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THICKNESS MEASUREMENTS U S I N G  EDDY-CUW-ENT TECHNIQUES 

C .  V. Dodd and W. A. Simpson, Jr. 

ABSTRACT 

Eddy currents have been used for many years to measure 
the thickness of a single conductor and the thickness of one 
conductor clad on another. By performing a computer analysis 
of the problem, we have been able to choose the optimum con- 
ditions for  performing such measurements. Effects of  varying 
thickness, frequency, coil size, conductivity, lift-off (or 
coil-to-conductor spacing), and coil resistance are discussed. 
The use of a phase-sensitive eddy-current instrument in per- 
forming thickness and clad thickness measurements is emphasized. 

IN'I'RODUCTION 

In many critical industrial applications today, the performance of 

a component depends on the thickness of a metal or on the thickness of 

one metal clad on another. Typical examples of these critical applica- 

tions are the cladding on a nuclear reactor fie1 element, the thickness 

of an aircraft wing panel, and the thickness of a chemical cannister. 

Eddy currents have been successf'ully used fcw many years to measure 

the thickness and cladding thickness of metals. Early instruments used 

simple bridge circuits operated in a balanced mode and measured the 

amplitude of the signal as the balance changed. '7 

used bridges operated in an unbalanced mode to reduce the effects of 

undesirable variables, principally lift-off, the coil-to-conductor 

spacing. 

the phase of the unbalance voltage as a function of thickness. 

Later instruments 

These instruments usually measured either the magnitude or 

At the 

IR.  Hochschild, "Electromagnetic Methods of Testing 'Metals, " 
Progress in Nondestructive Testing, Vol. I, The Macmillan Company, 
New York, 1959. 

2R. C. McMaster, Nondestructive Testing HandisDok, Vol. TI, The 
Ronald Press Co., 1959. 
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low frequencies required t o  pene t ra te  t h i ck  sec t ions  of good conductors, 
the  coil. dc res i s tance  may become as l a rge  as  the  c o i l  impedance. La.ter 
instruments developed a t  Oak Ridge National. Labora tory3~ ' have empl-oyed 

a ref lect ion-type probe a s  shown i n  F ig .  I.. This probe cons is t s  o f  a 

1-arge d r ive r  c o i l  t o  generate an electromagnetic f i e l d  and. two pickup 

c o i l s  connected i n  a d i f f e r e n t i a l  arrangement t o  measure the  changes i n  

t h i s  f i e l d .  In  a i r ,  the  s igna ls  developed across the  pickup c o i l s  can- 

cel.. However, when the  probe i.s placed on t h e  metal, a " re f lec ted  f i e l d "  

i s  produced by .the metal. 

tance from the  metal, i s  detected by the  f r o n t  pickup c o i l  (nearest  t h e  

metal)  but  not by the  r e a r  c o i l .  

This f i e ld ,  which decreases rap id ly  wi.th d is -  

The magnitude o f  t he  si.gnal i s  a f'uiiction 

'C. V. Dodd, "Applications of a Phase-Sensitive Eddy-Current Ins t ru-  

' C .  V. Dodd, "A Portable Phase-Sensitive Eddy-Current, Instrument, " 

ment, Mater. Evaluation 22(6), 26C-263 (June 1964). 

Mater. Evaluation z6(3), 3 3 3 6  (March 1968). 

- 

PICK-UP COliS ('WO(O1JND 
OiRJSlhG E K H  OTXER 

CRIVER COIL 

L E z 2 B m Z a 1  
CONDUCTOR I -  

I ELECTRICAL CONNECTIOG 

CONDUCT* 

PHYSICAL LRRQMGFNENT 

Fig.  1. A Reflection-Typ? Probe i n  the Presence of a Conductor. 
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of t h e  l i f t - o f f ,  but  the  phase o f t h e  s igna l  i s  r e l a t i v e l y  in sens i t i ve  

t o  the  l i f t - o f f .  

T h i s  arrangement i s  equivalent t o  operating a bridge w i t h  a t e s t  

c o i l  a t  the  sample and a reference c o i l  away f'rom the  snmple and coupling 

t o  them with a s ing le  transformer. 

a t  lower frequencies without the  e f f e c t s  of var ia t ions ,  which can be 

caused by ohmic heating, i n  the c o i l  dc res i s tance .  

T h i s  type of c i r c u i t  can be operated 

Most of t he  curves given i n  t h i s  repor t  a r e  the r e s u l t  of computer 

ca lcu la t ions5  of i n t e g r a l  solut ions6 of r e f l e c t  ion-type c o i l  problems. 

Experimental v e r i f i c a t i o n  of these calculat ions i s  given i n  t h i s  report  

and i n  other  references.  6 9  

THICKNESS MEASUREMGNTS O F  A SINGLE CONDUCTOR 

We s h a l l  f irst  consider t he  case of a ref lect ion-type c o i l  above a 

s ing le  conductor. This  represents  the  most common case of thickness 

measurements and can be thought of as  a spec ia l  case of cladding thick-  

ness w i t h  t h e  base mater ia l  having zero  conductivity.  

