3 4456 D5L4L4Y &

lf

H
|
h

|

I

|

LOCKHEED MARTIN ENERGY RESEAFCH LIBRARIES
|




This report was prepared as an account of work sponsored by the United
States Government, Neither the United States nor the United States Atomic
Energy Commnission, nor any of their employees, nor any of their contractors,
subcantractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness or
usefulness of any information, apparatus, product or process disclosed, or
represents that its use would not infringe privately owned rights.




ORNL~TM-3602

Contract No, W-7h05-eng-26

Reactor Division

CURRENTLY RECCMMENDED CONSTITUTIVE EQUATIONS FOR
INELASTIC DESIGN ANALYSIS OF FFIF COMPONENTS

J. M, Corum
W. L. Greenstreet

C. E. Pugh
K. C. Liu

SEPTEMBER 1972

OAX RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
U.S, ATOMIC ENERGY COMMISSION

LOCKHEED MARTIN ENERGY RESEARCH LIBRAR

’li

|

|

y
|

|

|

f

|

i
d

|

|

i

iil

|
|

I

U!T

3 445L O514kL4Y b






iii

CONTENTS

ABSTRACT ® P 3 0 6 4 % P B C OO FD DO A ND R PSS DL IS S LN NR PG CE RN NN SRS RN ]“
l » D.\]Tl{ODUCT ION LN B R R Y I B B R Y B A B I L L T N I B B I B B I B N B I L IR R L AN 1 2
2. TIME-INDEPENDENT ELASTIC~PLASTIC BEHAVIOR ..veevsoonsercase 7

2.1. Background — Isotropic and Kinematic
Hardening MoOdels .euissecacccenssasssnsosassssanoos 8

2,1.1L. Isobropic hardening model .......eeeees 10
2,1.,2. Kinematic hardening model ... .ceeeessws 11

2,2, Recommended Elastic-Flastic Stress-
Strain Relationships sieeeeenssesocrseassonsnacnas 15

2.3. Mathematical Statement of the Recommended
Constitutive Equations for Plastic Behavior ...... 27

3. TIME~-DEPENDENT CREEP BEHAVIOR ..4uevevsnscevcoacssssnsanoss 30

3.1, Background-Constitutive Theories for
Time-Dependent Behavior ..iieeeesncencssccsasseaes 31

3.2, Recommended Creep Relationships cveveeesessoessess 38

3.2.1. BSpecific constitutive equation
recomendations ..u.ueeecevecenconnsces 38

3.2.2. Compatibility of proposed HEDL creep
equation with analysis techniques ,.... 40

3.3. Recommended Auxiliary Rules for Applying
Strain-Hardening to Situations Involving
Stress Re.‘fersals 8 6 & 860 8 D B 4 e D P AN ARSI ODENS NP ENE NS ‘4’3

3.3.1. Presumed uniaxial creep response ...... 45

3.3.2. Extension of the auxiliary strain-
hardening rules to multiaxial stress
histories ..v.vevevisesensessesnssnsess 0

APPENDIX A — OBSERVATIONS CONCERNING CREEP-PLASTICITY
INTERACTION TYPE HISTORY EFFRCTS i4eeersecennvocsnsnsconnsosss 6l

APPENDIX B — SAMPLE BILINEAR REPRESENTATIONS OF MONOTONTIC
STRESS"STRAIN CURVES L I L B I I O R N B B BB B B B I B NN B L B B B R R B BN B B O N LR 69

APPENDIX C — NONISOTHERMAL PLASTICITY ..uieeissevsocsaseancasns 75

APPENDIX D — OBSERVATIONS CONCERNING SCME ORNL CREEP TESTS
OF A HEAT OF TYPE 304 STATINLESS STEEL & .uvuesveeesosenceaoeness 82

APPENDIX E — ON ANALYTICAL METHODS FOR CREEPING METALS
AT ELEVATED TEMPERATURES ...evevevencccoossancacasssnasnaosaas GO

APPENDIX F — STRESS AND STRAIN QUANTITIES IN INDEX NOTATION ... 29
REFERENCES 4 4uissavrsueoasonnacscrssssasssncssannnsososnsnsnsssss 100






CURRENTLY RECCMMENDED CONSTITUTIVE EQUATIONS FOR
INETASTIC DESIGN ANALYSIS OF FFTF COMPONENTS

E, Pugh J. M. Corum
C. Liu

C.
K. L W. L. Greenstreet

ABSTRACT

This report responds to a request from the Hanford Engi-
neering Development Laboratory for assistance in providing con-
stitutive eqguations to describe the inelastic behavior of
solution~treated types 30k and 316 stainless steel and 20% cold~
worked type 316 stainless steel. The equations are for use by
the Fast Flux Test Facility (FFTF) Project for inelastic design
analyses of reactor components. The reguest asked that the
constitutive equations, so far as possible, account For prior
permanent deformation and that very specific descriptions be
provided for inclusion in inelastic guidelines to be furnished
to FFTF component vendors.

Constitutive equations are recommended for interim use and
the underlying reasons for their selection are given. Detailed
mathematical relations which are necessary for use in design
analyses are derived and recorded. FEguations are presented in
multiaxial forms for describing time-independent elastic-plas-
tic behavior and time-dependent creep behavior. Because suit-
able formulations for coupling creep and plasticity on a sound
basig do not now exist and because material behavior information
concerning creep-plasticity interactions are lacking, the recom-
mended mathematical descriptions for creep and plasticity are
formulated independently. However, procedures are included
which partially take into account the effects of prior creep
onn subsequent c¢yclic elastic-plastic behavior by recognizing
that creep strains can have much the same hardening effects as
do prior plastic strains. With regards to both elastic-plastic
and creep behavior, specific attention is given to the appli-
cability of constitutive eguations to cyclic loading conditions.
Cognizance 1s also maintained of the fact that the recommended
procedures must be compatible with existing analytical capa-
bilities. To support features of the recommendations, both
sample analytical problems and results from special experimental
tests are shown.

Keywordsg: elevated temperature, constitutive equations,
inelastic, elastic-plastic, kinematic-hardening, creep, strain-
hardening, multiaxial, cyclic, nonisothermal, stress, strain,
time, FFTF.



1. INTRODUCTION

This document was prepared in response to a request from the Hanford
Engineering Development Laboratory (IIEDL) for ORNL assistance in pro-
viding constitutive equations to describe inelastic behavior of solution-
treated types 304 and 316 stainless steel and 20% cold-worked type 316
stainless steel.’ The equations are to be used by the Fast Flux Test
Facility (¥FTF) Project for inelastic design analyses of reactor compo-
nents, and they were to be identified through a study of available infor-
mation coupled with engineering judgement to compensate for any lack of
appropriate data, Formulations that are compatible with existing ana-
lytical capabilities, that is, that are capable of being incorporated
into current computational technicues and do not cause numerical insta-
bilities in those structural analysis computer programs presently avail-
able for use in the design of FIFIF components, were sought.

The HEDL request was interpreted by ORNL as consisting of two prin-
cipal parts, First, interim constitutive equations are needed that, in
so far as possible, account for the effects of prior permanent deforma-
tion (both time-independent plashic and time-dependent creep). Second,

a very specific description of these equations is needed for inclusion
in inelastic analysis guidelines to be furnished to FFIF component vendors.
With regard to the first item, such things as the effect of prilor creep
deformation on subsequent plastic behavior and the effect of prior plas-
tic deformation on subsequent creep behavior were to be considered. The
equations were also to account for such conditions as changes from posi-
tive to negative loading, increasing or decreasing loads with time, and
the introduction of other cyclic creep or relaxation phenomena into the
strain history. 'The second part of the HEDL request stemmed from the
need to remove the vagueness, and the confusion that apparently resulted,
from the inelastic analysis guidelines that were included in Appendix A
of Revisions 3 and 4 of FRA-152 (Ref. 2), which is an interim supplemen-
tary structural design criteria document for FFTF components.

We have addressed ourselves to this moaumental task and carefully
considered each element of the total request. This document records our

recommendations for constitutive equations for interim use and the



underlying reasons for their selections, and, in response to the need for
specific instructions for inelastic analyses, the detailed relations nec-
essary for use in analyses are derived and recorded. Actual data for use
in these relations are not recommended in this document; rather, this
responsibility rests with the FFIF project.

Our constitutive eguation recommendations are basically the same as
those we previously specified in Appendix A of FRA-152, Revisions 3 and
L, As was done in FRA-152, we have recommended that mathematical descrip-
tiong for creep and plasticity be formulated independently. Although a
few exploratory tests to examine the interaction effects of creep and
plagticity have been performed, the available data are, at present, not
sufficiently conclusgive, in our judgement, to warrant an attempt to ac-
count for the interaction in the constitutive equations. Consequently,
it is our recommendation that the most sound engineering approach, and
the only feasible approach at present, is to neglect both the effects of
prior creep on subseguent plastic behavior and of prior plastic behavior
on subsequent creep, in the sense that no sound basis exists for coupling
the two fundamental theories, However, the effects of prior creep on
subsequent cyclic elastic-plastic behavior are partially taken into ac-
count in our recommendations by recognizing that creep strains can, in
much the same way as plastic strains, cause the elastic range of the ma-
terial under cyclic conditions to increase. This is manifested in rules
for changing the size of the yield surface considered applicable to cyclic
elastic-plastic conditions,

For elastic-plastic behavior we recommend that Prager's classical
kinematic hardening model be used with either the von Mises or Tresca
yield criteria and the flow law of von Mises. We recommend that bilin-
ear representations of the uniaxial stress~strain curves be ubtilized,

In order to approximately account for cyclic hardening, we further recom-
mend that the bilinear representation used for the initial loading cycle
of a component be based on the monotonic stress-strain curve for the
virgin material and that the bilinear representation for subsequent cyclic
loadings be based on the cyclic stress-strain curve for the hardened ma-
terial. For creep behavior, we recommend that the equation-of-state type

constitutive theory based on strain-hardening be used.
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Whereas the inelastic analysis guidelines that were Tirst set forth
in Appendix A of FRA-152, Rev. 3, were purposely rather vague, to leave
the design analyst as much latitude as possible, the recommendations
herein are, as previously stated, intended to be very specific. Proce-
dures to be used are spelled out in detail in areas that were previously
left to the innovations of the individual analyst. As an example, we have
expanded Prager's kinematic hardening plasticity theory, which was origi-
nally an isothermal theory only, to include a temperature variable to
account for the additional plastic deformation that can occur when a ma-
terial at some known stress state undergoes a change in temperature, The
resulting nonisothermal kinematic hardening theory is recommended for use
whenever temperature changes are encountered.

A second new Teature of the constitubtive relations recommended here-
in is the inclusion of a set of awxiliary hardening rules that we have
developed for use with the strain-hardening equation-of-state creep theory
whenever stress reversals are encountered. Without these rules, the
usual strain-hardening procedures can result in predictions of anomalous
behavior in reversed-loading situations., The recommended rules eliminate
much of this anomalous behavior. Example creep calculations are pre-
sented to demonstrate the consistent predictions that are obtained using
the new rules.

The constitutive equations for inelastic analyses that have bee
developed to the point of being usable in practical applications are al-
most invariably based on small-deformation theory, and the relations
recommended here are similarly based., This, we believe, does not impose
significant restraints so far as FFIT component designs are concerned.
For design conditions expected, the total deformations in a given compo-
nent should not be more than a few percent,

Tt should be emphasized at this point that the constitutive rela-
tions recommended herein are interim in nature, They are based on the
current state~of-the-art and will almost certainly be updated and improved
as we learn more about material behavior and as we develop theories Lo
more properly represent the inelastic behavior that is exhibited., TIn the

interim, what is recommended will provide the designer with tools that



are consistent with the accepted state-of-the-art and must, in our judge-
ment, be regarded as the best current engineering approach.

It cannot be overemphasized, however, that the current state~of-the-
art and the constitutive relations recommended herein are largely unver-
ified in detail, and they are open to many questions. Thus, inelastic
analyses can currently be used for making estimates of the basic charac-
teristice or the essential features of inelastic response in critical
situations, but their use must be accompanied by a large measure of sound
engineering judgement.

