y/35.D0

]

BEGIN RECURNENCE

NE 110 K = 3, NTERM
KPPl = K + 1

CALCULATIONS OF FKR7Zs FXIZs» PKRZ» AND PRIZ FER N



aao

F1
PO =
B3 =
N1 =
Hx =
HY

1t

P17FCKP1)

PE7HCKET)

F37ECKP1)

G17F CKP1)

01%x%

O1%Y

T1 FRMIRZ + FKM257

T2 = FKM1I7 + FrM217
FKIZ = HXkT1 - PIRFKMIRZ
FKIZ = HX®T2 = PL&FKMI17
FKM3RZ = FRMZi7/

FRMEEZ = FKMIRZ

FKMIE7Z = FKR7

FKM3T7 = FKM2T7

FRM2I7Z = FKM11I7

FKMI17Z = FKI7
Tl = PKMIZZ +
To = puM1lz +
PKKZ = HX*T1 -
PKIZ = Hx*12 -
PKM3K7Z = PKMPRZ
PKVM2R7 = PKMIRZ
PKMIZ = PKRZ
PRM3I7Z = PKMRIZ
PKM21Z = PKM1I7
PKMI17 = PKIZ

H

1

PKMEZR7

PRM21Z
PlEPKMIRYZ
PldxFKMLIZ

i

i

ii

I

CALCULATIBNS GF FKHO»

21

1

P1ENCKPT)

P2 = PRONCKF1)D

P3 = P3ONCKP1)

1 = Q1GNC(KP1)

HY = Q1%¥%

Hy = @1%Y

Tl = FKMIRG + FKMZRD

T2 = FKM11Q@ + FKM2I1G
FKRE = HX*T1 - P1%FKMIRO
FKIG = HX¥T2 - P1*FKM11@
FXM3KED = FKM2RE

FKMZREB = FKMIRO

FKMIRD = FKRD

FKM31E = FKM2IG

FRMZEL1E FKM11@

FKM11I® FK1@

Tl = PKMIREG + PKMREO

TP = PKMIIOQO + PKMZ2I1C
PKRE = HX*Tl - PL®*PAMIRE
PKIG = HX¥T2 - FI1*PKM110
PKM3KG = PKM2RO

PKM2RO PKMI RO

PKMIRG PKRO

PKM310 PKM210

PKM2 10 PKM1 1@

PKM11IO = PKI®

CONTINUE

([T

it

o

H

88

P3*¥FRKM3ML
P3*FKM3TI 2

HY*T2
HY*T1

-~ P2HRFKMERZ
- PREFKMZIZ O+

= PE*PKM2KZ
~ P2kprRMzIZ +

3

HY*®T2
HY*T1

L

P3*¥PKM3K 2
PIRPKMIL Z

FKIGs PKRE> AND PKIG Fok N = 1

- PE2XFKM2RE
- P2%FKM21G +

HY*12 -
HY*T1 -

P3*%FKM3RD
P3*¥FKM310

P3FPKMIKE
P3*%PKM31G

- P2kPFRKMERE -
~ P2)PKMZ216 +

HY*Tz2 -
HY*=T1 -



OO

&9

EVALUATE CONSTANT TERM FOR KOCZ)Y AND K1d(Z)
C I35 SOUARE REET @F Pl/2

X2 = =¥
EMX = DEXPOX2)
D = DSORTCRSOD

Cz2 = EMX*%C/D
SR = DCOsSCY)
TI = = DSINCY)D

TFCYNEOQDO) G TO 120
IF(X«GE«Q.DOY GEZ T€ 115
HI = DS@RTIXZ)

Gyt = 0.D0

Ge T 125

GR = DESORTXD

HI = D.D0O

Gg To 125

GR = BSART(X + DI/2.00)
HI = DLORTCXZ2 + DIY/2.D0)

IF(YLT«0.D0XGE TG 125
HI=-HI

= C2%(GR*SR - HIKTID
Bl = C2k(HI4%Sk + GR*TIL)

CALCULATE KO(7) = BKZRK + BKZI*I
DEN = FKRzZ#%2 + FRKIZ®*x2

UR = (PRRZ*¥FKHZ + PKIZ¥FKIZ)/DEN
VI = (PKIZFFKR7Z = PKRZ¥FKIZ)Y/DEN

BKZR = AR¥UR -~ BI%VI
BKZT = BI%UR + ARxy]

CALCULATE K1{(Z) = BK2R + BKGBI*I

DEN = FKRE*¥%2 + FKIG*%2

UR = (PHKRE¥FKEG + PKIGHFKI@)/DEN
VI = (PRIZHFKEG - PRRO¥FKIG)/DEN
BKEFE = ARFUR - BIxVI

BKEL = BIXUR + ARyl

BN
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II. B(3cii) CMI

The CMI subroutine is used to obtain the modified Bessel functions,
IO(Z) and Il(z)J for a complex independent variable z = x+iy. A back-

ward recurrence method is used, which is derived from the recurrence
11 .
relations (9.6.26), p. 276.

A listing of the CMIL program follows.



¥
C
C

R e Rl

C
C
C

G

100

105

110

115

120
125
130

SUBROUTINE CHMIC(KXsYsBIlZRsBIZIsBIOR,BIGI1)

IMPLICIT REALXE (A-H, 9-72)

CAMPUTES THE RKEAL AND IMAGINARY PARTS BOF

FUNCTIONS @F THE FIRST KIND.

BACKHARD FECURRENCE

DIMENSIGN FRE(S2),FIMCS2)
DATA A-B/1.D0-3551.D~35/

CALCULATE N, THE NUMBER OF TERMS

R=DSORT CXHkk2+YERR2)
IF(R«LTT7.D0OOGE TG 100
N=30

GG TY 130
IF(RLE.6.D02GG TE 105
ZN=5.D0O%R-4.5D0
GU T 125
IF(RLT-3.0002GH
N=25

Ge 1 130
IF(RLE.2.D02G@¢ T9 115
ZNz=5.D0%R+105D0

Ge T 125
IF(RLT«1.D02GE TG 120
N=20

GZ TH 130
ZN=15D0%R+5+5D0

N=ZN

CONTINLIE

=
3

110

COMPUTE U AND Vs REAL AND

T=Y/X
U=2.D0/ CTHRY+X)
RS

INITIALIZE

FRE(N+2) =0 .00
FIMINA2)Y=0.00
SKRE=4
FREN+T Y =4
SIM=R
FIMIN+T)=B
YN=DFLBAT(ND
TNUG 7R = NHY
TNUGZ T =X N%y
NU=N+1

BACKWARD RECURRENCE

—_—

26 135 K=1,N

ol

t
SRE=FREMNI~1)+5KE

IMAG

1002

PARTS BF

THIE

AN L1020,

2/7

MEODIFIED BESSEL

Z

REONU~T I =FRENUF D A TNUG ZRFRE N =TNUBZ I %F IMONL)D

X

+ 1%kYo»

