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ORNL ISOTOPIC POWER FUELS QUARTERLY -REPORT 
FOR PERIOD ENDING DECEMBER 31, 1971 

Eugene Lamb and R. G. DonneZZy 

SUMMARY 

The emiss iv i ty  of 244Cm203 is being determined as a funct ion 
of t h e  wavelength and temperature. A high-temperature vacuum 
furnace with TGA and DTA u n i t s  has been f ab r i ca t ed  t h a t  w i l l  
enable the  k i n e t i c s  of the  r eac t ion  between Cm2O3 and t h e  
platinum-like metals t o  temperatures near  20OO0C to  be s tudied.  
Work continues on the  prepara t ion  of micropar t ic les  f o r  cermet 
development using loaded ion-exchange beads. 
being used as a stand-in f o r  curium i n  t h e  development phase. 
Good-quality particles have been produced with Rexyn 102H and 
IRC-72 r e s i n s .  The curium source t es t  w a s  disassembled a f t e r  
644 days of operat ion a t  1000 to  1 2 O O O C .  The primary vacuum 
chamber w a s  opened, and the  capsule w a s  removed and opened. 

Gadolinium is 

ORNL hot-pressed the  required number of  f u e l  p e l l e t s  f o r  t h e  
238Pu02 Aging Experiment and shipped them to  Donald W. Douglas 
Laborator ies .  

The apparent vapor pressure of  Tm 0 3  a t  1900OC using s m a l l  and 
l a r g e  Knudsen c e l l s  is  1.90 x lo-’ and 1.03 x 
respec t ive ly .  

a t m ,  

One-pound ingo t s  of t h r e e  Pt-Rh-W a l l o y s  have been f ab r i ca t ed  
i n t o  shee t  by hot - ro l l ing  electron-beam-melted ingots .  O f  t he  
t h r e e ,  the  Pt-26% Rh-8% W a l l o y  appears t o  be t h e  most f ab r i c -  
ab le .  Additional Pt-Rh-W a l l o y s  with small addi t ions  of hafnium 
and t i t an ium have also been f ab r i ca t ed  i n t o  shee t .  I n  genera l ,  
these  a l l o y s  e x h i b i t  super ior  mechanical p r o p e r t i e s , p a r t i c u l a l y  
a t  e leva ted  temperatures.  The physical  and mechanical proper- 
t ies  of unalloyed i r id ium have been determined as a f i r s t  s t e p  
i n  an at tempt  to  reso lve  problems of d u c t i l i t y  and f a b r i c a b i l i t y .  

The s e n s i t i v i t y  of T-111 and molybdenum a l l o y s  t o  contaminants 
such a s  oxygen, w a t e r  vapor, and o t h e r  gases w h i c h  a r e  p re sen t  
i n  Pioneer radioisotope thermal generators  has been determined. 
In  genera l ,  t he  molybdenum a l l o y s  appear fa r  less s e n s i t i v e  t o  
these  impur i t ies  than T-111. 

Nonfuel materials compat ib i l i ty  tests i n  support  of t he  DART 
Program a t  Los  Alamos have been completed and p a r t i a l l y  evalu- 
a ted.  Preliminary r e s u l t s  i n d i c a t e  t h a t  tungsten i n t e r a c t s  
the  least  with graphi te  under the  t es t  condi t ions .  



INTRODUCTION 

The development of f u e l  forms with optimum design f o r  use a t  temperatures 
up t o  2O0O0C involves obta in ing  the  c h a r a c t e r i s t i c s  of i s o t o p i c  power 
and hea t  sources f o r  a n t i c i p a t e d  app l i ca t ions  i n  aerospace,  t e r r e s t r i a l ,  
and marine environments. The phys ica l  and chemical p r o p e r t i e s  of t he  
compound and source form, such as thermal conduct iv i ty ,  dens i ty ,  gas 
r e t e n t i o n ,  and melting p o i n t ,  must be determined. Compatibil i ty of t h e  
f u e l  form wit,h conta iner  ma te r i a l s  must be e s t ab l i shed  t o  ensure adequate 
containment during the  intended l i f e t i m e  of t he  mission. 

C U R I U M -2 44 FU EL DE V E LO PM E N T 

(Division of Space Nuclear Systems Program 04 30 05 03) 

Curium-244 Oxide Fuel Development and Propert ies  

244Cm203 Compati b i  1 i t y  

The r epor t  e n t i t l e d  Compatibility o f  C u r i u m  Oxide wi th  Refractory Metals 
a t  165OoC and 185OoC i s  being reproduced. 

Cm203 Heat Capacity 

The complete ca lor imeter  system has been operated s a t i s f a c t o r i l y ,  and 
the  u n i t  has been t e s t e d  t o  1 4 O O O C .  The new e l eva to r  mechanism is  oper- 
a t i n g  very s a t i s f a c t o r i l y .  

The c e l l  backplate  containing t h e  viewing window, glove p o r t s ,  e t c .  has 
been i n s t a l l e d  on the  c e l l  containing the  Cm2O3 hea t  capac i ty  apparatus .  
Several  minor a l t e r a t i o n s  were made t o  the c e l l  atmosphere c o n t r o l  system. 
Leak checking and operat ion of the  c e l l  under i n e r t  atmosphere condi t ions  
are continuing. 

Emissivity o f  244,Cm203 

The ob jec t ive  of the  experiment is  t o  determine t h e  emiss iv i ty  ( E )  of 
244Cm203 as a funct ion of t he  wavelength and temperature. 
( A )  region of i n t e r e s t  would be from t h e  v i s i b l e  t o  a t  l eas t  1 7  p. The 
t o t a l  emiss iv i ty  would be ‘obtained by averaging t h e  E vs  X curves.  

A block diagram of t h e  experimental se tup  is  shown i n  Fig.  1. Fuel would 
be loca ted  i n  the  furnace,  arid r e f l e c t e d  l i g h t  from extraneous sources  
would be kept  to  a minimum. The sample would be f ab r i ca t ed  so t h a t  it 
would conta in  a blackbody hole.  

The wavelength 

The mode of operat ion would be the following: l i g h t  f r o m  two sources  
on. the  p e l l e t  ( sur face  and blackbody hole)  would be co l l imated  i n t o  two 
beams. These beams would be chopped a t  d i f f e r e n t  f requencies ,  s e n t  through 
a monochromator, and de tec ted .  The t w o  beams of d i f f e r e n t  chopping f r e -  
quencies would be recovered from the  d e t e c t o r  by using AC ampl i f i e r s  
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would be scanning over a range of 
wavelengths. The t w o  chopping 

r 

A F - -  

. 

Curium-244-Noble Metal Compound Fuel Development and Properties 

A high-temperature vacuum furnace with TGA and DTA u n i t s  has been f a b r i -  
cated.  This furnace w i l l  enable us t o  study t h e  k i n e t i c s  of the  r eac t ion  
between Cm-203 and the  platinum-like metals t o  temperatures near  20OO0C. 
Melting p o i n t  determinat ions,  as w e l l  as helium r e l e a s e  experiments, can 
be performed with the  u n i t .  The furnace i s  being i n s t a l l e d  i n  t h e  glove 
box. 

Curi um-244 Cermet Fuel Development and  Properties 

This task involves the  prepara t ion  of s i zed  244Cm203 p a r t i c l e s  f o r  use 
i n  cermets and t h e  determination of ranges of f a b r i c a t i o n  parameters f o r  
Mo-Tho2 as a s tand-in for M o - ~ ~ ~ C ~ ~ O ~  and noble m e t a l - 2 4 4 C m 2 0 3  cermets. 
The prepara t ion  of cermets requi res  s i zed  p a r t i c l e s  of Cm2O3 which a r e  
incorporated i n t o  the  metal matr ix  t o  form the  composite fue l .  Of the  
seve ra l  methods ava i l ab le  t o  produce s i zed  p a r t i c l e s ,  the  ion-exchange 
rocedure o f f e r s  the p o t e n t i a l  advantages of e f f i c i e n t  u t i l i z a t i o n  of 

P44Cm without recyc le  , a d a p t a b i l i t y  t o  manipulator c e l l  operat ion,  and 
s impl i c i ty  of procedure. 

O u r  a i m  i s  t o  develop cermet f u e l  forms with the  most des i r ab le  combina- 
t i o n  of p rope r t i e s  and t o  reduce t h e  in -ce l l  development r equ i r ing  curium. 
W e  are s p e c i f i c a l l y  a t tempting t o  s t r u c t u r e  t h e  cermet to provide f o r  
helium re l ease .  
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Preparation o f  Sized 244Crn203 

Gadolinium i s  be ing 'used  as a 
a process f o r  the  manufacture 

Pa r t i c l e s  

stand-in f o r  curium i n  the development of 
of micropar t ic les .  The e s s e n t i a l  s t e p s  

i n  the  process are as follows: (1) an ion-exchange r e s i n  is  loaded with 
gadolinium; 
(3) t he  carbon is removed by oxida t ion ;  and (4)  t he  p a r t i c l e s  are s i n t e r e d .  

Good-quality Gd2O3 p a r t i c l e s  have been produced using t h e  ion-exchange 
r e s i n s  Rexyn 102H and IRC-72. These p a r t i c l e s  have a bulk dens i ty  of 
5 .O-5.2 g/cm3 , which corresponds t o  a packing e f f i c i ency  of 60.2-62.5% 
based on a t h e o r e t i c a l  dens i ty  of 8.31 g/cm3 f o r  Gd2O3 as ca l cu la t ed  
from x-ray d i f f r a c t i o n  da ta .  The packing e f f i c i e n c i e s  a r e  i n  the  range 
expected of materials of t h i s  type so t h a t  t he  p a r t i c l e  dens i ty  is  
apparent ly  near ly  100% of t h e o r e t i c a l .  

The average p a r t i c l e  diameter of the  Gd2O3 beads produced from Rexyn 102H 
and IRC-72 w a s  determined. Measurements were made of t he  diameters of a 
l a r g e  number of p a r t i c l e s  as shown i n  microphotographs. 
t he  nonspherical  beads from Rexyn 102H, the  diameters were measured i n  
the  hor izonta l  d i r e c t i o n ,  then i n  the  v e r t i c a l  d i r e c t i o n  as they f e l l  on 
the  photograph. Random o r i e n t a t i o n  w a s  assumed. 

(2)  t h e  organic  material i s  decomposed i n  an i n e r t  atmosphere; 

In  t h e  case  of 

,The beads produced using IRC-72 had an average diameter of 219 microns. 
The standard devia t ion  w a s  55 microns. The l a r g e s t  p a r t i c l e  diameter w a s  
342 microns, and the  smallest w a s  122 microns. I t  w a s  observed t h a t  
smaller p a r t i c l e s  had ex i s t ed  bu t  fused toge ther  t o  form agglomerates. 
These values  are based on 25 measurements. 