Although constitutive equations can be formulated independently of
the inelastic analysis methods to be employed, the procedures to be used
must, from a practical standpoint, be considered., In this document it
is recognized that finite element structural analysis computer programs
that incorporate inelastic material behavior on an incremental hasis are
being used by the majority of designers.* These programs are based on
the assumption that the total strain at any instant of time consists of
three parts: elastic, plastic, and creep. Discrete increments of time
are considered in which elastic-plastic and creep strains are computed
separately and added to obtain the total strain. Thus in the present
state-of~the-art, plasticity and creep are formulated independently, but
they are treated in the analysis procedure in an incremental marnner that
approximately accounts for the simultaneocus elastic-plastic-creep behav-
ilor.

Flastic-plastic analyses using the finite element method are based
on one or the other of two possible techniques. Both essentially reduce
the inelastic analysis to the solution of a Succession of ‘elastic prob-
lems. The first technique is to treat the plastic strains as initial
strains in an incremental procedure. The seéond is to make use of the
linearity of the incremental stress-strain laws to assemble a new element
stiffness for each successive stage of the solution. The first approach

i

is referred to as the "initial strain' approach and the second as the

*The current prominence of finite element methods is due probably to
the fact that a single computer program can readily cope with a variety
of structural geometries. Ofther numerical procedures, such as finite
differences, can also be used for inelastic analyses, and the discussions
herein are in no way intended to preclude such use.



"tangent modulus” or "modified stiffness" approach. There are variations
of each, and there has been much discussion about the relative merits of
each, Both, however, are successfully used. Finite element creep analy-
ses are based on the "time increment — initial strain” method. In this
procedure the time-history of loading (and temperature, if it also varies
with time) is divided into a number of time intervals, and constant values
of load, temperature, and stresses are assumed to prevail throughout each
interval. The stresses are the values calculated on an elastic, or elas-
tic-plastic, basis from conditions at the beginning of the interval, and
creep strains for the interval are calculated from these constant stresses,
The creep strains aceumulated at the close of a given interval are treated
as initial strains in an elastic or elastic~plastic determination of the
stresses prevailing in the subsequent interval.

This document consists of two main chapters. In the first, time-
independent elastic-plastic behavior is discussed and applicable consti-
tutive equations are recommended. Time-~dependent creep behavior is dis-
cussed in the second main chapter, and recommended constitutive equations
are presented, Appendices A, B, C, and D contain discussions of test
data and theoretical derivations in support of the two main chapters,

Appendix B is a write-up, prepared by ORNL consultant Y. R. Rashid,
outlining an independent interpretation of the current state~of-the-art
of inelastic analyses for high-temperature design, particularly with
respect to equation-of-state versus hereditary-type creep constitubive
equations as a current design tool. Rashid's discussion of potential
approaches and his assessment of current practices are in essential agree-
ment with ORNL's recommendations,

Finally, it is recognized that the tensor gquantities and index nota-
tion that are referred to and used in this document will be unfamiliar to
many readers. Consequently, Appendix F is included with the hope that it
will be useful to the uninitiated reader. TIn Appendix F a few of the
rudiments of index notation are briefly described, and some of the stress
and strain quantities used frequently in the text are written out in
terms of engineering stress and strain quantities referred to rectangular

cartesian axes (x,y,z).



This document was prepared as a part of the ORNL program engitled
High-Temperature Structural Design Methods for IMFBR Components, and the
authors wish to acknowledge the contributions to the document of other
members of the program. In particular, R. W. Swindeman was responsible
for performing the varlous cyclic;loading and step-creep tests on type
304 stainless steel that are described. W. XK. Sartory performed the
various creep analyses that are described, and he assisted in developing

the auxiliary strain-hardening rules recommended for creep analyses,

2. TIME-INDEPENDENT ELASTIC-PLASTIC BEHAVIOR

This chapter conbains a discussion and recommendation of constitutive
equations for time-independent elastic-plastic behavior. Our recommenda-
tions are essentially the same as the procedures previously‘SPecified in
Appendix A of FRA-152, Revisions 3 and 4 (Ref. 2). The recommendations
herein do, however, go beyond those in FRA-152 in that they are much more
specific and, as previously mentioned, include cyclic hardening and non-
isothermal plasticity recommendations.

Three ingredients, in addition to Hooke's law, are necessary to de-
scribe material behavior for an elastic-plastic analysis. These are:

(l) a yield condition, specifying the states of multiaxial stress corre-
sponding to the onset of plastic flow; (2) a flow law in the form of
equations relating plastic strain increments to the stresses and stress
increments subsequent to yielding; and (3) a hardening rule, specifying
the modification of the yield condition in the course of plastic flow.
The constitutive equations for elastic-plastic hehavior are determined
from these ingredients.

The yield criteria that are currently in use are those of von Mises
and of Tresca. Either of these is acceptable, although in our specific
recomuendations to follow, we have assumed the use of the von Mises con-
dition. We recommend that the von Mises flow law be used with either
yield condition, and that the flow law be an associated one. Obviously,
the final ingredient -~ the hardening rule — plays an imporftant role for

cyclic elastic-plastic behavior predictions.  Two types of hardening rules



are common: isotropic and kinematic. The much-used isotropic rule
assumes that the yield surface expands during plastic flow, retaining its
shape and position with respect to the origin of stress axes., Experi-
ments on work-hardening materials over the past several years have veri-
fied that the isotropic hardening rule is based on gross oversimplifica-
tion of the physical behavior of most metals. The approximation used,
although acceptable for monotonic loadings, gives incorrect results for
cyclic loadings. The kinematic hardening model, developed by Pragers’4
and later modified by ZieglerS provides a better representation of behav-
ior for many work-hardening materials.” It assumes that the yield sur-
face is rigid but undergoes a translabtion, Our examination of the avail-
able data led to the selection of kinematic hardening along with an
augmenting cyclic hardening feature as the recommended hardening rule.
The remainder of this chapter is divided into three sections. First,
a general background discussion is given of isotropiec and kinematic
hardening models. Then, elastic-plastic stress-strain relations are dis-
cussed, We recommend that bilinear representations of the uniaxial
stress-strain curves be used. Procedures are specified for choosing an
appropriate bilinear representation for the initial loading of a struc-
ture and for subsequent cyclic elastic-plastic loadings, Finally, in the
last section, specific mathematical statements of the recommended con-

stitutive equations are given.

2.).. Background — Isotropic and
Kinematic Hardening Models

Our examination of the available cyclic stress-strain data led to
the selection of kinematic hardening because subsequent to initial plas-

tic cycling the extent of the elastic region is essentially unaffected

*It should be noted that Prager's hardening rule (complete kinematic
hardening rule) is not invariant with respect to reductions in dimensions,
and care must be exercised in the use of this rule. It is not necessarily
true that the yield surface will move in the direction of the exterior
normal in every subspace of the nine-dimensional stress space. Subspace
investigations have been carried out by Shield and Ziegler,* Ziegler5
introduced a modification to Prager®s rule to avoid inconveniences associ-
ated with its use. Prager's rule and its modification coincide when the
von Mises yield condition is used.



by plastic flow (indicating & rigid yield surface as is assumed in the
kinematic hardening model). However, it is recognized that the isotropic
hardening model can be used for radial monotonic initial loading of a
structure without contradicting the predictions of the kinematic hardening
model. Therefore, for background‘information both hardening models are
discussed here,

In these discussions we must consider a multidimensional stress space.
Specifically, we will make use of the six-dimensional stress space whose
cartesian coordinates are defined by Uij; that‘is, each axis is labeled
by one of the components of the symmetric stress tensor. We will use the

von Mises flow law”™

P of

- — (

d_cij ~ S5 \l)
1J

where tfj is the plastic strain. . Since an associated flow law ig recom-
mended, the function f, by definition, describes the initial yield sur-
face as well as the subsequent loading surfaces. The yield function f ig
thus used in the role of a plastic potential function. The flow law would
be a nonassociated one if initial yielding were determinedyby the Tresca
condition with the von Mises condition used as the plastic potential, or
vice versa. In the sections that follow, the plastic potential function
is taken to be the yield function of von Mises. The potential function

describes the loading surface; the term yield surface is reserved for the

designation of the initial yield surface of the virgin material. The ex-
pression for the loading surface is, in fact, a generalized stress-plastic-
strain relationship, and this connotation will be used in the discussions
that follow.

The theories to be discussed apply to small deformations of initially
isotropic materials only. The small-deformation restriction is not one
which should cause concern, because the total deformations in FFTF compo-

nents should be no more than a few percent for expected design conditions.

*In carrying out the partial differentiations, 0. . and Ty (i % i)
must be treated as separate quantities. +d 9
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Small-deformation theories should therefore be entirely adequate for their

analysis.

2.,1,1, Tsotropic hardening model

The isotropic hardening model is based on a simple concept and hence
is widely used. According to this model, the loading surface, as depicted
geometrically in stress space, is defined by a uniform expansion of the
initial yield surface, Upon occurrence of plastic deformation the surface
expands and the center remains at the origin. Therefore, the equation
describing this surface is of the form

f(c..) =K . (2)

1d
The only repository for plastic deformation history in this model rests
with & which establishes the size of the loading surface,
The expression for T = f(cij) is taken, in this discussion, as being

the von Mises yield function given by
1
f:é—g_'/_' ol . 5 (3)

where Uij denotes the deviatoric component of the stress tensor Gij' The

function k is given either in terms of the plastic work, W, where

, (&)

dw = o, , de?.
ij i3

or in terms of effective plastic strain, defined as the integral of

P (2 pp» /2
de” = | = de, ., de,.) .

3 1 1J (%)
It is assumed that the volume change associated with plastic strains is

zero, that is,
€., =0 . (6)

With this assumption the components of the total and deviatoric plastic
strain tensors coincide. The two measures for k are equivalent for the

isotropic hardening model.
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We can now write Eg. (2) as

N

S VR ( - -
f=5 9y %4y T jﬂd& ) . (7
Defining the effective stress, o, by

— \1/2
s=(F gy o) (®

we can write Eq. (7) as
s [ (a7 mE ()

which simply states that the effective stress is a function of the effec-

tive plastic strain. For the uniaxial case, where ogi Fo,

=0, (10)
and
aet = aety . (11)

Thus, the uniaxial stress-plastic-strain curve is used as the effective
stress-effective plastic strain curve.

These concepbs are very appealing so far as elastic~plastic analyses
are concerned, For monotonic loading one can use the effective stress-
strain curve directly and perform incremental type calculations which are
desecribed by numerous authors.

Unfortunately, there is a tendency to apply the effective stress-
effective strain relationship concept almost universally in making elas-
tic-plastic calculations. This can lead to difficulties. Thus, this
discussion of isotropic hardening'was given mainly to provide background

information preparatory to the discussion of the kinematic hardening model.

2.,1.2, Kinematic hardening model

The loading surface, or plastic potential function, for kinematic

hardening remains constant in size and translates in stress space when
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plastic deformation occurs. The mathematical representation of this sur-

face can be expressed for isothermal conditions by
P \
£ <Oij’ €. ., H) =K . (12)

In this cage, ® is & constant and the repository for nistory rests with
the function H. Thus, the initial yield surface defines the shape and
size of the loading surface and is given by

f(oij) =K, (13)

as in the case of isotropic hardening.

Through the proper specification of the function H, actual behavior
can bhe described. But this specification is a major task and is central
to the development of a nonlinear theory of kinematic hardening, Theories
for providing H or an equivalent method for inserting history into the
stregs-plastic-strain relations are still in develommental stages. We,
here at ORNL, are working on a theory that looks very promising and hope
that the initial develomment can be made available in the near future.
However, our choice at present is to make use of the classical kinematic
hardening theory. This classical theory is based on a bilinear stressg-
strain relation and is theoretically consistent for such a relation only.

