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ABSTRACT

The reliability of nuclear pressure vessels was investigated by
probabilistic design meéhods to develop analytical expressions for eval-
uating the adequacy of existiﬁg allowable stress intensities. The change
in reliability resulting from changes in allowable stress intensities
was also investigated.

Analytical expressions were derived and combined with existing
methods of reliability analysis and stress analysis to calculate failure
probability as a function of general membrane stress, burst pressure,
and cyclic stress amplitude. The results were applied to typical dis-
tributions of induced stress and material strength to demonstrate the
method by which pressure vessel reliability can be estimated.

It was found that existing allowable stress intensities result in
very high estimates of reliability when bursting or yielding under a
steady~state pressure is defined as failure. However, when fatigue fail-
ure is considered, the probability of failure resulting from allowable
cyclic stress amplitudes was found to be significantly higher. It was
therefore concluded that consideration should be given to lowering the
allowable cyclic stress amplitudes. It was also concluded that the
allowable membrane stress intensities can be substantially increased
without producing a significant change in the estimated failure

probability.
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1. INTRODUCTION

The question of what margin of safety to assign in a design problem
is basic to the design process. Historically, this safety margin has
been based on experience and intuition. The improved technology and
increased production costs that have arisen in recent years have led to
the use of lower margins of safety, while the demands of the general pub-
lic and the consumer for better quality and safety have increased. This
set of circumstances has in turn led to the need to augment experience
and intuition with a tractable analytical method that can be used to
evaluate the reliability of a product as a function of the safety margin
used in the design of that product. The investigation reported herein
was undertaken to demonstrate the analytical methods of such an evalua-
tion as applied to nuclear pressure vessels and to evaluate the adequacy
of the allowable stress intensities now used in their design.

It is often difficult to see a need for reliability analysis since
the word "reliability'" has been used in a qualitative or subjective sense
to imply absolute dependability;‘that is, something either is or is not
reliable. The word '"reliability" is not really defined in the dictio-
nary (1)* nor is the word '"reliable" except in terms of the word 'rely",
and the definitions given are basically in terms of human attributes.
However, there is a large body of literature currently accepted by the

"assurance sciences' in which reliability is defined as ''the probability

*Numbers within parentheses in the text designate numbered refer-
ences given in the List of References.



2
that an equipment will operate for a stated period of time under a
specified set of conditions.'"(2) The three key words in this definition
are probability, time, and conditions. When this definition is used,
the concept of 99% reliability has no meaning unless the time span and
conditions of operation are also stated. Thus, the equipment can have a
reliability of 99% under normal operating conditions over a period of
10 years, but the reliability for a period of 1 year under the same con-
ditions would be considerably higher in most cases.

There is also a large body of literature in which reliability is
defined as the probability that the induced level of stress will remain
below the instantaneous allowable stress of a component.(3) When loads
or strengths are time dependent, this definition is essentially accept-
able in the context of the preceding definition. However, the two defi-
nitions are not compatible for strengths and loads that cannot be
assigned a time dependency, and care must be used when combining the
analysis methods associated with these two definitions of reliability.

The history of quantitative reliability analysis is primarily
related to large populations of equipment from which a 1% probability of
failure can be translated into one of 100 parts failing during operation.
If there is a foreknowledge that a part is likely to fail and cause the
failure of a mission, the need for predicting this failure is easier to
comprehend. Thus, the concept of predicting system failures by synthe-
sizing component failure rates has been accepted. However, when a person
speaks of a single, one-of-a-kind component having one chance in 100 of
failing, the value of such knowledge is not as easily understood or

explained. The skeptic is justifiably prone to respond "I want to know
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whether this part will fail, not how many out of 100 will fail."
Although it is not possible to predict the failure of a single component,
a reliability analysis can be used to estimate which component is more
likely to fail, and in a relative sense, one chance in 100 has meaning
when compared with one chance in 1,000. Thus, an estimated probability
of failure of 0.001 is seen to be better than one of 0.0l regardless of
whether or not failure can be predicted absolutely.

The majority of the reliability analyses currently performed are
systems analyses. The weakest link in an unreliable system is usually
made redundant to improve the chances of successful system operation.

For example, of the millions of parts in a Saturn rocket, several thou-
sand are expected to fail during a launch. However, these failures do
not abort the mission because the systems are designed to tolerate compo-
nent failures.(4) When performing a reliability analysis of a system,
the analyst ordinarily makes a basic assumption that the components in
the system will operate within a specified environment and range of
loads. Without this assumption, neither the component failure rates nor
the system reliability forecast will be valid. This in essence restricts
a system reliability analysis to predicting random failure under known
loads. Overloads, extreme environmental conditions, and extraneous fac-
tors are not part of this forecast except as they contribute to the
"randomness' of failure.

Random failures ére those which occur at a distributed rate over
long periods of time. Wear-out failures are usually normally distributed
near the end of component life, while unexpected failures are those which

just happen during the useful life-span of equipment and may be
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exponentially distributed. The apparent cause of these unexpected
failures is often not known. A resistor shorts out, a bearing begins to
make noise, or a bracket cracks. Actually, these failures have causes,
but generally they are randomly dispersed because they are the result of
the chance occurrence of simultaneous events which result in failure. A
certain set of environmental conditions, load fluctuations, part defects,
and cyclic histories may combine at one instant to cause the failure of
one component, but this may not happen to another component for several
years or it may not happen at all.

The determination of component reliability by analytical methods is
not a widely accepted practice, but it is the essential tie between sys-
tem vreliagbility based on known loads and system failure resulting from
an une#pected load. Component reliability is typically determined by
collecting failure rates on operating components, and these component
failure rates are used to forecast a synthesized system failure rate.
Thus, an underlying argument for reliability analysis of single compo-
nents lies in the need for obtaining component failure rates to perform
system analyses. This is particularly true for nuclear reactor systems,
for which failure data are scarce and few collection programs exist to
provide accurate data for component failure rates.

Nuclear pressure vegssels are designed in accordance with rules
which in essence establish the minimum safety factors to be used. There
is increasing interest in lowering some of these safety factors and in
raising others to lower costs and increase safety. Analytical methods
now exist for estimating failure probability as a function of applied

and allowable stresses. 1In the investigation reported herein, these
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methods are applied to the nuclear pfessure vessel to develop analytical
expressions for its failure probability. The terms used in these expres-
sions and in their deveiopment are explained in the text, and a complete
listing of these terms and definitions is presented in Appendix A.
These analytical expressions are used to evaluate the minimum safety
factors imposed on.nuclear pressure vessels. Data from several sources
are reviewed and used to estimate typical failure probabilities to be
expected in vessel design. Conclusions relative to the adequacy of
existing design rules are drawn, and‘recommendations for maintaining,

lowering, or raising established safety margins are presented.



2. PROBABILISTIC DESIGN

Probabilistic design is the method by which the probability of a
defined failure is predicted.(5) For expected frequency distributions
of component strength and induced stress, this probability will be a
function of the area of'ovérlap of the two distribution functions.‘

Aside from the lack of adequate data upon which to base stress and
strength distributions, the basic problem in probabilistic design is one
of defining failure. Sincé the probability of failure has been stated
in terms of induced stress and allowable stress (3) in Section 1, a def-
inition of failure in these same terms will simplify the application of
probabilistic design methods. However, this definition must be ampli-
fied to include the concept of cyclic failure. Failure is then defined
as the occurrence of a single induced stress in excess of the allowable
level for that stress or the occurrence of a number of induced stresses
of a given amplitude in excess of the allowable number of stresses at
that amplitude. The word ''reliability" as used herein will therefore
refer to the definition reported by Juran, (2) while the term "probabil-
ity of failure'" will be used in connection with the definition of fail-
ure just stated. Random failures can be thought of as those caused by
the chance occurrence of a stress level which exceeds a simultaneous
occurrence of component strength. The same strength at a different time
would not result in failure if the stress level were lower at that
instant.

Thus, the basic problem of deciding what to call a failure becomes
one of defining a component strength above which a stress would be

6
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considered intolerable. There are several allowable stress intensities
(minimum strengths) for a nuclear pressure vessel, and these allowable
stresses are dependent upon the nature of the loads which produce the
stresses and the extent of the stresses throughout the vessel.(6) The
definition of failure employed herein permits failure to be treated ana-
lytically without tying it to a physical occurrence. Any induced stress
greater than the value selected as the allowable stress is a failure by

definition.

2.1 Analvtical Model

For failure as defined herein, the probability of failure (Q) is
the probability that an induced stress (S;) will exceed the allowable
stress (S,) for any values of the induced stress and allowable stress

that exist simultaneously.

Q= P(Si > Sa) . (2.1)

When inequality operations are applied to Equation 2.1, the probability
of failure can also be stated as

Q="P(5, -5, <0) . (2.2)

Because there are uncertainties in the measurement of strength and
there are variations in strength throughout a material, the allowable
stress may take on a distributed set of values. 1In the simplest case,
this may be thought of as a population of tensile specimens, each of
which is subjected to a load that causes failure. The stresses at fail-
ure for each of the specimens become the allowable stress distribution
of the material. Similarly, the material will experience an induced

stress that takes on distributed values because of the uncertainties in
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forecasting loads and the operating transients that are likely to occur.
This induced stress frequency distribution can be thought of as a single
tensile specimen subjected to a population of loads until failure occurs.

If each tensile specimen has an equal chance of experiencing any of
the possible loads, the probability of failure of any given specimen is
the joint probability that a particular tensile specimen will be chosen
and that a load greater than the strength of that specimen will occur.
Stated in terms of stress, the probability of failure of any given spec~-
imen is the joint probability that an allowable stress exists and that
an induced stress in excess of that allowable stress will occur.