Measurements of samples from two d i f f e r e n t  batches of beads produced using 
Rexyn 102H gave average diameters of 258 microns and 259 microns. The 
numbers of measurements were 25 and 18 and the  s tandard dev ia t ions  w e r e  
58 and 44 microns, respec t ive ly .  The l a r g e s t  diameter observed i n  e i t h e r  
batch was 362 microns: t he  smal les t  w a s  187 microns. 

The oxide bead s i z e  is con t ro l l ed  by the  s i z e  of the  o r i g i n a l  r e s i n  beads 
when o the r  condi t ions  a r e  uniform. Thus, a narrower p a r t i c l e - s i z e  range 
could be obtained by c lose r  s i z i n g  of t he  o r i g i n a l  r e s i n .  The f i n e s  had 
been washed from the  r e s i n  used t o  produce t h e  measured beads. N o  o the r  
s i z i n g  had been c a r r i e d  out .  

Experience has shown t h a t  high-densi ty  beads can be obtained only from 
r e s i n  beads t h a t  a r e  e s s e n t i a l l y  100% loaded with gadolinium. Further-  
more, the  t i m e  which can be allowed f o r  loading w i l l  be l i m i t e d  by rad ia-  
tion'damage of the  organic  ion-exchange beads when curium i s  used. 
allowable time of 4-5 h r  has been est imated.  A r a p i d  loading procedure 
i s  requi red  and varying procedures have been t e s t e d .  

An 

Preliminary r e s u l t s  i n d i c a t e  t h a t  one of the  methods tested meets the 
requirements of t he  process .  More than 99% of t h e o r e t i c a l  loading w a s  
achieved i n  4 h r .  
with th ree  successive po r t ions  of  G d ( N 0 3 1 3  so lu t ion .  Boi l ing and a g i t a t i o n  a 

, In  t h i s  process the  r e s i n  i n  t h e  N H t  form is contacted 
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a r e  continued throughout the process.  
GdC13 s o l u t i o n  ins tead  of Gd(NO3)3 has 
r e s u l t s  are no t  y e t  complete. 

. A second t e s t  of the method using 
been c a r r i e d  o u t ,  b u t  a n a l y t i c a l  

Another type of loading process w a s  inves t iga ted .  The r e s i n  i n  t h e  hydrogen 
form is  heated i n  G d C l 3  so lu t ion  along with -203. 
w i t h  the r e s i n  r e l e a s i n g  H+ ion.  
more Gd3+ ion  and water. 
consumed. 

Previous observat ions ind ica ted  that  the rate  of loading w a s  con t ro l l ed  
by the  rate of d i f f u s i o n  i n t o  the 'beads .  When the loaded r e s i n  w a s  
separated i n t o  large and s m a l l  particle s i z e  f r a c t i o n s ,  t h e  smaller  
p a r t i c l e s  showed heavier  loading. Furthermore, the oxide beads produced 
from p a r t i a l l y  loaded r e s i n  were o f t e n  hollow. This e f f e c t  i nd ica t ed  
t h a t  t he  i n t e r i o r  had contained l i t t l e  gadolinium. 

I t  w a s  reasoned t h a t  the rate of d i f fus ion  of Gd3+ i n t o  the  beads would 
be propor t iona l  t o  the concentrat ion of Gd3+ i n  the so lu t ion .  Conse- 
quent ly ,  the process  w a s  c a r r i e d  o u t  using 6 N GdC13 r a t h e r  than t h e  
2-3 N concentrat ions used i n  previous tests. I n  4 h r  92% loading w a s  
achieved. This loading is  better than t h a t  previously achieved i n  4 h r  
by the oxide s l u r r y  method, bu t  the rate i s  i n f e r i o r  t o  that  of t h e  
ammonium-form r e s i n  method and i s  marginal f o r  our  process.  

The Gd3+ i on  r e a c t s  
The H+ r e a c t s  with the oxide t o  produce 

Thus, t h e  GdC13 a c t s  as a c a r r i e r  and is  n o t  

The oxide loading process  would have advantages when appl ied  t o  a la rge-  
s c a l e  production process i f  a longer  r eac t ion  time were allowable o r  i f  
an ion showing f a s t e r  r eac t ion  k i n e t i c s  were involved. A s i n g l e  bath 
could be used f o r  many batches of r e s i n .  Makeup oxide would be added 
as required.  

Good-quality p a r t i c l e s  have been produced i n  seve ra l  experimental runs 
using the  ion-exchange r e s i n s  Rexyn-102H and IRC-72, which are of t he  
carboxyl ic  o r  weak ac id  type. In some runs ,  t he  beads sha t t e red  i n t o  
fragments during t h e  decomposition, ox ida t ion ,  o r  s i n t e r i n g  s t eps .  
(These operat ions a r e  c a r r i e d  ou t  consecutively i n  the  same conta iner  

wi thou t  opportuni ty  for observat ion.)  An inves t iga t ion  of the cause of 
the observed bead f r a c t u r i n g  w a s  made using a hot-s tage microscope. 
With this microscope the  sample can be observed and photographed i n  a 
con t ro l l ed  atmosphere while it is  being heated t o  temperatures up to 
13OOOC. 

The beads were found t o  s h a t t e r  la te  i n  the  decomposition o r  carbonizat ion 
s t e p  when the  argon contained appreciable  a i r .  
w a s  used, s h a t t e r i n g  d i d  no t  occur. 

When a pure argon atmosphere 

Other photographs were made which confirm t h e  tendency of oxygen i n  the 
argon t o  zause s h a t t e r i n g  of the  beads. Both IRC-72 and Rexyn-1O2H were 
inves t iga t ed  with similar r e s u l t s .  
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The f lu id i zed  bed tube i n  which the  labora tory  production runs had been 
made w a s  examined and found t o  contain cracks through which a i r  could 
en te r .  A successfu l  run w a s  made a f t e r  s ea l ing  t h e  cracks.  

An apparatus i s  being constructed f o r  t h e  experimental  production of 
244Cm203 beads. 

Curium Source Tes t  

Disassembly of the  curium source t es t  w a s  accomplished on December 15-17, 
1971. The primary vacuum chamber w a s  opened, and the  capsule w a s  removed 
and opened. The source,  o r i g i n a l l y  b u i l t  i n  February 1970, operated con- 
t inuously i n  i t s  insu la t ed  charker  a t  temperatures from 1000 t o  1 2 O O O C  
through February 1971 and 1100 t o  1 2 O O O C  since.’  The source i n i t i a l l y  
contained 956 W(th) of 244Cm as the  sesquioxide with a power dens i ty  of 
2.32 W(th)/g. This material has subsequently decayed t o  890 W(th) and 
a power dens i ty  of 2.16 W(th)/g. 

Examination of the  vent  l i n e  w a s  inconclusive i n  determining where a l eak  
i n  the  helium vent ing system occurred during the  t es t  per iod .  Removal of 
the  top  of the  capsule revealed a granular  material adhering t o  t h e  top  
of the  main capsule  body above the  p e l l e t s  and near ly  f i l l i n g  t h e  1/4-in.- 
t h i c k  space between the  top  of the  p e l l e t s  and bottom of t h e  vent  d i sk .  
Calorimetry of t h i s  ma te r i a l  shows t h a t  it w a s  mostly curium, ind ica t ing  
t h a t  migration of some of the  curium had taken p lace .  

The curium pel le ts  could n o t  be removed from t h e  capsule by use of probing 
and chipping t o o l s .  The capsule  and p e l l e t s  w e r e  sea led  i n  a Hastel loy C 
capsule  containing argon. Details of the  opening sequence are presented 
be l o w .  

H e l i u m  w a s  admitted t o  the  vacuum chamber to  decrease t h e  capsule  tempera- 
t u r e  f r o m  1090OC t o  900°C when the helium pressure  reached Q1 atmosphere. 
The oxygen l e v e l  i n  the  c e l l  w a s  reduced t o  2,500 ppm by flowing argon. 
The vacuum chamber w a s  opened by gr inding  o f f  t h e  weld and l i f t i n g  the  l i d .  
An inspec t ion  of the  in su la t ion  and ven t  tube assembly revea led  no apparent  
cracks o r  severe oxidat ion.  

The inner  i n s u l a t i o n  cap w a s  bonded t o  t h e  top  of t he  i n n e r  support  cy l in-  
d e r  of tungsten m u l t i f o i l  i n s u l a t i o n ,  bu t  was broken f r e e  and removed. 
Visual inspec t ion  of the  capsule  showed no oxidat ion of i t s  upper po r t ion .  
A l l  thermocouple wires  were c u t ,  and the  s i x  socket-head cap screws holding 
the  capsule t o  the basepla te  w e r e  removed. The vent  tube w a s  then crushed, 
t he  capsule  handling t o o l  w a s  a t tached  to  the  capsule ,  and t h e  capsule  w a s  
removed from the  in su la t ion .  A t  t h i s  t i m e  t h e  oxygen l e v e l  i n  the  c e l l  
atmosphere w a s  4,000 ppm. Visual inspec t ion  of  t he  capsule  revea led  no 
f l a w s  o r  cracks.  Inspect ion of t h e  vent  tube assembly w a s  inconclusive 
as t o  where the  leak had developed i n  the  vent  sys t em.  The capsule  w a s  
t r ans fe r r ed  t o  an ad jacent  c e l l  and s t o r e d  overnight  i n  an argon atmos- 
phere with a maximum oxygen l e v e l  of 1 ,000 ppm. 
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Photographs taken of the  capsule the  following day are shown in Figs. 2 
and 3. 
is  believed t o  have occurred during exposure t o  t h e  ce l l  atmosphere. 
During the second day the  top  of the capsule w a s  removed by using a bonded 
diamond ro t a ry  cut-off saw. 
exposed (upper port ion i n  the p i c t u r e )  and the  bottom view of the  vent disk 
(lower por t ion  of picture). A s  shown i n  Fig. 3 ,  each of  the  seven pelIet  
holes  appears to  have a column of granulated substance reaching from the  
p e l l e t  holes  t o  the  bottom of the ven t  d i sk .  
scraped from the bottom of the vent  disk and from the  top  of the  p e l l e t  
holes  and s tored  i n  i d e n t i f i e d  containers .  When the  top  por t ion  of t h e  
capsule w a s  moved t o  a pos i t i on  t o  scrape of f  t he  granulated substance,  
some black powder poured out  of the s l o t  i n  the  vent  d i sk .  
w a s  placed i n  an i d e n t i f i e d  container .  
been cleaned from the  pellet  holes ,  the  tops of the  p e l l e t s  appeared to  
be sharp and f l a t .  