To provide information regarding the restrictive manner in which
effective stress-strain relations should be viewed, the kinematic harden~
ing case will now be examined in some detail, Specifically, the equation
for the function f is written

L, ;o e -
f=3 (Jij Oﬁj)(cij aij) = k = constant , (1k)

where aij is a tensor representing the total translation of the yield sur-

face and is defined from the expression

P

where, in the general case,

g =g <Oij’ e?.) . (16)

i3
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In the classical case, a bilinear uniaxial stress-plastic-strain relation

is assumed, so that

P
do | = Cde; 4 (17)
or
: ™
a, . = Ce,, ;
1] ij

where C is a constant characterizing the material and is related to the
slope of the bilinear stress-plastic-strain diagram. Using the effective

stress definition given by Eq. (8), the second invariant of efj given by
1
IZ :_2_€.- e..- s (18)

and the relation given by Eq. (17), we may rewrite Bq. (1L) as
£ =2152 30, of. + 3671 ] = & (19)
3L ij "ig 2 ’

For the kinematic hardening model, we use the more common definition of

effective strain,

—P\F ) 2 P p
S e = = £ . e, . 2
<€1} 31z =3 €5 €15 0 (20)
e e Bl —-P < . .
as opposad to the definition ¢ = j’de that was used for the isotropie
model.* Only for monotonic loading paths that produce straight line tra-

Jjectories in strain space do the two definitions coincide; that is,

P (2 P P 1/2ﬁ(2 pp /2 =P
e = jﬁ<3 dtij deij) =13 ;5 €ij) =o€y . (21)

The two values would, for example, be equal for a specimen under monotonic

uniaxial loading. However, such cases are very restrictive.

*Here we denote the more commonly used effective strain (calculated

from the current strain components) as Ef to distinguish it from our
previously defined effective strain quantity.



1k

Combining Eqs. (20) and (19), we obtain the final expression for f:

- 3 Py
o Ly _— / L =2 P — Is
f=3]0 3aij oy (2 Cej)-] . (22)

Wi

This equation shows that the effective stress-effective plastic strain
relationship for the isotropic hardening case does not apply when kine-

matic hardening is used. The above expression reduces to

2
f = % <011'" % Cefl> = K (23)

for a uniaxial loading case. This equation was written to demonstrate
that the theory includes a proper statement of the relationships hetween
stress and plastic strain in the uniaxial case.

To further demonstrate that the effective siress-effective plastic
strain relationship for the isotropic hardening case does not apply for
the kinematic hardening case, consider Fig., 1. The movement of a von
Mises type loading surface in a two-dimensional stress space is shown for

kinematic hardening when a monotonic uniaxial loading (Ul) to point 2 is

ORNL-DWG 72- 4442

92

CONSTANT EFFECTIVE STRESS, o
(VON MISES ELLIPSE)

S

— LOADING PATH

INITIAL YIELD SURFACE
~TRANSLATED YIELD SURFACE

Fig. 1. ©Schematic of the comparison between kinematic hardening
loading surfaces and surfaces of constant effective stress.
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initially imposed. Since this loading is beyond the initial yield sur-
face, the loading surface translates as shown. Next consider loading
along the path from point 2 to point 3 which lies along a constant effec-
tive stress [see Eq. (8)] surface. Along this surface ¢ equals the uni-
axial stress value at point 2. The effective sﬁress—plastic-strain re~
lations associated with isotropic hardening would say that no change in
plastic strain is experienced along this loading path. However, the load-
ing path from point 2 to point 3 clearly extends into a region exterior
(plastic,region) to the kinematic hardening loading surface which was
established by the loading to point 2. Therefore, additional plastic
straining will occur according to the kinematic hardening model along this
loading path. Therefore, 1t is observed that the effective plastic strain
is not uniquely determined by the effective stress when considering kine-
matic hardening.

The aspects described above have important implications regarding the
use of a generalized stress-plastic-strain relationship in describing non-
linear kinematic hardening, Thus, the use of a uniaxial stress-strain
curve for reference in combined stress cases must be accompanied by a con-
sistent theory which makes such use possible., The classical kinematic

hardening theory is consistent when a bilinear representation is used for

the uniaxial stress-strain curve, but this representation cannot be used

in the role of a generalized stress-plastic-strain relationship.

2.2, Recommended Elastic~Plastic Stress-
Strain Relationships

From the available evidence regarding elastic-plastic behavior, the
classical kinematic hardening theory is the only available theory that
can be recommended to fulfill the requirements for describing prominent
features of material behavior, and, at the same time, allow for treatment
of arbitrarily varying load and temperature histories. Furthermore, the

theory, when the Ziegler modifications®

are accounted for, if necessary,
is entirely consistent. Heretofore, we have discussed isothermal re-

lationships, but the classical kinematic hardening theory can be extended
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to include nonisothermal conditions. The development of this extension
will be discussed in the next section,.

Creep-plasticity interaction effects are not included in the classi-
cal theory, and this is a recognized deficiency. Some history effect
examinations are discussed in Appendix A, and they show that the influ-
ences of prior creep strain and of prior plastic deformation are similar
in many respects, The hardening® associated with creep-strain history
appears to be no greater than that for plastic-strain history in the limit
of "full" hardening. In the recommendations to follow, the methods pre-
sented allow the design analyst to take advantage of hardening due to
prior plastic deformation and prior creep strains.

A bilinear representation for the uniaxial stress-strain curve is
basic to the classical kinematic hardening theory. Thus, the use of bi-
linear relationships is central to our recommendations. In the overall
sense, the use of a bilinear representation of the stress-strain curve is
not much different from the use of a single representative stress-strain
relationship to describe the isothermal behavior of all materials in a
given class, for which the detailed compositions and prior histories of
each individual material are unknown. An example is the use of a single
correlation to represent 30k stainless steel as a class of material,

For a given material and a given temperature, the bilinear relation-
ship to be used depends on the total strain range under consideration,
This is not to imply that in a given analysis a curve represented by more
than two linear portions is to be used., Rather, the bilinear relationship
should be appropriate to the maximum strain experienced by the structure
for the particular loading conditions, and the relationship is to be used

as the representation for the entire structure.

*The increase in the resistance to post-yielding deformation, that
is, the slope of the stress-strain diagram in the plastic region, is the
hardening referred to here. Subsequently, in this report, the term
hardening is used in a more general sense, that is, to denote an increase
in deformation resistance. This increase can be due to increase in re-
sistance to post-ylelding deformation, increase in the size of the load-
ing surface, as measured by k, or a combination of the two. As noted
earlier, an inerease in k is not considered in the classical kinematic
hardening rule.
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For the combined stress case, hhe material is characterized by the
material constant, C, and the measure of the size of the loading, or
yield, surface, k (see the preceding discussion of kinematic hardening).
The constant C is the slope of the linearized deviatoric stress-plastic-
gtrain diagram for a uniaxial test specimen.* We recommend the use of
C and x values appropriate to three ranges of total strain. The three
maximun values of total strain considered are 1%, 2%, and 5%. These
limits were chosen because they are appropriate to the maximum total
strains likely to be incurred in FFTF structural components, and the
bounds of small-deformation theory‘must be included in any consideration
of this type.

Since the true stress-strain relations of type 304 and 316 stainless
steels are not linear in the plastic region, a consistent procedure for
idealizing a nonlinear stress-strain relation is required. In the bilin-
ear representation of the stress-strain relation, the hardening coeffi-
cient C relates the incremental deviatoric stress and incremental plastic
strain by a linear relation., We recommend that tensile stress-strain
curves, such as those provided by HEDL, "’ ® should be idealized according

to the discrete strain values specified., The specific method recommended

for determining bilinear representations of stress-strain curves which
correspond to initial monotonic loading conditions is illustrated in Fig.
2. As shown, the elastic curve 1s determined from the initial response
of the material. For a 1% total strain value, the plastic stress-strain
relation is determined from a straight line connecting the stress point
at 1% strain and that at O.S% strain. The yield point is then defined at
the intersection, A, of the straight lines., In an analogous manner, yield
points B and C for 2% and 5% strain values are determined at the inter-
section of the elastic curve and the lines connecting the stress points
at 2% and 1% and those at 5% and 2.5% strains, respectively.

As examples, this type of bilinear stress-strain representation was
determined for the stress-strain equations provided by HEDLY’® for types

304 and 316 stainless steel and Tor maximum strain valuves of 2% and 5%.

*If the total stress~plastic-strain diagram is used, the constant C
is two-third times the slope.
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Fig. 2. Procedure for determining bilinear representations of mono-
tonic tensile stiress-strain curve.

The results of these sample representations are given in Appendix B,
Representations are given for HEDL's average and minimum curves for each
material. These bilinear representations identify corresponding yield
stress values which are slso shown in Appendix B through values for k,
the size of the initial yield surface. The yield stress is related to x
by Gyield :~[§E. For convenience in later paragraphs, the notation k =
Ko is introduced for the size of the initial yield surface,

Our recommendation, in part, is that values of C and k = Ko be deter~
mined from tensile stress-gtrain curves for monotonic loading of virgin
specimens., It is recognized that material in a structure can be hardened
by prior loadings and that the use of data from virgin material can lead
to predictions of larger plastic strains than will actually occur in some
applications. A mechanism must, therefore, be introduced to account for
hardening due to loading history. On the other hand, the sole use of
curves obtained from material after hardening has occurred could give
first loading predictions that are grossly in error. Prior to stating
recommendations in this regard, let us consider more specifically some
of the basic behavioral features that require attention.

The difference typical of that which might be expected between the
first loading response and the response subsequent to cyelic loading and

hardening is illustrated in Fig. 3 for rouan temperature behavior. The
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Fig. 3. Cyclic stress-strain behavior type 304 stainless steel at
room temperature.

response of a type 30U stainless steel specimen to strain cycling is shown
for a total strain range of 0.9%; The material initially hardens as the
number of cycles increases with the hysteresis loops nearly settling to a
stable geometry after 10 to 20 cycles of loading. Characteristically
similar hardening behavior under strain cycling conditions is observed at
elevated temperatures, This is illustrated in Fig. L which shows the
response of a type 304 stainless steel specimen to strain cycling at
1200°F and with a total strain range of 2%. Similar hardening character-
istics at elevated temperatures are reported in Refs. 7 and 8 for type
304 stainless steel and for Incoloy 800. As illustrated by the test re-
sults shown in Figs. 3 and 4, the amount of hardening seems to be greater

at elevated temperatures than at room temperature. ©Specimens from the
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Fig. 4. Cyclic stress~strain behavior — ORNL "preliminary" heat of
type 304 stainless steel at 1200°F.

ORNL "preliminary” heat (no. 8043813) of type 30L stainless steel were
utilized in each of these two tests,

The available room-temperature cyclic stress-strain data for type
304 stainless steel indicate that the region of elasbtic response remains
essentially constant throughout the loading, At 1200°F, on the other
hand, the stress-strain curves obtained by cyclic loading between fixed

strain limits indicate that the extent of the elastic region increases



during the first few cycles, with the extent becoming essentially con-
stant for subsequent cycles. Thus, both translation and growth of the
loading surface are indicated for the first cybles. Although this behav~
ijor differs from that depicted by the kinematic hardening model, the
recommendations giveﬁ here circumvent this discrepancy. '

One praminent effect that prior creep deformations have on subsequent
elastic-plastic behavior is that accumulated creep (time~dependent) strains
have much the same hardening influence on subsequent cyclic elastic-plastic
behavior as do accumulated plastic (time-independent) strains. This effect
is illustrated in Fig. 5 which shows the room-temperature cyclic behavior
of a type 304 stainless steel specimen which experienced an accumulation of

creep strain (at 1200°F) prior to cyclic testing. The stress-strain curve

ORNL-DWG 71~10563
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Fig. 5. Comparison of room-temperature post-creep tensile and cyclic
behavior of a type 304 stainless steel specimen to the behavior of a vir-
gin specimen. Note that only the final portion of the horizontal scales
applies to the plastic cycling curves.
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for initial monotonic loading is also shown, Comparisons between this
figure and the observation made earlier about hardening suggest that the
accaumulation of plastic strains upon initial loading and the accumulation
of creep strains result in similar hardening of the material. That is,
similar influence on behavior is observed for subsequent strain cyeling.
Specific information concerning the test shown in Fig. 5 and a few addi-
tional tests conducted to provide information on creep-plasticity inter-
actions are included in Appendix A.