If the probability density function of induced stress is

£(s;) = £(I,, I, «vo 1) (2.3)

and the probability density function of allowable stress is

g(Sa) = g(Als A2’ A An) b (2'4)

the probability that any value of S; exceeds a given value of S, is

given by the distribution function F(S;). (7)

A
n

F(s;) = P(s; 2 A) = | £(5;) ds; - (2.5)

The probability that An exists is given by the expression (8)

P(Sy < A, < S, +dS,) = g(s,) ds, - (2.6)

The joint probability of An existing and of S; exceeding A, is given by
the product of the individual probabilities.

A
n

P(S, < Ap <S5, +dS, || S5 >4y = g(8,)ds, £(S;) ds; - (2.7)
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For the probability that any values of allowable stress will be exceeded,
Equation 2.7 must be integrated over the entire range of g(Sa).(7)

This will give the probability of failure Q.

(" bn
Q = g(s,)| £(5;) ds; ds, . (2.8)

-00 -00
Equation 2.8 can be thought of physically as the distribution function
of the area of overlap of the two frequency distributions.(9)

The frequency distributions of induced stress values and allowable
stress values are illustrated on the same axis in Figure 2.1. The
shaded area represents the number of failure causing stresses. The
description of the frequency distribution is of great importance in eval-

uating Equation 2.8. As written, Equation 2.8 applies to any frequency
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Distributions. '
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distribution, f(Si) or g(Sa), that fulfills the requirements set forth
in the development of the equation. However, in actual practice, the
integral can be evaluated for only certain distributions such as expo-
nential, normal, log normal, and Weibull. In later equations, certain
relationships will hold for only one distribution function and care must
be éxercised in applying these equations to assure that the relation-
ships are valid for the distribution function in use.

The distribution function, F(S), has a value of unity when the prob-
ability density function, £(S), is integrated over all possible values.

0

f(8) ds =1 . (2.9)

The integral can be broken up as follows.

© Sn 0
£(S) ds = £(8) ds + £(s) ds =1 . (2.10)

-0 - 00 S
n
It can be seen from Equation 2.5 that the first part of the integral

(for values below S,) is the probability of failure (Q).

Sn
Q = £(s) ds . (2.11)

-00
The second part of the integral contains all values greater than S,
which are all other possible values. Thus, the second part of the inte-

gral must be the probability of success (P).

P = £(s) ds . (2.12)
Sn
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It follows from Equation 2.10 that
P+Q=1. (2.13)
- There are two parameters of the distribution function that will be
needed in performing calculations of failure probability. These are the

mean (§)‘and the standard deviation (og). By definition, (7)

o]

S = SF(S) dS (2.14)

- 00

o0
and of = | (s -85 ds, (2.15)

-00

where 8 is a distributed random variable.

2.2 Reliability and Failure

The probability of failure resulting from any two frequency distri-
butions of induced and allowable stresses is expressed by Equation 2.8.
This probability depends only on the distribution functions and their
interference with one another. Conditions of the distribution that are
not time dependent are referred to herein as steady-state conditions.

While the allowable stress distribution is not likely to change
with time, the distribution of the applied stress may arise from a time-
dependent situation, such as cyclic pressure fluctuations. As well as
providing a basis for analyzing the fatigue life of the vessel, these
cyclic pressures actually describe a frequency distribution for the
steady-state design pressure. As long as certain values of these cyclic
stresses do not cluster at a given time, the induced stress distribution

will be independent of time and Equation 2.8 can be used to calculate
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the steady-state failure probability. When one or more of the
distribution functions is a function of time, such as the allowable
stress distribution for fatigue failure, Equation 2.8 reﬁresents the
time-dependent failure probability from which reliability can be calcu-
lated by using Equation 2.13. Thus, Equation 2.8 can be used to calcu-
late reliability only when the distribution functions are time dependent.
In all other cases, Equation 2.8 is simply an expression for the prob-
ability that failure will occur at any time.

The probability of failure resulting from a steady-state stress dis-
tribution may have a time dependency that is not at first evident from
the data of which the distribution is comprised. For example, the fact
that a stress of any given level has an equal chance of occurring at any
time, as was postulated for the steady-state distribution, will result

in an exponential failure probability as a function of time.(7)

Q=1-e ) (2.16)
where A is the average rate at which failure stresses occur and T is the
interval of time over which the failure probability is estimated.

A more general case is one in which it is assumed that the rate at
which failure stresses occur can vary with time. Such a case can be

expressed by the two-pérameter Weibull distribution function. (10)

b
- e'(T /m) , (2.17)

Q=1
where b and m are parameters determined from the distribution of failure
causing stresses. If b =1, the Weibull distribution becomes the expo-

nential distribution of Equation 2.16 and m corresponds to the mean time

between failures (1/21). Equations 2.16 and 2.17 are statements of
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reliability because they express time-dependent probabilities. Thus,

from Equation 2.13, reliability (R) can be expressed as

b
R = o (T7m)

. (2.18)
The probability of failure can therefore be calculated as an inter-

ference of induced ‘stress with allowablé stress by using Equation 2.8,

or it can be calculated as the reliability resulting from a specified

level of stress (corresponding to the parametric values of b and m) for

any time by using Equation 2.18.

2.3 Environmental Effects

The calculation of reliability as a time-dependent probability is
usually done by measuring values of m and b in experimental or opera-
tional situations and using these values in equations similar to Equation
2.18 (depending upon the type of distribution R takes on).. When thisg
procedure is followed, the same environment observed while the parameters
were measured must be postulated for the p?edicted operation, as stated
by the definition of reliability used herein. If there is any deviation
from the measured environment, the predicted reliability is theoretically
invalid.

If the effects of environment (stress and strengths) are considered,
a more accurate estimate of reliability is possible. For example, the
measured failure rates might be used in Equation 2.16 to forecast compo-
nent reliability and in Equation 2.8 to determine the allowable varia-

tion in environment necessary to maintain the validity of Equation 2.16.
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The use of measured failure rates would not only forecast reliability
but would also tie that reliability to acceptable limits of environ-

mental variation.



3. STEADY-STATE DISTRIBUTION FUNCTIONS

In order to calculate a steady-state failure probability, the
distribution functions must be determined. If data are available for a
specific application, the distribution functions should be based on that
data. However, there are many possible distributions, and some of them
cannot be mathematically stated in a closed form. Hence, there will be
many instances in which a design must be formulated before the distribu-
tion function is known. It is therefore important to determine whether
pressure vessel data are likely to have typical distributions from which

a generalized equation for failure probability can be developed.

3.1 Stress Distributions

There is much evidence that the material strength associated with a
steady-state general membrane stress occurs as a normally distributed
function. As a specific example, the distribution function was deter-
mined for 16 values of yield stress for A533 Grade B steel obtained under
similar conditions.(l1l1) These data were analyzed by computing the per-~
centage of the total population of temsile test specimens expected to
fail at each stress level, as outlined in Table 3.1. The symbol Sj in
Table 3.1 represents the induced failure stress in kips (from the word
kilo-pounds where 1 kip = 1,000 pounds) per square inch. The symbol Nj
represents the population prior to application of the j-th stress, and
rj represents the number of failures resulting from the j-th stress.

The percentage of the original population that survived application of

the j-th stress level is represented by the symbol RSj. The values of

15~
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Table 3.1. Parameters Used to Construct Distribution Function
of Yield Strength

N,+1-r, "

S, N, r, N,+1 N, +1-r, ———>I RS,
k| j j j j j Nj+1 J

58.2 16 1 17 - 16 0.941 0.941
58.6 15 1 16 15 0.937 0.882
59.0 14 1 15 14 0.933 0.823
59.4 13 1 14 13 0.928 0.763
59.5 12 1 13 12 0.923 0.705
59.6 11 1 12 11 0.912 0.646
59.9 10 2 11 9 0.818 0.528
60.1 8 1 9 8 0.889 0.470
60.3 7 1 8 7 0.875 0.411
60.6 6 1 7 6 0.857 0.352
61.0 5 1 6 5 0.833 0.293
61.3 4 1 5 4 0.8 0.235
61.4 3 1 4 3 0.75 0.176
61.5 2 1 3 2 0.667 0.117
62.2 1 1 2 1 0.5 0.058
* N. +1 -rJ
RS, =T—§ =7

Sj are plotted as yield strengths and values of 1 - RSj are plotted as
percent failed in Figure 3.1. It can be seen that the resulting plot is
nominally a straight line, thereby fulfiiling the criterion for a nor-
mally distributed function.(7)

Figure 3.1 alone does not provide justification for assuming that a
normal distribution is typical of allowable stresses. An extensive sur-
vey of test data reported by Lipson, Sheth, and Disney (9) revealed that
the type of distribution changed significantly with changes in tempera-
ture. In that data, the distribution functions of yield and ultimate
strengths for fully annealed low-carbon, low-alloy steels and for fully

annealed low-carbon, high-alloy steels are approximately normal at
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Figure 3.1. Distribution Function of Yield Strength Plotted on
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temperatures between 250 and 750°F. Inasmuch as the data illustrated in
Figure 3.1 were obtained within that temperature range, the assumption
of normally distributed allowable stress functions for pressure vessels
in Iight-water-cooled nuclear reactor systems would not be grossly inac-
curate. However, this assumption might not be valid for very high tem-
perature conditions, such as those experienced by vessels in liquid-metal
fast breeder reactors, or for near ambient temperature conditions, such
as those experienced by a containment vessel.