Figure 2 shows surface oxidat ion of the  capsule,  m o s t  of which 

Figure 3 shows the  capsule with the  p e l l e t s  

The granulated substance was 

This mater ia l  
Once the granulated material had 

Thin wisps of smoke were observed coming from the  top of t h e  p e l l e t s .  
t h i s  t i m e  the  oxygen l e v e l  i n  the  ce l l  w a s  1,400 ppm. 
revealed t h a t  smoke w a s  coming from each of t h e  seven holes.  
s teel  scoop was held %1/2 in.  above the  p e l l e t  holes  t o  determine i f  the  
smoke would condense on the bottom of the scoop, bu t  no condensation on 
the  scoop w a s  observed. W e  were unable to determine the exac t  o r i g i n  of 
the smoke ( f u e l  o r  capsule w a l l ) ,  bu t  we be l ieve  t h e  most reasonable expla- 
nat ion t o  be oxidat ion of the tungsten and generation of f i n e  tungsten 

A t  
Closer observation 

A s t a i n l e s s  

oxide par ti cle s . 
An attempt t o  dump the  p e l l e t s  f a i l e d  
because they w e r e  lodged t i g h t .  The 
p e l l e t s  could not be broken up with 
a s c r e w  dr iver .  
f r o m  the  capsule was considered too 
slow (Q6 g i n  20 min), and it w a s  
decided t h a t  t h e  curium could no t  be 

Chipping the  p e l l e t s  

Fig. 2 .  244Crn Source T e s t  Capsule 
Af te r  Removal from Vacuum Chamber. 

Fig. 3,  244Cm Source T e s t  Capsule 
A f t e r  Opening. 
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recovered i n  a reasonable time. During chipping of t h e  p e l l e t s  more smoke 
w a s  emitted from t h e  hole  i n  the  tungsten capsule .  The capsule w a s  l e f t  
overnight  under an argon atmosphere conta in ing  650 ppm oxygen. 

On the  t h i r d  day t h e  bottom por t ion  of t h e  capsule containing t h e  f u e l  
p e l l e t s  w a s  placed i n  a thick-walled Hastelloy C conta iner  and seal 
welded f o r  s torage .  The t o p  po r t ion  of t h e  capsule w a s  p laced i n  a 
separa te  s t a i n l e s s  s t e e l  conta iner  with a threaded cap f o r  s torage .  
Calorimeter measurements were made on the  hea t  ou tput  of a l l  t h e  powder 
t h a t  w a s  recovered from the  capsule .  Resul ts  of t h e  ca lor imeter  runs 
are tabula ted  below. 

Descr ipt ion of Mater ia l  
Weight Power Density 
(g 1 [W ( t h ) /g l  

Scrapings from top  of p e l l e t s  15 -85 1.76 
Scrapings from bottom of vent  disk 29.35 1.70 
Powder from i n s i d e  vent  d i sk  2 -50 1.20 
Material chipped from p e l l e t s  6.55 1.83 
Vent tubea <O. 25 - 
Top of capsule and vent  diskb <2.0 - 

a 

bCapsule and vent  d i sk  placed i n  ca lor imeter  a f t e r  powder 
w a s  removed. 

En t i r e  vent  tube placed i n  calor imeter .  

The 244Cm203 p e l l e t s  had an average power dens i ty  of 2.32 W/g a t  t h e  
, beginning of t h e  experiment. Accounting f o r  1 year  and 10 months decay, 

the  average power dens i ty  would be 2.16 W/g. 

Samples of mater ia l  taken from d i f f e r e n t ' s e c t i o n s  of t he  f u e l  capsule ,  
as l i s t e d  i n  t h e  above calor imetry information, w i l l  be analyzed by spark 
source m a s s  spectrometry. 
by x-ray d i f f r a c t i o n ,  and another  sample w i l l  be photomicrographed. An- 
o t h e r  sample of t he  244Cm203 p e l l e t  f u e l  w i l l  be used t o  determine the  
helium inventory remaining i n  the fuel. 

One sample of t he  244Cm203 f u e l  w i l l  be examined 

From the  d a t a  shown i n  t h e  above paragraph, 37.6 g of Cm2O3 w a s  t ranspor ted  
by some mechanism from the  holes i n  t h e  source capsule  containing the  
Cm2O3 p e l l e t s .  'Ca lcu la t ions  were made t o  determine i f  t h i s  quant i ty  
t ranspor ted  is  cons i s t en t  with the  vaporizat ion information ava i l ab le .  

Based on measurements of t h e  source capsule  temperature during the  e a r l y  
par t  of t h e  experiment, the  sur face  temperature of t he  Cm2O3 p e l l e t s  
from which evaporation could occur w a s  ca l cu la t ed  t o  be 1410°C. The 
observed t r a n s p o r t  of material w a s  Q8.4 x g/cm2 - sec  based on t h e  
t o t a l  area of t h e  seven holes  containing t h e  p e l l e t s  and based on the  
t r anspor t  occurr ing i n  vacuum. This t r anspor t  ra te  would correspond t o  
a temperature range of  1525 t o  1600OC. 
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The inconsis tency between the  ca l cu la t ed  p e l l e t  temperature and the  
temperature a t  which the  observed vaporizat ion ra te  should occur leads 
t o  the  following observat ions:  

1. The ac tua l  p e l l e t  temperature could have been higher  than that 
ca l cu la t ed .  

2. The area of t h e  p e l l e t s  from which vaporizat ion occurred may have 
been l a r g e r  than the  s u p e r f i c i a l  a r ea  of the  top  p e l l e t  su r f ace ,  
as used i n  the  above ca l cu la t ion  of observed t r anspor t  r a t e .  

3. The t r anspor t  of Cm2Og i n  vacuum might be higher  than e x i s t i n g  d a t a  
ind ica t e .  

The d i s t r i b u t i o n  of 244Cm a s  determined by ca lo r ime t r i c  measurements shows 
t h a t  the  vent d i sk  functioned properly i n  r e t a i n i n g  the  curium wi th in  the  
capsule.  
f u e l  and capsule ma te r i a l  w i l l  be done i n  F Y  1973. 

Fur ther  sec t ion ing  of t he  capsule t o  determine e f f e c t s  on the  

Impact Testing o f  Heat Source Materials 

The gas-powered impact t e s t i n g  gun b u i l t  by Process Equipment Company 
w a s  inspected a t  t h e i r  p l a n t .  
following r e s u l t s :  

Four t e s t  shots  were made with the  

Miss i le  Weight Timea F i r ing  Pressure Velocity 
(1b) (set) ( p s i  1 ( f t / s e c  1 

2 0.00399 180 250.6 
2 0.00401 180 249.4 
2 0 -00404 180 247.5 

1 l b  3-1/2 oz 0.00310 180 322.6 

a T i m e  i n t e r v a l  measured across  a 1 - f t  span. 

PLUTONIA-CURIA PELLET FABRICATION FOR 238pU0, AGING EXPERIMENT 

(Division of Space Nuclear Systems Program 04 30 05 0 1  1) 

The ob jec t ive  of t h i s  experiment is t o  s imulate  t h e  e f f e c t s  of %2-1/2 years  
of aging i n  238Pu space f u e l s  i n  s i x  months. O a k  Ridge National Laboratory 
Isotopes Division is  charged with the  task  of f a b r i c a t i n g  the  f u e l  p e l l e t s  
t o  be used i n  the  experiment. 
f o r  supplying ORNL with 238Pu02 and a 242Cm-238Pu02 mixture.  
pressed the  required number of p e l l e t s  and shipped them t o  Donald W. 
Douglas Labora tor ies ,  Richland, Washington, i n  October. 

Savannah River Laboratory is  respons ib le  
ORNL hot- 
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Chemical Vapor Deposi t i  on Development 

Plutonium-238 oxide w a s  processed t o  ob ta in  p a r t i c l e s  i n  the  c o r r e c t  s i z e  
range and t o  coat w i t h  molybdenum. 
14.09 g of 238Pu02 i n  t h e  s ize  range of 105-250 wt w a s  recovered. 
batches of the  p a r t i c l e s  were coated with molybdenum. 
denum content  of t he  two runs as determined by weighing w a s  20.88 and 15.2%. 
The remaining 4.09 g of 238Pu02 w a s  coated with molybdenum; 13.5 w t  % 
molybdenum w a s  deposi ted on the  p a r t i c l e s .  
p a r t i c l e s  w e r e  mixed with 1.5 g of coated p a r t i c l e s  remaining from t h e  t h r e e  
o r i g i n a l  runs which gave a t o t a l  coated weight of 18.38 g. The r e s u l t i n g  
mixture of coated p a r t i c l e s  had an average molybdenum content  of 16.7% a s  
determined by weight. The 18.38 g of molybdenum-coated 38Pu02 p a r t i c l e s  
w a s  hot-pressed i n  a carbon d i e  l i n e d  with 10 m i l s  of Gra fo i l  and 1 m i l  
of tantalum f o i l .  The r e s u l t i n g  hot-pressed p e l l e t  w a s  p laced i n  a d r i l l  
p r e s s ,  and seven p e l l e t s  w e r e  co re -d r i l l ed  from t h e  l a r g e  hot-pressed p e l l e t .  
After  t he  p e l l e t s  were core-dr i l led ;  approximately 15 mils  w a s  ground from 
each end of t h e  p e l l e t s .  

Af t e r  chemical processing and screening ,  
Two 5-g 

The r e s u l t i n g  molyb- 

The t h r e e  batches of coated 

The r e s u l t s  of the  molybdenum-coated p e l l e t  f ab r i ca t ions  a r e  l i s t e d  below: 

P e l l e t  Height Diameter Weight Density 
N o .  ( i n .  ( i n .  1 0 (9/cm3 

1 0.200 0.183 0.884 10.24 
2 0.192 0.184 0.896 10.23 
3 0.202 0.183 0.898 10.30 
4 0.199 0.184 0.871 10.04 
5 0 -203 0.186 0.900 9.95 
6 0.201 0.186 0.889 9.92 
7 0.202 0.182 0.789 9.20 

P e l l e t  6 had a shallow groove along one s i d e  due t o  c o r e - d r i l l  misalign- 
ment? and p e l l e t  7 which adjoined p e l l e t  6 i n  the  d i sk  had a deep groove. 
A l l  seven p e l l e t s  were wrapped i n  tantalum f o i l  and placed i n  a shipping 
capsule l i n e r .  