Our first  goal i s  t o  get  t he  maximum s igna l  (phase s h i f t  i n  our case) 

for  va r i a t ions  from a given nominal thickness.  Figure 2 shows how phase 

s h i f t  due t o  a 10% thickness va r i a t ion  changes as a f inc t ion  of the  

dimens ionless  product op.6' fo r  c o i l s  having various r a t i o s  of 

thickness/coi l  mean radius  ( t h e  mean radius,  r, i s  t h a t  of the  dr iver  

c o i l ) .  

and conductivity, respect ively.  Maximum s t a b i l i t y  and s e n s i t i v i t y  for 

t yp ica l  phase-sensit ive eddy-current instrumentation a re  about 0.01" o r  
1.75 X 10'' radians.  We can see t h a t  for  each r a t i o  of thickness t o  c o i l  

mean radius there  is  a value of  ~lira'i;~ t h a t  gives t h e  maximum phase s h i f t .  

- 

The other  symbols, w, CI, and rn denote t h e  frequency, permeability, 

5W. A. Simpson, C.  V. Dodd, J. W. Luquire, and W. G. Spoeri, - Com- 
puter  Programs for Some Eddy-Current Problems - 1970, ORl!&-TM-3295 
(June 1971). 

'C. V. Dodd, W. E. Deeds, J. W. Luquire, and W. G. Spoeri, Some Eddy- 
Current Problems and Their In t eg ra l  Solutions, ORNL-4384 (April 1969). 

7F. D .  Mundt, Eddy-Current Measurements w i t h  a Co i l  Encircling a 
Two-Conductor Rod, Y-1787 (April  1971). 



Fig. 2 .  Phase S h i f t  ihe t o  a 10% Thickness Change Versus wpmF2 for 
Various Ratios of Thickness/T. 
,92 represent  the  normalized inner  and outer  r ad i i  of t he  d r ive r  c o i l  and 
R3 and R4 the  corresponding r a d i i  of the  pi.ckup c o i l .  

I n  t h i s  and subsequent figures, HI and 

Figure 3 is  a p l o t  of . th is  value o f  w p c E 2  Yor maximurn s e n s i t i v i t y  and 

the  phase s h i f t  a t  t h e  maximum s e n s i t i v i t y  for a lo'$ thickness change 

a g a h s t  t h e  rati:, of thickness t o  c o i l  mean radius .  Thus, suppose we 

have 3 p a r t i c u l a r  inspect ion problem requir ing the  measurement of' a 

given nominal thickness of  mater ia l  having a given conductivity, u, and 

w e  have a c o i l  with a gi.ven 7 .  

r a t i o  and then  determine the  value of  w ~ d - 1 ; ~  from Fig. 3 t h a t  gives t h e  

maximum phase s h i f t .  

IA, u, and T ~ ,  w e  can ca lcu la te  t h e  value of  frequency i3 t t iat  w i l l  gi.ve 

us the  maximum phase s h i f t  (and s e n s i t i v i t y  t o  thickness changes). It 

should be noted from Fig. 2 t h a t  t he  peaks of t he  thickness/T ciirves a r e  

r a the r  broad and t h a t  there  i s  l i t t l e  decrease from optimum s e n s i t i v i t y  

for  k w 2 f o l d  va r i a t ions  i n  the  value of w y f i "  

We wlnu1.d f irst  ca lcu la te  the  thickness/F 

Then by know3.n.g t h i s  value of wG2 and knowing 

Now l e t  us suppose t h a t  w e  have not yet cons-Lmcted OUT c o i l  and 

can choose r t o  be any value.  

the  smaller we make thickness/?, t he  g rea t e r  the phase s h i f t .  

We can see  t h a t  t he  l a rge r  we make T o r  
Thus, we 



5 

ORNL-DWG 71- 5886R 

to2 

>4 c 
P 
c 
2 10' 
2 

10-1 
C 
0 
73 
.- 

f! 

c 
6-? 
Q 

N lo" (o-~ Q 

'L- e 
w 
3 

I- 

3 
i 

n 
p = PERMEABILITY 
c = CONDUCTIVITY LIZ 

T = MEAN COIL RADIUS m 
40-1 $ 

10-2 to- ' IO0 40' 2 
THICKNESS/F 

Fig. 3. Value o f  wpo? for  Maximum Sens i t i v i ty  and Phase 
Maximum Sens i t i v i ty  f o r  a 10% Thickness Change Plo t ted  Against 

S h i f t  a t  
Thickness h. 

a r e  l imited only by the  area of  mater ia l  w e  w i s h  t o  resolve w i t h  t he  c o i l  

and by the  operating frequency range of our instrument. 

larger t h e  co i l ,  t he  l a rge r  the area it samples i n  one rneasurement and 

the  lower t h e  operating frequency required f o r  maximum s e n s i t i v i t y .  

(Although the  product of wIJ-cF2 increases as  thickness/T decreases, it 
does not increase as  f a s t  as r2, so therefore  w must decrease.)  

a l so  can see t h a t  there  i s  very l i t t l e  increase i n  phase s h i f t  f o r  r a t i o s  

of t h i c k n e s s b  of less than 0.2,  and t h a t  r e l a t i v e l y  sens i t i ve  measure- 

ments (l$ of the  thickness) can be made for r a t i o s  as  high as  3. 