The induced stress distribution for steady-state conditions closely
approximates a normal distribution when there is a very high incidence

of peak pressures on either side of the design pressure. These pressures
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are generally assumed to occur as a factor in fatigue analysis, and a
suitable example might be 10° cycles of +100 psi, 200 cycles of +120 psi,
and 5 cycles of + 500 psi. The induced stress will be normally distrib-
uted by specification in such a case, and it may be assumed as normally
distributed in practice when large numbers of pressure fluctuations are
assumed on either side éf a mean. It may therefore be assumed that nor-
mally distributed induced and allowable stresses are typical for many
steady-state stress conditions. Equation 2.8 will be developed for
these specific distribution functions as a typical case for steady-state

failure probability.

3.2 Failure Probability

When S is a normally distributed random variable, the frequency dis-

tribution is given by the following equation.(8)
s_- s|?

g
s

1

1 )

e
GS(ZW)l/z v

f£(8) = , (3.1)

where S is the mean, as defined in Equation 2.14, and oy is the standard
deviation, as defined in Equation 2.15. The normal distribution function

is obtained by integrating Equation 3.1 over all values of S.

S 1 2

S-S
g
s

1 2
= e e

das . (3.2)

The probability of failure resﬁlting from the interference of nor-
mal distributions of induced and allowable stress is obtained by using
Equation 3.2 to calculate the probability that Sa - Si < 0. When S =

Si - Sa is taken as the difference between two normally distributed



19
independent variables, it can be shown by the method of maximum

likelihood estimators (5) that

S = Si - Sa (3.3)
- 2 2\1/2
and oy (osi + Usa) s (3.4)

where §, Si’ Sa’ GS, GS , and og are the respective means and standard
i a
deviations of §, S;, and S,.
When S is the difference between the induced stress and the allow-

able stress, the probability of failure is obtained by evaluating Equa-

tion 3.2 over positive values of S, as shown in Equation 3.5.

% _l(S - 5)2
Q=——7| ¢ % | as. (3.5)
o (2m)
S (o)
S-S5, +8S =
a -
1f u = = -8-3 (3.6)
o2 +02)1/2 Og
S S,

and if appropriate changes in the variables of integration are made,

Equation 3.5 can be expressed as

0
2
Q=_(_%7‘2_ U2 gy (3.7)
2T

-5, +35

where m = = 2 . (3.8)
2 2\1/2
GS + US )
i a

Equation 3.8 is the '"coupling' equation whose value is used to evaluate
Equation 3.7 with standard tables of probability functions.(9) The prob-
abilities of failure, determined by using Equation 3.7, for several

values of m are given in Table 3.2.
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Table 3.2. Values of
Normal Integral
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The method of maximum likelihood estimators (5) used to develop
Equations 3.3 and 3.4 can also be used to show other mathematical opera-
tions with normally distributed variables. Several of these operations
that are of use in performing stress analyses of pressure vessels are
given, without proof, in Table 3.3. These operations are valid for
values of the coefficient of variation (VS) less than 0.1, where the
coefficient of variation is defined as

g

v, ==
S

. (3.9)
When substituted into'Equation 3.8, the coefficients of variation

of allowable and induced stresses (VSa and VSi) and the ratio of allow-

able to induced stress (M) reduce the number of variables, as is shown

in Equation 3.10.

M-1
2
Vg aM2 + VS

217z (3.10)

i

where M = . (3.11)

The number of variables in Equation 3.8 is further reduced by introduc-
tion of the coefficient of variation of failure probability (C), (8)

where

2\1/2

S.

22
C=|Vg M +V
: a i

(3.12)

Because each value of m in Equation 3.10 corresponds to a failure
probability in Equation 3.7, the probability of failure is a function of
the two variables M and C. The failure probabilities for several values

of M and C reported by Kececioglu and Haugen (8) are illustrated in
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Table 3.3. Operations With Normal

Functions
Ttem Operation
1. w=xty
w=x+y
c2=02+0%
w X y
2 W =X-Y3
vex-3
cf =02+0g?%
w X y
3 W = Xy
W = Xy

W X
4. w=2=
y
s
I A
y y°
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Figure 3.2. The data illustrated in Figure 3.2 can be used in lieu of
Equation 3.7 and Table 3.2 (page 20) Eo determine the failure probabil-
ity for normally distributed induced and allowable stresses. The param-
eter M can be thought of physically as the ''safety factor" corresponding
to a desired probability of failure (Q) and coefficient of variation of

failure probability (C).
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Figure 3.2. Probability of Failure as a Function of Dimensionless

Parameters of Normal Functions.

Source: D. Kececioglu and E. B. Haugen, "A Unified look at Design
Safety Factors, Safety Margins, and Measures of Reliability," pp. 520-
530 in 1968 Annals of Assurance Sciences, Seventh Reliability and Main-
tainability Conference, The American Society of Mechanical Engineers,

New York, 1968.
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4. STEADY-STATE INDUCED STRESSES

The probability of failure is stated in Section 3 in terms of
allowable stress distributions and induced stress distributions. When
these two stress distributions are normal, the failure probability can
be obtained either directly from Figure 3.2 (page 24) or from Equation
3.7 and Table 3.2 (page 20). While the allowable stress distribution
can be measured or estimated as stress, the induced stress distribution
usually cannot be obtained as a directly measured stress. The induced
stress distribution is usually the result of a distributed set of loads
acting on a component with a distributed set of dimensions, and it must
be calculated by using stress analysis methods in conjunction with prob-
ability calculus. Such analyses are often referred to as ''probabilistic
design.'"(5)

The rules for the stress analysis of nuclear pressure vessels set
forth in Section III of the ASME Boiler and Pressure Vessel Code (12)
are based on the maximum shear stress theofy of failure.(13) This
theory stipulates that failure occurs when the maximum shear stress at a
point exceeds the shear stress corresponding to the yield point in a
uniaxial tension test specimen. Stated mathematically, for principal
stresses Sl > 52 > S3 and a yield stress Sy’ failure results when

S -5 S

1 3 _y
— > - 4.1)

The probabilistic design methods by which the principal stresses in
a vessel are determined can be used to determine the induced stress dis-
tribution required to calculate the probability of failure when the

25
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allowable stress level is defined by the maximum shear stress theory.
Since the principal stresses in a pressure vessel away from discontinu- .
ities generally consist of the hoop stress, the meridional stress, and
the internal pressure, a generalized derivation of probabilistic design

formulas for pressure vessels is possible.

4.1 Hoop Stress

If the hoop stress (Sy) in a pressure vessel subjected to an inter-

nal pressure (p) is given by the equation

Sh = pY , (4.2)

where Y is a function of the radius of the vessel and thickness of the
shell, the mean value of the hoop stress resulting from a normally dis-

tributed p and Y is determined from Table 3.3 (page 22) to be

= . 4.3 @,
S, = PY v _ (4.3)
The standard deviation of hoop stress (Ush) expressed in terms of Equa- -
tion 4.3 is
-2 D -
og. = 0.? + Y30 2 + o 20 2|2/2 | 4.4
Sh P 7Y P Y op -4

The mean values of the two distributions can be eliminated by substitut-

ing the coefficients of variation of Sh’ P, and Y into Equation 4.4.

- 2 4 y24y2y2\1/2 . .
VSh Vp VY Vp VY (4.5)

Values of Vg for several values of Vp and VY that were calculated by
using Equation 4.5 are illustrated in Figure 4.1. Figure 4.1 can be

used as a graphical aid in determining the coefficient of variation of

hoop stress when the mean value of the hoop stress is expressed by =
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Figure 4.1. Coefficient of Variation of Hoop Stress as a Function
of Coefficients of Variation of the Product of Two Normally Distributed
Functions.
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Equation 4.3. The standard deviation is then obtained as

On =V. S, . (4.6)

The quantity Y in Equation 4.2 is a function of the radius (r) and
shell thickness (t) of a cylinder or sphere subjected to internal pres-
sure. If r and t are invariant, Y is invariant and the standard devia-
tion of hoop stress is simply the product of Y and the standard devia-
tion of pressure. If r and t are normally distributed, Y will also be

normally distributed. For a cylinder,

Y =r/t. (4.7)
From Table 3.3 (page 22), the standard deviation of Y for values of Vt

less than 0.1 is

Ezgrz + ;2Ut2
e} 2 = - . (4-8)
2 2
t= + o
t

The coefficient of variation of Y is determined by substituting the coef-

ficients of variation of r and t into Equation 4.8.

vaa4y?2 1/2
T t

v, = [F—E . (4.9)
1+ vt2

Values of VY for several values of Vr and Vt that were calculated by
using Equation 4.9 are illustrated in Figure 4.2. TFigure 4.2 can be

used to graphically determine values of V, to be used in Figure 4.1

Y
(page 27) or in Equation 4.5 when r and t are normally distributed
variables.

Although Equation 4.9 was derived for hoop stress in a cylinder, it

- is valid for any Y = ar/t, where a is a constant or invariant, because

the coefficient of variation of Y is calculated as
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C. ao
v /e
Y

~

VY =

joi]
edlkal

and the constant (a) does not affect the coefficient of variation. Thus,
Equation 4.9 and Figure 4.2 apply to a sphere or any other shape for
which Y is expressed in terms of a constant multiplied by the radius-to-
thickness ratio. Equation 4.5 and Figure 4.1 (page 27) are also appli-
cable to these same geometries for the same reasons.

The normal distribution function of hoop stress in pressure vessels
of several shapes can therefore be determined as a function of pressure
and geometry by using Equations 4.3 and 4.5. This stress is then used
to determine the induced stress distribution in accordance with the max-

imum shear stress theory of failure.