BY



92

FIMONL=T)=FIMONU+T Y+ TNUCZIRFIMONUI +TNU LA Lxr b CNWLD
SIM=FIFM(NU=1)+51M

NIFETIREEY

TNUGZ=TNUEZR~U

TNUCZI=TNUCZI -V

CENT INLI

ADJIUST SUM

E+DRE-FRECL)D
=SITM+SIM-FIMOL)
Tl=51IM/ s
U1=1.D0/7CT1#GIM+5LED
Vi=-Ul#71

NORMALT ZE

Y =REXE X))

SY=DSTINCY)

Cy=0n0usCy)
FPANRE=EXR(CYRUL-SYHRVLED

PN ITM=aE Xk (C YU+ y®1)
BI7Zr=prani o m Y ~FANTIM&EIMOL)
BIZI=FANUE AR IMOL Y FFANTIMERINECL)D
BRI =FA? SN N G R T SN B B R A
RIGI=FANTek IMO2)Y+FANTM*F KE2)
T CHON

N
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ITI. EXECUTION OF INNMUL

A. TELINC.F4 Program

We shall give some comments and instructions for the execution of the
INNMUL subroutine. It must be used on the IBM/360 computer because of the

critical importance of the real*8 arithmetic.

The program may be submitted with data to the IMB/360 computer from
a user's teletype via the PDP-10 computer. The results of the calcula-
tion may then be stored on the PDP-10 user's disk file to be printed on

the user's teletype.

However, INNMUL and its subroutines are residing on a disk pack,
which is a part of the Direct Access Storage of the IBM/§6O computer.
Therefore, the program may be submitted in any other convenient way to the
360, for example, by card job deck. One may also obtain the usual print-

out from the high-speed printer.

When the INNMUL program and its DRIVER are submitted to the 360
computer for execution, the data which are to be processed must be
included in a data file. This data file is read by the DRIVER program
during execution on the 360, and must be in a certain required format,

corresponding to card-columns.

The TELINC.F4 program was written for help to the user in preparing
this data file at the teletype. It allows the user to give the data at
the teletype in free form, rather than spaced out exactly to correct card-
image format. The user types the data numbers, separated by commas, in
response to the program as it exeécutesg interactively on the PDP-10. The
TELINC.F4 program then creates the necessary data file in correct format
and stores it on the user's disk. On the user's disk this data file is
then ready to be submitted via the PDP~10 with the INNMUL program and its
DRIVER to the IBM/360 for execution.

A listing of the TELINC.Fl4 program follows. The next section will

be a description of data requirements.



A P N AN ol G I o i G U R 4

. C

100

PrROGROM 18 PrErAcs DATA FOr RUN ON SUbRCUTINE InnMUL

Il I3 pPoussisii 10 CONTROL PrINTUUT DUxING USE GF

FTHIS INIERACTIVE PROGERANM bY ChbwsInag "-1" Al lHE rlixST
AEGURS T FUR DALTA FPRUM IHE JTELE]YPE. FUkTHEZRs ONE MAY
TYPE UUNLEIROL "' 4l AnY Tilwe e Trbe NEATD MOVE r G THE
febielYkPe 1o ALKEADY ANUdN Y THiL FhxsuN usiyg e INTER-
Al ive PrRyakAM. v ApDIVESN Ty IHlss IN VERIFYING PLAYED
cAaud Ualay JUST A <er> 1S5 ENJusH v AcCukrl IT A U0

Al TAsul PIRST TYFPING "1 A dre INSIKUUTIUONS PROVIDE.

FrégunAM U AbRCelVE FROM TELETYPESARLITER 0oATA Fun NORMALIZED
Gl IMPEDANCE Prwvanadt IN p Rk rdninale RDATA JILL pE PREPARIED
TN AaNUIde s PILE T b KAy IN FonvAal oY PRODLENM FREOGRKAM.

RWAL KRS La MU Mid2s Ll

DRLA PI/3e141 9265E0/75C0NST1/704025480/
DALA MUl 4e 001/

DLlveENSIoN RCIO)» i CHO) s PEMCTIO) s xHY 10D
MISEIRAUES =S

le lLe=1

Al i CIFLLina 1)

PURMATC"/ /3@« F 150001 D x')

{YPE &

Fominaa ) FOUGRAM PUR UREATING AT FLLE BN USER"'S UIsK'/

I FOi Usk GF O SUBRCUTEINE ITNNMUL i cAaLcULATE COIL IMpPeoANueEdN)!
YA Fon CaSh OF & CUIL Inslum A {Ushk oF SEVERSL CUNUDLDCTBRS'//
3 Pl A MINIMUe OF BEXPLICIT INSTHUGILGNS For TYPING IN DATAS '/
4° FYRP< '"'-1'"5 prOr MORE EXPLICIT PrINTZUT iYPe "1 '/
S FoLLod Jr ALL IYrFbw walia WITH Canmmiaue KedUrN <Cwk>"'/
resving " IN WRUERK 10 vESRIFY FLAYRLD BAUK unlas '/

i FYrPe "'"1'' FELLoWwkEy bY <Cr> EVEAY 1IME'/

1]

O Tttt e DATA NEEDS I8 b ReElYPED'/Z)
ACLEP T 4 THMBHE
ForMalCzI)

<

I'YPe 3
TP CIMURE.LT«0Y @8 10 100
IYre 5

FUaMATC 204 "NORMALIZE0 COILL IMPLOANCE Perams '/

1 164 "CUlilL InNsIDE COAXINAL CYLINURIUAL CONDUCTORS'//
2 1e2Xs ‘PLioast TYFPE IN tHE valA As THEY WwiLih BE REQUESTEDS ' /14X
3 'IHE vARLAELLES 10 bE wewUlnel Arnk P Llksl verINgups ' /)

LYPE &

FlnMal(

[ PIkST DATA Y ReAu rOk Ik ol aNu 11y vlMENSLENS' 7
2" IALReuU 1«0 MEANS Alx VALUe MUbl sBE GIVEN A DATAT/
3! [Aalr=U {F AIR vALUE NokMALLZATIoN rACTOK 1S NBT GIVEN vATA'/
4° IAIReLT 0 FORK IHE END OF ANY AuRLITIONAL CllLs -~ ENU F DALA'/
St NExMAL =1 MEANS I'mE COIL DIMENSIZNS ARE GILVEN NosMALIZeD DATA'/
&' AY=AIr VALULE FACTOR PUR NERMALIZATION OF COLL LMPELANCE'/)D
IYre 7