I n  general, t he  

We 

Naw t h a t  w e  have succeeded i n  ge t t i ng  t h e  maximum s igna l  due t o  

thickness changes, w e  s h a l l  take a look a t  minimizing the e f f e c t  o f  the 

o ther  var iab les  i n  the  problem. The main source of  e r ror  i n  any eddy- 

current test  i s  the  l i f t - o f f ,  o r  coil-to-conductor spacing, and thick- 

ness measurements a r e  no exception. For any p r a c t i c a l  inspection there  

i s  a " l i f t - o f f  range," which i s  t h e  ac tua l  range of spacings encountered 

when t h e  c o i l  i s  placed on the  specimen. T h i s  range extends down t o  a 
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"zero l i f t - o f f , "  which i s  r e a l l y  not zero but  a lower bound imposed by 

such r e s t r i c t i o n s  a s  i n su la t ion  thickness.  To es t imate  the  e r r o r  due 

t o  l i f t - o f f  i n  phase-sensit ive eddy-current methods, w e  ca l cu la t e  Lhe 

v a r i a t i o n  i n  phase s h i f t  with l i f t -of f"  over t h e  l i f t - o f f  range f o r  

instrument s e t t i n g s  t h a t  b r ing  the  e r r o r  t o  ze ro  a t  the  extremes of  t h e  

range. For d i f f e r e n t  values of  t he  inspect ion parameters t he  phase 

shi-ft d i f f e r s ,  as shown i n  Fig. 4 .  Since we observed t h a t  t h e  phase 

s h i r t  cou1.d have e i t h e r  sign, a s  s h m n  by the  upper and lower curves, 

we reasoned t h a t  t he re  should be c e r t a i n  conditions where t h e  curves 

a r e  zero o r  near1.y zero.  After  some trta1.s with the  computer, we dis- 

covered t h a t  for c e r t a i n  conditions w e  could ge t  curves such as the  

middle one i n  Fig. 4 f o r  wcmT2 = 15. 

phase s h i f t  with l i f t - o f f ,  and t h e  e r r o r  i n  the  measurement of thickness 

This curve represents  the  m i n h m  

ORNL-DWG 71-11091 
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Fig. 4 .  Plots  of Phase S h i f t  Against I,ift-O-Pf/T-. 
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due t o  t h i s  l i f ' t -off  va r i a t ion  i s  about 0.15$ compared t o  1% f o r  t he  
upper and lower curves. 

as  t o  l i f t - o f f  i s  much less i n  the  lower curve.) The value of 'dpoT2 

where t h i s  minimum phase s h i f t  (induced by l i f t - o f f )  occurs i s  a f'unc- 

t i o n  of t h e  geometry of both t h e  c o i l  and conductor. Figure 5 shows 

how t h i s  value of w y 6 '  var i e s  as  a function of l e n g t h  of the dr iver  

c o i l  fo r  a number of d i f f e r e n t  r a t i o s  of thickness t o  c o i l  mean radius 

(The s e n s i t i v i t y  t o  thickness changes as w e l l  

f o r  a zero l i f t - o f f  equal t o  0.05F and a range of 0.lT. 

The optimum value of WE2 f o r  t h e  minimum l i f t - o f f  e f f e c t  increases 

considerably as t h e  value of zero l i f t - o f f  increases.  Figures 6 and 7 
show curves s imi la r  t o  Fig. 5 f o r  zero l i f ' t -off  values of 0.025 and 0.17. 
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The minimum zero l i f t - o f f  a t t a inab le  i n  p rac t i ce  va r i e s  from about 

0.02% f o r  c o i l s  having I; = Q.4 i n .  t o  0.lF f o r  co i l s  having F = 0.02 in .  

The optimwn value of wPoPr2 f o r  minjmum l i f t - o f f  e f f e c t  a l so  increases  

as  t h e  l i f t - o f f  range increases .  

wcldF2 var i e s  with c o i l  length f o r  l i f t - o f f  ranges of 0.1: and 0.2:. 

Figure 8 shows how the optimum value o f  

The optimum value of W c 1 s 2  i s  affected s l i g h t l y  by va r i a t ions  i n  

inner and outer  r a d i i  of t h e  d r ive r  and pickup c o i l s  but i s  r e l a t i v e l y  

independent of t he  length of t h e  pickup c o i l s .  To minimize t he  e f f e c t  

of l i f t - o f f  on a thickness measurement, we can choose t h e  co i l  geometry 

using Figs. 5 through 8 s o  t h a t  the  value of w p Z 2  for  m i n i m  phase 

s h i f t  due t o  l i f t - o f f  i s  the same as  the value of wClfi2 f o r  maximum 

phase s h i f t  due to a 10% thickness change, Prom Fig. 3. 
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the  

the  

Figure 9 shows how the c o i l  length for minimum l i f t - o f f  e r r o r  a t  

same val-ue of WPOT* fo r  maximm s e n s i t i v i t y  var ies  as  a runetion of 

r a t i o  of thickness t o  Y", f o r  various values of zero l i f t - o f f .  

Figure 10 shows a s imi la r  p lo t ,  but  with the l i f t - o f f  range increased 
from 0.1-F t o  0.2F. 

Figure 11 shows how the phase s h i f t  due t o  a 10% thickness change 

and the  e r r o r  i n  the  thickness measurement due t o  both l i f t - o f f  var ia -  

t i ons  and conductivity var ia t ions  change with w p G 2 .  Thus, f o r  the  

value of thicknessf i  equal. t o  0.05, we have been able .to choose a c o i l  

geometry t o  minimize the  e r r o r  caused by l i f t - o f f  var ia t ions .  

e r ro r s  i n  thickness measurements due t o  l i f t - o f f  var ia t ions  of 0 . E  and 

0.Z can be as low as 0.03 and 0.15%, respect ively.  

due t o  0.E l i f t - o f f  va r i a t ion  i s  i n  f a c t  below the  resolut ion of the  

instrument, which i s  1.75 X l.0-4 radians o r  0.05% thickness va r i a t ion .  

Having succeeded i n  s ign i f i can t ly  reducing t h e  e r r o r  i n  measurement due 

t o  l i f t - o f f ,  it becomes reasonable t o  consider t h e  other  var iab les .  