4.2 Induced Membrane Stress

The maximum principal stress in a cylinder or sphere under internal
pressure is the hoop stress, and the minimum principal stress is the
negative of the internal pressure.(13) The mean value of induced stress

is therefore

h

s, = , | (4.10)

S, +p
i 2

and the standard deviation of induced stress, from Table 3.3 (page 22),
is expressed as
1.2 211 /2
= = ) + . .
CrSi 2(081 Up ) (4.11)

Equation 4.11 is not simplified by substitution of the coefficients

of variation of Sh and p. However, the mean and standard deviation of
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induced stress required in Equation 3.8 for determining the probability
of failure are stated directly in Equations 4.10 and 4.11. Therefore,
the probabilistic design calculations for determining the induced stress
for the maximum shear stress theory of failure are culminated in these
two equations, with intermediate steps represented by Figures 4.1 (page
27) and 4.2 (page 29) or Equations 4.5 and 4.9.

When local effects are considered, the hoop stress and pressure are
not always the maximum and minimum principal stresses. Such local
effects have not been considered here, but they can be calculated by
probabilistic methods if nécessary. The simpler stresses, such as bend-
ing, tension, and torsion, have been treated probabilistically by Haugen.
(5) These stresses in combination with the hoop stress can be evaluated
by using Table 3.3 (page 22) and following a procedure similar to that
followed to derive the probabilistic statement for hoop stress.

The induced stress calculations are greatly simplified if Y is
invariant. In practice, the radius and shell thickness of a pressure
vessel are held to rather close tolerances (about 27%) when compared with
the expected variation in 1oadsband material strengths (about 15%). It
is therefore possible in many cases to neglect the dimensional distribu-
tion functions and calculate the induced stress as a function of a dis-
tributed load only.

The failure probability resulting from the induced stress distribu-
tion is calculated for a specified allowable stress distribution by using
Equation 3.7 or Figure 3.2 (page 24). However, care must be exercised
in doing this because the induced stress calculated by using Equation

4.10 must be compared with an allowable stress defined in accordance
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with the maximum shear stress theory of failure; that is, an allowable
stress corresponding to one-half of the yield strength determined in an
uniaxial tensile test. Because both the induced stress and the yield
strength are divided by two, ''stress intensity'" is defined in Section
ITT of the ASME Boiler and Pressure Vessel Code (12) as a stress equal
to twice éhe induced shear stress, and "allowable stress intensity" (s
is defined (12) as an allowable design stress equal to twice the shear
stress allowed by Code rules. The term "allowable stress' used herein
is a defined failure stress, and its values do not correspond to the
"allowable stress intensity' values specified in Section III of the ASME

Boiler and Pressure Vessel Code inasmuch as those values have built-in

"factors of safety."

4.3 Burst Pressure

The failure defined by Equation 3.7 is a mode of failure for which
the probability is calculated by using induced stress. On the other
hand, gross rupture or bursting is not easily expressed in terms of an
induced stress because strain rather than stress plays the dominant role
above the yield point of a material. The concept of "burst pressure'
was presented by Langer (14) to correlate Section III ASME Code (12)
allowable stress intensity values with data from rupture tests performed
by the Pressure Vessel Research Committee. As reported by Langer, (14)
the burst pressure (pb) corresponding to the ultimate tensile strength
(Su) of a material can be calculated by using Equation 4.12.

p, =SB InW, (4.12)

where B is a strain-hardening factor and



33

W = (1 +§) , (4.13)
where
t = thickness of vessel shell and
r = inside radius of vessel.

Values of B were determined in the tests performed by the Pressure Ves-
sel Research Committee,(14) and these values can be approximated by

using Equations 4.14 through 4.19 in which BC denotes the strain-harden-
ing factor for a cylinder, BS denotes the strain-hardening factor for a
sphere, and n is the strain-hardening exponent of the material measured

in tensile tests.

BC = 1.16 - 0.9n for 0<n<0.1. (4.14)
BC =1.14 - 0.75n  for 0.1 <n<0.3. (4.15)
BC = 1.08 - 0.51n for 0.3 <n<1.0. (4.16)

Bs =2.0-1.2n for 0<n<O0.1. 4.17)
Bs =1.98 - 1.06n for 0.1 <n<0.3. (4.18)
BS =1.90 - 0.76n for 0.3 <n<1.0. (4.19)

While Equation 4.10 can be used to estimate an induced stress to be
compared with a measured allowable stress, Equation 4.12 can be used to
compute a burst pressure to be compared with a measured induced pressure.
The probability of failure by bursting can therefore be derived in a man-
ner similar to that used to derive the probability of failure defined by
maximum shear stress.

For normally distributed Su’ B, and p, Equation 4.12 can be written

as

=SB lnW, (4.20)
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where r and t are assumed to be invariant. From Table 3.3 (page 22),

the standard deviation of burst pressure (Ob ) is expressed as
b

= T 252 + 320 2 4+ g 24 211/2 | .21
obb In W Su Oa B osu GSUOE 4.21)

The coefficient of variation of burst pressure is expressed in Equation

4.22.
vpb = [v2 + Vsi + szvsi 1/z (4.22)
where
Vpb = Obﬁ,;£ ,
VB = UB/E , and

VS B Oé /Su
u

Since the coefficient of variation of burst pressure is the coefficient
of a product, Figure 4.1 (page 27) can be used to obtain values of Vpb

when the values of V and V_ are known and normally distributed.

Su B

The probability of failure is obtained by computing a value of m
consistent with Equation 4.20 and M = ﬁb/ﬁ .
m = s (4.23)

(G 2 4 52\1/2
Py p

or m = M-l . (4.24)

vV aME + v 2lt/2
( Py, P )

The computed value of m can be used to determine the probability of fail-
ure by using Table 3.2 (page 20). To use Figure 3.2 (page 24) to deter-
mine failure probability, the value of the coefficient of variation of

failure probability (C) must be calculated.
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C=(vamd +v2aullz, (4.25)

2
Pp p

Equations 4.24 and 4.25 together with Table 3.2 (page 20) or Figure 3.2
(page 24) provide a means of estimating the probability of failure by
bursting based on the probability that an induced pressure will exceed

a calculated burst pressure.

4.4 Numerical Example

A numerical example is presented here to demonstrate the method of
calculating failure probability discussed in the preceding subsections.
A cylinder with specified design conditions typical of those for a pres-
sure vessel in a pressurized-water nuclear reactor is considered in this
example, and the radius and shell thickness of this vessel are treated
as invariant in this example wherein Ob and Osa are large as compared
with . and o, The specified design conditions for this vessel are as

follows.

; = mean or average internal pressure = 2,250 psi,

Ob = standard deviation of internal pressure = 86 psi,

§§ = mean yield strength of the vessel material = 57,500 psi,

USY = gstandard deviation of the yield point = 3,068 psi,‘

gﬁ = mean ultimate tensile strength of vessel material =83,000 psi,
Osu = standard deviation of ultimate tensile strength = 4,650 psi,
Sm = allowable stress intensity as specified in Section III of the

ASME Boiler and Pressure Vessel Code (12) = 26,700 psi,

r = radius of cylinder = 91 inches,

B_ = mean strain-hardening factor for cylinder = 0.97, and

op = standard deviation of strain—hardening factor = 0.0116.
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The rules of Section III of the ASME Boiler and Pressure Vessel
Code (12) require that a minimum shell thickness (tmin) be established
for the vessel by using the prescribed value of Sm for S 1in Equation
4.10. Equation 4.10 then becomes

_ _pr __ _2,250(91) _ .
tmin = Sm =5 = 26,700 - 2,250 8.37 inches . (4.26)

The probability of failure defined by the maximum shear stress
theory can be estimated by using Equation 3.8. The allowable stress is
gy/Z, and the induced stress must be calculated. For the minimum shell

thickness, the mean hoop stress

5, = BE - 2 552791 = 24,462 psi , (4.27)

and the standard deviation of the hoop stress

or
¢ =P - 86(91)

Sh t 8.37

= 935 psi . (4.28)

The mean induced stress

s, +p

- +
5. = B _ 26,462 % 2,250 _ 15 950 ooy, 4.10)

i 2 2

and the standard deviation of induced stress
1 ) 211 /2 940 .
== + = = . .

Usi Z(Gsh Gﬁ ) > 470 psi (4.11)

The value of m to be used in Table 3.2 (page 20) is determined from
Equation 3.8 as

- +
o= 13,356 + 57,500 - 9.59 . (3.8)

o + (2]

This value in Table 3.2 (page 20) corresponds to a failure probability

of essentially zero.
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Different shell thicknesses were selected for the vessel and design

conditions specified in this example, and the same computational proce-
dures were used to obtain the data given in Table 4.1. Examination of
the data reveals that the probability of failure is very low for shell
thicknesses greater than 5.0 inches, indicating that the required (12)
minimum shell thickness of 8.37 inches given by Equation 4.10 for the
stipulated design conditions provides more than adequate assurance

against failure.

Table 4.1. Maximum Shear Stress
Failure Probability as a Function of
Shell Thickness for a Cylinder

t
(in.) m Q
4.00 0.3 0.3
4.25 2.0 2.3 x 1072
4.50 2.8 2.5 x 1073
4.75 3.5 2.3 x 10~*
5.0 4.8 2.0 x 1077
8.37 9.6 ~0

If the minimum thickness of 8.37 inches were not mandatory (12) and
a thickness corresponding to a very low failure probability were desired,
the value of 5 inches would be a desirable thickness for the stated con-
ditions of this example. Although there would still be uncertainty
about how closely the specified conditions correspond to actual condi-

tions, much of this uncertainty has been removed by the design methods

used.



38
The probability of failure by rupture can be calculated in a
similar manner by using Equations 4.20 and 4.24 to obtain the value of
m corresponding to the stated design conditions. The mean burst

pressure

Py = SuB In W, (4.20)
where for the minimum shell thickness of 8.37 inches

In W = In (1 + §3%1 = 0.088 .