FormAal " UATA SARJLL oE TYPEL Wwlid CBMMAS TU SEPARATE NUMBERS'/)
I8 @ TN

CUNTLINUK
NCBIL=0



105
g

10
110

11

14

15

120

125
17

18

130
19

TYerk 4
FORMATC IYPE IN IAIR,
AGLUEPT 4. TALKs NG KMAL

IFCIAIR EW0) I4TIK=1
TYPE 92 IAIKRs NUnMAL

NUgRMAL ' /)

FURMATC! IAIR ="1Ib5s" NupMAL ='15/)

IFCIMBRE«LT-0) GO ¥ 110

iYre 10

FURMAT (" FORK VERIFIUATION ZF DATALTYFE "'1'' FOK Weke '/
1’ PYPE "'-1'" FOR DATA 10 BE KRREIYPED'/
27 LG THE SAME PRUUESS FOr Trie wkEsi OF THE DATA INPUT'/Z)

AUCERT 45 Lok

Ir CLEuK«LT.0) GO TO 105
WrRITe CIrILEs 11D
FURMAT (415D

IFCIALIRSLTUXGY 18 230
NUASE=0
iYPe 12

FORMATC! IYPE IN A9'/D
ACCEPT 13509
FORMATC(4E)
TYPE 14,A9
FURMATC® A9
ACCEPT 4, 106K
IFCIOK.LT.0) 4@
ARITECIFILES 15)
FORMAT(SDT15.8)

= RE1568/)

o 11s
A9

IFCIMORKELT«U) wb 1B 120
TYPE 16

FORMATCY  NEXT DATA I5
1'  RI=INNER COIL

KtAD FER
RADLIUS CINUHES o

IATR> NEBRMAL

2! RE=QUTER COIL kAVIUS CINCHeSs #x
3 L=LENaiAd wr Culil (INCHES OUR
4t LI=DISTANCE FROM opllgMm oF COIL
5 Ir L1 I35 Nt O»
6' NUsMALLIZALIgN QF

NCCIL=NCUBIL+}

1YPeE 17

FORMAT (! TYPE IN Kl.RZ2,LsL1"/)
AGCEPT 13sKRlsR2sLsb 1

L=L-L1

Li=0«n0

UR1=R1

Pre=rz

ol =L

IYPE 18snlsRE,L5011

FormMAaT (" GIVEN UATA Rl ='El5«8,"°
PISKs 'L ="819e85" L1 ='E1%.87)
ACCEPT 4» 19K

I Cluk-LT-03 66 TO 125

IFINORMAL e NE« 0)GD
RBAR=(R1+R2)*0.500
R1=R1/RBAR

RZ=RZ/ KBAR
L=L/RBAR

TYPE 19,NCOILsRI»R2sLAY
FORMATC?®

v 130

NORMAL [ZED DATA FUr CUIL

THE CoIL

GEOMETRY

...'/

NORMAL LZELY '/
N aMabL 12E0) s

g L=

K2

fHEN L IS vlsianCeE FROM TeP
CoLL AND CONDUCTUKRS I35 BY

Nge"135"

NURMALLZEDY "/

PLANE CINCHES UK NERM) '/
BF Cull Td Z=0 '/
MEAN Cull RADIUS'/)

Wil BE '/



135

21

Ze

23

i40
24

25

145
26

27

150

1 6Xs " INNER CUll. RADIUS (K1) ='sF 159/
2 6Rs"DUILK CLUIL xADIUS (RZ) ='5p 159/

3 13X, 'LOIL LENGTH (L) ='"5F15.9

4 /14K 'nAln VALUE C(A9) ='52r15.9/)

AvlrP i 4 LK

IFCIOK«LTe0) Gl IO 125

ARITE C(IFILbks 15)0x150R2, UL,

IF (IMORELT«Q)Y G T8 135

[Yre =20

rlEsmAl

1 Neexl Seid GF UATA GIves INFORMATICN AzoUT THE CONDULIORS'/
=" N=NUMBILRE OF CONUJCTORS"/
3" Nel.Te 0O MEANS END UF ANY ADDITISNAL CASES WwITH SIVEN CoIL DAIAY/
4" ITdAaveri=1 MEANS vATA 15 IVEN roK cM=OMESA#MU*SIOMAXRIBARKSY "/
5! LHAVEM=0 MIEANS EM MUST bh CALUULATED BY THAIS FORMULA '/
5" THAVEM=-1 MEANS EM MUST sE CALCULATED FPRUM RESISTIVITY®/Z)
CBUNL Lvuk

iYre =21

POKMATC! TYPe IN No IHAVEM'/)

ACCEPT 45Ny LHAVEN

[Yre z2sNs [HAVEM

FURMATC! N ="1I3," [HAVEM =' 137)

AUCEIP T 4. LUK

Ir CTUKLT«0) G 9 135

ARITECIFILESs 1IN THAVEM

IFrdN.LE.0)GO T 105

NUASH=NCGASKE+ 1

IFCIHAVEMeGT«0XGE TI 120

IFCIMORICLT0)G8 10 140

TYPE 23

FonMa i
i’ FeeEG IS FredUENCY ©OF ide UsIVING CURRENT (KHe) '/
P PMEEUA IS5 ANGULAKR FREQUENCY ©F THE DRIVING CURRENIS =2PI#FREQXE3"
37" GMeulQ Wl BE CALCULATED IN PrRUOGHKAM rrUM Fhke@ GIVEN AS DATA'/
4" MEAN COIL RALIUS RpAr MUST b GIVEN IN INCHES WITHA DATA'/
5 IF 1IHAVEM«LT«0 ANU NOKMAL«NEO'/)

tYFE 24

POKRMATC! FYrPie IN bRbE&' 7))

ALLEPT 13s ke

UM LATZ2e UL 3R [ 4r KEG

TYPE 25, F KREWs OMEGA

FaxvATC! FREY =" 158s" BGMEGA ="D15.e"%/D

ALUEPT 4 1UK

IrCIldK«LT-0) G0 TQ 140

ARITE (I ILE» 15) FREQ

IF(NGRMAL-EQe0) G T8 150

(YR 26

FORMATC" IYFPE IN RbAR'"/)

ACUEPT 13s kRBAR

[YPE 27 Ks3AK

FORMATC! RBAR ="1153/)