Five 238Pu02 p e l l e t s  (PPO) were a l s o  f a b r i c a t e d  by cold-pressing and s in -  
t e r ing .  The f i v e  p e l l e t s  were s i n t e r e d  a t  a temperature of 1625OC f o r  
2 h r .  The r e s u l t s  of t h i s  operat ion are l i s t e d  below: 

P e l l e t  Height D i a m e t e r  Weigh t Dens i t y  
N o .  ( i n .  ( i n .  (9) (g/cm3) 

1 0.206 0.192 0.946 9.68 
2 0.228 0.192 1.073 9.92 
3 0.219 0.192 1.016 9.77 
4 '  0.231 0.192 0.973 8.87 
5 0.174 0.192 0.679 8.22 
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P e l l e t  5 had a l a rge  chip i n  one end. A l l  f i v e  p e l l e t s  were wrapped i n  
tantalum f o i l  and placed i n  a shipping capsule  l i n e r .  Both shipping cap- 
su le  l i n e r s  w e r e  welded i n t o  shipping capsules .  The capsules  were placed 
i n  a 6-M shipping d rum and shipped by a i r  f r e i g h t  t o  Donald W. Douglas 
Laborator ies  on October 26, 1971. 

THULIUM 

(Division of Isotopes Development Program 08 01  01) 

Vapor Pressure of Tm203-Yb203 

Experiments t o  determine the  vapor pressure  of Rn2O3 a t  1900OC using t h e  
small Knudsen c e l l  have been concluded. The apparent  vapor p re s su re  of 
Tm2O3 a t  1900OC ca lcu la t ed  from the  experimental  d a t a  is 1.90 x atm 
as shown i n  Table 1. This value i s  considerably higher  than t h a t  based 
on the  d a t a  from t h e  l a r g e  Knudsen c e l l  (1.03 x atm) . Experiments 
were performed t o  determine whether the  ra te  of weight change of t h e  empty 
Knudsen ce l l  would show a d r i f t  a f t e r  an extended t i m e  of use. The r e s u l t  
with the  l a r g e  Knudsen c e l l  appeared t o  i n d i c a t e  t h a t  t h e  average ra te  d i d  
no t  change appreciably af ter  more than t w o  months of continuous use. 

Work t o  c o r r e c t  t he  water leakage problem ins ide  t h e  vacuum furnace is  
s t i l l  i n  progress .  Since at tempts  t o  r e p a i r  t h e  cool ing c o i l s  a t  ORNL 
w e r e  unsuccessful ,  t he  c o i l s  have been re turned  t o . t h e  manufacturer f o r  
r e p a i r .  The experiment w i l l  be resumed as soon as t h e  r e p a i r  work i s  
completed. 

Table 1. Rates of Effusion,  and Pa r t i a l  and To ta l  
Pressures  of Various Vapor Species  Above 

Sol id  Tm2O3 i n  Small  Knudsen C e l l  a t  1900OC 

b Vapor R a t e  of Effusiona Pa r t i a l  Pressure 
Species (g/cm2.min) x 105 ( a t m )  x i o 7  

TmO 6.33 0.83 

0.42 0 0.95 
Tm 4.73 0.65 

- 
Tota l  1 2  -01 1. goc 

Corrected f o r  t h e  weight change of t he  empty a 

Knudsen c e l l  as w e l l  as f o r  t he  thermal expansion 
of t he  o r i f i c e .  
bCorrected f o r  t he  Clausing f a c t o r  (a t ransmission 
p robab i l i t y  ) . 
C"Total 's  vapor pressure of  Tm2O3. 
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Preparat ion f o r  metallography is 
r e f r ac to ry  metal couples exposed 

Compati b i  1 i ty  

near completion for s i x  170Tm203- 
a t  160OOC f o r  5,000 h r  (Samples S-4, -5, 

and -8, and A-2, -4, and -9, Table 2 ) .  The 500-hr exposure run a t  2O0O9C 
f o r  the t w o  couples (S-9 and A-5, T a b l e  2 )  has r ecen t ly  been completed. 
These couples have been t r ans fe r r ed  t o  the  High Radiation Level Examination 
Laboratory (HRLEL) f o r  examination, and prepara t ion  f o r  me ta l l i c  examina- 
t i o n  i s  near completion. 

Table 2.  Current Status  of 170Tm203-Refractory Metala Compatibility Program 

Sample Process fo r  Fuel Exposure Conditions 
No. Material Preparation Temp ("C) Time (hr )  Status  

S-1, -2 ,  Sanders Nuclear 
-6, -7 proprietary process 

S-3,b -5, Sanders Nuclear 
- 4 ,  -8 

A-1,  -3 ,  
-6, -8 

A-2, - 4 ,  
-7,b -9 

b s-9 

A-Sb 

proprietary process 

Savannah River 
Laboratory process 

Savannah River 
Laboratory process 

Sanders Nuclear 
proprietary process 

Savannah River 
Laboratory process 

1600 2500 Exposure completed; examination 
may be made during FY 1972 

1600 5000 Exposure completed; preparat ion 
for  metallography i n  progress 
fo r  S-4, -5, and -8 (TZM, T-111, 
and W) 

1600 2500 ' Exposure completed; examination 
may be made during FY 1972 

1600 5000 Exposure completed; preparation 
fo r  metallography i n  progress 
fo r  A-2, -4 ,  and -9 (TZM, W ,  
and T-111) 

2000 500 Exposure completed; preparation 
fo r  metallography i n  progress 

2000 500 Exposure completed; preparat ion 
f o r  metallography i n  progress 

aInner capsule and test  disk mater ia l :  
bInner capsule and test  disk mater ia l  for  S-3 and A-7 a r e  made of Ta-10% W while 
those fo r  S-9 and A-5 a re  made of tungsten. 

TZM, Ta-10% W ,  T-111, and W. 

CLADDING MATERIALS PROGRAM 

(Division of Space Nuclear Systems Program 04 30 05 04) 

R. G. DonneZly 
Metals and Ceramics Division 

, Preparation o f  Pt-Rh-W Sheet 

To compare t h e  f a b r i c a b i l i t y  of t he  Pt-Rh-W a l l o y  with s m a l l  changes i n  
composition, 500-9 m e l t s  of each of t h ree  a l loys  with nominal composi- 
t i o n s  of Pt-26% Rh--B% W, Pt-30% Rh-10% W ,  and Pt-30% %-lo% W-1% Hf-O.l% 
T i  were electron-beam melted and drop-cast  to  make 0.5-in.-thick by 

. 
, 
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1-in.-wide by 2-in.-long ingots  as shown i n  Fig. 4. These ingots  were 
hot - ro l led  a t  1200 t o  13OOOC without environmental p ro t ec t ion  t o  make 
0.040-in.-thick shee t  (Fig. 5 ) .  The hot - ro l led  s h e e t  w a s  co ld- ro l led  
with intermediate  anneals t o  0.030-in. thickness .  Formabili ty of t h e  
a l l o y s  w a s  then  evaluated from standard bend t e s t s  c a r r i e d  ou t  i n  accord- 
dance with Mater ia ls  Advisory Board recommendations (MAB-176-M). Each 
a l l o y  w a s  hea t - t rea ted  i n  vacuum a t  the  appropr ia te  temperature t o  pro- 
duce specimens r ep resen ta t ive  of s t r e s s - r e l i eved ,  nominally 50% r e c r y s t a l -  
l i z e d ,  and f u l l y  r e c r y s t a l l i z e d  s t r u c t u r e s .  D a t a  from t h e  bend tests are 
given i n  Table 3 .  The a l l o y s  were compared a t  a 4 T  bend r ad ius  followed 
by o the r  smaller  bend r a d i i  t h a t  provided t h e  b a s i s  €or ca l cu la t ion  of 
minimum bend r ad ius .  

The bend da ta  from t h e  Pt-30% Rh-10% W a l l o y  does n o t  appear t o  agree with 
comparable t e n s i l e  r e s u l t s  shown i n  Table 4 .  Examination of the  t es t  
specimens by metallographic procedures ind ica t e s  probable sur face  con- 
tamination t h a t  could a f f e c t  t he  d u c t i l i t y  of t he  a l loys .  W e  a r e  p re sen t ly  
attempting t o  i d e n t i f y  and e l imina te  t h i s  problem i n  the  Pt-2608 a l l o y .  

Table 3. Bend Formabili ty Evaluation 
of Pt-Rh-W Alloys a t  Room Temperature 

H e a t  Treatment Bend Elon- Bend 
Temp Condi- Radius Bend ga t ion  Strengthb 
("C)  t iona  (TI ( % I  ( p s i  1 Angle 

950 
1000 
1100 
1200 

950 
1000 
1100 
1200 

950 
1050 
1 2  00 
1300 

Pt-26% Rh%% W. 

- SR 4 <40 
RC %50% 4 >90 

RC 4 >90 
RC 2 .7c 90 15.5 

- 
- 

Pt-30% Rh-lO% W 

- < 30 SR 4 
RC $50% 4 < 20 

RC 4 < 40 
RC 9.2c 90 5.2 

- 
- 

Pt-30% Rh- lO% W-1% Hf-o. l% T i  

- SR 4 <15 
RC $50% 4 < 15 

RC 4 < 25 
RC 9.3c 90 5.1 

- 
- 

258,000 
238,000 
156,000 
144,000 

210,000 

200,000 
215,000 

117,000 

351,000 
344,000 
226,000 
206,000 

a 

bOuter f i b e r  . 
CCalculated m i n i m u m  bend rad ius .  

SR = stress re l i eved ,  RC = r e c r y s t a l l i z e d .  



I ONE INCH 

Fig. 4. One-pOud Ingots of Pt-Rb-W Alloys 
Produced by Electron-Beam Melting and Drop-Casting. 

I 

,.- I 

I 
Fig. 5. 
Pt-Rh-W D r o p e a s t  Ingots i n  Air at 12Q0-13OO0C. 

Forty-Mil Sheet  Produced by Hot-Rolling 

. _  

r. 
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Development o f  Improved A1 1 oys 

We found t h a t  t he  Pt-30% Rh-12% W a l l o y  cannot be f ab r i ca t ed  s a t i s f a c t o r i l y  
i n  temperatures up t o  1100°C. The upper l i m i t  of tungsten conten t  i n  the  
Pt-Rh-W a l l o y  f o r  f a b r i c a b i l i t y ,  t he re fo re ,  appears t o  be between 10-12%. 

In order  t o  show the  e f f e c t s  of hafnium and t i t an ium on the  phys ica l  and 
mechanical p rope r t i e s  of the  Pt-Rh-W a l l o y  base,  four  ingots  with compo- 
s i t i o n s  Pt-30% Rh-8% W-1% Hf-0.2% T i ,  Pt-30% Rh-8% H . 5 %  Hf-0.2% T i ,  
Pt-30% Rh%% W-0.25% HfQ.l% T i ,  and Pt-30% %-6% W-0.5% Hf-0.2% T i  were 
prepared by e i t h e r  electron-beam drop-casting o r  c a s t i n g  i n t o  pancake form. 
The ingots  were f i r s t  ho t - ro l led  i n  a i r  i n  t h e  1000 to  1230°C range. When 
the  as -cas t  s t r u c t u r e  w a s  broken, the  a l loys  were successfu l ly  r o l l e d  a t  
room temperature t o  20- to  35-mil shee t  with intermediate  anneals between 
950 and 1000°C. 