With regards to siructural analyses, the use of stress-strain data
from monotonically loaded tensile specimens is recommended for the first
inelastic loading, but calculations for loading cycles subsequent to the
first inelastic loading are to be based on a bilinear representation of a
stress-gstrain curve corresponding to hardened material. Specifically, the
use of the cyclic stress-strain curve corresponding to the tenth cycle of
constant strain range cycling at the appropriate temperature and total
strain range is recommended., Here inelastic loading means an initial
loading program that gives rise to either initial plastic strains of any
magnitude or an effective creep strain (defined in a later section of
this report) equal to or greater than 0.2%. The change is made to the
stress-strain representation for the hardened material after an initial
inelastic loading has occurred and immediately preceding the incurrence
of reversed plastic strains. Reversed plastic loading is defined by
aij def. < O(,j whe; the initial inelastic loading is one of plastic strain-
ing and by Eij deij < 0, when the initial inelastic loading is one of
creep straining. Here aij is the tensor denoting the total translation
of the loading surface at the end of the initial loading phase [see Egs,
(14) through (17)], egj is the total creep strain at the instant of onset
of reversed plastic straining, and defj is the initial increment of re-
versed plastic strain., This change in stress~strain representation should
be made on an individual element basis, assuming finite element techniques
are used, or by an equivalent procedure if other analysis techniques are
employed.

The recommendations to account for hardening in analyses make use,
therefore, of bilinear representations of the fenth cyclic stress-strain

curves in addition to the stress-strain curves for monotonic loading of
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virgin material. The cyclic stress-strain data to be used are from speci-
mens which are subjected to fully reversed cycles over fixed strain ranges.
To correspond to the conditions prescribed earlier, the tests should spe—
cifically provide data corresponding to maximum total strains of 1%, 2%,
and 5% (total strain ranges of 2%, 4%, and 10%). The bilinear stress-
strain diagrams corresponding to the tenth cyéle curves are to be con-
structed in accordance with Fig. 6. The value for C is to be assumed
equal to that for the monotonic curve, while the value of k ig to be ad~-
Justed to ® = k;. The value of x; ig established from the point of in-
tersection of the elastic line (when total stress is used, the slope is

E, the initial elastic modulus) with the elastic-plastic line [for total
stress the slope is %-EC/(E + 3/2 C), where C is the hardening coeffi-
cient]. The elastic-plastic line is positioned so that the areas bounded
by the actual cyclic curve and the bilinear representation are approxi-
mately equally divided above and below the actual curve. That is, the

two shaded areas on the tensile (positive stress) portion of the cyclic
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Fig. 6. BRilinear representations of initial and tenth-cycle stressg~
strain curves.
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curve shown in Fig., 6 are equal, and the shaded areas on the compressive
portion are equal. The specific mathematical relafion of k; to this
graphical yield point is shown in Fig. 6. Except for scale, the proce-
dure for determining «, is the same when the stress definition in Fig. 6
is the deviatoric stress ¢’/ rather than total stress.

Figure 7 is included to show sample bilinear representations of a

set of stress-strain curves ovbtained from an elevated temperature test of
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Fig. 7. Sample bilinear representations of monotonic and tenth-cycle
stress~strain curves for type 304 stainless steel at 1200°F and for 1%
maximwn strain.
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type 30k stainless steel. The nonlinear stress-strain curves shown in

Fig. 7 represent an average of the results from the three uniaxial cyclic

tests at 1200°F shown in Fig. 8. Only the initial monotonic and the tenth

cycle stress-—strain curves are shown. These three tests were conducted

under identical conditions; results from one of the tests was shown in

The 2% total strain range corresponds to one of the three values

Fig. k.
recommended for use in constructing bilinear stress-strain relations. In
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this example it is observed that the ratio of k; to kg5 is 5.89. The slope,

Ep, of the elastic~-plastic line is related to E and C, as noted earlier, by
Eowa EC/(E c3c) (2k)
p 2 2 v )"

In summary, guidance has been given for utilization of uniaxial
stress-strain information in a manner consistent with available theories,
Tt is clear that additional data are needed for the materials of interest,
especially cyclic stress-strain information at elevated temperatures.
Specific equations are not available for representing monotonic stress-
strain curves Tor 20% cold-worked 316 stainless steel. HEDL personnel are
now correlating stress-strain data for this material, and updating corre-
lations for annealed types 304 and 316 stainless steel. It is expected
that they will process the data along the lines outlined.

It is noted above that needed cyclic stress-strain data are not gen-
erally available, In the event that experimental difficulties, such as
specimen instabilities, are encountered in efforts to obtain these data
for the largest strain range, an alternate approach to the construction
of the 10% cyclic curve 1s suggested. In this alternate approach, the
10% cyclic strain range curve is constructed from the 4% curve by the
method shown in Fig. 9. Here the final portions of the tenth cycle elas-

tic-plastic curves for the 4% strain range are essentially straight. The
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Fig. 9. Method of obtaining tenth-cycle cyclic stress-strain curve
for a strain range of 10% from a cyclic curve for a strain range of U%.
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cyclic curve for the 10% range is constructed by extending these L% elas-
tic-plastic curves in a straight line fashion until a total strain range
of 10% is obtained.

2.3, Mathematical Statement of the Recommended
Constitutive Equations for Plastic Behavior

As described earlier, the mathematical representation of general
elastic-plastic material behavior reguires an initial yield condition, a
flow rule, and a hardening rule governing the loading surface behavior
subsequent to initial yielding. Either the von Mises or the Tresca con-
dition is considered acceptable for deseribing the initial yield and the
loading surfaces. However, the flow rule of von Mises is recommended, and,
as discussed earlier, the Prager kinematic hardening model® ? is used for
describing the behavior of loading surfaces. The following discussion is
based on the use of the von Mises yield condition in nine-dimensional
stress space. In many cases some of the stress components are absent,

The treatment of the hardening rule in stress spaces of reduced dimensions

% and by Ziegler.® If the Tresca yield con-

is givén by Shield and Ziegler
dition is used with the flow rule of von Mises, Ziegler‘55 modification of
Prager's hardening rule must be invoked in order to assure invariance of
the yield condition with respect to reductions in dimensions. The modified
rule agserts that the loading surface moves outwardly in the direction of
the radius connecting its center with the stress point on the loading sur-
face, ’From the geometrical interpretation of Prager's rule and Ziegler's
modification, it should be noted that the two coincide when the von Mises
yield condition is employed.

When the von Mises yield condition is adopted for describing the ini-
tial yield surface and loading surfaces, the loading surface for isother-
mal classical kinematic hardening is given by Bqg. (1h4):

£ =2 (of, —o ol ~a ) =k, (25)
1] 1J 1J 1

where

do, . = Cdel . (26)
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and k is a constant. 1In general form, the constitutive equations may be

written as follows.

Loading:
P e
deij = gij £0 (27)
of
f = 37 dqij > 0 (28)
1J
Neutral loading:
P
deij =0 (29)
of
f =k, 55-7"“ dGlJ =0 (30)
iJ
Unloading:
P
dej; =0 (31)
of
=k, '5-0—7" d(jjij < 0 (32)
1j h

Unloading leads to an elastic state, while loading leads to a plastic

state,
When deig £0 it is given by
of
50/
P _ 1 ij of y
455 =81y “G 7 OF oF > 3o7 4% (33)

7 N7

sgkﬂ éckﬂ

For the nonisothermal case the loading function is given by*

P
. Y - )
f* = f (oij, eij> (D) =0 . (34)

*The development of this theory is explained more fully in Appendix C.
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In this case, f is given by the same expression as for the isothermal case,

that is,

. !—__ / — / — 2
=3 (aij Oﬁj)(aij aij) , (35)
and
P
daij = Cdeij ) (36)
Note that
oPx  Of (37)
o7, < Soll 37
ij iJ
and
A%  Of* dx .
ST Se @ (38)
dk i
Sl - (39)

Therefore, the general forms of the constitutive equations for the noniso-

thermal case are:

Loading:
aet. =n., 40 (%0)
i3 ij
% ¥ ‘
% = 0, ig, dcéj + 5—%— dT) > 0 (b1)
1]
Neutral loading:
P
- - 2
def; =0 (b2)
o, OfX N
% = 0, (5(_5—]’:]- dGij + 5 dT) =0 ()43)
Unloading:
aef. =0 (k)
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5 Of¥ P ofx
* = Q, (é’&;‘ daij + 5 dT)< 0 (J-FS)
When defj # 0, it is given by
of*
aef =m,, =% Gi/j OF  gor .+ O dT> (u6)
i3 T35 T C <af* SFF > 5o/ “Imm T ST '
du/ , do/ o

This is the constitutive equation for anonisothermal conditions and is recom-
mended for use when the von Mises yield condition is used as the basis for

the loading surface formulations.

3. TIME-DEPENDENT CREEP BEHAVIOR

This chapter contains a discussion and recommendation of constitutive
equations for time-dependent creep behavior. As previously stated, our
recommendations are essentially the same as the procedures we previously
specified for Appendix A of FRA-152, Revisions 3 and 4 (Ref. 2), The
recommendations do, however, go beyond those previously made in that aux-
iliary hardening rules have been developed and specified,

An equation-of-state approach has been recommended. Constitutive
equations based on the equation-of-state approach generally require three
ingredients, somewhat similar to the ingredients required to describe
elastic-plastic behavior. These are (1) a uniaxial creep law describing
the experimental uniaxial, constant-stress, isothermal, creep curves;

(2) a so-called "flow-rule" for multiaxial conditions; and (3) a harden-
ing law for prescribing the specific manner in which the formulation ap-
plies to variable stress conditions.

The creep law can, theoretically, be any convenient algebraic equa~
tion that adequately describes the constant-uniaxial-stress creep curves,
In particular, we feel that the form of the creep laws being developed by
Blackburn® for types 304 and 316 stainless steel is acceptable for analy-

sis use.
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The specific form of the flow rule to be used is developed and gpeci-
fied in this chapter. ¥Finally, it is recommended that, for the third
ingredient, strain-hardening be used, and auxiliary strain-hardening rules
are specified in detail for handling reverse loading situations.

The remainder of this chapter is divided into three sections. First,
a general background discussion of creep constitutive theories and the
current state-of-the-art is given. Then, specific constitutive equation
recommendations are made and the suitability of the HEDL creep equation.
is discussed. Finally, in the last section the recommended auxiliary

hardening rules are presented,

3.1. Background-Constitutive Theories
for Time-Dependent Behavior

The state~of-the-art of inelastic structural analysis is continually
being advanced. This includes both analysis procedures and methods for
mathematically describing material pehavior. Although the methods avail-
able at any given time may not be completely satisfactory in every way,
the current technology must be employed. The essence of the current tech-
nology for inelastic analyses is given in Appendix A of FRA-152, Rev. H:
(Ref. 2).

The basis for the time-dependent inelastic, or creep, analysis meth-
ods given in FRA—152, Rev. 4, is an equation-of-state approach which in-
cludes both primary and secondary creep. Although other methods are under
develomment, the computational séhemes, the materials behavior data, and
the experience that exist today do not now pefmiﬁ the general application
of these evolving methods. A significant example is the apparent progress
being made in the develomment of memory theories (hereditary bases) . ¥
Although the progress is encouraging, memory methods are not yet to a
point of general applicability. First, large-scale, general-purpose com-
puter programs based on memory theories do not exist. Second, available
data on:material behavior permit éonsideration only of memory methods which
utilize single (possibly nonlinear) hereditary integrals. Although memory

theories can be modified and potentially improved through the inclusion of

*Further discussions of memory methods are included in Appendix E.
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additional hereditary terms, their development and evaluation require con-
siderable analytical and experimental study. The experimental information

required includes that from a significant number of multistep creep tests.