ACLEirT 4> 10K

Lh ClKel. 1o 0) GG IO 145

WRITE (IFILES15) keak

Ir CIHAVEMSLT«O) GO T 170

CONST=(RBAKFCUONS [ 1) *%2

IFCIMORE L T«0) G 1@ 155

I'YPE 28
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Sr

P

28 ForMAT(C
1’ EMCLY IS5 THIS VALUE FOK EACH CONDUCTBR I=1 18 N°/
2! SIGMACLY 15 CONDUCTIVITY FER EACH CHUNDUCTBR IF IHAVEM=O'/
3¢ PERMCOLDY IS5 RELATIVE PERMEABILITY vf EACH CONDUCTORK'/)
TYPE 29
29 PUrMAT(
i’ KOL) 15 THE INNER rRABLUS BF EACH CONDUCTOR C(INCHES OR NORMe) '/
2" sk SUKe T GIVEE CBNDUCTOR RADIL Ax NURMALIZED, IF '/
3 CalL DIMENSIONS WERE GIVEN AS NORMALIZvD BRIGINALLY'/Z )
155 D8 165 I=1sn
160 TYPE 301
30 FoRmAard’ FYPE IN ReS5I0MALPERM F@r CENUDUCTOR NG.' I3/
ACCEPT 13ROI 51UMASPERMOL)
MUZ=MURFERM (L)
fYPE 315 IsRCIDsMULs SIGMAY PERMOID
31 FORMATC® FO CONODUCTUR NO«'"I3/5X, 'K ='sE15.32 3%,
I'MY ="815.87" SIUMA ='115.8," PERM ='EK15.8/7)
ACLEPT 4, IOK
IFCIQK-LT.0) GB TQ 160
EMOID)=OMEGARMUXSIGMA*CONST*PERMCL)
TYPE 32s,eMCL)
32 FgrMare? THESE DATA GiIveE &M ='E15.87)
ACCEPT 4, [yK
IFCIOKLT«0) 30 Tw 160
WRITECIFILES 15)RCD) 5 SIGMAS PERMCOD)
165 CUNTINUE
Gl Tw =05

NUMBER 050939 79E3 15 THE PrRoVUCT 8¢ CONVEKSION FACTORSS
C2xpPIRE3)R (4xpPIn -~ 0% (e8I (. 0254%%2)

170 CONST=0+509397TIEI R REARKRBARKF KEQ

IFCIMORESLTL0XG0 T8 1175

TYrE 33
33 ForMATC! RHZCL) IS RESISTIVITY FaR EAUH CONUUCTIGR

1 (MICREAM-CMY ' /)
175 LG 185 I=1sN
180 IYPe 3451
34 F@MAT(! [YPE IN RKeRAG, PERM FOR CONDUCTOR NO.*»13/)

ACGUEPT 13RI RHABCII» PERMCL)

FYPE 30 RBOID s kHBCIY 2 PERMOTD
35 FORMATC? RE'ok15e82" RHG="H>115.85 " PERM="3H15.58/)

ACGEPT 4» 10K

IFCIaKeLTe0)EE TU 180

LEM=CUND ¥ PERMCI) /RAGCT)

[YPE 32.ZEM

ACCEPT 4. 19K

IrCIg.LT.0206 Ty 180

EMOld)=LM

WRITECIFILES IS)NCID o HHECI ) » PERMCL)D
185 CONTINUE

a8 TY 205
190 uB 200 I=1,N
195 TYPE 3651
36 ForMAT(" TYyre IN RsEM> PERM PFOr CONOUCTUR No.'13/7)

ACCEPT 13sRCIDEMCII» PERMCOL)

TYPE 37,rC1)s MDD PERMOT)
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37 ForMATC! o=t 158, " M ="E£1%5¢K,
1" PERM ='ml15e¢d/)
ACUEPT 4, 108K
Ir(lokel.To0) GB 1U 195
Wikt Clr ILE» 15) w1 sewm (i) PeanbiCl)
200 ChN | Invue
205 Cunt INde
FYPE 38sNUASEsNCWLL
3¢ FORMATC(/6Xs "CADE NB« "5 135" Lr Culn Ne's 13/
1YPE 39sN
39 ForMale 113, " COoNDULTOKS GUTSIuR COIL"/5XK " INNER RADLUS'
1 510K "WM'5 1A "PERMEASILITY ")
I (NURMAL eNE«Odull 1 21b
uEp 2id I=1,-N

210 rCLY= Y i
21 Ul 220 K=1sN

FYFRr 400k nCKI) > MK ) s PERM (KD
40 FEiMal (I3, 3n15.6)
220 CoNllindg
TYrPe 4l
41 PorMATC/)
Aclerl 4s Lok
Gl w1359
22D iYP 42
42 Fontiatrc® IR InIEVAsLE ERRORNS IN DAIA, MUST mskiw 11 ALL'/Z)
LU 0 =46
230 [YPL 43
43 PFORMAL(EXKy "TENL WUr UALA rUdn CADES 1Y pr oxuUuN o ygnN ENNMUL PROEGRAM'/Z)D
235 wWAnlinCiviiiisas)d
44 PURNMALIC /RSN D
RIATETIN O W T O 2 4
240 ook
);',NU
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III. (B) Data Description

The data are defined for the TELINC.F4 program in the same order that
the DRIVER program requires them for execution of INNMUL. The FORTRAN
names -of the variables, with their meanings and units, if any, will be
given below. The format specifications apply only to the final form of
the data file when it is submitted with INNMUL and its DRIVER to the
IBM/56O for execution. The outline of data éntry given in Fig. 13
corresponds to the order given for the lines on the teletype, or card-

image equivalents.

First, data are given for a coil and its dimensions.

QRNL~DWG 72-13782 R1

AL I
£ N
WRITE 7 - R(1), RHO (1)
R, R2, L, LI THAVEM PERM (1)
(4015 8) FOR I=1 10 N
(3015.8)
5 -
DR S - (1), SIGMA (1)
PERM(I)
WRITE FOR 1 =1 TON
N, [HAVEM (3019 .8)
(215%)

K1), EMLDY,
PERMI(I)
FOR T =1 TO N
(3015.8)

Fig. 13. Flow Qutline of Data for the Program DRIVER.



Line 1:
TAIR, NORMAL Format (215 )¢

IAIR (a flag) > O if A9 is to be read as data;
if A9 is to be calculated by the INNMUL program;
if input data are ended and no new coil data are

to be given.

il
o OO

NORMAT. (a flag) = O if the coil dimensions are given in inches, or
some other unit;
= 1 if coil dimensions are given in normalized form,
that is, divided by the mean coil radius.
Line la:
A9 Format (D15.8 )%

AG is the air value factor for normalization of the coil imped-
ance. In practice, it is usually calculated by another pro-
gram, called ATRCO-7

Line Z2:
R1,R2,L,L1 Format (L4D15.86 )«

Rl is the innev coil radius.

R2 is the outer coil radius.

L is the distance to the top of the coil from the z=0 plane.

L1l is the distance to the bottom of the coil from the z=0
plane.

Alternatively, L is conveniently given as the length of the

coil, and then L1=0 is given. Only the length of the coil

is actually needed by the program.

The value given to the flag NORMAL dictates units used. If
inches are not used for unnormalized dimensions, caution must
be exercised in other data requiring mean coil radius. Must
use IHAVEM > O.

The next set of data gives inforwmation about the conductors.
Line 5:
N, THAVEM Format (215 )*

N is the number of conductors in one set of conductor data.