Figure 11. a l s o  shows t h a t  an increase of  l$ i n  the  conductivity causes 

the  measured value o f  t he  thickness t o  be about 1% high. 

va r i a t ion  of t h i s  s i z e  could e a s i l y  be caused by a small change i n  tem- 

perature,  l oca l  cold working, o r  heat treatment va r i a t ions .  About t he  

only way t o  eliminate the e r ro r  caused by such conductivity var ia t ions  

i s  t o  measure the  conductivity and correct  the  thickness readings. 

Ftgures 12 through 16 show s imi la r  information t o  Fig. 11 f o r  o ther  

values of  thicknesa/Y. 

e r ro r  can be made minimal by proper sel.ection of c o i l  geometry f o r  

thicknessf i  values of 0.1, 0.2,  and t o  some extent  0 . 5 .  

thi.cknesses/Z; grea te r  than 0.5, we have reached a p r a c t i c a l  l i m i t  on the  

"shortness" of our c o i l  and can no 1.onger pos i t ion  the  miniinum phase 

shj-ft due t o  a l i f t - o f f  va r i a t ion  under the  maximum phase s h i f t  due t o  

a thickness var ia t ion .  Because of t h i s  f a c t  and the  f a c t  t h a t  the sen- 

s i t i v i t y  decreases a t  t he  higher r a t i o s  of  t h i c k n e s s b ,  the  l i f t - o f f  
e r r o r  due t o  a 0.2F l i f t - o f f  va r i a t ion  increases t o  about 1.2% f o r  

thickness/? equal t o  2 .  (It should be recognized t h a t  for a c o i l  even 
as  small as C.250 in .  having a -i; s l i g h t l y  less than 0.125 in . ,  a l i f t -  

o f f  va r i a t ion  of 0.2Y wou1.d 'ne almost 2 5  mils, f a r  i n  excess of t h a t  

encountered i n  most p r a c t i c a l  cases. The error  i i i  thickness measurement 

The 

The 0.03% e r r o r  

A conductivity 

From these fig.i.res, we can see t h a t  t h e  l i f t - o f f  

However, f o r  
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Fig. 11. Phase Sh i f t  Die t o  a 10% Thickness Change and Erro r  i n  
t h e  Thickness Due t o  L i f t - O f €  Variations and Conductivity Variat ions 
Versus WuT2 for  T h i c k n e s s h  Equal t o  0.05.  
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Fig. 12. Phase S h i f t  Due t o  a 10% 'Thickness Change and Error  i n  the  
Thickness Due t o  Lif t -off  Variations arid Conductivi-ty Variat ions Versus 

f o r  Thickness,? Eqlral t o  0 .1 .  
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Fig. 13. Phase S h i f t  Due t o  a 10% Thickness Change and Error i n  
t h e  Thickness Due t o  L i f t - o f f  Variations and Conductivity Variations 
Versus WCLD?!~ f o r  Thicknessh  Equal t o  0.2.  
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due t o  a 1-8 var i a t ion  i n  conductivity increases t o  about L+.$ for thickness/T 

equal t o  2 .  Thus, while accurate  thickness measurements can be made fo r  

r a t i o s  of thickness/? up t o  3, t h e  e r ro r s  due t o  var ia t ions  i n  conductiv- 

i t y  and l i f t - o f f  can be cont ro l led  b e t t e r  a t  r a t i o s  of thickness/? of 

0 .5  and less. 
t i ons  i s  qu i t e  l i n e a r  f o r  va r i a t ions  up t o  LO$. 

thickness change of 10% would cause 10 times t h e  phase s h i f t  of a 1% 
conductivity or thickness change. 

The phase s h i r t  due t o  conductivity and thickness var ia -  

Thus a conduct ivi ty  o r  

CLADDING THICKz\TESS MEASUREMENTS 

Now t h a t  w e  have s tudied the  spec ia l  case f o r  a ref lect ion-type 

c o i l  above a s ing le  conductor, we s h a l l  consider the  thickness measure- 

ments of one conductor c lad on another.  

The s e n s i t i v i t y  of t he  measurement of cladding thickness depends 

s t rongly  on the  r a t i o  of' conductivity of the  cladding mater ia l  t o  the 

base mater ia l .  The case of thickness measurements of  a s ing le  conductor 

corresponds t o  cladding thickness measurements with an i n f i n i t e  con- 

duc t iv i ty  r a t io ,  a s  t h e  base mater ia l  has zero conductivity.  For purposes 

of  discussion l e t  us assume t h a t  t he  base mater ia l  is 0 .1  t i m e s  as con- 

duct ive a s  the  cladding mater ia l .  W e  have computed curves s imi la r  t o  

the  ones shown i n  Fig. 2, showing the  phase s h i f t  due t o  a 10% cladding 

thickness change p l o t t e d  aga ins t  W I J U ~ T ~  ( u l  represents  the conductivity 

of the  cladding) for various values of cladding thickness/?. 

curves w e  have p lo t t ed  the  value of up(T1F2 f o r  maximum phase s h i f t  and 

the  phase s h i f t  f o r  a LO$ thickness change against  cladding thickness/%, 

as  shown i n  Fig. 17. When the conductivity r a t i o  was i n f i n i t e ,  as shown 

i n  Fig. 3 ,  t h e  phase s h i f t  kept increasing as F increased (or thickness/? 

decreased).  Now, however, the  phase s h i f t  approaches 8 r a the r  broad max- 

imum and then decreases.  Therefore, we can conclude t h a t  t he re  i s  a l s o  
an optimum value of t he  mean radius  of t he  c o i l  for a given nominal clad- 

ding thickness.  Figures 18 through 2 1  show s imi l a r  curves for other  con- 
duc t iv i ty  r a t i o s .  We can see t h a t  t he re  is  an optimum value of cladding 

t h i c k n e s s h  f o r  each r a t i o  of conduct ivi ty  t o  give a maximum phase s h i f t .  