= 83,000(0.97)(0.088)

Therefore, 7,120 psi ,

Py
and from Equation 4.21, the standard deviation of burst pressure

Ob = 0.088(10,040) = 890 psi .
b

The value of m to be used in Table 3.2 (page 20) is determined as

7,120 - 2,250 o o 4. 23)

[(890)2 + (86)2]/2

The corresponding probability of failure given in Table 3.2 (page 20) is
less than 3 x 1077.

Different shell thicknesses were selected for the vessel, and the
preceding computational procedures were used to obtain the data given in
Table 4.2. Examination of the data given in Table 4.2 reveals that the
probability of failure is significantly decreased for shell thicknesses
between 3 and 4 inches, but the value for a 4-inch thickness still rep-
resents credible failure (about one chance in 1,000). The selection of
a design value of shell thickness greater than 4 inches would therefore
be arbitrary; the ideal value being perhaps 6 inches, corresponding to

a failure probability of about four chances in 1,000,000.
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Table 4.2. Burst Pressure
Failure Probability as a Function
of Shell Thickness for a Cylinder

t

(in.) m Q

3.0 1.18 0.115
4.0 3.07 1.3 x 1072
5.0 4.04 3.1 x 1075
6.0 4.61 3.4 x 1078
7.0 5.05 2.0 x 1077
8.37 5.45 2.0 x 1078

The failure probability for rupture by burstingbis higher than for
the maximum shear stress theory of failure, and rupture is likely to be
the dominant mode of failure in this case. The allowable stresses cor-
responding to each failure mode are compared in more detail in Section

5.



5. ASME ALLOWABLE STRESS INTENSITIES

The examples of Subsection 4.4 show a correlation between shell
thickness and failure probability, and a very low failure probability
was computed for the minimum shell thickness required by Section II1 of
the ASME Boiler and Pressure Vessel Code.(12) The shell thickness is an
indirect statement of induced stress for a specific geometry; thus, it
says little of the adequacy of the Code (12) allowable stress intensi-
ties for other geometries. A generalized prediction of failure probabil-
ity can be made if the allowable stress intensities specified in Section
III of the ASME Boiler and Pressure Vessel Code (that is, the design
stresses which are permitted to exist in a vessel) are compared with the
material strengths likely to exist in the vessel pressure boundary (that
is, the actual distribution of yield or ultimate strengths).

Since the ASME Code (12) allowable stress intensity (Sm) is equal
to either two-thirds of the minimum specified yield strength (Sy) or one-
third of the minimum specified ultimate tensile strength (Su), the allow-
able stress intensity provides a 'safety factor'" of approximately three
against rupture (based on classical definitions of the term '"safety fac-
tor"). The failure probability resulting from Code (12) allowable
stress intensities is obtained from Equation 3.10 by using an induced
stress equal to the allowable stress intensity and an allowable stress
equal to the yield strength of the material.

Data collected from three sources (11, 15, 16) indicate that the
mean value of yield stress for pressure vessel steels will be 1.35 times

higher than the minimum specified yield strength. Conformance with the

40
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stated criterion of keeping the allowable stress intensity less than
two-thirds of the minimum specified yield stress therefore requires that

Sy = 1.35(1.5)8m . (5.1)

This corresponds to a value of M determined from Equation 3.11 of

M=S /S, =2.02 (5.2)
a 1

when gi = Sm and Ea = gy' The data énalysis illustrated in Figure 3.1
(page 17) and the results of the literature survey reported by Lipson et
al. (9) indicate a coefficient of variation of allowable stress (Vsa)
near 0.05 for a specific material and establish the likely range for all
steels as being between 0.0l and 0.1l. Similarly, the available data on
pressure variations indicate that a coefficient of variation of induced
stress (Vsi) of 0.05 would bé common. Substitution of these values into
Equation 3.12 yields a coefficient of variation of failure probability

of

_ o2y2 2\1 /2
¢ Vg™ + VS.
a 1

0.144 . (5.3)

0.144 and the value of M =

From Figure 3.2 (page 24), the value of C
2.02 result in a failure probability of roughly 10™* or one chance in
10,000. The approximate value of Q should be considered sufficiently
accurate in analyses such as this since there is no accepted minimum
level of failure probability for pressure vessels.

The probability of failure by shear stress based on an allowable
stress intensity of two-thirds of the minimum specified yield strength
is somewhat higher than might be desired. Should the designer prefer
greater assurance against failure, he might select a lower value of

allowable stress intensity such as one-half of the minimum specified
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yield strength, which corresponds to a failure probability of 107% when
calculated in the foregoing manner. Since the yield strength of a mate-
rial is the governing factor in the maximum shear stress theory of fail-
ure, a more acceptable failure probability would result from an allow-
able stress intensity equal to or less than one-half of the minimum
specified yield strength if the same variance in loads and material
strengths assumed herein is expected.

To evaluate the probability of failure resulting from the criterion
that the allowable stress intensity shall not exceed one-third of the
ultimate tensile strength, the burst pressure discussed in Subsection
4.3 will be used. The failure probability is obtained from Equation
4.23 when the burst pressure corresponding to the ultimate tensile
strength (computed by using Equation 4.20) is compared with the induced
pressure corresponding to the allowable stress intensity (computed by
using Equation 4.10). The data collected from three sources (11, 15, 16)
indicate that the mean value of ultimate tensile strength for pressure
vessel steels will be only 1.06 times higher than the minimum specified
ASME Code (12) wvalue. Thus,

§, = 1.06s . | (5.4)

Designation of the ratio of the minimum specified ultimate tensile

strength to the allowable stress intensity as N

(5.5)

C/JIC/)
o

=]

and substitution of the value of g; obtained in Equation 5.4 into Equa-

tion 5.5 yields
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Sy

Sm - 1.06N ° (5-6)

The induced pressure corresponding to the allowable stress intensity is
obtained by substituting Equation 5.6 into Equation 4.10 (where gh =

EY) and solving for ;.
- _ Su 1
P = T1oo6N|T + ¥/ ¢

(5.7)

The value of M to be used in Figure 3.2 (page 24) or Equation 4.24 is

b SuB In W
_—= . (5.8)
p Sy ( 1 )~

1.06Ni1 + Y

M =

Substitution of the coefficient of variation of burst pressure (Vp )
_ b
defined in Equation 4.22 into Equation 4.25 yields a coefficient of wvari-

ation of failure probability (C) of

= 2 2 Ly 2y 2\»2 271 /2
C [(vsu + v, VSuVB )M A ] . (5.9)

The value of m given by Equation 4.24 is therefore expressed by substi-

tution of Equations 5.8 and 5.9.

[1.06NE(1 +Y) In (1 +%)] -1
m = 2 ; . (5.10)
p=4 2 2 = 211 /2
[(Vsu + U2+ VSuVB )M + vy ]

The probability of failure by bursting was calculated for ASME Code
(12) allowable stress intensities by assuming a value of N = 3 for the
ratio of minimum specified ultimate tensile strength (Su) to allowable
stress intensity (Sm). Available data on strain hardening (7) were used
to obtain the values B = 0.97 and VB = 0.01. The value of VS was found

u
to be the same as that for VS or 0.05. (9, 11) Since p is the same
y
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pressure used to evaluate the maximum shear stress, the value of Vp is
again assumed as 0.05. These values were used in Equation 5.10 to cal-
culate the failure probability for several values of Y by using Table
3.2 (page 20). The calculations were then repeated for other values of

N. The results of these calculations are illustrated in Figure 5.1.

0 N=5
§ (ASME)
= -15 2
:E 10 441f:====F==--T---1---T---n
w
T
_—_l 10‘6 1.4
T 10-¢
g 10
o 1.2
&

1072
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Y

Figure 5.1. Probability of Failure as a Function of the Ratios of

Vessel Radius to Thickness (Y) and Ultimate Strength to Allowable Stress
Intensity (N).

The curve for N =3 illustrated in Figure 5.1 represents the fail-
ure probability by bursting resulting from an allowable stress intensity
of one-third of the ultiﬁate tensile strength. The probability of fail-
ure is so low that it can be considered as zero probability of failure.
The probability of failure woula likely be considered acceptable for
values of N as low as 1.4, corresponding to less than one chance in
1,000,000. However, the failure probability is sensitive to changes in

N for values of N less than approximately 2.0. This sensitivity makes
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it advisable to select values of N for which errors in data analysis
will not result in gross errors in failure probability. In this case,
the value of N = 2 appears to offer adequate assurance against failure
by bursting.

On the basis of this analysis, an allowable stress intensity equal
to one-half of the minimum specified ultimate tensile strength of the
vessel material, as opposed to the presently accepted value (12) of one-
third of the minimum specified ultimate tensile strength, would be
acceptable. The use of this value should be based on other considera-
tions in addition to probabilistic design since considerable uncertainty
can still exist even though an extensive probability analysis has been
performed. On the other hand, the results obtained for yield strength
suggest a change from the presently accepted value of an allowable stress
intensity of two-thirds of the minimum specified yield strength to one-
half of the minimum specified yield strength would be justified on the
strength of the probabilistic analysis by itself because a potentially

non-conservative criterion was discovered.



6. CYCLIC FAILURE PROBABILITY

The equations for steady-state stresses presented in Section 4 were
used in Section 5 to develop a generalized prediction of the steady-
state failure probabilities for the allowable stress intensities stipu-
lated in Section IITI of the ASME Boiler and Pressure Vessel Code (12) as
applied to pressure vessel steéis. However, an additional mode of fail-
ure arises from the repeated application of loads of a cyclic nature.
The probability of failure resulting from the repeated application of
cyclic stresses was defined in Section 2 (page 6) as the probability
that the number of stress amblitudes of a specified level exceeds the
allowable number of stress amplitudes for that stress level. The prob-
ability of failure so defined is a function of the number of stress
cycles as well as the amplitude of the stress. The distribution func-
tion must therefore include the effects of both the stress level and the
number of stresses. One method of including both would be to develop
the probability that a number of stresses exceed an allowable number for
a specified stress level. Another method would be to develop the prob-
ability that an induced stress exceeds an allowable stress for a given
number of stress cycles. This latter methbd was selected for use herein
to be consistent with the preceding development of a steady-state failure
probability in terms of an induced stress exceeding an allowable steady-
state stress.