Consideration has been given to the representation of time-dependent
behavior by approaches which are based on the concept that the strain-rate

tensor is derivable from some type of potential function, 197 11

A opoten-
tial concept is not altogether foreign to equation-of-state approaches,
but reference is being made here to methods that are not generally thought
of as classical equation-of-state approaches. Some of these methods®©s 1%
lead to creep representations which incorporate a kinematic type of harden-
ing. The assessment of, say, a kinematic hardening creep model requires
precise data from uniaxial and multiaxial tests with loading programs that
cover a range of unloadings and loading reversals. Although meaningful
exploratory testing is now underway, sufficient experimental information

is not now available for the materials of interest, in our opinion, to
support the recommendation of a method of this type. The specialized
characteristics in behavioral predictions that would be inherent in the
choice of any specific model of this type leaves too great an uncertainty
vetween these predicted features and the behavior of the materials of in-
terest.

Despite possible connotations of their name, classical memory (hered-
itary) creep methods do not account for history effects in the sense of
elastic-plastic interaction with creep. Thus, such interactions must be
considered separately regardless of the creep analysis method chosen. As
far as types 304 and 316 stainless steel are concerned, existing experi-
mental information concerning elastic-plastic and creep interaction does
not warrant alterations to either the form of the creep constitutive equa-~
tions or the guantitative statements of creep laws.® Consequently, equa-
tion-of-state type constitutive equations along with creep laws applicable
to virgin materials should be used in present creep analyses. Also, exist-
ing creep data are not sufficient to support a creep law for compressive

stresses that differs from the creep law applicable to tensile stresses.

*See Appendix A for discussion.
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Thus, it is assumed that creep response fo constant uniaxial compression
is identical to that in tension.

As pointed out in references given in Appendix A of FRA-152, Rev. 4,
past experience has generally concluded that of the equation~of-state creep
methods most commonly used, those based on strain-hardening formulations
best represent available experimental data. Recent ORVL data for type 304
stainless steel also support this position.’® Consequently, it is recom-
nended that strain-hardening be used.

The equation-of-~-state approaches, including strain-hardening, are
based on the assumptions given in Appendix A of FRA-152, Rev. 4, These
agssumptions of isotropy, incompressibility, indifference to hydrostatic
stress, and colinearity of creep strain rate and deviatoric stress lead

to the basic form of the constitutive equations

éC = g/

i3 . (47)

where egj and Gij are the components of creep strain and deviatoric stress
tensors, respectively. The scalar proportionality function A is expressed
in terms of the invariants of the deviatoric stress tensor and of the
creep strain tensor as well as other scalar variables such as time, t, and
temperature, T. Since the often-used effective stress and strain vari-
ables, o and E, are proportional to the second invariant (Jé) of ci. and
the second invariant (I.) of egj, it is acceptable for A to be expressed

in terms of o and €. Specifically,

— .3
0= = 35, = = Gij Gij (L48)
and
-2 _ kb 2 ¢ c
e =3 I, = 3 €15 €13 (L9)

An added condition, that the multiaxial constitutive eguations must incor-
porate a proper description of the uniaxial stress case, leads to an accepb-

able form:

€ _3elotl) (50)

iJ ij

N

9]
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The requirement that fq. (50) degenerate to the uniaxial-stress case
requires, in ‘turn, E'(E;t,T) to be the constant-uniaxial-stress creep law
with axial stress and strain variables replaced by their effective counter-
parts., Therefore, the constitutive equations for the basic equation-of-
state approach are composed of Eq, (50) and a creep law which mathemati-
cally expresses the experimentally observed axial creep strain as a func-
tion of constant-uniaxial-stress, time, and temperature.

The manner in which these equations apply to variable stress condi-
tions depends upon the hardening law chosen. This choice is reflected by
the variable used to express the effective creep strain rate é} If stress,
time, and temperature are used, time-hardening results. If stress, strain,
and temperature are used through the elimination of time between e and é,
then strain-hardening results, Thus, the equations for strain-hardening

have the form:

éC = %_E;LE;EQEL of. . (51)

As stated earlier, strain-hardening methods are currently recommended for
creep analyses involving types 304 and 316 stainless steel, In our recom-
mendation, Eq, (51) is considered to be applicable without modification
only so long as stress reversals do not occur (changes in magnitude are
permitted). Auxiliary rules are recomnmended in Section 3.3 for use when
stress reversals are encountered.

The acceptability of a creep law for use in this type of analysis is
Judged on the basis of its ability to represent constant-uniaxial-stress
creep data and known trends of material behavior., This ability must be
considered over representative ranges of stress, temperature, and time.

Of course, it is seen that the manner in which one eliminates t between

€ and é to arrive at Eq. (Sl) is highly dependent on the mathematical form
of the creep law. Except in rare cases this elimination has to be per-
formed numerically within the overall computer program. Every effort
should nevertheless be made to keep the camplexity of the creep law to a

minimum.
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The creep laws being developed by Blackburn®?® for types 304 and 316

stainless steel are of the form:
C i (o,T)%
o) = e(o,m |- O Lt oy, ()

where émt represents the steady—state creep strain and the remainder of Eq.
(52) represents the primary creep strain. There are no conceptual objec-
tions to this mathematical form, and it i1s an acceptable form for use in
strain-hardening creep analyses. The implementation of strain-hardening
techniques is to be discussed more fully later, along with some observa-
tions that result from the use of specific creep lawg. Particular atten-
tion is given to creep laws whose basic form is‘given by Eq. (52).

Two approaches to strain-hardening computations are considered accept-
able even though they may lead to slightly different answers under complex
loading programs.* In the first method, the strain-hardening is based on
the total (primary plus secondary) effective creep strain. The effective
strain value used in this method &t any given point in an analysis is cal-
culated from the current values of the total cfeep strain components. In
the second method the strain-~hardening is based on the primary creep strain
only. Here the effective primary creep strain and effective total creep
strain are calculated at any given point from the current values of the
respective strain components. The attached Appendix D provides a compari-~
son between the predictions of these two procedures for some specific load-~
ing programs that ORNL used in creep tests of type 30L stainless steel. |

The first of the strain-hardening procedures is conceptually the same
regardless of the creep law used. This results from the fact that the
total creep strain law is composed of at least two mathematical terms, one
(or more) for the primary creep and one for the secondary creep. This
makes it impossible, except in rare cases, to eliminate time, t, between
€ and é in a closed-form fashion. Therefore, the computer programs to be

used in making these analyses must possess a scheme for solving numerically

*The basgses for thesge methodsg are deseribed here for cases that do not
involve stress reversals. Section 3.3 gives auxiliary rules to be used
when stress reversals are encountered.
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for values of time corresponding to given values of stress and total creep
strain. Aside from this numerical effort, the strain-hardening scheme
based on total creep strain does nol introduce any additional analytical
complexities,

Most computer programs capable of creep analyses perform calculations
on an incremental bvasis. The stress and temperature are considered to be
constant over a given interval., The effective strain at the beginning of
an interval is determined, in the total creep strain-hardening procedure,
from Eq. (49) and the components of the total creep strain that exist at
that instant. This effective creep strain, along with the effective stress
calculated from Eq. (L8), establishes fram the creep law the coefficient
in the constitutive equations, Eg. (51). From this, the creep rates can
be established and the creep strains calculated for the interval.

The second strain-hardening procedure does conceptually depend to
some extent on the creep law. Here strain-hardening is based on primary
creep strains only, as opposed to total creep strains., A significant
analytical advantage of this procedure exists in those cases where the
primary creep strain in the creep law is represented by a single function
of time. This situation usually permits a closed-form solubion of a
single~-term primary creep equation for time, This eliminates the need
for the numerical scheme discussed in connection with the first strain-
hardening procedure, Here the strain rates are composed of two parts,

The first part is analogous to Eq. (51) and the second is a steady-state

contribution, This is stated by

~t ==t -
écj _ g_ [E__(E.’__e_;.ﬁ + g(o,T):l of (53)

-t . . . .
where ¢ is the effective primary, or transient, creep strain and
%-g(BZT) Oij represents the steady-state creep rate.

The creep procedures and equations given in Appendix A of FRA-152,
1l % et
2 "ij i3’
effective creep strain is actually the effective primary creep strain.*

Rev. L4, fall into this category when I, = that is, when the

*This primary creep strain interpretation of I, is necessary for the
creep formulation in FRA-152, Rev. L4, to be able to reproduce the con-
stant-uniaxial~stress creep equation.
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A power law (in stress and time) creep equation is the basis of the for-
nmulation given in that appendix,

In principle, a numerical scheme analogous to that discussed relative
to the strain-hardening procedure based on total creep strain can also be
employed with the primary creep strain procedure. This would make possi~
ble the use of arbitrarily complex equations for representing primary
creep, This second procedure does, obviously, require computer programs
to store current values of primary creep strain as well as of total creep
strain. However, this storage should not place any significant new demand
on computer programs.

An example of a creep law which includes a two-term expression for

the primary creep is

ec(g,t) = £,(0,T) [l — e_rl(U’T)tJ

-rs(0,T)t :
|+ etome . ()

+ f£o(0,T) [l —-e

A closed~form solution to the two-term primary creep expression fTor time
cannot be found, and use of a numerical scheme is necessary and considered
acceptable. Obviously, the use of a multiterm expression, such as that
shown gbove, for the primary creep does, in general, permit a better rep-
resentation of creep strain-time data.

The strain-hardening procedure based on primary creep strains can be
applied in closed-form fashion when the creep law is of the form given by
Eq. (52):

%(0,4,7) = £(0,T) [1 ~ e“r(U:T)’G] + glo, 1)t (55)

where f, r, and g are functions of stress, o, and temperalure, T. The
creep equations being developed by Blackburn® for types 304 and 316 stain-

less steel are of this form. Here the primary creep strain is given by

&(o,t,T) = £ a;T) [1 e 4 O’T>tjl ] (56)
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Differentiating Eq. (56) with respect to time, and eliminating e—rt, pro-
duces an expression for the primary creep strain rate in terms of the
stress and primary creep strain. The multiaxial relations, inecluding the

steady-state creep rate, then become

al.
Gy 73 G0N EED =T elon] =H (57)
The effective primary creep strain Et is to be calculated at the beginning
of a time interval from the primary creep strain components present at
that time.

An analysis based on Eq. (57) would be straightforward as long as the
loadings are constant or increasing., However, care must be exercised when
the loading is decreased, as without additional restrictions Eg. (57) can
sometimes lead to erroneous results. For example, consider a stepwise
reduction in a uniaxial stress o111 (xl direction) from a tensile stress
o, to a compressive stress, —op, where |o | > |op|. If the material had
been exposed to the tensile stress o, for a sufficient period of time,
then the term [f(E,T) - Et] will be negative immediately after the stress
change, Then Eqg, (57) will give a positive primary creep rate é?l since
0{1 is negative. This erroneous result may be circumvented by equating
the term [£(o,T) —-Et] to zero when it is caleculated to be negative.

A more general set of rules for specifying the hardening present
under cyclic conditions is given in Section 3.3. These general rules
avoid the erroneous situation discussed above where the stress undergoes
a change in sign. However, it is still possible for the indicated bracket
term to be negative when stress reductions occur without a change in sign.

When this occurs, [£(o,T) —'Et] should be seb equal to zero,

3.2. Recommended Creep Relationships

3.2.1. Specific constitutive equation recommendations

For convenience, the recommendations made in the previous section are
collected here. It is recommended that an equation-of-state approach

based on strain-hardening be used. The specific muwltiaxial equations to
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be used were specified by Eq. (51):

e (o,c »

.C
€ -
1]

id

i
PO

(58)

Relative to general rectangular cartesian coordinates (x,y,z), these equa-
tions can be written in terms of the usual engineering normal and shear

components as

—

£ o cloed) | ‘“%(Uy”fz)}:
g

X

C E_Liééiglkﬂgz i % (GX + Gy)} , (59)

Equation (58) is used with the time increment-initial strain analysis
method in the following manner. Effective stress and effective creep
strain values are determined for the beginning of the increment. These

, the

effective creep strain rate, for the time increment, The strain rate com-

are then substituted into the uniaxial creep law to determine e

ponents are then determined by Eq. (58).