Tensi le  specimens were stamped from the  shee t  s tocks  and t e s t e d  a t  room 
and e leva ted  temperatures.  T a b l e  4 shows the  t e n s i l e  p rope r t i e s  of 
s t a b i l i z e d  a l l o y s  toge ther  with the  d a t a  f o r  Pt-Rh-W a l loys  reported 

Table 4 .  Room- andElevated-Temperature T e n s i l e  P r o p e r t i e s  of t h e  
Platinum-Base Alloys R e c r y s t a l l i z e d  1 Hr a t  1200°C 

Alloy Composition U l t i m a t e  T e n s i l e  Elongation 
(wt %) St reng th  ( p s i )  ( % I  

Room Temperature 

Pt-30 Rh a 
Pt-30 Rh-6 W 112,000 
Pt-26 R h - 8 ' W  a 
Pt-30 Rh-10 W 118,000 
Pt-30 Rh-6 W-0.5 Hf-0.2 T i  113,000 
Pt-30 Rh-8 W-0.5 Hf-0.2 T i  135,000 
Pt-30 Rh-8 W - 1  Hf-0.2 T i  130,000 

a 
26 

a 
14.5 
19.3 
19 .o 
11.7 

760OC (1400OF) 

Pt-30 R h  48,000 28.8 
Pt-30 Rh-6 W 80,000 23.3 
Pt-26 Rh-8 W a a 
Pt-30 Rh-10 W 95,000 28 
Pt-30 Rh-6 W-0.5 Hf-0.2 T i  81,000 27.5 
Pt-30 Rh-8 W-0.5 Hf-0.2 T i  91,000 24.3 
Pt-30 Rh-8 W - 1  Hf-0.2 T i  108 , 000 26.3 

1093OC (2000°F) 

Pt-30 Rh 24,000 38 

Pt-26 Rh-8 W 38,000 18 
Pt-30 Rh-10 W 47,000 15.5 
Pt-30 Rh-6 W-0.5 Hf-0.2 T i  42,200 2 8 . 1  
~ t - 3 0  Rh-8 W-0.5 Hf-0.2 T i  44,500 12.5 
Pt-30 Rh-8 W - 1  Hf-0.2 T i  52,000 24.1 

Pt-30 Rh-6 W 36 , 000 3,3.3 

Not t e s t e d .  a 
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previously. '  
Pt-Rh-W base a t  a l l  temperatures.measured. This e f f e c t  is  more prominent 
a t  1093OC. Table 4 shows t h a t  t he  0.5% Hf-stabi l ized 8% W a l l o y  is com- 
parable  t o ,  and the  1% Hf a l l o y  is s t ronge r  than ,  Pt-30% Rh-10% W. The 
room-temperature d u c t i l i t y  of s t a b i l i z e d  a l l o y s  is lower than t h a t  of t h e  
base.  However, 1% Hf and 0.2% T i  improve the  d u c t i l i t y  of t h e  Pt-30% Rh- 
8% W a l l o y  from 18 t o  24.1% a t  1093OC. 

The hafnium and t i t an ium improve the  t e n s i l e  s t r eng th  of 

The oxidat ion behavior of t he  Pt-26% Rh-8% W-1% HfQ.2% T i  a l l o y  i n  a i r  I 

has been determined. The a l l o y  oxidized a t  an average rate of +2 x 
-5 x g/cm2.hr a t  760, 1000, and 12OO0C,  r e spec t ive ly .  
Since the  base t e rna ry  a l l o y  Pt-26% %-%% W e x h i b i t s  ox ida t ion  rates of  
+2 x -1 x and +6 x g/cm2.hr, w e  conclude t h a t  the hafnium 
and t i t an ium add i t ions  do no t  impair the  e x c e l l e n t  ox ida t ion  r e s i s t a n c e  
of t h e  t e rna ry  base. 

and -6.7 x 

Characterization o f  Iridium 

Iridium m e t a l  i s  a t t r a c t i v e  i n  terms of i t s  high melting p o i n t ,  d e s i r a b l e  
mechanical s t r e n g t h ,  and moderate oxidat ion r e s i s t a n c e .  However, t h e  
use of i r id ium as a cladding material f o r  space i so top ic  h e a t  sources  is  
re ta rded  because of  many d i f f i c u l t i e s ,  such as l o w  d u c t i l i t y ,  poor f a b r i -  
c a b i l i t y ,  and extremely l a rge  v a r i a t i o n s  i n  mechanical p r o p e r t i e s .  
is  bel ieved t h a t  the  problems are caused by minor, as y e t  un iden t i f i ed ,  
impurit ies.  The ob jec t ive  of t h i s  t a sk  is twofold: (1) t o  cha rac t e r i ze  
t h e  phys ica l  and mechanical p rope r t i e s  of i r id ium,  and ( 2 )  t o  r e so lve  
t h e  major problems of d u c t i l i t y  and f a b r i c a b i l i t y .  

I t  

Iridium metal i n  shee t  and p l a t e  forms w a s  purchased from Englehard Indus t r i e s .  
To determine t h e  r e c r y s t a l l i z a t i o n  temperature,  sof ten ing  behavior ,  and , 

bend d u c t i l i t y ,  20-mil s h e e t  i n  the  warm-rolled condi t ion w a s  c u t  i n t o  
s t r i p s  and then annealed 1 h r  i n  t he  400 t o  16OOOC range. The microhardness 
d a t a  i n  T a b l e  5 show a general  decrease a t  low temperatures and a more 

Table 5. E f fec t  of 1-hr Annealing Treatment on Hardness, 
Rec rys t a l l i za t ion ,  and Bend D u c t i l i t y  of Unalloyed Ir idium Sheet 

Annealing Microhardness Rec rys t a l l i za t ion  Resul ts  of 90' Bend 
'Temp ("C) (DPH) ' ( % I  Tes t  a t  Room Temp 

A s  received 
400 
600 
800 

1000 
1100 
12  00 
1300 
1400 
1500 
1600 

490 
498 
,478 
426 
400 
365 
31 0 
265 
22 1 
198 
205 

0 
0 
0 
0 
0 
0 
0 

50 
100 
100 
100 

Cracked 
Cracked 
Cracked 
Cracked ' 

Microcracks 
Microcracks 
N o  cracks 
Microcracks 
Microcracks 
Cracked 
Cracked 



r ap id  decrease above 1000°C. Metallographic examination r evea l s  no ind i -  
ca t ion  of r e c r y s t a l l i z a t i o n  a t  12OO0C,  50% r e c r y s t a l l i z a t i o n  a t  13OO0C, 
and complete r e c r y s t a l l i z a t i o n  a t  1400°C. 
i r id ium has a hardness of about 200 DPH. 

I n  the  r e c r y s t a l l i z e d  condi t ion ,  

The e f f e c t  of annealing t reatment  on the  d u c t i l i t y  w a s  determined by bend- 
ing  s t r i p s  90" a t  room temperature and then examining them metallographi- 
c a l l y .  A l l  t he  annealed specimens show macro- and microcracks with the  
exception t h a t  no cracks were observed i n  the  specimen annealed a t  1200°C. 
A l l  c racks were formed on gra in  boundaries,  and their propagation caused 
the  f a i l u r e  of specimens on bending. 

Based on the  bending d a t a ,  the i r id ium s h e e t  w a s  d u c t i l i z e d  by heat-  
t r e a t i n g  1 h r  a t  1200°C as t e n s i l e  specimens w e r e  stamped ou t  successfu l ly  
a t  room temperature. Tensi le  t e s t s  a t  room and e leva ted  temperatures are 
shown i n  Table 6. Iridium has q u i t e  low t e n s i l e  s t r eng th  a t  room tempera- 
t u r e ;  however, i t s  s t r eng th  decreases slowly with increas ing  temperature. 
The s t r eng th  da t a  i n  Table 6 are i n  good agreement with the r e s u l t s  f o r  
commercially pure i r idium reported by Jaf fee  e t  aZ.2 
t h a t  i r id ium i s  much weaker than the  hafnium- and t i t an ium-s tab i l ized  
Pt-Rh-W a l loys  a s  shown i n  Table 4 .  

It  should be noted 

Table 6. Room- and Elevated-Temperature Tens i le  Proper t ies  
of Unalloyed Iridium Recrys ta l l ized  1 h r  a t  1500°C 

Test ing Temperature U l t i m a t e  Tens i l e  Elongation 
("C) Strength (ks i  ) ( % I  

Room Temperature 56 5 ..7 

760 56 23.5 

1093 35 19.8 

. 

The d u c t i l i t y  of i r id ium i s  low a t  room temperature and increases  t o  23.5% 
a t  760°C. This r e s u l t  is  also cons i s t en t  w i t h  the work of J a f f e e  who found 
the  d u c t i l e - t o - b r i t t l e  t r a n s i t i o n  temperature of i r id ium to  be %600°C. 

The r e c r y s t a l l i z e d  i r id ium shee t  specimens were oxidized i n  s ta t ic  a i r  
a t  1040, 900, and 770°C f o r  1100 h r .  The r e s u l t s  a r e  descr ibed below: 

Oxidation a t  1 0 4 0 ° C  - N o  oxide l a y e r  i s  observed a t  t h i s  temperature. 
Af te r  50-hr exposure, t he  mater ia l  on the  edge and sur face  of t h e  specimen 
gradual ly  lo ses  i t s  adhesion and begins t o  f l a k e  o f f  i n  t h e  form of metal- 
l i c  gra ins .  
r a t e  of -880 x 
t he  reported value (-900 x l oF6  g/cm2 .h r )  by J a f f e e  e t  aZ, 

Oxidation a t  900°C - An adherent dark blue oxide l a y e r  gradual ly  appears 
on the  sur face  of specimen a t  900°C. 
parabol ic  with a low oxidat ion r a t e .  

However, t he  oxidat ion r a t e  i s  q u i t e  l inear  a t  an average 
g/cm2.hr. This value i s  i n  exce l l en t  agreement with 

The i n i t i a l  r a t e  of oxidat ion i s  
However, a f t e r  600-hr exposure, 
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the  specimen begins to show corner  e f f e c t s  and t h e  oxida t ion  r a t e  increases  
t o  approximately -27 x g/cm2.hr. 