In the development of the steady-state probability in Sections 3
and 4, the induced and allowable stresses were assigned a distribution

invariant with time (or the number of stresses). In the cyclic analysis,

46



47

an induced stress distribution and an alloWable stress distribution must
be specified for each number of cycles of interest in the evaluation.
These stress distributions may not be the same for each cyclic life.
For example, a stress may be log normally distributed for one life and
exponentially distributed for another. This increases the complexity of
the statement of failure probability.

Equation 3.1 can be solved for cyclic failure probability when a
distribution of stress differences can be expressed for the cyclic life
of interest. The nature of the cyclic stress distribution must be deter-

mined before the integral of Equation 3.1 can be evaluated.

6.1 Cyclic Distribution Functions

The distribution function for induced stress is generally not known.
Induced stresses are usually specified in terms of a number of cycles of
a stress of an exact value and significaﬁt variations from that exact
stress value are treated as a number of stresses of a different value.
The distribution of induced stress for any specific cyclic life can
therefore usually be treated as invariant unless extreme accuracy is
required in the estimate of failure probability.

The fatigue life (allowable stress) of materials subjected to cyclic
stress is a different situation in which there are significant variations
with respect to both cyclic life and stress level. To avoid the complex-
ity involved in the determination of several specific functions for the
allowable cyclic stress distribution, the versatility of the Weibull dis-
tribution function will be used to generalize the statement of the dis-

tribution of allowable stress for all numbers of cycles and stress levels.
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The two-parameter Weibull distribution function was given in
Equation 2.17 (page 12) with time as the independent variable. The prob-
ability that a stress will exceed a specified value in a Weibull distri-
bution is obtained by using induced stress (Si) as the independent vari-

able in lieu of time.

-Sib/m
Q=1-e . (6.1)

The parameters b and m in Equation 6.1 are determined by analysis of the
allowable stress distribution for cyclic failure. Equation 6.1 there-

fore states the probability that an invariant induced stress will exceed
an allowable stress with a Weibull distribution that is characterized by

different values of the parameters b and m for each cyclic life.

6.2 Determination of Weibull Parameters

The manner in which cyclic failure data are obtained is important
to the determination of Weibull parameters for cyclic allowable stresses.
The data are generally presented as the number of cycles of a given
stress amplitude that resulted in failure, with the stress amplitude
assumed invariant and the cyclic life distributed about some mean value.
The allowable stress distribution corresponding to an invariant cyclic
life must therefore be obtained by converting life data to strength data
since it 1s not practical to test at a specified number of cycles to

obtain a failure stress distribution. (9)

6.2.1 Cyclic Rupture

Data on the number of stress amplitude cycles that resulted in the

propagation of a crack through the shell (hereinafter referred to as
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cyclic rupture) of pressure vessels were obtained by the Pressure Vessel
Research Committee and reported by The American Society of Mechanical
Engineers.(13) These data are illustrated in Figure 6.1. To convert
these data from a life distribution to a stress distribution, a least-
squares line was fitted thréugh the data points and parallel lines were
drawn, as described in Appendix B, to construct a family of S-N curves.
A vertical line was drawn through this family of S-N curves at represent-
ative values of cyclic life. The number of data points on an S-N curve
was then assumed to represent the number of failures resulting from the
stress amplitude (SA) corresponding to the intersection of the S-N curve

with the vertical line denoting cyclic life. The failure distribution
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function for each cyclic life was determined from this data in the
manner discussed in Subsection 3.1 and outlined in Table 3.1 (page 16).
The cyclic stress amplitudes corresponding to the estimated number of
failures by cyclic rupture for three values of cyclic life are given in

Table 6.1.

Table 6.1. Cyclic Stress Amplitudes Corresponding to
Estimated Number of Cyclic Ruptures for Three Values of
Cyclic Life

Number Stress Amplitude at
of ~
Data Percent 10% Cycles 10° Cycles 10° Cycles
Points Failed (psi) (psi) (psi)
2 12.7 59,000 35,000 21,000
3 35.1 64,000 39,000 23,000
1 42.5 66,000 40,000 24,000
1 50.0 68,000 41,000 25,000
1 57.5 73,000 44,000 27,000
1 64.9 81,000 49,000 30,000
2 79.9 85,000 52,000 32,000
2 94.8 90,000 54,000 35,000

The distribution functions for cyclic rupture given in Table 6.1
were plotted on a specially constructed Weibull probability paper, 9)
as illustrated in Figure 6.2, to graphically determine the Weibull param-
eters for each cyclic life. The scales of this paper were drawn to show
Weibull parameters that simplify the use of Equation 6.1 when performing
numerical computations since very large numerical quantities for Si
would be involved for positive values of the parameter b greater than
unity. If a constant equal to the b-th root of the parameter m in Equa-

tion 6.1 is determined, the numerical values in the intermediate
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computations will be smaller. When
m=6 , - (6.2)
Equation 6.1 can be written as

~(s./6)°
Q =1 - e 1 . (6'3)

Hence, the Weibull probability paper used herein will yield a value of 6
to be used in Equation 6.3, but it cannot be used to directly determine
the value of m to be used in Equation 6.1. The use of Equation 6.3 also
requires that values of stress amplitude rather than the total stress be
used with the parameters because the S-N curves correlate stress ampli-

tude and cyclic life. Thus, Equation 6.3 is more properly written as

Q=1-ce . (6.4)
Since this Weibull probability paper has the property that Weibull
distribution functions plot as straight lines,(7) a straight line was
fitted through each distribution to graphically determine values of the
Weibull parameters. For example, the value of the parameter b for 10%
cycles was obtained by drawing a line through the central point (+) par-
allel to the line representing the distribution function for 10% cycles,
as is shown in Figure 6.2. The value was then read from the '"b'" scale
at the top of the graph. The value of 6 was read from the abscissa cor-
responding to the stress amplitude producing 63.27% of the failures at
10* cycles. The Weibull parameters obtained in this manner are shown in
Figure 6.3 as a function of cyclic life. These parameters result in the
Weibull distribution of allowable stress for a specific cyclic life when
substituted into Equation 6.4. The probability that a specified number

of cycles of induced stress amplitude will cause rupture is calculated
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by substituting the induced stress amplitude and the Weibull parameters
for that number of cycles into Equation 6.4.

Several Qalues of rupture probability were calculated as a function
of stress amplitude and cyclic life by using Equation 6.4 and the Weibull
parameters shown in Figure 6.3. These values of failure probability are
illustrated in Figure 6;4 as S-N curves of a constant failure probabil-
ity. The S-N curve for low-carbon alloy steel given in Section III of
the ASME Boiler and Pressure Vessel Code (12) is shown as a dashed line
in Figure 6.4, and it corresponds to a probability of failure by cyclic
rupture greater than one chance in 100. Such a result should be
expected since, as stated in the ASME Criteria,(13) the S-N curves given
in Section III of the ASME Boiler and Pressure Vessel Code do not neces-
sarily result in a factor of safety for cyclic life inasmuch as they
were only corrected to compensate for the difference between test data
and operating conditions.

It can be concluded that rupture resulting from cyclic loads is a
credible event (greater than one chance in 100) if the design stress
amplitudes are permitted to reach the values allowed by the S-N curve in
Section TIII of the ASME Boiler and Pressure Vessel Code. A factor of
safety for cyclic life would substantially decrease this failure proba-
bility. For example, Figure 6.4 shows that designing for the ASME Code
(12) allowable stress amplitude at 108 cycles would result in a failure
probability of 1072 at 10° cycles, which would represent a considerable
improvement in the failure probability.

Attention should also be directed to the typical practice of assum-

ing that 10° cycles is equivalent to infinite life.(6) The cyclic life
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for the rupture data from which the failure probability was determined
did not exceed 10° cycles. However, at 10° cycles, there was no indica-
tion that stress amplitude would asymptotically approach some value at
10° cycles. Therefore, care should be exercised in extrapolating the
cyclic failure probability data in Figure 6.4 to lives greater than 10°
cycles.

The cyclic failure data shown in Figure 6.1 (page 49) are a combi-
nation of data from two research installations on two kinds of material.
All of the data points were considered together in the foregoing data
analysis, and a very close fit to the straight line required for a
Weibull distribution was not achieved, as is shown in Figure 6.2 (page
51). (However, the parameters determined are sufficiently accurate té
substantiate the conclusions drawn herein.) This lack of a close fit
resulted from the possibility that there may be as many as four differ-
ent distributions involved: one for each of the two materials tested
and one for each of the two research installations performing the tests.
The data as analyzed therefore result in a probability that failure by

rupture will occur irrespective of the material and data source.

6.2.2 Cyclic Crack Initiation

Data to document the onset of cracking in cyclically loaded pres-
sure vessels were also obtained by the Pressure Vessel Research Commit-
tee, and these data are cited (13) as justification for the design curve
for allowable stresses in Section III of the ASME Boiler and Pressure
Vessel Code.(12) These data are illustrated in Figure 6.5, and they
were converted from a cyclic life distribution to a stress distribution

in the same manner used to convert the data shown in Figure 6.1 (page
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49). The failure distribution function for each cyclic life was
determined, and the cyclic stress amplitudes corresponding to the esti-
mated number of failures by crack initiation for two values of cyclic
life are given in Table 6.2.