In determining é from the uniaxial creep equation, it is generally
necessary to determine a pseudo time, t, corresponding to thé creep strain
value, €. This determination may require a numerical procedure, as disg-

cussed in the previous section, particularly if € represents total, rather
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than primary, creep strain. It is permissible to base the strain-hardening
on primary creep strain, in which case the applicable multiaxial creep

equations are represented by Eq. (53).

»
P

t o, -t
.C _ 3 |¢ (GZE ,T) (= / 5
&,°3 L 2 i g(o,T)] 05 (53)
o
Here, Et represents the primary effective creep strain and g(E,T) Oij

represents the steady-state creep rate. When Eg. (53) is used with cer-
tain uniaxial creep laws, it is possible to obtain an explicit relation
for é} thus avoiding a numerical solution for a pseudo time. This was
demonstrated in the previous section for the form of the unilaxial creep
equation being considered by HEDL,

Equations (58) and (53) together with an acceptable uniaxial creep
law and the specific auxiliary hardening rules that are presented later
for handling reversed loading situations are all that is required for
performing creep analyses, As previously stated, we feel that the uni-
axial creep law form being considered by HEDL'>® is acceptable for use.

The bases for this judgement are presented next.

3.2.2. Compatibility of proposed HEDL creep
equation with analysis techniques

The creep law proposed by HEDL» © for types 304 and 316 stainless

steel has the basic form:

e (0,t,T) = €y (l - e"rt> + émt s
where et, r, and ém are each relatively complex functions of stress and
temperature., Seemingly questionable results have been obtained from creep
structural analyses using this eguation, and consequently some doubts have
been expressed in the past with regards to the compatibility of the equa-
tion with current inelastic analysis techniques. It is ORNL's position
that the basic form of this equation 1s acceptable for use in creep analy-
ses using current techniques provided the equation does adequately repre-

sent the uniaxial-constant~stress creep data.
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Analysis predictions of the type that have caused concern are shown
in Fig. 10. Here, the calculated* effective stresses on the inner and
outer surfaces of a pressurized thick-walled cylinder appear to approach
near-steady-state values, but a "perturbation” then occurs in the stress
values with time. This perturbation has been variously interpreted as an
oscillation resulting from stability problems in the steady-state creep
solution, and the implication is that the creep equation is not compatible
with the "time increment-initial strain" finite element creep analysis
procedures currently in use. This is, however, not the case; the pre-
dicted behavior is the result of ‘neither stability problems nor any basic
incompatibllity between the creep equation and current analysis proce-
dures. . Rather, the predicted behavior is, in fact, the general type of
response that would be expected. Two points supporting this position are

briefly discussed here.

*The predictions shown were obtained from axisymmetric, plane-strain
finite element analyses using an early version of the proposed HEDL cree
equation. ;

» ORNL-DWG 7t-10569
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Fig. 10. Axisymmetric, plane-strain creep analysis of thick-walled
cylinder subjected to 3650 psi internal pressure.
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First, the solution which at about 500 hours appears to be near
steady-state could not possibly be so. The steady-state stress distri-
bution, by definition, 1s reached only after the creep-strain rates be-
come independent of time. At 500 hours and at the effective stress levels
shown in Fig. 10, the transient, or primary creep, predicted by the pro-
posed creep equation is far from being depleted, particularly at the lower
stress level on the outer surface. This can best be understood by exam-
ining the predicted stresses in relation to Fig. 11, which is a plot of
the time required to deplete various percentages of the total primary creep
strain as determined from the creep equation used in the analysis. As
long as significant primary creep, which is typified by continually vary-
ing creep strain rates, is occurring, the stresses must continually re-
distribute to maintain geometrical compatibility of the structure. Thus
the perturbation in the stresses of Fig. 10 is simply indicative of the
stress redistribution that takes place as the primary creep strains are
depleted, first on the inner surface of the cylinder and then on the outer

surface,

ORNL—DWG 71— 140568
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Fig. 11. Percent depletion of primary creep.
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The second point is a significant one with regards to the compatibil-
ity of the proposed creep equation with current analysis procedures. The
memory theory predictions® shown in Fig. 10, although based on the creep
response given by the creep equation used for the equation-of~-state pre-
dictions, were obtained by Y. R. Rashid at General Electric using the new
inelastic analysis finite element computer program that is being developed
as a part of the ORNL program. The analysis method used is akin to the
familiar "modified stiffness” method of elastic-plastic analysis in that
the integral equations describing the creep response are used in the actual
finite element stiffness calculations for each creep prediction. The
method is thus free from the problems of time-increment selection and
stability that are inherent in the time increment-initial strain proce-
dure used in current equation~of-state approaches. The fact, then, that
the equation-of-state and memory theory predictions of Fig. 10 do closely
agree indicates that the current analysis procedures (i‘e.,'the time
increment-initial strain method used with an equation-of-state creep for-

mulation) are compatible with the proposed creep egquation.

3.3. Recommended Auxiliary Rules for Applying Strain-
Hardening to Situations Involving Stress Reversals

The strain-hardening formulation recommended in Section 3.2 for use
with the equation-of-state approach to creep analysis is considered appli-
cable only so long as stress reversals do not occur. If a change in stress
occurs at time t so that a stress reversal does not occur, the strain~
hardening procedure, based on either total or primary creep strains, can
be applied in a straightforward manner. A specific definition of a stress
reversal is given later. If a stress reversal occurs at time £, then
auxiliary rules must be employed along with the strain-hardening proce-
dure previously given. Recommended auxiliary rules are specified and ex~
plained in this section.

To understand the shortcomings in the strain-hardening procedure when

stress reversals are encountered, consider the simple case of a uniaxial

*Bee Appendix E.
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creep specimen subjected first to a tensile stress of +o and then to a com-
pressive stress of —o. During the tensile portion of the loading strain-
hardening occurs, and the strain-hardening procedure would predict that
upon changing to the compressive loading this accumulated strain-hardening
would be retained. For example, if the secondary creep portion of the
creep response had been reached in tension, then the strain-hardening pro-
cedure would predict a compressive creep strain response beginning in the
secondary creep region. This appears to be incorrect., We would expect
that the hardening accumulated in tension would be lost upon changing to
compression, that is, the compressive creep response would exhibit primary
creep similar to the case of a virgin specimen.

A second shortcoming of the strain~hardening procedure when applied
to stress reversals arises in connection with time-incremental analysis
procedures and can be explained using the example considered in the pre-
vious paragraph. Subsequent to the change to a compressive stress, the
effective creep strain, as computed from the creep strain components at
any given time, decreases, Hence, in an incremental analysis which ufi-
lizes small time increments, the effective creep strain, and hence the
strain-hardening, decreases from increment to increment, The net result
is that the creep strain rate increases with time as the effective strain
decreases toward zero. After reaching zero, the effective strain begins
to increase again and the rate decreases accordingly. For the exsmple in
which the secondary portion of the creep response is reached in tension
vefore reversing the stress, a time-incremental analysis using strain-
hardening would predict a compressive creep response starting with secon-
dary creep and proceeding to primary creep.

The auxiliary rules recommended in this section are intended to over-
come the inconsistencies described above. The rules are relatively simple
and should present no serious problems with regards to their incorporation
into existing inelastic structural analysis computer programs. It should
be emphasized that the rules are based almost entirely on presumed behav-
ior, because very little applicable data exist. The limited results avail-

14,15

able from a few tests on aluminum alloys and Inconel appear to support

the presumed behavior.
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In the remainder of this section, the presumed uniaxial behavior is
first discussed and rules are prescribed for predicting the behavior.
Then these rules are generalized to multiaxial conditions and to a form
that can be wbilized in structural analyses., Finally, typical creep struc-
tural analysis results obtained af ORNL using the recommended rules are
presented and compared to predictions based on applying the strain-harden-

ing procedure without using the auxiliary rules.

3.3.1. Presumed uniaxial creep response

To form a basis for further discussion, we will first briefly review
the graphical application of the strain-hardening procedure to those situ-
ations not involving stress reversals., The procedure is illustrated in
Fig. 12 for the case of a three-step loading sequence involving the uni-

axial tensile stresses o, < oz < 0z. The top sketch shows the stress~
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time history; the middle sketch, the uniaxial-constant-stress creep curves
and the usual strain-hardening procedure;* and the bottom sketch, the re-
sulting predicted creep response.

It can be scen that for any stress history in which no stress rever-
sal (change in sign) occurs, strain-hardening, whether based on total
creep strain or on primary creep strain, is applied in a straightforward
manner according to the procedures described in Sections 3.1 and 3.2.
Hardening continues so long as creep strain is accumulated.

Now consider the situation in which a stress reversal is involved,
as shown in Fig. 13. During the period in which the initial tensile
stress og acts, total creep strain denoted by €, is accumulated, and, on
the basis of total creep strain, €; also is a measure of the hardening
accumulated. When the stress changes to —o, at time t,, it is assumed
that all the strain-hardening, €,, accumulated in tension is lost. Thus
the creep response produced by this first application of compressive stress
starts at zero strain-hardening, just as in the case of a virgin speci-,
men.**

When the stress is changed back to tension at time ts, a complicating
factor enters because hardening equal to €, was previously accumulated in

tension., If €5, the creep strain accunulated subsequent to the application

*Although the strain-hardening is shown graphically based on total
creep strain, the basis could just as well be primary creep strain as ex-
plained in Section 3.1.

**A few test results for aluminum alloys seem to indicate that the
creep response in compression after a prior creep period in tension is
perhaps slightly larger than that of a virgin compressive creep specimen.
However, unpublished data at ORNL on the creep behavior of Inconel show
the creep response to be essentially the same before and after loading
reversals between stress values of equal magnitude. The latter is illus-
trated by Fig. 14 which shows plots of total strains versus time for
cycles in a typical test. Although the temperature level is high and the
cycle periods relatively short, the results seem to support the assump-
tions being made. The results shown in Fig. 1L include a creep "soften~
ing" feature as the number of cycles is increased. Under reversed loading
conditions, many structural metals "harden" or "soften" so far as their
resistance to creep deformation is concerned, 1® However, at this time
insufficient information about the cyclic creep characteristics of austen-
itic stainless steels exist to suggest the inclusion of a cyclic hardening
or softening feature in recommended constitutive equations,
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of the compressive load, is smaller in magnitude than €., then it seems
reasonable to assume that hardening equal to €, — €z remains in tension,
and the creep response sbarts at this value on the o, creep curve as shown
in Fig. 13. 1If €, had been larger in magnitude than ¢,, then all of the
tensile strain-hardening would be eliminated, and the creep response on
the oo curve would start at zero strain, just as for a virgin specimen,

We can carry the discussion one step further by assuming that creep
strain with magnitude €5 is accumulated at stress o,. As soon as €5 ex-
ceeds €5 in magnitude, the hardening accumulated in compression is lost,
and a subsequent change to a compressive stress would produce an assumed
creep response starting at zero strain on the appropriate compressive creep
curve (assumed identical to the corresponding tensile creep curve), If a
change to compression occurs before €, exceeds €, in magnitude, then hard-
ening equal to €, —~ €5 would remain in compression, and the assumed creep
response would start at this strain level on the appropriate compressive
creep curve,

What is needed now 1s a simple and readily usable set of rules for
adequately describing the presumed creep behavior. To this end, consider
a general statement of the uniaxial strain-hardening creep model in the

form:

&€ = et o,m) (60)
where éc is the total creep strain (primary plus secondary) rate and eH
is the current strain-hardening value, which in the usual strain-hardening
procedure is also a measure of the current creep strain.”