Figure 22 shows a p l o t  of t h i s  optimum value of cladding t h i c k n e s s b  

From these 
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Fig. 19. Value of w l i a l r 2  f m  Maximum Sens i t i v i ty  and Phase S h i f t  a t  
Maximum Sens i t i v i ty  for a 10% Cladding Thickness Change Versus Cladding 
Thicknessh  for a Conductivity Ratio of L.25. 
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Fig. 20. Value of 4Jcr1Y2 for Maximum Sens i t i v i ty  and Phase S h i f t  a t  
Maximum Sens i t i v i ty  for  a 10% Cl-adding Thickness Change Versus Cladding 
ThicknesslF for  a Conductivity Ratio of 0.5.  
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Change i n  Cladding Thickness P lo t ted  Against the  Ratio of Cl-adding t o  Ease 
Material  Conductivity. 
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against  the  conductivity r a t i o .  

curves for the  optimum value of W?J.CJ~F~ fo r  m a x i m  sens i t5v i ty  and t h e  

phase s h i f t  for a 10% cladding thickness change a t  t he  maximum sens i t i v -  

i t y .  From t h i s  curve we see  t h a t  we have adequate s e n s i t i v i t y  t o  mea- 

sure  cladding thickness when t h e  conductivity r a t i o s  a r e  as close t o  l 

as  1.25 o r  0 .8 .  
r a t i o s  o f  approximately 2 .  Thus, by using optimum parameters, we can 

measure cladding thickness on mater ia ls  having conduct ivi t ies  t h a t  a r e  

almost t h e  same. However, when the  mater ia ls  have exact ly  t h e  same con- 

duc t iv i ty ,  t h e  s e n s i t i v i t y  becomes zero. 

I n  addition, we have also included 

(A " ru le  of thumb" i n  the pas t  has reqJired conductivity 

From Fig. 22 we can determine the  optimum s i z e  (T) c o i l  f o r  a given 

nominal cladding thickness .  However, it may be impractical  t o  construct  

a c o i l  small  enough t o  have t h e  proper cladding thickness/$ r a t i o  f o r  

maximum s e n s i t i v i t y ,  o r  i f  such c o i l  can be constructed, i t  may take too 

long t o  scan a p a r t i c u l a r  specimen with t h i s  c o i l .  The curves i n  

Figs. 17 through 21 may be used t o  show how f a r  away from the  optimum 

value of t h i c k n e s s E  we can operate and s t i l l  have adequate system sen- 

s i t i v i t y  t o  cladding thickness changes. The curve of phase s h i f t  due 

t o  a 10% cladding thickness change versus t h i e k n e s s h  reaches a r a the r  

broad maximum, and the  phase s h i f t  a t  one half  o r  twice the  optinnun 

thickness/F i s  s t i l l  approximately 75% of t h a t  a t  t he  optimum. Like- 

w i s e ,  t h e  curve of c d p U l ~ *  p lo t t ed  against  phase s h i f t  reaches a broad 

maxirmun, and the  exact operating Prequency i s  not c r i t i c a l .  

Now t h a t  we know how t o  get  maximum ( o r  a t  l e a s t  adequate) sensi-  

t i v i t y ,  we s h a l l  tu rn  our a t t en t jon  t o  the  elimination of t he  undesir-  

ab le  var iab les ,  s t a r t i n g  with l i f t - o f f .  Figure 23 shows how the  length 

o f  the d r ive r  c o i l  for  minimum l i f t - o f f  e r r o r  va r i e s  a s  the  r a t i o  of  

01/cr2 is changed f o r  four values of zero l i f t - o f f .  

of  thickness/% and wPolY2 f o r  maximum thickness a r e  used f o r  these 

curves. Values other  than the  optimum w i l l  r eqa i re  d i f f e ren t  dr iver  

c o i l  lengths t o  produce t h e  mininlum lir?t-off e r ro r .  By use of  Figs.  22 

and 23 w e  can design c o i l s  t o  have m a x i m  s e n s i t i v i t y  t o  cladding thick-  

ness changes and minimum s e n s i t i v i t y  t'3 l i f t - o f f  var ia t ions .  Figures 24 

through 29 show optimally designed c o i l s  f o r  measuring cladding thiek-  

nesses of mater ia ls  w i t h  d i f f e ren t  a1/0:! r a t i o s .  

The optimutn values 

A l l  t h e  curves show 
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Fig.  24.  Phase S h i f t  Due t o  a 10% Cladding Thickness Change and 
Error  in Cladding Thickness Due to Lift-Off and Conductivity Variations 
Versus opUl?* fo r  a Conductivjty R a t i o  o-C 10. 
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Fig. 25. Phase Shift Due to a 10% Cladding Thickness Change and 
Error in Cladding Thickness Due to Lift-off and Conductivity Variations 
Versus wPnrPC2 fcw a Conductivity Ratio of 5. 