The distribution functions for cyclic crack initiation given in
Table 6.2 were plotted on Weibull probability paper, as shown in Figure
6.6, to graphically determine the Weibull parameters for each cyclic
life. The Weibull parameters determined in this manner are shown as a
function of cyclic life in Figure 6.7. The probability that a specified
number of cycles of induced stress amplitude will cause failure by

crack initiation is calculated by substituting the induced stress
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Table 6.2. Cyclic Stress Amplitudes
Corresponding to Estimated Number of Crack Ini-
tiations for Two Values of Cyclic Life

Number Stress Amplitude at
of
Data Percent 10% Cycles 10° Cycles
Points Failed (psi) . (psi)
1 7.7 44,000 32,000
1 15.4 49,000 36,000
3 38.5 52,000 38,000
4 69.2 54,000 40,000
1 76.9 56,000 41,000
1 84.6 60,000 44,000
1 93.2 62,000 45,000
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amplitude and the Weibull parameters for that number of cycles into
Equation 6.4. Several values of the probability of failure by crack
initiation were calculated in this manner, and these values of failure
probability are shown in Figure 6.8 as S-N curves of a constant failure
probability.

A comparison of the curves for the probability of vessel failure by
crack initiation shown in Figﬁre 6.8 with the curves for the probability
of failure by rupture shown in Figure 6.4 (page 55) shows that there is
a much higher probability for vessel rupture than for crack initiation
above 10* cycles. This anomally results from the nature of the two sets
of data. It can be observed that the slope of the $-N curve for rupture
shown in Figure 6.4 (page 55) is much steeper than that of the S-N curve
for crack initiation shown in Figure 6.8. Since the slope of each curve
is more closely associated with the data source than the material or
other known factors, it can be assumed that the probability of failure
by crack initiation is not comparable to that by rupture in this case.
Since the curves representing the probability of failure by rupture
developed herein include data from two sources and result in conserva-
tive estimates of failure, they will be used as the basis of further
discussion.

However, it can be noted from the failure probability curves for
either failure mode that the design wiil not be conservative below 10%
cycles if the design stress amplitudes are permitted to reach the values
allowed by the S-N design curve in Section III of the ASME Boiler and
Pressure Vessel Code.(12) There is certainly no indication that an

increase in the allowable cyclic stresses would be desirable.
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6.3 Numerical Example

If the cylindrical pressure vessel of the numerical example in
Subsection 4.4 (page 35) had a discontinuity corresponding to a stress
concentration factor of 3 on the hoop stress, the cyclic failure proba-
bility would be estimated as presented here. Assume that the mean
internal pressure (p = 2,250 psi) and its standard deviation <0b = 86
psi) were calculated in Subsection 4.4 from the following cyclic pres-
sure specifications.

Type-1 cycle: 100,000 cycles of 2,250 + 100 psi

Type-2 cycle: 200 cycles of 2,250 + 120 psi .

Type-3 cycle: 5 cycles of 2,250 + 210 psi .
Cycles of pressure corresponding to start-up and shutdown of the system
were not considered in the example of Subsection 4.4, but they will be
added here for the purposes of this investigation.

Type-4 cycle: 40 cycles of 0 to 2,250 psi .

The analysis methods presented in Subsection 6.2.1 will be used to cal-
culate the fatigue failure probability for the minimum required (12)
shell thickness. |

The stress range is determined from the equation (12)

S. =S8 -85 . (6.5)

where SmaX is the stress value corresponding to the maximum amplitude of
pressure and Smin is the value corresponding to the minimum amplitude of
pressure. The alternating stress intensity (SA) is given by the
equation (12)

SA = O.SSr . (6.6)
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In the example of Subsection 4.4, the minimum required (12) shell
thickness for the cylinder was determined to be 8.37 inches. Assuming a
stress concentration factor of 3 applied to hoop stress, the following
cyclic analysis resulté from that minimum shell thickness and the four

types of cyclic load. For the Type-1 cycle,

_ 2,350091)(3) - .
Smax = .37 + 2,350 = 79,000 psi ,
- 2,150(91)(3) _ .
Smin = 8.37 + 2,150 = 72,275 psi ,
Sr = 79,000 - 72,275 = 6,725 psi ,
_ 6,725 _ .
and SA = —43—— = 3,362 psi for 100,000 cycles .

For the Type-2 cycle,

_ 2,370091)(3)

+ = i
smax 5.37 2,370 = 79,671 psi ,
2,130(91)(3 .
Sin = 8?37)( >+ 2,130 = 69,473 psi ,
Sr = 79,671 - 69,473 = 10,198 psi ,
and : SA = lgﬁ%gg = 5,100 psi for 200 cycles .

For the Type-3 cycle,

_2,460(91)(3) + _ .
Smax = 3.37 2,460 = 82,696 psi ,
_ 2,040(91)(3) _ .
Smin = 8.37 *+ 2,040 = 68,578 psi ,
5. = 82,696 - 68,578 = 14,118 psi ,
and S, = 14,118 _ 7,057 psi for 5 cycles .

A 2
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For the Type-4 cycle,

_2,250091)(3) _ .
Smax 8.37 2,250 = 75,636 psi ,
s . =0,
min
Sr = 75,636 - 0 = 75,636 psi ,
and SA = Zéhféé = 37,818 psi for 40 cycles .

The allowable number of cycles for each amplitude can be found from
Figure I-9.1 in Section III of the ASME Boiler and Pressure Vessel Code
(12) or from the ASME Design Curve shown as a dashed line in Figure 6.4

(page 55). These values are tabulated below.

Number Ratio of
g Number of of Actual to
A Allowable Actual Allowable
(psi) Cycles Cycles Cycles
3,362 > 10° 10° ~ 0.05
5,100 > 10° 200 ~ 0
7,057 > 10° 5 ~0
37,818 10* 40 ~ 0.004

The sum of the ratio of actual cycles to allowable cycles must be less
than unity to satisfy the cumulative damage requirements of Section III
of the ASME Boiler and Pressure Vessel Code. 1In this example, the sum
is approximately 0.054, which is an acceptable value by ASME Code (12)
rules.

When each type of cyclic loading is considered as independent of the
other types, the probability of non-failure is given by the following
equation. (7)

(1-Q = 1-0)1-0)(1-0) -0, (6.7)
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where the subscripts 1, 2, 3, and 4 refer to the respective types of
cyclic loading. Substitution of the values shown in Figure 6.4 (page

55) into Equation 6.7 yields

(1-Q =(1-107°)(1 -0)(1-0)(1-107°),
where the value for the probability of failure for cycles lower than 10°
in Figure 6.4 was assumed to be the value at 10° because of the shape of
the curves, and
Q =~ 107° .
If the 40 start-up and shutdown cycles are not included, Equation 6.7 is
(1-Q) =(1-10"%)(1L-0)(1-0),

and the probability of failure is

Q = 1076 .



7. VESSEL RELIABILITY

The probability of non-failure, implicit in the probability of
failure, is an estimate of reliability only if there is a‘time depend-
ency associated with the failure distribution function. The cyclic fail-
ure probability, discussed in Section 6, constitutes a reliability fore-
cast for a specified number of cycles in that the cyclic failure proba-
bility is a function of the number of cycles (time) a stress amplitude
is to occur. On the other hand, the steady-state failure probability,
discussed in Section 4, is independent of time since it is based on the
assumption that the stress distributions exist at any instant and do not
change from one instant to another.

The probability of failure for steady-state stress distributions is
difficult to visualize physically for a single component because there
is intuitive knowledge that the induced stress distribution must occur
over a specified period of time to exist (as opposed to 100 vessels of
random strength, each of which is subjected to a random pressure at the
game time). The correlation between steady-state failure probability
and reliability is therefore important for the case in which a small
population of similar components is subjected to a large population of
stresses. This correlation is based on the non-mathematical events sur-
rounding the derivation of the probability that an induced steady-state
stress will exceed an allowable steady-state stress.

One event which changes the reliability forecast is inspection. If
a component is examined periodically for evidence of incipient failure
and no evidence is found, the original reliability forecast is invalid
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and a new forecast is required. Similarly, if the system of wbich the
component is a part is examined periodically and restored to a new con-
dition, the probability of unexpected stresses being placed on the compo-
nent by the system is affected by each examination. Under such condi-
tions, it would be reasonable to assume that the steady-state stress
distributions discussed in Section 4 exist for the interval of time
between such inspections and restorations. The probability of failure
given by Equation 3.7 (page 19) is therefore the same as the reliability
given by Equation 2.18 (page 13) for the period of time (TI) during
which the stress distributions are not disturbed by the inspection or
repair of their source of origin (either material properties or system
loads).
—TIb/m
Q=1-e . (7.1)

If it can be further assumed that any pressure above a specified
value has an equal chance of occurring at any time, Equation 7.1 becomes
the exponential expression of reliability originally stated in Equation

2.16 (page 12) as the time-dependent probability of failure.

Q=1-e 7I. (7.2)
After k inspections, the reliability with inspection (RT) is given by
the equation (7)

- +
Rp = e ATy +T) s (7.3)
where Ty is the interval between inspections and T is the length of time

beyond the last inspection. The failure rate (1) in Equation 7.3 is

obtained from Equation 7.2 as
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) = __12%.:_92 , (7.4)
I

where Q is the probability of failure resulting from the steady-state
stress distribution of Equation 3.7 (page 19). Thus, Equations 7.3 and
7.4 state the relationship between reliability and the probability of
failure under steady-stéte stress distributions when these stress dis-
tributions require a finite time to occur and that time can be identified
by the inspection interval for the vessel and when the additional
restriction is imposed that induced stresses above a specified level

must have an equal probability of occurring at any time.