Oxidation a t  770°C - Although the  dark blue oxide l a y e r  is  observed t o  
form, no apparent  weight change can be measured a t  t h i s  temperature.  

PHYSICAL METALLURGY OF REFRACTORY ALLOYS 

(Division of Reactor Development and Technology Program 04 40 02 05 1) 

R. G. DonneZZy 
Metals and Ceramics Division 

The purpose of t h i s  program is  t o  provide a base technology eva lua t ion  of 
high-temperature materials f o r  use i n  space app l i ca t ions  of rad io iso tope  
thermoelectr ic  genera tors  ( R T G ' s ) .  Emphasis is p resen t ly  on tantalum and . 

molybdenum a l loys  used as containment materials f o r  238Pu02. 

E f f e c t  o f  Oxygen Contamination on the Mechanical Propert ies  o f  T-111 

The t e n s i l e  p rope r t i e s  of 20-mil s h e e t  s ecimens of T-111  oxygen-contaminated 
a t  1000°C have been repor ted  previously.' In  o rde r  t o  show t h e  e f f e c t s  of 
specimen thickness  and doping temperature,  both 20- and 40-mil s h e e t  speci-  
mens were doped with oxygen a t  825°C and 1 x t o r r  oxygen pressure .  The 
t e n s i l e  p r o p e r t i e s  of these  specimens a t  temperatures up t o  1093°C (2000°F) 
are presented i n  Tables 7 and 8. The t e n s i l e  s t r eng th  genera l ly  increases  
with amount of oxygen. The d u c t i l i t i e s  obtained a t  room and e leva ted  
temperatures are p l o t t e d ,  r e spec t ive ly ,  i n  F igs .  6 and 7 as a func t ion  
of  t he  amount of oxygen doped a t  825 and 1000°C. The room-temperature 
d u c t i l i t y  (Fig. 6)  of T-111 doped a t  1000°C decreases  continuously with 
oxygen up t o  700 ppm.. Doping a t  835°C causes only a moderate decrease  
of d u c t i l i t y  a t  the  lower oxygen levels (200 t o  300 ppm) and a sharper  
decrease a t  higher  l e v e l s .  The d u c t i l i t y  is s e n s i t i v e  t o  t h e  specimen 
thickness;  the  20-mil specimens can t o l e r a t e  about 100 ppm more oxygen 
than 40-mil specimens. When t e s t e d  a t  e leva ted  temperatures (Fig.  7 ) ,  
t he  d u c t i l i t y  keeps cons tan t  i n i t i a l l y  u n t i l  a c r i t i c a l  oxygen l e v e l  is 
reached. 
and specimen th ickness .  Beyond t h a t  l e v e l ,  t h e  d u c t i l i t y  decreases  con- 
t inuous ly  with oxygen content .  For a s t r a i n  of 5%, the T-111 can t o l e r a t e  
480 and 560 ppm, r e spec t ive ly ,  f o r  40- and 20-mil specimens doped a t  825"C, 
and 750 ppm a t  1000°C. T a b l e s  7 and 8 a lso i n d i c a t e  t h a t  a t  a given 
oxygen conten t ,  f o r  example, 350 ppm i n  40-mil specimens, t h e  T-111 has 
higher d u c t i l i t y  a t  825°C (10%) than a t  room temperature (1.6%) or  1093OC 
(2.5%).  Thus, t he re  is  no " d u c t i l e - t o - b r i t t l e  t r a n s i t i o n  temperature" 
f o r  oxygen-contaminated T-111; i n s t e a d ,  t he re  i s  a " d u c t i l i t y  maximum'' 
t h a t  f o r t u i t o u s l y  appears t o  occur near the  h e a t  source temperature of 
825OC. 

The c r i t i c a l  oxygen l e v e l  va r i e s  with both t h e  doping temperature 
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T a b l e  7. Tens i l e  P r o p e r t i e s  of 20-mil Sheet  T-111 
Specimens As-Doped wi th  Various Levels of Oxygen a t  825OC 

Oxygen Added Elongat ion U l t i m a t e  T e n s i l e  
(PPm) (%)  St reng th  ( p s i )  

0 
302 
400 
641 
770 

0 
290 
375 
460 
56 5 
66 0 

680 

Room Temperature 

28  
19 

2 
1 . 3  
0.8 

825OC 

17.8 
15 
10.6 

8.5 
4.0 
2.0 

1093OC 

0.5 

101,000 
111,000 
100,000 
125,000 
150,000 

69,000 

81,000 
83,000 
71,000 
70,000 

79 , 000 

77,000 

Table 8. Tens i l e  P r o p e r t i e s  of 40-mil Sheet  T-111 
Specimens As-Doped with Various Levels of Oxygen a t  825°C 

Oxygen Added Elongation U l t i m a t e  Tens i l e  
( P P d  ( % I  S t r eng th  (psi) 

162 
215 
300 
391 

140 
296 
389 
510 

306 
330 

Room Temperature 

25.5 99,500 
20.5 106,000 
1.6 96,000 
0.5 114,000 

825OC 

18 
10.2 

7.5 
4.2 

1093OC ' 

2.5 
2.4 

64,000 
66,000 
63,000 
69,000 

51,000 
51 , 000 
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DOPED AT825OC A N D l ~ l O - ~ t o r r  

0 100 200 300 400 500 600 700 800 900 
OXYGEN AMOUNT DOPED lppm) 

Fig. 6. Room-Temperature D u c t i l i t y  
of T-111 Specimens as a Function of  
the  Amount of Oxygen Doped a t  825 
and 1000°C. 

ORNL-DWG 71-1322 

0 0.02-in. SPECIMENS DOPED ATIOOOOC AND 1 ~ 1 0 - ~  torr 

0.02-in. SPECIMENS DOPED AT 8 2 5 ~  AND 1 x 1 ~ - 5  torr 

A 0.04-in. SPECIMENS DOPED AT 825T AND lXlO+ torr 

OXYGEN PRESSURE 

0 100 200 300 400 500 600 700 800 I 

OXYGEN AMOUNT DOPED (PPm) 

Fig. 7. Elevated-Temperature 
D u c t i l i t y  of  T-111 Specimens as a 
Function of  the  Amount of Oxygen 
Doped a t  825 and 1000°C. 

The f r a c t u r e  process i n  the  oxygen-contaminated specimens w a s  examined 
during a room-temperature t e n s i l e  test .  The macroscopic cracks w e r e  
observed t o  form f i r s t  on the  edges and sur faces  which conta in  a higher  
l e v e l  of oxygen and are therefore  more b r i t t l e .  The propagation of t h e s e  
c racks ,  once p resen t ,  through the  d u c t i l e  core  causes the  l o w  d u c t i l i t y  
of the  specimens t e s t e d  a t  room temperature and 1093OC. However, t he  
edge and sur face  cracks do not  propagate as e a s i l y  when t e s t e d  a t  825OC; 
consequently,  numerous cracks were observed on the  f r a c t u r e  specimen as 
shown i n  Fig.  8B. In  c o n t r a s t ,  only a very few cracks were observed a t  
room temperature and 1093OC (Fig. 8 A  and 8C).  

IO 

The r e s u l t s  so f a r  i n d i c a t e  t h a t  both doping temperature and specimen 
thickness  have a b ig  e f f e c t  on the  p rope r t i e s  of oxygen-contaminated 
T-111. I t  i s  also expected t h a t  the  mechanical behavior of T-111 v a r i e s  
with the  doping ra te ,  because the  doping rate a f f e c t s  t h e  su r face  oxygen 
concentrat ion and the  oxygen gradien t .  It should be noted t h a t  t h e  above 
da ta  w e r e  obtained from specime/ns doped a t  a high rate (40 t o  100 ppm/hr) 
and t h a t  d i f f e r e n t  r e s u l t s  may be obtained i f  d i f f e r e n t  rates are used. 

Effect  of Oxygen on the Mechanical Propert ies  of 0.090-in.-thick T-111 

Previously,  we repor ted  t h a t  the  oxygen concentrat ion causing embrittle- 
ment of T-111 decreased as the  doping temperature w a s  decreased from 1000 
to  825OC and a l s o  as the  specimen thickness  increased from 20 mils t o  
40 m i l s  (see Figs .  6 and 7 i n  previous s e c t i o n ) .  The doping rate of the  
above specimens a t  825OC w a s  a l s o  higher  (80 ppm/hr f o r  20-mil and 40 ppm/hr 
f o r  the  40-mil specimens) than t h a t  i nd ica t ed  i n  the  Pioneer hea t  source.  
Because of these  d i f f e rences ,  a new series of specimens, 90 m i l s  t h i ck ,  . 
i s  being doped with oxygen a t  a rate of 1 .5  ppm/hr (1 x 

. 

torr O2 a t  
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Fig. 8. Surface ana Edge CracKing Behavior of T-111 Yensile Specimens 
Doped with Approximately 300 ppm Oxygen as a Function of Test  Temperature. 
( A )  Room Temperature, (B) 825'C, and (C)  1093'C. 

825°C) .  
0.090 in. x 3/4 i n .  x 2-P/2 in. p r i o r  to machining the t e n s i l e  specimens 
i n  o rae r  t~ e l imina te  oxygen from t h e  edges of the specimen gage len@ 
which was presen t  i n  the  th inner  specimens. 

In- addi t ion  t~ t hese  changes, the oxygen is  being added to blanks 

The t e n s i l e  p r o p e r t i e s  of the  oxygen-doped, W-mil-thick specimens, *ked 
at 825OC are shown i n  Table 9. 
increased wi th  t h e  oxygen content  bu t  d i d  not *air t h e  dnct5lb;ty at al l -  
Figure 7 shows t h a t  t h e  d u c t i l i t y  is i n s e n s i t i v e  t o  We o q g e n  c 
at 825OC until a c r i t i c a l  level is reached. Because this c r i t i  
decreased from approximately 240 ppm t o  150 p p  0 2  as t h e  spechen WI&- 
ness  increased from 20 to $0 mils, it w a s  expected that the 9O-mil speci- 
m e n  would have a st i l l  lower critical oxygen content.  Therefore, these 
su rp r i s ing  results nay be due to e i t h e r  a m c h  lower oxygen doping rate 
and/or t he  e l imina t ion  of  oxygen from the  edges of t he  tensile specimens 
by machining. 

Up to 290 ppm 0 2 ,  the tensile strength 

I 
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T a b l e  9. E f fec t  of Oxygen on the  Tensi le  
P rope r t i e s  of 90-mil-thick T-111 a t  825OC 

Oxygen Added Elongation U l t i m a t e  Tensi le  
. (ppm) . ( % I  Strength ( p s i )  

Con t ro la  18.0 59 , 200 

18 5 20.5 72,500 

290 18.5 77,500 

a 

ppm oxygen, 10 ppm ni t rogen ,  3 ppm hydrogen, and 
24 ppm carbon. 