Fig. 26. Phase Shift Due to a 10% Cladding Thickness Change and 
Error in Cladding Thickness Due to Lift-off and Conductivity Variations 
Versus wi.~m~f[**  f o r  a Conductivity Ratio of 2. 
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Fig. 27. Phase S h i f t  Due t o  a 10% Cladding Thickness Change and 
Er ro r  i n  Cladding Thickness Due t o  L i f t -o f f  and Conductivity Variations 
Versus oyr1’F2 for a Conductivity Ratio of  0 . 5 .  

wp*, 7 2  

Error i n  Cladding Thickness The t o  L i f t - O f f  and Conductivity Variations 
Versus oila,P2 f o r  a Conductivity Ratio of 0 .2 .  

Fig. 28. Phase S h i f t  Die t o  a 10% Cladding Thickness Change and 
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Fig. 29. Phase Shj.ft Me t o  a 10% Cladding Thickness Change and 
Error i n  Cladding Thickness Due t o  L i f t - o f f  and Conductivity Variat" LOnS 
Versus ww1PC2 f o r  a Conductivity Ratio of 0.1. 

a d ip  i n  t h e  e r r o r  due to a l i f t - o f f  va r i a t ion  of 0.lT a t  the same value 

of W(TlT2 t h a t  produces the  maximum phase s h i f t .  This d i p  appears t o  

be somewhat s teeper  a t  t h e  lower r a t i o s  of LT~/CT?,  indicat ing t h a t  i f  t h e  

parameters a r e  not properly chosen, t he  l i f t - o f f  compensation can cause 

a decrease i n  the  s e n s i t i v i t y .  The e r ror  due to a conductivity var ia -  

t i o n  of 1% i n  e i t h e r  conductor i s  a l so  given i n  Figs. 24 through 29. 

We can see  t h a t  the  e r r o r  due to a conductivity va r i a t ion  i n  the  

upper conductor, cl, i s  the  l a rge r  of  t he  two, increases with w j i u l r  , 
and increases  as  t he  u1/u2 r a t i o  decreases, as  long as  ul i s  grea te r  

than 02. 

r a t i o s  of 0 . 2  and 0.1, t h e  u1 e r r o r  becoroes qui te  s m a l l .  The e r r o r  due 

t o  a va r i a t ion  of 1% i n  C T ~  becomes l a r g e s t  as the  conductivity r a t i o  

approaches uni ty ,  and decreases a s  the  r a t i o  approaches zero o r  i n f i n i t y .  

The ci2 e r r o r  decreases as wpalF'? increases .  

thickness va r i a t ions  a r e  a l l  f a i r l y  l inear ,  up t o  1.08, s o  t h a t  the amount 

of phase s h i r t  or  e r r o r  can be sca led  up o r  down, depending on the 

-2 

For ul l e s s  than cr2, t h e  5, error i s  smaller, and f o r  c1/u2 

The conductivity and t h e  
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var i a t ion .  I n  pri-nciple,  mult iple  frequency operation can be used t o  
eliminate the  conductivity e r ro r s .  

th ree  d i f f e ren t  frequencies, ca lcu la te  the conductivity var ia t ions ,  and 

I-inearly cor rec t  the value of cladding thickness.  

One can measure the phase s h i f t  a t  

PRACTICAI, CONSIDERATIONS Ii\J TEST DESIGN 

Now we have the knowledge t o  design t h e  optimum si.ze and shape c o i l  

t o  measure thickness and cladding thickness.  Frequently, however, t he  

optimum c o i l  cannot be b u i l t ,  and we 'mist compromise between optimum 
s e n s i t i v i t y  and construction p r a c t i c a l i t y .  For instance, the  minimum 

p r a c t i c a l  s i z e  of  a c o i l  mean radius,  r, i s  about 0.015 i n .  a t  present .  

Also, s ince  the  e f f e c t  of l i f t - o f f  measured i n  terms of -F is  g rea t e r  f o r  

a. smaller co i l ,  such a c o i l  can t o l e r a t e  l e s s  ac tua l  l i f t - o f f .  A lift- 

o f f  of 0.11  i s  equal t o  0.040 i n .  f o r  a 0 ~ 4 - i n . - F  c o i l  bu t  only 0.0015 in .  

for a 0.015-in.-T c o i l .  

- 

I n  addition, the  reso lu t ion  of a c o i l  is a d i r e c t  f'unction of i ts  
s i ze .  We may wish t o  make a c o i l  smal.l.er than optimum to  increase i t s  
s e n s i t i v i t y  t o  thickness changes over a small area or t o  reduce edge 

e f f e c t s .  On the other  hand, we may wish t o  make it la rger  so it  w i l l  

"see" a l a r g e r  area, thereby increasing t h e  scanning speed. Another 

reason f o r  operating away from optimum i s  t h a t  we may w i s h  t o  use an 

ex is t ing  coil. f o r  a new problem. 

Although many of the curves given i n  t h i s  repor t  a r e  f o r  o p t i m a  

conditions, it i s  not c r i t i - ca l  that, we operate a t  optimum. I n  general, 

the  curves for optimum s e n s i t t v i t y  have ra ther  broad peaks, and i f  the 

operating conditions d i f f e r  by a f ac to r  of 0 . 5  t o  2 from the  optimum 

parameters, we w i l l  s t i l l .  have a.bout 75% of the  maximum s e n s i t i v i t y .  