76All values with an I5 format should be entered right-justified as an
integer, no decimal point, in a field of 5 places, with as many blanks
as needed on the left to £ill up the 5 places. 215 is used for two
such fields, making 10 spaces in all.

HK

All values with a DI15.8 format should be entered as a number with deci-
mal point in a field of 15 places. The D exponent form should be used,
positioned so that the exponent is right-justified in the 1l5-place
field. 3D15.8 or U4D15.8 allows 3 or L such fields, respectively,
making 435 or 60 spaces.
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N < 0 indicates that no more sets of conductor data are to be
given. Then recycle to Line 1 for a new coil and then
further conductors for that coil.

R ‘s - 2
THAVEM (flag) indicates how the quantities, wuof =, are to be
given for the conductors (see sect. IIA of this appendix).

IHAVEM > O indicates that the quantities will be given divectly;
= 0 indicates that those quantities will be calculated from
other data including o;

< O indicates the quantities will be calculated from other
data, using vesistivity, g rather than o.

Line 4: (used if IHAVEM > O)
Use as many lines as the number N of conductors.
R(1),EM(I), PERM(I) Format (3D15.8 )

R(I) is the inner coil radius of conductor I. It is given
according to the flag NORMAL which was given as part of
the coil data.

The radii are given in descending order of size. All
radii will be -greater than one if they are normalized
when given as data.
EM(I) is the quantity wpoT © for conductor I.
PERM(I) is the relative permeability, Hppps Lor conductor T.

Then recycle to line 3 for another set of conductors or te indicate end

of data for this coil.

Line 5: (used if THAVEM < 0)

FREQ Format (D15.8 )#%
FREQ is the frequency of the driving current given in kilohertz.
The angular frequency is calculated to be uw = 25 x (FREQ)
x 105,
Line 5a: (use if IHAVEM < O and NORMAL = 1)
RBAR Format (D15.8 px

RBAR is the mean coil radius in inches. This is needed since
coil data is given as normalized and hence RBAR is not
calculated by the program.

Line 6: (used if THAVEM = 0)
Use as many lines as the number N of conductors.
R{I),SIGMA(L ), PERM(L) Format (%D15.8 prx
R(I) and PERM(I) are the same as Line k.
SIGMA(T) is the conductivity, o, of conductor I, in mhos/m.
Then recycle to Line 3 for another set of conductors, or to indicate the

end of data for this coil.
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Line Ha: (used if IHAVEM < O)
Use as many lines as the number N of conductors.
R(I),RHO(L ), PERM(T) Format (3D15.8 )x*

R(L) and PERM(I) are the same as Line 4.
RHO(I) is the resistivity, o, for each conductory, in ufQ-cm.

Then recycle to Line % for another set of conductors, or to indicate the

end of data for this coil.

ITI. (C) Sample Data and Results

In relation to the PDP-10, thevre are four steps to processing data
with INNMUL by remote methods. Each step is a response to the Monitor
1mnon

symbol , which appears at the left of a new line when in Monitor Mode.

A sample teletype printout may be seen at the end of this section.

(1.) .EXECUTE TELINC.F4

Then the user responds from the keyboard, with the input data.

(2.) .TYPE FOROL.DAT

Then the user may inspect the typed-out data block that has been
created in the preceding step, to see if it is satisfactory. Changes
may be made using TECO.

(».) .R SUBMIT

*=CVDSAV.JCL

*=USEINN.Fl
* /%

*=AZ7277.3JCL
#*=FQORO1 .DAT
*ENDINPUT
This step submits the job to the IMB/56O computer. After it has had

time to run, the next step is to type out the results.
(k.) .TYPE CVDC.PRT

Some sample cases have been submitted in this manner, using three different

coils from the work being done.

The first coil to be used has an air value, A9, given as 0.04H3502.
The dimensions, given in unnormalized form, are Rl = C.3%350, R2 = 0.360,

and L = 13.625. There are three conductors outside the coil, and data
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for them are to be given with resistivity, indicated by the flag, -1.
The frequency is 24.7, and the radius, resistivity, and relative permea-
bility are given for the three conductors. The three radii are 1.8513,
0.%925, and 0.3625. The three resistivities are 16.57, 1Lh2.9, 16.57.

The three permeabilities are all one.

Looking again at the sample data, another case is done using the
same coil. Again there are three conductors outside the coil, and this
time the data are to include the M value for each conductor, as indicated
by the flag of one. Then the radius, M value, and relative permeability
are given for each conductor. The three M values are 95.694792, 0, and

95 EOUT2.

No more cases are given in this data block for this coil, as sig-
nalled by a value of -1 for the number of conductors. The next coil
has an air value of 8.45005 x 10_', and unnormalized given dimensions,
Rl = 0.27625, R2 = 0.27875, and L = 2.0685. There are three conductors
outside the coil, and radius, resistivity, and permeability are given
for each conductor as well as the frequency of 20 kHz. The three radii
are 0.376, 0.375, and 0.356. The three resistivities are 10, 70, and

80 po-cm. The three relative permeabilities are 1, 10j, and 1.

The third coil which is given in the sample data block has an air
value 0.117776, and this time the coil dimensions are given in normalized
form. These normalized values are Rl = 0.9776119%, R2 = 1.022%881, and

= 38.80597. The first case consists of two conductors, with normalized
radii, M value, and relative permeability given for each conductor. The
radii are 1.20149% and 1.08209. The two M values are %.778399 and

2.874167. The relative permeabilities are both one.

The second case of the third sample coil is the same as the first,
with data presented differently. Data for the two conductors are to be
given with resistivity, indicated by a flag of -1. Then the frequency
is given, 10 kHz, and also the mean coil radius in inches, 0.335, since
the coil was given as already normalized. This is followed by the
radius, resistivity, and relative permeability for each conductor. The
two resistivities are 151.3 and 19.89 pQ-cm. The relative permeabilities

are both one.
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Again, no more cases are to be submitted for the third coil, as
indicated by -1 for the number of conductors. The data are closed out

when another -1 is given as the first datum for another possible coil.

The teletype listings follow for this sample. They show the four
steps involved, and the data file with results of the execution of the

program.



(1)
e EXECUTE TELINC.F4
FURIRANE TELINC.F 4

(Interactive preparation of data block.)

(2.)