Without modification, the uniaxial strain-hardening law given by Eq.
(60) is applicable only when stress reversals are not considered, that is,
when the stresses change in magnitude but not in sign. For cyeclic uni-
axial loadings involving stress reversals, the applicability of Eq. (60)

is extended by redefining the strain-hardening measure, eH, relative to

*The strain-hardening EH may be based either primary creep strain or
total creep strain, depending on the type of strain-hardening adopted.
If primary creep is used, the relation for €~ may be explicit as discussed
in Section 3.1. If total creep is used, the relation will be implicit,
and a numerical solution will be required to determine the creep strain
rate.
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reference creep strains and by determining its value according to the fol-

lowing rules:

1. At any time there exist two possible creep strain "origins,"
e+ and e~, as shown in Fig. 15. The strain e+ is a negative quantity,
and € 1S a positive gquantity.

2. Initially for a virgin specimen, e = = 0.

3. For positive stresses, the creep rate is determined from Eq. (60)
with eH defined by

H +
€ =€~

For negative stresses, the creep rate is determined with EH defined by

H —
€ =€ - |

Here, ¢ is the current creep strain, either primary or total, depending
on the strain-hardening law.

L. For arbitrary stress reversals, let e,, €z, €5, ..., € denote
the values of € at the time of the first, second, etec., stress reversals,
respectively, and let € = 0 denote the initial creep strain. Then after

the nth stress reversal,

et oL min
- i=0,n 71’
- in
e = O s
i=0,n i

~ ORNL-DWG 71~10677

CREEP STRAIN

TIME

Fig. 15. Presumed creep response for arbitrary loading sequences.
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The creep response predicted by these rules for a case involving ten
arbitrary stress reversals is depicted in Fig., 15.% The circular points
indicate the creep strain origin used for the following step of the curve,
In step 1, € = 0 is used as the origin. In step 2, which involves a stress
reversal, the origin € is reset from its initial zero value. The creep
behavior for step 2 is then obtained simply by considering the virgin uni-
axial-constant-stress creep curve to be shifted to the new origin repre-
sented by the circular point and reversing the direction of creep to ac-

count for the stress reversal.

The shifted origins for subsequent steps are shown by the circular
points. At each stress reversal, the origin is switched so that the strain
always moves away from the current origin. The origin strain, e+ or eu,
is reset only when it is exceeded. 1In Fig. 15 this occurs at the beginning
of steps 2, 6, and 9, and these points are called "major" reversal points.
The remaining steps, 3, 4, 5, 7, 8, 10, and 11, begin with a residial
strain-hardening value determined appropriately from (e — ¢') or (e — ¢ ).
Since neither strain origin, e+ nor en; is reset at the beginning points
of steps 3, 4, 5, 7, 8, 10, and 11, these points are referred to as inter-

mediate reversal points.

3.3.2. Extension of the auxiliary strain-hardeniog
rules to multiaxial stress histories

For general applicability, the auxiliary rules developed for the case
of uniaxial stress reversals must be extended to the case of multiaxial
stress reversals., Many practical high-temperature structural problems will
involve only radial, or near-radial, loadings.*¥* The extension of the rules
given here for multiaxial conditions is intended primarily for application
to these types of problems, and they are based on the concepts of effec-

tive stress and effective strain.

*The response shown in Fig. 15 is based on a constant stress acting
between each stress reversal. More generally the stresses in an actual
case would vary in magnitude in the intervals between reversals, and the
regsponse would look something like that shown in Fig. 12.

*%¥The term "radial" is here taken to imply proportional changes in
creep strains,
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The general strain-hardening multiaxial creep equations, analogous to

Eq. (60) for the uniaxial case, can, by Eq. (58), be written in the form

égj -2 (FL5m o (61)
where égj represents the total strain rate components, EH is the current
value of strain-hardening (which in the usual strain—hardeniﬁg procedure
is a measure of the current effective creep strain), on either a total or
primary creep strain basis, o is the effective stress, and a£j represents
the deviatoric stress components.

The applicability of Eq. (61) is extended to multiaxial stress rever-
sals by redefining the strain-hardening EH relative to reference creep
strain shtates and by determining its value according to the following gen~-
eralized rules.

1. Define:

Value based on eg- when strain-hardening is

Strain-hardening based on total créep strain

Pt =
value, € , Value based on egj when strain-hardening is
based on primary creep strain,
egj when strain-hardening is based on total
Instantaneous creep strain

#

l e?. when strain-bardening is based on primary

1
creep strain,

strain value, e%j

€.., €,. = Two possible strain origins which exist at any
time in either total creep strain space or pri-
mary creep strain space as appropriate,

€ = An effective strain quantity which in the multi-
axial case ig the equivalent to the distance
between origins for the uniaxial case,

G = A measure, on an effective strain basis, of the

distance between an instantaneous strain state
and the appropriate one of the two strain ori-
gins [see Eg. (49)1,
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T

[2(1 +><I
= 3T 1€,. T e,. €,. — C
3\7ij iJ 13 i

_ _ T N/ T - \]1/2
e =o (el — ) - [B (e - ) (< -,
1d 1d 3 1J 1J 1J 1J

Definition of stress reversal: For multiaxial conditions, a "stress

e -

I

reversal" is considered to occur whenever the effective creep strain
(G+ or GN) measured from the current origin (e;j or eZﬁ) begins to
decrease. Since, as stated in Section 3.1, the creep strain rate, or
the creep strain increment, is colinear with the deviatoric stress,
which is known before the creep strain increment is calculated, the
condition for a stress reversal is that the deviatoric stress be di~
rected toward the current origin., More precisely, if the current ori-

A +
gin is eij’ a "stress reversal" occurs when the product

<e¥. —-ef.)o{.<o .
1J 1d 1J

. I
Because no volume change occurs during creep, €

Kk 0, and the above

inequality can be replaced by
<e?, - ef.) g.. <0 .
1J 1J 1iJ

Similarly, if the current origin is eij’ a "stress reversal" occurs

when
<E¥. - eT.) 0..<0 .
ij i3 ij

Whenever a load reversal is detected at the beginning of a time incre-
ment, as described below, the origin is switched (and reset if nec-
essary) before the incremental creep strains are calculated.

For the initial unloaded case:
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For the initial loading of the virgin material, the creep rate is deter-

mined from Eq. (61) and, because of item 3 above, EH is defined by
e <€I) .
1]

Agsuming the initial loading is tensile in character, at the instant
of the first stress reversal, é;ﬁ and € are set equal to Eij and

G <€ij>’ respectively, and the origin switched to egs s0 that after
the reversal,

€.. /.
1J

EH =G =G <e¥. -
ij

At the instant of the next reversal, if a > e, eij and € are set equal

to eij and G_, respectively, and the origin switched to g;j' After

each stress reversal occurs, the origin is switched.

In general, the following steps are taken when the current origin is

+
Eij and a stress reversal occurs.
a, If
N
+ ~
G (e?. - e..) > €,
1J 1J

leave ezj unchanged and reset

+ - ~
leave €.., ¢.., and ¢ unchanged.
1d iJ

¢. Test for the condition discussed in step 7 below, and if it does

not apply proceed to step d.
d. The origin is set at 6;5, and the effective strain-hardening, EH,

is defined by
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EH = G (e?. - eT.) .
1J 1J

This relation is used to determine the effective strain-hardening
until the next stress reversal occurs., Wnen the next reversal
occurs, one proceeds to step 6.
6. The following steps are taken when the current origin is E?J, and a
stress reversal occurs.

a, 1T

G<e?. - e".".>> e,
ij ij

leave EZj unchanged and reset

+ — A
leave €5 eij’ and € unchanged,

j)

¢, Test for the condition discussed in step 7 below, and if it does
not apply proceed to step d.

d. The origin is set at e;j, and the effective strain-hardening, Eﬁa

is defined by
€ =G <€¥. - eT.) .
iJ ij

This relation is used to determine the effective strain-hardening
until the next stress reversal occurs at which time one returns
to step 5.
e. Repeat steps 5 and 6 for the entire loading history.
7. Iﬁ most practical cases the above rules will be sufficient to ensure
that the creep strain increments always be directed away fram the cur-

rent origin. However, in either step 5 or step 6, it is possible to
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have a condition where both

€,, —€,.,0,.<0
1J 1d 1] ,

and
I 1 >
(Cij €55/ %3 <0

and neither origin is to be reset. Figure 16 illustrates such a situ-
ation in which the creep strain increments along path 3 in strain space
are directed toward both origins. If the rules that have been given
are used, every increment taken along path 3 will be interpreted as a
stress reversal and will result in a switch or origins; To avoid this
problem of possible repeatedioscillations‘between origins when moving
along a single path, the most distant origin should be used in such
cases. That is, 6;3 is to be used as the origin and the effective

strain-hardening determined as in step 5 if

G <e?. - ef.) > G <e¥. ~ éf.),
ij ij ij ij

and €;5 is to be used as the origin and the effective strain-hardening

ORNL~DWG T1-10679
€4

12

Fig. 16. Schematic of situation in which creep strain increments
are directed toward both origins.
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determined as in step 6 if

\

G <6¥. - eT.><< G <€¥. - ET.).
i3 ij i ij

In the time increment-initial strain finite element analysis procedure
the above rules are to be applied on an element-by-element basis. The
effort that would be required for the original developer of a program to
incorporate these rules is not deemed to be excessive. Tt should be pointed
out, however, thal the procedure does require additional compulLer storage
for the components €Zj and e;j and the scalar € for each element. Also, as
discussed in Section 3.1, if primary creep strain hardening is used, both
eg., the total creep strain, and €§j’ the primary creep strain, must be
stored., Finally, it should be pointed out that for incremental creep cal-
culations, the creep rate may increase abruptly when a shift of origin oc-
curs, so that a corresponding reduction in the time increment may be nec-
essary. This increase is felt, however, to realistically reflect features
of actual material behavior.

It is believed that in most practical applications the use of these
rules will result in reasonable and consistent predictions. It should
again be pointed out, however, that we are relying on effective strain con-
cepts, and thus we are using a single quantity — effective strain — as a
repository for history effects associated with each strain component. The
shortcomings of this procedure can manifest themselves in certain nonradial
loading situations where anomalous strain-hardening behavior can still be
obtained even with the auxiliary rules. Fortunately, as previously stated,
most practical problems involve near-radial loadings, and no difficully
should arise. Nonetheless, the analyst should be alert for situations
which might potentially cause problems.

We are currently evaluating forms of the auxiliary rules which appear
to overcome some of the shortcomings of the recommended procedures. Sev-
eral possibilities show promise, but they are not yet developed or evalu-
ated sufficiently for us to recommend them.

To illustrate the application of the rules that are recommended, we
incorporated them into one of the axisymmetric finite element inelastic

programs that we have developed at ORNL, and we analyzed the thick-walled
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cylinder problem that was discussed in Section 3.2, The cylinder was
assumed to be subjected to a pressure of +3650 psi for 30,000 hours and
then to a pressure of —3650 psi for an additional 30,000 hours. Four sep-
arate analyses were performed, having the following four types of strain-
hardening:
1. total creep strain-hardening, fixed origin (without auxiliary rules),
2. primary creep strain-hardening, fixed origin (without auxiliary rules),
3. total creep strain-hardening with reset, or adjusted, origin (using
auxiliary rules),
4. primary creep strain-hardening with reset, or adjusted, origin (using
auxiliary rules).
In all cases, an early version of the proposed HEDL creep equation for 304
stainless steel was used.
The analysis results are typified by the curves shown in Fig. 17.

Here, the effective stress on the inner surface of the cylinder is shown

ORNL~ DWG 71--10567
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Fig. 17. Predicted response of pressurized thick-walled cylinder
determined with and without auxilisry strain-hardening rules,
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as a function of time for both the positive pressure loading and the nega-
tive pressure loading, For the positive loading the four hardening proce-
dures gave results which were essentially the same (differences, when
plotted, were not discernible)., For the negative loading, however, the
analyses without the auxiliary rules gave different results. The predic-
tions based on use of the recommended auxiliary rules are the more reason-
able of the four and represent the kind of behavior, qualitatively, that
would be expected.