Annealed 1 h r  a t  165OOC. Annealed ana lys i s :  10 

Contamination Studies  of T-111 and TZM by Impuri t ies  
Outgassed from Graphite and Min-K 1301 

Tens i le  specimens of bare T-111, mlybdenum-coated T-111, and TZM a r e  being 
exposed a t  825OC t o  an environment t h a t  approximates t h a t  i n  t h e  Pioneer 
hea t  source.  
impuri ty  gases outgassed from a 70-g cy l inder  of A T J  g raph i t e  and 1.6 g of 
Min-K 1301, both a t  538OC.* Both bare and palladium-wrapped zirconium s h e e t  
0.010 X 0.5 x Q6 i n .  long w a s  wrapped around t h e  graphi te  cy l inde r  t o  g e t t e r  
t he  impur i t ies .  

The chemistry changes and the  r eac t ion  r a t e s  of T-111  based on the  weight 
ga in  of t he  specimens are shown i n  T a b l e  10. These r e s u l t s  show t h a t  t he  
average contamination rate is  cons tan t  ( i .e. ,  weight ga in  v a r i e s  l i n e a r l y  
with t ime) .  
a t t r i b u t e d  t o  the  sh i e ld ing  of t h e  ac t ive  gases by the  ad jacent  specimens. 
Specimen T-12 scheduled f o r  a 1000-hr exposure w a s  terminated a t  534 h r  
when the  specimen f r ac tu red  during handling. 

The contamination rate of T-111 by the  'gases outgassed from graphi te  bu t  
ge t t e red  with zirconium (without argon cover gas and Min-K) w a s  6400 ppm 
i n  200 h r  o r  32 ppm/hr. Table 10 shows t h a t  t h e  rate i n  the  simulated 
Pioneer environment averaged 11.4 ppm/hr. Thus, it appears t h a t  600 t o r r  
of argon lowers t h e  r eac t ion  k i n e t i c s  by about a f a c t o r  of 3 .  

The environment c o n s i s t s  of about 600 torr  argon p lus  t h e  

Copper oxide a t  190°C w a s  used as a stand-in f o r  PuO2. 

The s c a t t e r  among the  dup l i ca t e  and t r i p l i c a t e  specimens i s  

* 

Molybdenum coat ings continue to  show t h e i r  e f f ec t iveness  i n  lowering t h e  
contamination of T-111. A s  shown i n  Table 1 0 ,  0.1 m i l  of evaporated molyb- 
denum lowers the  contamination rate of T-111 by a f a c t o r  of about 3 ,  0.2 
m i l  lowers the  rate by a f a c t o r  of about 6 ,  and a coa t ing  thickness  of 
1 . 2  m i l s  completely pro tec ted  T-111 f o r  496 h r .  The edges of t he  T-111 
specimen coated with 0.2 m i l  of evaporated molybdenum fragmented i n t o  a 
black powder and consumed about one-half of t h e  t e n s i l e  specimen a f t e r  
1030 h r  of exposure. This specimen w a s  unsui tab le  f o r  t e n s i l e  t e s t i n g .  

*ATJ graphi te  w a s  vacuum outgassed 4 h r  a t  1 2 O O O C .  
a i r  48 h r . a t  400OC. 
apparatus f o r  2 h r  a t  6OOOC t o  a pressure  of torr .  

The Min-K was baked i n  
Both were then vacuum outgassed i n  the  contaminating 



23 

c 

Table 10. Contamination of 0.020-in.-thick Sheet Specimens of T-111 
and Molybdenum-Coated T-111 i n  a Simulated Pioneer Heat Source Environment 

Sample Exposure Calcda Contamination Rate 
Number (hr )  (ppm) (ppm/hr) 

Material 

T-111 

T-111 

T-10 
T-11 
T-12 

T-11 
T-12 

0.1-mil MO on T-111 T-M-3 

0.2-mil Mo on T-111 T-M-4 

1 . 2 - m i l  M o  on T-111 T-MC-2 

204 
204 
204 

534 
534 

204 

204 
534 

496 

1900 
2040 
3290 

Average 

5400 
6480 

Average 

820 

460 
800 

Average 

Ob 

9.3 
10 .o 
16.1 

11.8 

I O . 1  
1 2 . 1  

11.1 

4 .O 

2.2 
1.5 

1.8 

0 

a 

bSpecimen l o s t  weight. 
Based on weight gain of specimens. 

The coa t ing  on the  T-111 specimen coated with 0.2 m i l  of evaporated molyb- 
denum p lus  1.0 m i l  of CVD molybdenum f a i l e d  a f t e r  802 h r  of exposure a t  
coa t ing  de fec t s  i n  the  specimen shoulders i n  the  manner descr ibed above. 
The i n t a c t  gage sec t ion  of t h i s  specimen w a s  bent  without f a i l u r e  through 
a 1 T  bend a t  room temperature. From t h i s  r e s u l t ,  t h e  d u c t i l i t y  i n  the  
o u t e r  f i b e r  of t he  20-mil specimen w a s  es t imated t o  be approximately 30% 
and the  oxygen'contamination <lo0 ppm (see T a b l e  11). The contamination 
of TZM could not  be ca l cu la t ed  s ince  the  specimens l o s t  about 0.0001 g (out  
of 2.3 g)  i n  1030 h r .  The room-temperature t e n s i l e  tests conducted t o  d a t e  
a r e  summarized i n  Table 11. Bare T-111 shows complete ernbrittlement as 
would be expected f o r  specimens containing seve ra l  thousand p a r t s  p e r  
mi l l ion  of oxygen. 

T a b l e  11. The Effec t  of Impurities Degassed from Graphite and Min-K 1301 on t he  
Room Temperature Tensile Propertiesa of 20-mil-thick T-111 and TZM 

Material 
Oxygen 

Contamination 
Exposure U l t i m a t e  Tensile Elongation 

( a )  (hr)  (calcd p p m )  Strength (ps i )  

T-111 
T-111 

204 1900 
534 6480 

113,000 Ob 
Fractured on handling 

0.1 mil Mo on T-111 204 820 139,000 
0.2 mil Mo on T-111 1030 - Fragmented i n  environment 
1 . 2  m i l  Mo on T-111 802 <lo0 ( e s t )  - %3OC 

TZM 534 Not determined 77,800 35.7 

TZM Con t ro  1 - 79,600 33.5 
TZM 1030 Not determined 78,400 32.8 

a 

'Fractured i n  shoulder of specimen. 
CEs t imted ,  based on bend test .  

Specimen a t  825OC; graphite and Min-K a t  538OC; environment of 600 t o r r  argon 
l u s  impurit ies.  
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The r e s u l t s  f o r  TZM c l e a r l y  show t h a t  t h e  s imulated Pioneer environment . 
has no e f f e c t  f o r  exposures t o  1030 h r  a t  825OC. Exposures t o  2000 h r  
f o r  add i t iona l  TZM specimens have been completed and a r e  being evaluated.  

Contamination Studies  o f  T-111 and TZM by Water Vapor 

Since water vapor is  a probable contaminant i n  Pioneer genera tors ,  t h e  
e f f e c t  of exposures of T-111 and TZM t o  t h i s  environment i s  being evalu- 
a ted.  
t e n s i l e  specimens a f t e r  s eve ra l  exposure times t o  1 x 10-5  t o r r  w a t e r  
vapor a r e  tabula ted  i n  Table 1 2 .  These d a t a  show t h a t  t h e  contamination 
rate up t o  676 ppm is cons tan t  bu t  decreases with the  exposure time as 
the  contamination l e v e l  increases  f u r t h e r .  Based on p r i o r  work, t h e  
weight ga in  i n  w a t e r  vapor is due only t o  oxygen ~ o n t a m i n a t i o n . ~  
evidence of a r eac t ion  w a s  not  de tec ted  i n  e i t h e r  T-111 o r  TZM. Exposures 
of 20-mil TZM specimens (approximate weight = 2.4 9) t o  1 x t o r r  
water vapor a t  825OC show an average weight loss of 0.0005 g a f t e r  457 h r .  
A t  1002 h r  of exposure, a very s m a l l  weight i nc rease  of 0.000032 g w a s  
measured. 

The chemistry change of T-111 ca l cu la t ed  from t h e  weight ga in  of 

Visual 

Table 1 2 .  Contamination of T-111 Exposed 
to  1 x Torr Water Vapor a t  825OC 

Specimen Calculateda 
Thi c h e s s  Contamination Exposure Rate 

(ppm/hr) (PPd 
(hr  1 ( i n . )  , 

0.020 16 30 8b 19.2 
32 676b 21 .1  

216 2735c i2 .7  
457 4155c 9 .1  

0.040 16 196' 1 2 . 2  
32 4 1 O C  12 .8  

a 

bAverage of 4. 
'Average of 2 .  

Based on weight gain of specimens. 

The e f f e c t  of water vapor contamination on the  t e n s i l e  p r o p e r t i e s  of  T-111 
are l i s t e d  i n  Table 13.  These r e s u l t s  show t h a t  t h e  d u c t i l i t y  is  se r ious ly  
impaired a t  about the  same l e v e l s  ind ica ted  i n  oxygen contamination t e s t s .  

Table 1 4  shows the  t e n s i l e  p rope r t i e s  of TZM a f t e r  exposure t o  w a t e r  vapor. 
The room-temperature tests show a s m a l l  decrease i n  the  e longat ion  t h a t  
appears t o  become more se r ious  with the  exposure t ime. The t e n s i l e  . 
s t r eng ths  of the  exposed specimens a r e  also higher  than the  con t ro l .  
Although the  tests a t  825OC show evidence of some loss of d u c t i l i t y ,  
e longat ion of approximately 16% is c h a r a c t e r i s t i c  of r e c r y s t a l l i z e d  and 
uncontaminated TZM a t  982OC. Exposures of TZM t o  2000 h r  have been 
completed and a r e  being evaluated. 
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Table 13. E f fec t  of Water Vapor Contamination on 
the  Room-Temperature Tensi le  Prope,r t ies  of T-111  

Oxygen Specimen Tensi le  . 
Elongation 

('"1 
Contamination Thickness Strength 
Levela (ppm) ( in .  ) (ks i  1 

Control 0.020 101 28 

311 0.020 109 , 12.3 

720 0.020 135 0.8 

187 0.040 10 2 27.5 

395 0 -040 107 4.0 

a Calculated from weight gain of specimen. 