The ac tua l  c i r c u i t  parameters, a s  shown i n  Fig. 30, also have an 

e f f e c t  on the phase s h i f t .  A l l  phase s h i f l i s  given thus f a r  have been 

f o r  an i n f i n i t e  input impedance t o  the dr iver  c o i l  and an i n f i n i t e  load 

impedance i n  the  pickup c o i l .  

capacitance i n  the drivel. and pickup ci-rcui ts  be zero. ) 
s h i f t  depends only on the  mutual coupling and i s  independent of  t he  

number o f  turns on each c o i l .  However, s ince  w e  cannot achieve i n f i n i t e  

(This condition requires  t h a t  the shunt 

Then the  phase 
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Fig. 30. Simplified Ci rcu i t  Diagram for an Eddy-Current Heflection- 
Type Probe. 

impedances i n  ac tua l  prac t ice ,  w e  must consider t he  enti-re c i r c u i t  of 

the  probe. 

we w i l l  get  the following des i rab le  r e s u l t s :  

I n  general, if we have designed the probe c i r c u i t  properly, 

1. The R-L-C c i r c u i t  w i l l  limit t h e  frequency response of  t h e  

probe and reduce noise.  

2 .  The phase s h i f t  due t o  changes i n  the  c o i l s ’  dc res i s tance  

can be completely elimifiated, thus d r a s t i c a l l y  reducing temperature 

d r i f t  i n  the  probe. 

3. By varying the values of R, L, and C in  t h e  c i r c u i t ,  w e  can 
vary the  value of F’Uwycr where the  minimum l i f t - o f f  e f f e c t  occurs a f t e r  

t he  c o i l  has been constructed. 

I n  general ,  f o r  a properly designed R-1,-C c i r c u i t ,  t h e  change i n  

phase s h i f t  and s e n s i t i v i t y  f r o m  the  idea l  case of  i n f i n i t e  soxrce and 

load impedance is about 2 4  o r  l e s s .  A computer program (RFCIAII) t o  



design the  ac tua l  probe c j ~ r c u i t  and t o  calcul.ate the  response of a probe 
away from optimum conditions i s  given i n  another repor t .  8 

EXAMPLES OF DESIGN AND E X P E H I m A L  RESULTS 

We s h a l l  now consider th ree  examples of the design of  eddy-current 

t e s t s .  These examples were chosen because we had s i x  probes t h a t  were 

iden t i ca l  except f o r  construct ional  varia. t ions.  Ey having s i x  probes 

avai lable ,  we could s t a t i s t i c a l l y  analyze the  r e su l t s ,  including con- 

s idera t ion  of the  construct ional  varri.ations. These t e s t s  were ac tua l ly  

designed 'to fit the probes, but  we s h a l l  now proceed t o  design the  probes 

t o  f i t  these t e s t s .  

The f i r s t  problem we s h a l l  consider i s  the design of a t e s t  t o  mea- 

sure  the  thickness of aluminum a l l o y  7075 (p = 3.755 piR-cm) i n  the  range 

o f  0.075 t o  0.085 in .  with a nominal value of 0.080 i n .  From Fig. 3 on 
p .  5, we see t h a t  there  5s no optimum s i z e  co i l ,  and, as  long as  t h e  

r a t i o  of t h i c k n e s s h  i s  Less than 0.5, t he  c o i l s  w i l l  be  f a i r l y  sensi-  

t i v e .  Also, from Fig. 9 on p.  11 we see t h a t  we can e f f ec t ive ly  reduce 

s e n s i t i v i t y  t o  l i f t - o f f  var ia t ions  i f  the  r a t i o  i s  less than 0.5. We 

therefore  choose a coil. mean radius of 0.300 in .  ( l a rge ly  because of 
i t s  a v a i l a b i l i t y ) ,  which gives a r a t i o  o f  thickness/? = 0.267. From 

Fig. 3 we see  t h a t  the  optimum value of  wclU7' f o r  t h i s  r a t i o  i s  about 

13 and the  s e n s i t i v i t y  t o  a 10% thickness change i s  0.035 radians o r  
2.0". 

following conversion f ac to r  and use more famil iar  un i t s .  

The value of alp*' i s  given i n  MKS uni t s ,  bu t  we can use the  

We can wr i te  

= 0.51 X F X F2/p, where F is  the frequency i n  Hertz, I" i s  i n  - 

inches, and p i s  the  r e s i s t i v i t y  in microhm centimeters.  Solving the 

above eq-uation gives 

13 = 0.51 X F X (0.3)*/3.755 , 
or 

F = 13 X 3.755/(0.09 X 0.51) = 1..06 kI-Iz. 

*C. V. Dodd and C.  C .  Cheng, The Analysis of Reflection-Type Coils  
f o r  Eddy-Current Testing, report, i n  preparat,ion. 
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We chose 1 kHz as t h e  ac tua l  operating frequency. 

a 10% thickness change i s  2.0", and t h e  s e n s i t i v i t y  for t h e  12.25% thick-  

ness change for  the  ac tua l  range of 0.0755 t o  0.0853 in .  i s  2 . 4 5 " .  The 

more accurate ca lcu la t ion  performed by t h e  computer program RFCLAn gave 

a phase s h i f t  of 2.43"  for t he  s t a t e d  thickness var ia t ion .  The experi- 

mental measurements gave an average phase shi-f t  of 2.41" ?or the  six 
co i l s ,  with a standard deviat ion of 0.08".  

The s e n s i t i v i t y  for 

The error between calculated and measured s e n s i t i v i t y  was 0.02" or 

The average o f  the experimental phase s h i f t  i s  p lo t t ed  against  0.8%. 

thickness i n  Fig. 31. 

tion caused by I- i f t -offs  from 0 t o  0.030 i n .  

phase due t o  the  l i f t - o f f  va r i a t ion  i s  0.05" measured, compared t o  0.045" 
calculated.  T h i s  phase s h i f t  i s  d i f f i c u l t  t o  measure because it i s  not 
much Larger than the instrumental resolut ion.  