I YPE FUKDL«DAT

Z/GE.FTH50F00CT DR

i U
0e463502000-01
Usa350000060D0+G0O

3 -1
D.247000000+02
0.181300000+01
0e39250000u+00
0+362500000+00

3 1
U« 131300000+0t
0+392500000+00
02362500000+00

-1 0

1 0
0.34500501D~03
UeZ2/6205000u+00

3 ~1
0.20000000U+ 02
0»37600000u+00
U«375000000+00
0»356000000+00Q

~1 o

1 1
Cel17776000+00
09277611940+00

ph 1
0.120149300+01
0.10820900D+01

= -1
0. 10000000p+02
0.335000000+00
U= 120149300+01
0«108209000+01

~1 8]

=1 ¥]
/%
/7

*

0«36000000D+00

0.16570000D+02
0+ 142900000+03
U« 16570000u+02

0«9569347320+02

0. 00000000D+00
Ved06947920+02

0.278750000D+00

0= 100000U0U+0G2
U 700000000+02
0« 30000000L+02

Cel102235810+01

0« 371539900+01
V.287416700+02

0.151300000+03
O« 19890000U+02

O+ 136250000+02

0« 10000000L+01
0« 10U0UDCOD+01
010000000+ G 1
0« 10000000D+01
0-100000000+01
0.100000000+01

De 206250000+01

U« 100000000+0 ¢
0100000000+ 04
0.10000000D+01

0.388059700+0z

U« 10000000D+01
0. 10000006B+01

0.10000000D+CH
U 100000000+01



(3-)
ar SUBMLI

*=UVLSAV e JCL
¥={SEINNeF4
* /%
k=QLLLLL « JCL
A= R0l s AT
TENDINPUT

106

JB QUEUED FOr Tdr 3606791
(50
1YFE Lvubernid
SuMManYy WUl rPuT Furk COIl Nu. 1
INNER COLli. mALulU> (nl) = Us 985915493
GUTER Lall wAulus (R2) = 1014084507
Cull, LENGTH (L) = 383802510620
Al VALULE (AY) = U 046350200
CASK NUe I ©Ur Cwll. NUO. 1
3 LdNLUC LIRS GUTSTuR Ccoll
InNER rRAOUIUS i PhiMmeAsLITY
1 S« lUu/Uazy VU 95634730 01 1.000000L 00
< e lUD6340 0O 11096310 01 1.0000000L U0

J 10211270 0O
NURMAL LZED
NonfiAL LLeD
NERMALIZE o

Ge06v4a(I90 U
Coll. ITMPEDANCK
KEAL FARKL =
IMAG PART =
MAGNTTUDE =
FAMSE(RADIANSY =
PHASEDEOREE D) =
CASE NU e 2 Bk

LVidlhl. NUJ e 1

3 vinwdllbrs YUISLUE

InNEx RaADLUS M
1 D¢ 1Q704c 0U Ye 569479 O
Z 11056340 GO U0

3 1.021127 00
NORMALIZED CWIL [MPEDANUE
NrMAL LZELL sbEal PART =
NUrMALIZeU IMAG PART

MAGUNL {URE =
PHASEC(RADIANGY =
PHASE (DEGREES)

i

SUMMARY UUTPUL FOR COLL NG
TNk il RAulUs (k1) =
PUTER Cuil waDIUs (R2) =
CUIiL LeNuliH (L) =
Al VALUE (A9) =

Feb694790 U1

1 1.000000U 0O
1.6227700-01
1.5597470-01
2250820001
146559790-01
443865530 01

v IL
FerMeAsILITY
i 10000000 00
1. 0000000 GO
1.0000U0D WO

2¢1178900-01
1+364353u-01
ReH301960-01
HeT89348w~01
3.3170520 01

. 2
OeP9Y0495495
10045045005
{e432432432
0.000845005

RESISVIVITY

16570000 Ot
14290000 Oz
160570000 01

RESISTIvILY
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CASE N . 1 oF ColL Ng. 2

3 CUNDUC YRS GUISIDE Coliu
INNeRr RADLIUS M FPERMEABILITY
1 13549550 0O T3453640 01 1.0000000 406
2 1e351d510 0OOC 112076060 U4 [« 000L00LL 03
3 e 2820883 00 JeB306TLBI OO0 1« OOOOGOOL GO
NURMAL LTZEL CULL IMPEDANCE
NORMALIZEL REAL rFant = 1+6704530~01

T

NERMALLZEU TMAL PART = Be9604070-01
MAGNITUDE = el 47850~01
PHASE(RADIAND)Y = 1« 38640660 00
PHASE(DEGRIZESY = f1«9439800 01

SUMMARY QUITPULD For COIL N 3

INNEx Cull RADIUS (K12 G+9776117240

BUTER COIL RADIUS (X&) 1.0223383100
COIL LenNgtA (L) 38305970000
Alr vaLUL (A9) 0117776000

IS

H

1

CASE N 1 gr Cuit Nu. 3

2 CYUNDUCTORS CUTSIDE Cull
INNE R RKADIUS i PERMEASTLLITY
1.-2014%930 Q0 3. 7783990 0O i-0000000 00
1. 0820900 00 2e 37416710 Ot 10000000 00
NOrRMALLIZEL CUlL IMPRUANCE
NUrMAL LU KkeAl Par!
WNORMAL L IMAG PART

[

22 3407500~01
3.5632220-01

MAuGNT [upk 40 2633090-01
PHASE{RADIANSG) FeBI56620-01
PAASE(URGREES)Y = 56697960 01

o

i

i

UASE NUO. 2 @i Cultk. Nu 3

2 CENDUCTERS BUTSIOE COIL
INNER RADIUS i PERMEASTILITY
1 12014930 00 37723990 00 1.00GoULUL 0Y
A 1.0820900 QO 2e5741670 01 10000000 0O
NOrRMALTZ¥ D COLL IMPEDANCE

f

NORMAL TZKD rREAL PART = £+3407800-01
NURMALTZED IMAG PART = 3.563222D-01

MAGNT TULE 42263309D~01
PHASE(RADIAND) Fe39056620~01
PHALSE(DEGREES)Y = De 6697970 01

END g CASBES KUN BN INdMUL PREGRAM

i

I

RESISTIVIITY

100360000
{1« 00C0OO0GL
B« 0U00000L

01
1
01

RESLESTIVEITY

RESISTIVITY

15130000
132896000

02
01
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IV. ATTEN PROGRAM

This program is written to calculate the voltage out, V_ ., by Eq.

(69), in consideration of the external electrical circuit (Fig. %) and
Eqs. (61) or (62). It is written to receive as input data the coil and
circuit data, as well as the normalized coil impedance, as calculated by

the subroutines INNMUL or ENCMUL.

The program is written in the form of a FORTRAN subroutine named
VOUT. The driver program must provide the necessary data. At present
this is written into the program directly for the execution of one case.
This may be called into execution on the PDP-10 by the teletype command,
.EXECUTE VOUT.F4 . The subroutine, VOUT, must be supplied by a driver

program with the familiar coil data:

OMEGA = angular frequency,
Rl = normalized inner coil radius,
R2 = normalized outer coil radius,
L = normalized coil length,
RBAR = mean coil radius (meters), and

AQ = air normalization value.