Table 1 4 .  Tensi le  Proper t ies  of 20-mil-thick TZM 
Exposed t o  1 x Torr Water Vapor a t  825OC 

T e s t  Temperature Exposure U l t i m a t e  Tensi le  Elongation 
("C) (hr  1 Strength ( p s i )  ( % I  

Room Control 79,600 33.5 
Room 45 7 83,200 ' 31.0 
Room 1002 80,600 29.3 

825 Control 45,000 24.8 
82 5 45 7 45,600 20.2 
825 1002 46,000 16.3 

E f f e c t  o f  Oxygen Contaminat ion on the Mechanical 
P r o p e r t i e s  o f  Molybdenum-Base A l l o y s  

In  order  t o  qua l i fy  the  use of molybdenum-base a l loys  a s  the  cladding mate- 
r i a l  f o r  space i s o t o p i c  hea t  sources ,  20-mil TZM and Mo46% R e  s h e e t  speci-  
mens w e r e  doped with oxygen a t  825 and 1000°C and a t  1 t o  4 x t o r r  
oxygen pressure .  TZM shows a weight loss due to  evaporation of molybdenum 
oxide,  and molybdenum-rhenium a l l o y  shows a s m a l l  weight ga in  under low- 
oxygen pressure .  For example, TZM lo ses  3800 ppm a f t e r  2000-hr exposure 
and molybdenum-rhenium ga ins  800 ppm a f t e r  1000-hr exposure a t  825OC. 

The contaminated specimens were then t e s t e d  i n  tens ion  a t  var ious tempera- 
t u r e s ;  t he  r e s u l t s  are presented i n  T a b l e s  15 and 16. The d a t a  i n  Table 
15  i n d i c a t e  t h a t  oxygen contamination of TZM a t  825OC only causes a s m a l l  
increase of t ens i le  s t r eng th  and a moderate decrease of d u c t i l i t y .  A s  a 
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Table 15.  Tens i l e  P r o p e r t i e s  of 20-mil-thick TZM and M0-46% R e  
Sheet Specimens Contaminated wi th  Oxygen a t  825OC 

Doping Condition Ultimate Tens i l e  Elongation 
S t r eng th  

(ps i  1 (%I 
Alloy Time Oxygen Pressure 

(h r )  ( t o r r )  

Room Temperature 

TZM a a 37 79,000 
a a 33.5 79,600 

110 4 x 10-5 35.3 81,200 
500 1 x 10-5 29.2 85,000 

2000 1 x 10-5 24.5 85,000 

M 0 + 6 %  Re a a 8 .2  195,000 
1000 1 x 10-5 9.2 192,000 

825OC 

TZM a a 24.8 45,000 
2000 1 x 10-5 17.7 51,200 

M d 6 %  R e  1000 1 x 10-5 13.7 116,000 

a 
A s  r e c r y s t a l l i z e d .  

mat ter  of f a c t ,  TZM has 24.5% s t r a i n  a t  room temperature and 17.7% a t  
825OC a f t e r  2000-hr exposure. N o  apparent  change of mechanical p rope r t i e s  
of Mo46% Re is  observed a f t e r  1000-hr exposure. A l l  t he se  r e s u l t s  i nd i -  
cate t h a t  t he  molybdenum-base a l loys  are compatible with low-pressure 
oxygen a t  825 OC . 
Table16 shows the  e f f e c t s  of t e s t i n g  temperature and hea t  t rea tment  on 
the  t e n s i l e  p r o p e r t i e s  of TZM specimens doped a t  1000°C and 1 x t o r r  
oxygen pressure .  The as-doped specimen was extremely b r i t t l e  and f r a c -  
tu red  wi th in  the  e l a s t i c  l i m i t  when t e s t e d  a t  room temperature.  Increasing 
t h e  t es t  temperature t o  1093OC does n o t  improve t h e  d u c t i l i t y  s i g n i f i -  
can t ly .  But t h e  d u c t i l i t y  of the  specimen i s  completely r e s to red  a f te r  
15 min hea t ing  a t  17OOOC. These r e s u l t s  c l e a r l y  i n d i c a t e  t h a t  TZM and 
T-111 behave s i m i l a r l y  a f t e r  oxygen contamination. However , due t o  t h e  
l o w  rate of oxygen penet ra t ion  i n  molybdenum matrix, it is  important t o  
note  t h a t ,  from the  s tandpoin t  of environmental s t a b i l i t y ,  TZM may be 
s u i t a b l e  as a cladding material f o r  space power systems when t h e  opera- 
t i o n  temperature is low, f o r  example, 825OC, as i n  the  Pioneer radio-  
i so tope  thermoelec t r ic  generators .  

Effect  of  CO-Gas Contamination on the Mechanical 
Propert ies  of  Molybdenum-Base Alloys 

The 20-mil s h e e t  specimens of TZM and M0+6% R e  a l l o y s  w e r e  contaminated 
a t  a CO pressure  of 1 X l o w 5  t o r r  and 825OC. 
i s  con t ro l l ed  by doping t i m e .  

The amount of contamination 
Both a l l o y s  show a small weight ga in  a f t e r  

J 
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T a b l e  16 .  E f f e c t s  of Heat Treatment and Tes t ing  Temperature on 
t h e  T e n s i l e  P r o p e r t i e s  of TZM Specimens Doped w i t h  Oxygen f o r  

207 h r  a t  1000°C and 1 x Torr  Oxygen P res su re  

Heat Tes t ing  Temperature Elongat ion Tens i l e  S t r eng th  
Treatment ("C) ( % I  ( p s i  

None Room Temperature Oa 5000-7000 

None 825 2.5 63,000 

None 1093 0.7 48,100 

31.6 85,000 15 min 
a t  170OOC Room Temperature 

a F rac tu re  wi th in  t h e  e las t ic  l i m i t s .  

long-time exposure. The contaminated specimens were then t e s t e d  i n  ten- 
s ion  a t  room temperature and 825OC; t h e  da t a  are presented i n  Table 1 7 .  
Both the  t e n s i l e  s t r eng th  and elongat ion of t h e  contaminated specimens 
a r e  not  s i g n i f i c a n t l y  d i f f e r e n t  from the  a s - r ec rys t a l l i zed  ones,  even 
a f t e r  2000-hr exposure. We , therefore  , conclude t h a t  the molybdenum-base 
a l loys  are compatible with CO gas a t  825OC. These r e s u l t s  combined with 
t h e  r e s u l t s  of oxygen contamination and exposure t o  graphi te  and Min-K 
reported i n  the previous sec t ions  lead  t o  the  general  conclusion t h a t ,  
from the  s tandpoin t  of environmental s t a b i l i t y ,  TZM and M0-46% Re a l loys  
a r e  s u i t a b l e  f o r  use as f u e l  cladding mater ia l s  €or Pioneer space power 
systems whose operat ion temperature is  i n  the  range of 800 t o  850OC. 

T a b l e  17. T e n s i l e  P r o p e r t i e s  of 20-mil-thick TZM and Mo+6% R e  
Sheet  Specimens Contaminated with CO G a s  a t  825OC 

and 1 X Torr Oxygen P res su re  
. 

Doping T i m e  Elongat ion Tens i l e  S t r eng th  
( % I  (psi 

Alloy 
( h r )  

TZM 

Room Temperature 

0 37.0 79,000 
0 33.5 79,600 

196 33.2 79,500 
1000 30.0 83,000 
2000 27.9 82,000 

M0+6% R e  0 8 .2  
1004 10.7 

TZM 

825°C 

0 24.8 
2000 22.5 

195,000 
190,000 

45,000 
46,300 

Mo46% R e  1004 10.5 115,000 
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MATERIALS COMPATIBILITY TESTING FOR THE LASL-DART PROJECT 

J .  R. DiStefano and A .  C .  Sehaffhauser 
Metals and Ceramics Division 

W e  are t e s t i n g  seve ra l  nonfuel materials t h a t  may be used i n  cons t ruc t ing  
the  DART (Decomposed Ammonia Radioisotope Thruster)  f o r  Los Alamos 
S c i e n t i f i c  Laboratory. 

Compatibi l i ty  couples of g raph i t e  with seve ra l  mater ia l s  w e r e  heated f o r  
500 h r  a t  1300, 1400, and 15OO0C, and the  r e s u l t s  a r e  given i n  T a b l e  18. 
On the  bas i s  of our  v i s u a l  observa t ions ,  tungsten showed the  least  i n t e r -  
ac t ion  with graphi te .  The molybdenum sample w a s  embrittled and crumbled 
a f t e r  exposure a t  15OOOC. Samples for metal lographic  and chemical 
analyses  have been submitted. 

Addit ional  500-hr tests of s eve ra l  materials i n  m e t a l l i c  capsules  have 
been completed. T e s t  condi t ions  are l i s t e d  i n  Table 19.  

T a b l e  18. Visual  Observations f r o m  Compatibi l i ty  T e s t s  
of Graphite W i t h  Several  Materials 

for 500 h r  a t  1300, 1400, and 150OOC 

Visual  Observations 
Specimen 13OOOC 14OOOC 15OOOC 

Tantalum R I  s R I  s R ,  S I  D 

Tungs t e n  NR NR SR 

Molybdenum R R I  D I  s R,a D ,  S 

Rhenium S S S 

M O J O %  Re S I  D R I  S I  D S I  D 

Pt-Rh-W R I  S I  D R ,  S I  D R, S I  D 

' Be0 D D R, D 

R = Vis ib l e  r eac t ion  between graphi te  and specimen. 
S = Specimen s tuck t o  g raph i t e .  

NR = No v i s i b l e  reac t ion .  
SR = S l i g h t  r eac t ion .  

aSpecimen crumbled. 
D = Surface of specimen d isco lored .  
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Table 19. Conditions f o r  500-hr Metal Capsule Compatibil i ty T e s t s  

c Specimen Materials Temperature T e s t  
Capsule Tes t  ("C)  Atmosphere 

Molybdenum Z r 0 2 ,  Hf02, Be0 1300 , 1400 , 1500 DV 

Molybdenum B e 0  1300 , 1400 , 1500 sv 
Tungsten Z r 0 2 ,  Hf02, Be0 1300, 1400, 1500 DV 

Tungsten Be 0 1300 , 1400 , 1500 sv 
Tantalum Z r 0 2 ,  Hf02 1300 , 1400 , 1500 DV 

Rhenium Be0  

M O J O %  Re B e 0  

Molybdenum Rhenium 

Tungsten Rhe n i  um 

Tungsten M0-50% Re 

1400, 1500 

1400 , 1500 

DV 

DV 

1300 , 1400 , 1500 DV 

1300, 1400, 1500 . DV 

1300 , 1400 , 1500 DV 

Mo-50% Re Ir idium 1400, 1500 DV . 

DV = Dynamic vacuum. SV = Sta t ic  vacuum. 
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