The thickness of the  curve represents t h e  var ia -  

The max9n.m va r i a t ion  i n  

The next problem we s h a l l  consider i s  the  design of a t e s t  t o  mea- 

sure  the  thickness o f  aluminum a l l o y  7075 over the  range 0.110 t o  9.130 in . ,  

w i t h  a nominal thickness of 0.120 i n .  
of 0.300 in .  gives a thickness/$? r a t i o  of  0 - 4 .  

Again, using a c o i l  mean radius 

From Fig. 3 we see  t h a t  
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t h e  optl.mum value of 1'2W~1 f o r  maximum s e n s i t i v i t y  i s  7, and &be sens i -  
t i v i t y  for a 10% thickness change i s  0.028 radians or 1.60". 

fo r  t h e  t e s t  frequency gives:  
Solving 

7 = 0.51 X F X (0.3)*/3.755 , 
o r  

F = 7 X 3.755/(0.09 X 0.51) 573 Hz. 

We chose 500 Hz as  t h e  ac tua l  operating frequency. The s e n s i t i v i t y  read 

from the curves i s  1.60" for a 10% thickness change, o r  2.62" for t h e  

16.3% thickness change f o r  t h e  ac tua l  range from 0.1108 t o  0.1304 i n .  

The more accurate ca lcu la t ions  performed by the  computer program R F C W  

gave a phase s h i f t  o f  2.80". The average of  t h e  experimental measure- 

ments for t he  s i x  c o i l s  was 2.84O, w i t h  a standard deviation of  0.07". 

The difference between the  ca lcu la ted  and measured s e n s i t i v i t y  was 0.04" 

o r  1.4%. 

was 0.07" fo r  both the  ca lcu la t ions  and measurements. 

The phase s h i r t  due t o  a l i f t - o f f  change From 0 t o  0.030 in .  

The f i n a l  case we s h a l l  consider i s  the  design of a t e s t  t o  measure 

0.075 t o  0.085 i n .  of aluminum a l l o y  7075 (p = 3.755 W-crn) c lad  on 

nickel-copper a l l o y  ( p  = 9.65 c1.Q-cn). The r a t i o  of  the conduct iv i t ies  

is 2.57, and from Fig. 22, p .  16, we f ind  t h a t  t h e  optimum r a t i o  of 

thickness/? i s  0.26.  
ca l cu la t e  t he  c o i l  mean radius t o  be r = 0.080 in. /0.26 = 0.307 i n . ,  and 

we therefore  choose T = 0.300. From Fig.  22 we see t h a t  t he  value of  

T 2 w ~ , 0 1  fo r  maximum s e n s i t i v i t y  i s  13 and the  s e n s i t i v i t y  for  a 10% clad- 

ding thickness change i s  0.015 radians o r  0.86'. 

Since the  nominal thickness i s  0.080 in . ,  we then 

The operating frequency i s  calcul.ated t o  be F = 13 X 3.755/(0.09 X 0.51.) 

= 1.06 kk, s o  we choose 1. kHz as the  operating frequency. The s e n s i t i v i t y  

of 0.86" a s  read from Fig. 22 f o r  a 10% thickness v a r i a t i o n  corresponds 

t o  a s e n s t t i v i t y  of' 1..05" for t h e  ac tua l  12.25$ cladding thickness va r i a -  

t i o n .  The more accurate ca lcu la t ion  made by .the computer program RFCLAE 

gives 1.04'. 

was 0.99" w i t h  a standard deviation of 0.03'. ?''ne error between calcu- 
l a t e d  and measured s e n s i t i v i t y  i s  0.05" o r  5$. 

l i f t - o f f  was 0.04" f o r  both t h e  ca lcu la t ions  and the  measurements. 

The average o f  t he  experimental. measurements f o r  f i v e  c o i l s  

The v a r i a t i o n  due t o  



These three  cases ind ica te  how we can c3,esign c o i l s  for thickness 

and cladding thickness measurements. 

viously constructed, we would have also var ied  the  c o i l  length according 

t o  Figs. 9, 10, and 23 t o  minimize t h e  l i f t - o f f  e f f ec t s .  

If the  c o i l s  had not been pre- 

A number of other  c o i l s  have been designed and tes ted .  Thicknesses 

ranging from 0.0002 t o  0 .6  i n .  have been measured w i t h  frequencies 

ranging from 120 fIz t o  5 M H z  and r e s i s t i v i t i e s  ranging from 1.7 t o  

1000 p9-cm. 

10% of the  estimated and calculated values, which were always wi th in  

emerimental  e r ro r .  

The accuracy of  the  measurements was i n  most cases within 

STJMMARY AND CONCLUSIONS 

The curves presented in t h i s  report  allow a quick and accurate 

method of designing eddy-current tests and eddy-current co i l s .  They 

a l so  help apply ex i s t ing  c o i l s  more i n t e l l i g e n t l y  t o  inspection problem, 

allow rapid f e a s i b i l i t y  studies t o  be made, show t h e  e f f e c t s  of  undesir- 

ab le  var iables ,  and provide the  s t a r t i n g  point  for more accurate  calcu- 

la t ions ,  which can be made w i t h  t h e  computer program RFCTAD. 

These curves and the  experimental. measurements show t h a t  very 

accurate eddy-current t e s t s  can be applied to a much g rea t e r  range of 

thickness and cladding thickness measurements than previously believed 

possible .  
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