If it is assumed that the inspection interval for a nuclear pres-
sure vessel is 2 years, the reliability of the vessel for 40 years is
calculated as follows. For failure defined by the maximum shear stress
theory and an allowable stress intensity equal to two-thirds of the min-
imum specified yield strength of the vessel méterial, the probability of
failure (Q) was approximately 10™% (page 41). From Equation 7.4, the
failure rate corresponding to this probability of failure for an inspec-
tion interval of 2 years is

_1n 0.9999

A= )

= 5 X 1075 failures/year .

The desired 40-year reliability (R4O> corresponds to 20 inspection inter-
vals, and from Equation 7.3, the resulting vessel reliability is

_ -20(5 x 107°)
R40 = e

= 0.998
The probability of failure by bursting based on an allowable stress

intensity of one-third of the minimum specified ultimate tensile strength

of the vessel material was found to be about 10"2° (Figure 5.1, page 44).
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This corresponds to a failure rate of essentially zero with a reliability
of unity for a 40-year life. Similar results are obtained for an allow-
able stress intensity of one-half of the minimum specified ultimate ten-
sile strength of the vessel material (Q ~ 10715 and R40 ~ 1.0). However,
a ratio of ultimate strength to allowaﬁle stress intensity as low as 1.4,
corresponding to a‘probability of failure of about 107, will result in
a failure rate of 5 X 1077 failures per year and a 40-year reliability
of 0.99998.

Thus, the import of Equations 7.3 and 7.4 is that the distributed
steady-state failure probability given by Equation 3.7 over a known
period of time represents a failure rate ()) from which reliability can
be calculated for any time period.

The cyclic rupture probability discussed in Section 6 is a direct
statement of reliability when the parameters b and 6, shown in Figure
6.3 (page 53), are expressed as a functién of cycles (time). For exam-
ple, whén N represents the number of cycles, the equations of the lines

shown in Figure 6.3 were found to be
b = 12.44N7C-0792 (7.5)

and 6 = 551,000N"©+215% (7.6)
Substitution of these values into Equation 6.4 (page 52) results in a
statement of cyclic rupture reliability as a function of induced stress

and the number of cycles.

12.44N-0 0792
SA

~0.2151
R = e 551,000N . (7.7)
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Since Equation 7.7 does not clearly define a failure rate
independent of life (N), the reliability with respect to cyclic rupture
cannot be assigned a failure rate. The effects of inspection and repair
are not clearly defined by Equation 7.7, but since some of the data
points from which this equation was derived represented failures that
occurred after repairs had been made, it may be assumed that Equation

7.7 includes the effects of some inspection and repair.



8. CONCLUSIONS AND RECOMMENDATIONS

The probability of failure was developed for failure defined by the
maximum shear stress theory, for rupture from steady-state stress, and
for rupture from cyclic stress. Normal distribution functions of
induced stresses and allowable stresses were used for the steady-state
stresses. For the cyclic stresses, the two-parameter Weibull distribu-
tion was used to account for the change in the distribution function of
allowable stress with cyclic life, while the induced cyclic stress ampli-
tude was treated as invariant for a specified value.

The allowable stress intensities and the S-N curves for low-carbon
alloy steel were evaluated by using the analysis methods developed for
the three failure modes. It was found that an allowable stress inten-
sity equal to two-thirds of the minimum specified yield strength of the
material corresponds to a failure probability of about 10™* for expected
loads and material variations when failure was defined by the maximum
shear stress theory. The probability of failure corresponding to an
allowable stress intensity equal to one-third of the minimum specified
ultimate tensile strength of the material was found to be essentially
zero when failure was defined in terms of an allowable burst pressure
for the vessel. The prébability of failure resulting from the stress
amplitudes allowed for specified numbers of cycles was found to be
greater than 10”2 for low-carbon alloy steel.

Numerical examples were presented for a cylinder under internal
pressure to demonstrate the use of the probabilistic design method
developed herein for pressure vessels. The minimum required shell
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thickness produced low probabilities of failure for the steady-state
stresses. The cyclic failure probability was also judged to be adequate.

The effect of the steady-state failure probability on vessel life
was discussed, and an analytical expression was derived for the relation-
ship. It was concluded that the probability of failure defined as the
probability that a steady-state induced stress will exceed a steady-
state allowable stress can be converted to time-dependent reliability by
considering the time intervals during which the stress distributions are
not perturbed by inspection and maintenance. A method of estimating the
failure rate for a pressure vessel that is based on this conclusion was
presented.

On the basis of these results, it is recommended for adequate assur-
ance against failure that the allowable stress intensity should not be
higher than one-half of the minimum gpecified yield strength of the mate-
rial, as opposed to the presently accepted value of two-thirds of the
minimum specified yield strength of the material, but it can be as high
as one-half of the minimum specified ultimate tensile strength of the
material, as opposed to the presently accepted value of one-third of the
minimum specified ultimate tensile strength of the material. ©No direct
recommendation relative to the allowable cyclic stress amplitude can be
made as a result of this investigation, but S-N curves corresponding to
different probabilities of failure were superimposed on the allowable
S-N curve to aid in an evaluation of the adequacy of existing allowable
cyclic stresses.

Significant discrepancies in cyclic failure data were observed, and

they apparently were a function of the data sources. These discrepancies
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resulted in a calculated probability of failure by cyclic rupture that
was higher than the calculated probability of failure by crack initia-
tion. These results are not consistent if it is assumed that cyclic
rupture is a result of crack growth. It is therefore recommended that
additional data analyses be performed on the probability of cyclic crack
initiation and cyclic rupture. This is particularly advisable in view
of the relatively high failure probability which resulted for the data
analyzed herein.

The reader should consider the significance of the numbers result-
ing from the analyses presehted herein. References to numerical quanti-
ties of reliability or failure probability have been presented through-
out this document as approximate values. Despite the very precise
values that could result from some of the analytical techniques used,
the resulting values were termed approximate for two reasons. One rea-
son is that the data used in the equations are from small populations
and therefore represent low levels of confidence in calculated values of
probability. The other reason is that critics of engineering practices
and of reliability analyses are prone to question whether a value of
10'7, for example, is adequate assurance against a catastrophic event as
a moral judgment. The analysis method presented herein should therefore
be looked upon as a tool to be used to compare alternative designs rather
than as a tool to be used to calculate a value of merit and as a tool to
be used in éonjunction with other well developed methods of pressure

vessel technology.
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APPENDIX A

LIST OF SYMBOLS

constant or invariant multiplier
strain-hardening factor

strain-hardening factor for cylindrical vessel
strain-hardening factor for spherical vessel
slope parameter of Weibull distribution function

coefficient of variation of failure probability resulting for
normally distributed allowable and induced stresses

number of inspections

ratio of allowable to induced stress or of burst pressure to
induced pressure

coupling parameter of normal distribution function
shape parameter of Weibull distribution function
mean time between failures for exponential reliability function

ratio of minimum specified ultimate tensile strength to the
allowable stress intensity

number of cycles of stress amplitude in cyclic analysis

strain-hardening exponent of a material as measured in tensile
tests

probability of succeés
internal pressure
burst pressure
probability of failure
reliability

reliability with inspection
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radius
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a distributed random wvariable

mean of the frequency distribution of S

stress amplitude

allowable stress

hoop stress

induced stre

Ss

allowable stress intensity as specified in Section III of the ASME
Boiler and Pressure Vessel Code

stress range

ultimate tensile strength

yield stress of a material

time

time span between inspections

thickness

coefficient

coefficient

coefficient

coefficient

coefficient

coefficient

function of

of variation

of variation

of variation

of variation

of wvariation

of variation

of pressure

of the frequency distribution of S
of allowable stress

of hoop stress

of induced stress

of Y

radius of vessel and thickness of shell

b-th root of shape parameter of Weibull distribution function where
b is the Weibull slope parameter

average rate at which failure stresses occur or the failure rate
for the exponential reliability function

standard deviation of the frequency distribution of S
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standard deviation of hoop stress

standard deviation of Y



APPENDIX B
DETERMINATION OF CYCLIC ALLOWABLE STRESSES

The manner in which fatigue testing is performed usually involves
the subjection of a number of specimens to a repeated stress of a spec-
ified value until failure occurs and repetition of the process on other
specimens\at a different stress level until failure occurs at that
stress level. The scatter obtained in such testing is a scatter of
cyclic life for a given stress amblitude. Theoretically,‘it is neces-
sary to fatigue test all spécimens with different stress amplitudes
until failure occurs at a given number of cycles if one wishes té esti-
mate the probability that a given stress amplitude will cause failure in
a specified number of cycles, but such testing is impractical. The life
scatter obtained by conventional testing methods was converted to a
strength distribution for use in Section 6 as follows.

The fatigue data obtained for cyclic vessel failure were plotted in
a conventional S-N diagram (Figure 6.1, page 49, or Figure 6.5, page 57).
It was assumed that each specimen (data point) corresponded to an indi-
vidual S-N curve and that, for fixed test conditions, there would be a
family of nonintersecting S-N curves, each of which would correspond to
a different probability for the occurrence of failure. The average S-N
curve was fitted through the points by assuming a straight line and
making a least squares fit of that line to the data points. An S-N
curve, parallel to the average S-N curve, was then drawn through each

data point. The families of S-N curves corresponding to cyclic rupture
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and cyclic crack initiation are shown in Figures 6.1 (page 49) and 6.5
(page 57), respectively.

The frequency distribution of allowable cyclic stress was obtained
for a life of 10° cycles by drawing a vertical linéfat N = 105 that
intersected the family of S~N curves. The points of intersection repre-
sent a sample of the strength distribution at a desired life. These
data were then plotted on the Weibull probability paper as a cumulative
distribution function of allowable cyclic stress, as illustrated in

Figures 6.2 (page 51) and 6.6 (page 58).
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