The real and imaginary parts ZRL and ZIM of the normalized coil impedance

Zn are required.

The required circuit data are identified in Fig. L4 as VO, RO, RO,

Cc6b, C7, R6, and R7. Number of turms, TN, must also be given.

The result, VOUTL, is given in terms of phase and magnitude, as well

as by real and imaginary parts.

The driver program which is listed here has all these data written
into the program, with some being calculated from other data. For
example, the magnitude and phase of the normalized coil impedance are
given first, then converted by the driver program into real and imaginary

parts for VOUT to use as data.

Other driver programs might be developed for more extensive cases,

or this one may be varied using TECO commands on the PDP-10.

A listing of the VOUT subroutine with its driver program follows.
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CUMMEN/ CIRUCT/V0sROsC65s REsZORLZDIMs ZMRL»ZMIMs ZPUKL ZPUIM»
1 R7sC7sRK9» TN
COMMUN/ INNML/ZOMEGAsLs R1sR2s 095 ZRL»ZIMs REBAK
REAL¥ 4 MUs L
DATA PLI/341415 9265E0/5CONST/ 0025480/
FREQ=27+T72E0
TYPeE 1

1 FURMATC(" SAVS')
UMEGA=2« QE3%P [ *F KEQ
R1=0350E0
R2=0+360E0
L=13.625e0
REBAR=(RI+R2)*%0.5£0
L=L/RKBAR
Kl=gl/RKBAR
REZ=R2/ KBAR
TYPE Zs FREUsUMEGAsL. s K15 K2

2 FurRMATC(C? FREQ ="E15.7,' UMEGA ="E15¢7+7/
1 Lo ="E15.7,° Rl ="E15.7»" K2 ="FE15.7)
RBAR=RBARXCUNST
A9=0.463502E~1
Al=0.218077514r0
Pl=0.772603445E0
LZRL=A1%CUS(F1)
ZIM=ATx5INCPL)
TYPE 3,RKBAKsAZ2ZRLSZIMesAlL P

3 FORMATC(C! KBARK ='E15.7," A9 ='E15%.7s/
if LZRL ='El15.7,°7 ZIM ='E1S5eTs/
2" Al ='E15.7»" Fl1 =sTE15.7)
VO=3.2341E0
RU=464.10

RYI=464« 0
C6=3.83E-9
CT7T=3«83E~-9
TYPE 4sV0sRKQsk92065C7

4 FUORMATC? VO = 15475 " RO ='E15.7»" R ='E1S5+7+/
i C6 ="E15.7," C7 ="El15.7)
R626F 450
RT=R6

IN=190.75E0

TYPE 9264 KT TN
5 FORMATCS Ré6 ='sE1575" R7 ='E135.7»5" IN =*E15.7)

CALL VOUTC(VBRL» VU IMs VBABSs VEAKG)

IFCVUARGLT» 0. 0EQ0YVUARG=VUARG+PI

TYPE 62 VURLs VOIMs VBAESs VBARG
6 FERMATC® VORL ='E15.7-" Vi IM ="E15.75/" VEABS ='E£1547s

1' VBARG ="E15.7)

DEGR=VOARG*x180.E£0/P1

TYPE 7»DEGR
7 FURMATC! DEGRK ='E15.7/)

TYre 1

S5ToP

END

SUBRBUTINE VOUT(VERL, VO IMs VUABS, VBARG)

COMMUON/ CIRCT/VOsROsCHs RESZDRL s ZDIMs LMRL> ZMIML ZPURL» ZPUIM,

1 K72C75K9s TN

CUMMUON/ INNML/UMEGA»LI Rl K22 A9 ZRLs 211 RBAR



REAL 4 Migs L.
DATA G/ 1«0R0/5MU/Q0«000001256637061107
R=R2-RK1
A=2+ EOXOMEGAR TNk [N¥MUX RBARKAY
1 /7 QL RR®K)
LMRL =A% LKL
LDRL=LMEL
LPURL=LMRL
ZMIM=AXZ1M
ZDIM=LMIM
LPUIM=ZMINM
BE-VORRIKG
VNUMRL =B% ZM KL
VNUMIM=B*ZMIM
P=C&*R0O
W=CTRRY
GMEGSA=UMEGAXEMEGA
OMEQLCU=OMEGSE*xoMEGA
X=RMEGSQ*P*U~1.0E0
Yz~ MEGA* (P+Q)
S=ZMRL. & ZMRL - ZMI Mk LI v
T=20E0%ZMRL*ZLMIN
UsX%5-Y*xT
WaY®ko+ K&k |
A=UMEGLAR
BEl0RL+t K6
E=Akp+ZDIM
FEAXZDIM=- (ot 0D
A=PMEGA*Q
B=LPURLYKT
COkp+ZPUIM
PD=EARLPUIM=~ (6+R9)
AmCHkp =1k b
HEDRE+CkF
VDENRL=A+ L
VDENIM=ks+W
PDENSU=VDENRLAFVDENRL+VOENIM¥RVDENIM
VORL=(CYNUMELAVDENRLFYNUMIMAVDENIM) /ZDENSQ
VI IM=CUNUMIMFVDENRL -VNUMRL*VDENIM) /DENSQ
V@ABS=SORT(VORLAVORL+ VI TMRVIIM)D
IF(VOKL«EQ«0«+E0XGE TY 100
VOBARG=ATAN (VB IM/ Vo RrL)
RETURN
100 vUARG=MUX0. 12587
RET UrN
END
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A listing of the data and results of the execution of the preceding program

is shown below.

« EAECUTE vibUT.F 4

FORTRAN?

LoAbING

VolTeF 4

VoUT 2K CuRE

EXECUTION

SAVS
FREG
L.
RBAR
ZRL.
Al

Vo

Co6

rR&
VUKL
VUABS
DEGK

SAVS

CPu TIMES

H oo u

woHounon

1

0.2772000E+02
0+3838028E+02
0.9017000K~02
0«1561644E+CO
0e21807T7T35E+00
0«3234100L+01
0«3830000£~08
0.6940000E+02
0+ 5039879L-02
0.6523550E~02
03941504E+02

035

BMEGA
K1

A9
Z1IM
I

KO

G7

R7

Vig I
VUAKG

ELAPSED TIME:

Ng EXALCUTION ErRROrS DETECTED

EXIT

A IS T L T O L S 1 B |

i

De 1741699E+06
D«9859155E+00
0. 4635020E-01
0.1522185E+00
0«7726034£+00
O« 4640000E+03
0+ 3330000E-08
0. 6940000kL+02
0.4142019E£-02
0.6879222E+00

5908

R9

TN

it

0« 1014085E+01

0« 4640000E+03

0«.1907500E+03
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INTERNAT DISTRIBUTION

(149 copies)

(5) Central Research Library
ORNL — Y-12 Technical Library
Document Reference Section

12)
)

(10) Tlaboratory Records Department
Laboratory Records, ORNL RC
ORNL Patent Office
G. M. Adamson, Jr.
S. E. Beall
G. W. Clark
J. E. Coulter (Y-12)
F. L. Culler
J. E. Cunningham

(100) C. V. Dodd
D. E. Ferguson
J. H Frye, Jr.
J. W. Garber (V-
W. H. Hall (K=25
W. 0. Harms

(3) M. R. Hill

AEC, DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY,

J. M. Simmons

EXTERNAL DISTRIBUTION
(52 copies)

L;; 29N & SO s Roma - DY

.

.

ORNL-TM-4175

Long (Y-12)
. Mason (Y-12)
. McClung

. McCoy

. McNeese

. Mundt (Y-12)

Omom o e G

. L. Nicholson

Patriarca
Rosenthal
Ross (Y-12)
. Schaffer, Jr.
Schweinler

. Simpson
Slaughter
Smith (K-25)
B. Trauger

E. Unger

0. Weeren

R. Weir, Jr.

HEr>oMgo s

Washington, DC 20545

AEC, SITE REPRESENTATIVES, Oak Ridge Natiomal Laboratory, P. 0. Box X,

Oak Ridge, TN 37830

D. F. Cope
C. L. Matthews

AEROJET NUCLEAR CORP., P. 0. Box 1845, Idaho Falls, ID 83401
F. L. Crestridge, ARA-3

AIR FORCE KELLY AIR FORCE BASE, Kelly Air Force Base, TX 782L1
Bernard Boisvert, SAAMA/MMEW

AIR FORCE KIRTLAND AIR FORCE BASE, Kirtland Air Force Base, NM 87117

C. E. Baum

ATIR FORCE MATERIALS LABORATORY, Wright-Patterson Air Force Base, OH L5433

R. R. Rowland
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ATIR FORCE ROBBINS AIR FORCE BASE, Robbins Air Force Base, GA 31093
R. W. Bailey, Jr., WRAMA/MMETM

ARGONNE NATIONAL LABORATORY, 9700 Cass Avenue, Argonne, IL 60439
Harold Beyxger
C. J. Renken
ARMY EDGEWQOD ARSENAL, Edgewood Arsenal, MD 21010
Ronald Frailer, Physical Laboratory Branch, Inspection Operations
Division
ARMY MATERIALS AND MECHANICS RESEARCH CENTER, Watertown, MA 02172
R. €. Grubinskas
C. P. Merhib, Nondestructive Information Analysis Center
ARMY REDSTONE ARSENAL, Redstone Arsenal, AL 35809
W. B. Treplett, AMSMI-QLC, Bldg. L4500

ATOMIC ENERGY OF CANADA, LTD., Chalk River, Ontario, Canada
J. W. Hilborn

BATTELLE MEMORIAL INSTITUTE, 505 King Avenue, Coluabus, OH 4%201
J. H. Flora

BMI-PACIFLC NORTHWEST LABORATORY, P. 0. Box 999, Richland, WA 99352
D. L. Lessor
H. L. Libby

COMBUSTION ENGINEERING, INC., Prospect Hill Road, Windsor, CT 06095
J. Roth

DOW CHEMICAL COMPANY, P. 0. Box 888, Golden, CO 0401

Dave Chamberlain, Nondestructive Testing Department
G. D. Lassahn

E. I. DU PONT DE NEMOURS COMPANY, Savannah River Laboratory, Aiken, SC
29801

Dan Clayton

GENERAL ELECTRIC, 175 Cortner Avenue, San Jose, CA 95125
D. L. Fischer, M/C 164

GENERAL ELECTRIC, Route I-75, Maildrop E-L5, Evendale, OH 45215
R. F. Feldman



HANFORD ENGINEERING DEVELOPMENT LABORATORY, P. 0. Box 1970, Richland,
WA 99352

R. L. Brown, Jr.

C. B. Shaw

NSTITUTE OF NUCLEAR ENERGY RESEARCH, P. 0. Box %, Lung-Tan, Taiwan,
Republic of China

Chwen Fu Huang

KNOLLS ATOMIC POWER LABORATORY, P. O. Box 1072, Schenectady, NY 123501

Don Gavin

LAWRENCE LIVERMORE LABORATORY, P. O. Box 808, Livermore, CA 94550
J. W. Sully

LOCKHEED MISSILES AND SPACE COMPANY, P. O. Box 504, Sunnyvale, CA SLO&S
A. J. Glispin, Dept. 84-35

LOS ALAMOS SCIENTIFLIC LABORATORY, P. O. Box 1663, Los Alamos, NM 87544
D. Elliott '

G. C. MARSHALL SPACE FLIGHT CENTER, Marshall Center, AL 35812

L. H. Burdette, MSFC-S&E-QUAL-QT
M. C. McIlwain, R-QUAL-ARA
F. M. Saxton, S&E-ASTR-IR

NASA~LEWLS RESEARCH CENTER, 21000 Brookpark Road, Cleveland, OH 44135
Alex Vary

NAVAL AIR DEVELOPMENT CENTER, Johnsville, Warminster, PA 18974
John Carlyle, MAMM-1L4

NAVAL SHIP ENGINEERING CENTER, Hyattsville, MD 20782
John Gleim

SANDIA CORPORATION, Division 7361, P. 0. Box 5800, Albuquerque, NM 87115

R. A. Baker
D. W. Ballavrd

SANDIA CORPORATION, P. 0. Box 969, Livermore, CA 94550

Dennis Rathbun

SOUTHWEST RESEARCH INSTITUTE, P. O. Drawer 28510, Sal Antonio, TX 78228
B. R. Wilson
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UNITED KINGDOM ATOMIC ENERGY RESEARCH ESTABLISHMENT, Didcot, Berkshire,
England

R. S. Sharpe

UNIVERSITY OF MICHIGAN, 2317 East Engineering Bldg., Aun Arbor, MI 485104

J. R. Frederick, Department of Electrical Engineering

UNIVERSITY OF MISSOURI, Columbia, MO 5201

D. L. Waidelich, Department of Electrical Engineering

UNIVERSITY OF TENNESSEE, Knoxville, TN 37916

C. Cheng, Department of Physics

E. Deeds, Department of Physics

. F. Pierce, Department of Electrical Engineering
0. Thompson, Department of Physics

L s o

WESTINGHOUSE RESEARCH AND DEVELOPMENT, Beulah Road, Pittsburgh, PA 15255
J. K. White
AEC OPERATIONS OFFICE, P. 0. Box E, Oak Ridge, TN 37830

Research and Technical Support Division

AEC TECHNICAL INFORMATION CENTER, OFFICE OF INFORMATION, P. O. Box 62,
Oak Ridge, TN 37830

(2)