The effects of the two shortcomings of the usual strain-hardening pro-
cedure (without the avxiliary rules) are exemplified in the results shown
in Fig. 17. First, use of the assumption that the hardening accumulated
in the initial loading is retained when the loading is reversed helps to
explain the more slowly decaying stress predicted by the fixed origin pro-
cedures. Second, the increasing creep strain rates that occur with time
following the load reversal are responsible for {the perturbations in the
predictions of both fixed origin procedures exhibited at the longer times.
These perturbations are indicative of the stress redistribution that takes
place as the effective creep strains approach zero as discussed at the
beginning of this section.

In sumary, the analytical predictions presented in Fig., 17 illus-
trate the pitfalls encountered in using the strain-hardening procedure
without employing auxiliary rules Tor reversed multiaxial stress situa-
tions. Also, the predictions demonstrate the benefits and practicableness

of using the auxiliary rules that have been recommended,
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APPENDIX A

OBSERVATIONE CONCERNING CREEP-PLASTICITY
INTERACTION TYPE HISTORY EFFECTS

In examining history effectskon subsequent plastic behavior, two
important features to be considered are possible changes in the size of
the elastic region, as measured by «, and the post~yielding deformation
resistance. The discussion here is centered mainly around studies con-
ducted on type 30U stainless steel. The conclﬁsions reached are of more
general applicability, however,

Uniaxial tests show that pronounced hardening can occur as a result
of plastic cycling. An example of the hardening observed in a cyclic
loading test at room temperature is shown in Fig. 3 of Subsection 2.2.
The obsérvations from the test results in this figure are germane to the
discussion in this appendix because the cyclic tests to be described here
were also conducted at room temperature. As stated in Subsection 2.2,
the room-temperature test results indicate thaﬁ the slope of the stress-~
strain curve in the plastic region increases as a result of plastic de-
formation, but the extent of the elastic region is essentially unaffected.

Tests reported by Blackburn®” on the influence of prior creep defor-
mation on tensile properties of 304 and 316 stainless steel show that |
stresses corresponding to the onset of plastic flow are increased. These
tests also indicate that, for strain ranges of interest in most struc-
tural components, the curves subsequent to yielding are very similar to
those for virgin specimens when the origins for the post-creep tensile
curves are offset by the amount of the permanent strain. This similarity,
in turn, indicates that the influence of the prior permanent deformation
is analogous to the effect of prior time-independent, or plastic, defor-
mation. This analogous behavior was, of course, implicitly used when the
origins of the post-creep curves were offset. Since the tests reported17
are for monotonic loading only, influence of prior creep on:the extent of
the elastic region cénnot be determined on the basis of the results ob-
tained.

Three tests using type 304 stainless steel have been conducted at

ORNL to provide, in a relatively short time, ihformation concerning history
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effects. In two of the cases, specimens which had undergone creep load-
ing histories at 1200°F were subsequently subjected to cyclic loadings at
room temperature, In the third case, a specimen which had undergone
cyclic loading at room temperature was subsequently creep tested at 1200°F.
This third specimen was finally subjected again to cyclic loading at room
temperature. All three of the specimens were taken from a single plate of
material and laboratory annealed prior to initial testing.

The loading sequences for the creep tests on the first two specimens

are listed in Tables A.,1 and A,2. The creep strains are plotted versus

Table A.l. Creep test sequence for first specimen

Cree Accumulated Accumulated
Test Stress Duration ) P time under ceUm i
. . strain L creep strain
order (ksi) (hr) o stress p
(%) (o) (#)
(A) 12.5 2010 0.56 2010 0.56
(B) 0.0 500 0.0 2010 0.56
() 12.5 306 0.10 2316 0.66
(D) 15.0 200 0.18 2516 0.8l

Table A.2., Creep test sequence for second specimen

Accumulated

A

Test Stress Time Cree? time under ccumula?eq

. strain creep strain
order (ksi) (nr) (%) stress ?%)

(hr) ’

(a) 8.0 2000 0.1k45 2000 0.1h5
(B) 0.0 500 0.0 2000 0.145
(¢) 8.0 300 nil 2300 0.145
(D) 10.0 200 0.05 2500 0.195
(E) 12.5 120 0.21 2620 0.405

(F) 15.0 236 0.55 2856 0.955
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time under stress in Fig. A.1l for these specimens. Figures A.2 and A.3
show the sbress-strain responses of these two specimens to the cyclic
loadings imposed after the creep testing had been completed. Figures A2
and A.3 also include for comparative purposes monotonic stress-strain
curves from a virgin specimen made of the same material as the creep speci-
mens.

The third test specimen was first subjected to a series of cycles
with a coustant strain range of approxbnatelyiQ.S%. As showm in Fig. A.L,
the material gradually hardens as the number bf cycles increases with the
hysteresis loops conforming to a stable geometry after 10 to 20 cycles of
loading. The specimen was then subjected to a creep test in which the
loading sequence given in Table A.3 at 1200°F was used., The creep strain
response to this loading sequencé is also shown in Fig. A.i. The creep
strains obtained are very low in comparison with those cbtained from the
first test. The lower creep strains obtained in this test may be attri-

buted to cyclic work received by the specimen prior to the creep test.

ORNL-DWG 71—10570R
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Fig. A.l. Accumulated creep strains versus accumulated time under
stress for three creep-plastic-cycling interaction tests.
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2.4

Comparison of post-creep tensile and cyclic behavior
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Table A.3. Creep test sequence for third specimen
‘ Accunmulated e
Test Stress Time Cree;_)_ time under Accwnu_lawc.i
. strain creep strain
order (psi) (hr) (%) stress ?%)
(hr) ’
(8) 12.5 480 0.1 480 0.1
(B) 15.0 160 0.02 640 0.12
(c) 17.0 240 0.08 880 0.2
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After the creep test the specimen was subjected again to loadings corre-
sponding to a constant cyclie strain range of approximately 2.5%. The
stress-strain response for this cyclie loading sequence is shown in Fig.
A.L along with the cyclic behavior of the same specimen prior to the creep
testing.

Considering the post-creep results for these three specimens, the
stress-strain curves subsequent to yielding for the first two were similar
in shape to that for the virgin specimen when the prior permanent defor-
mation was taken into account, with the post-creep stress-strain curves
falling above that for the virgin specimen. This separation between the
curves is not in keeping with the results reported by Blackburn. For the
third specimen, the post-yield portions of the stress-strain curves for
initial loading were comparable before and after creep. In all three
cases, the stress corresponding to the onset of plastic flow was increased
on first loading following the creep test.

The results from these OBNL tests indicate also that the extent of
the elastic region, as measured by «, is unaltered by the creep strain in-
curred. This is in keeping with the kinematic hardening hypothesis and
with our observation that x is essentially invariant at room temperature,
with respect to plastic loading history within strain ranges to be expected
in normal structural design. Because of the indicated increase in k dur-
ing the first few cycles in the 1200°F cyeclic loading test described in
Subsection 2.2, the need for additional tests at high temperatures to exam-~
ine the interaction features studied here is evident, however., Further,
we do not have data to indicate the possible influence of large numbers of
cycles such as a specimen would receive in a plastic fatigue test.

The apparent contradiction between the observed increase in stress at
the onset of plastic flow due to permanent deformation history and the
existence of an elastic region that is constant in extent may be explained
as follows. Consider the sketch shown in Fig. A.5 which shows yield sur-
face behavior in & two-dimensional stress space for clarity. Suppose that
a specimen has been subjected to creep at constant stress ¢,,. During the
creep process, the yield surface translated along the stress axis as shown

on the figure, where the amount of translation at the end of the test is
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Fig. A.5. Sketch showing translation of yield surface.

measured by aij' When the creep test is terminated, and the specimen is
tested in tension, the onset of plastic flow is governed by the translated
yield surface. |

The functional relation between the translation tensor, aij’ and the
creep strain must be determined through tests defined and conducted ex-
plicitly for this purpose. At elevated temperature, the possibility of
both growth and translation of surfaces due to creep should be considered.

An additional aspect relative to the room-temperature cyclic tests is
the increase that occurs in the post-yielding deformation resistance (nard-
ening)‘of a specimen which is subject to cyclic loading. To facilitate
the discussion here, we will consider fully reversed cycling over a total
strain range of on the order of 2 to 3%. During such cycling, a virgin
specimen will harden, with the hardening decreasing with increase in cycle
number. After 10 to 15 cycles an essentially stable hysteresis loop will
be established.

The third specimen tested.by ORNL indicated that some of the harden-
ing due to initial plastic strain cycling was removed when the sPecﬁneh
was creep tested. However, during subsequent plastic cycling the material

rapidly regained the hardening lost. 1In the case of the second specimen,
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there was little cyclic hardening observed during the post-creep strain
cycling.

Viewing the results discussed above as a whole, the influence of creep
on subsequent plastic behavior is complicated. This is true both with re-
gard to the behavior of the yield surface and the influence on hardening.
The time that material is exposed to elevated temperatures also enters in
some way, such as possible annealing effects of prior working.

The results from the third specimen tested at ORNIL show that prior
plastic deformation can have marked influence on subsequent creep behavior.
In this case, the creep deformation was greatly reduced as compared to
that for a non-precycled specimen. However, it must be remembered that
the time period was very short, and the effects on the response could be
entirely different for much longer times.

In summary, these results indicate that plastic and creep deformation
histories lead in some respects to similar consequences so far as time-
independent behavior is concerned, As indicated earlier, the history of
deformation as well as the features required to produce nonlinear stress-
strain response must be ineluded in the formulation for the loading fuunc-
tion to provide the mathematical description required. Formulations that
include nonlinear stress-strain response and prior plastic deformation
history are being developed, but formulations for arbitrary temperature
and load histories are not available now, Further, it is not possible at
this time to formulate descriptions of interfacing effects between creep

and plasticity.
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APPENDIX B

SAMPLE BILIWEAR REPRESENTATIONS OF
MONOTONIC STRESS-STRAIN CURVES

Some examples are given in this appendix of the method recommended -
in Bection 2.2 for cbnstructing bilinear representations of monotonie
stress-strain curves for virgin material. The particular stress-strain
curves considered are those corresponding to preliminary stress~strain
equations developed by HEDL for types 304 and 316 stainless steel (see
Refs, 1 and 6 of this report). These preliminary eguations are not the ;
gtress-strain relations in the IMFBR Materials Handbook and are not recom-
mended for use. Rather, they are included only as sample bilinear repre-
sentations. Tt is expected that the stress-strain equations recommended
For use by the FFIF project will be processed along the lines outlined.
Reference 1 gives equations for type 304 for temperatures ranging from
500 to 1000°F and equations for type 316 for temperatures ranging from
400 to 1000°F. Reference 6 gives equations for both materials at tempera-
tures ranging from 1000 to 1200°F. Equations are given for average and
minimum curves for each material. The specific bilinear representations
considered here correspond to maximum strain values of 2% and 5% for each
material. These sample representations are developed for both the average
and minimum equations.

It was observed that the hardening coefficients, C, determined from
the stress-strain equations given in Ref. 1 were essentially independent
of temperature (for T < 1000°F). The equations in Ref. & give rise to C
values which are also essentially independent of temperature (for 1000 <
T« lEOObF), but which differ slightly from those obtained ffom Ref., 1.
Uhpublished ORNL data for type 304 stainless steel support the use of C
values that are independent of temperature. Thése C values, determined
from the equations given in Refs. 1 and 6 for 2% and 5% maximum total
sbtrain values, are shbwn in Tables B,1 and_B.E.’ The wk function, deter-
mined from the yield stress points of the bilinear representations, is
given in terms of temperature for each of the two materials in Tables
B.3 and B.4. The notation k = k, used here corresponds to that given in

Bection 2.2 and designates that these values correspond to stress-strain
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Table B.1l. Hardening coefficients for 304 stainless
steel at elevated temperaturesa

C's for average stress- C's for minimum stress-
strain relations strain relations
Temperature (psi) (psi)
range
(°F 2% maximum 5% maximum 2% maximum 5% maximum
strain strain strain strain

500 < T < 1000 0.2765 x 10° 0.1556 x 10° 0.2778 x 10° 0.1574 x 10°®

1000 < T < 1200 0.2155 x 10°®  0.1356 x 10°  0.2079 x 10°  0.1308 x 10°

®Note that because of differences in stress-strain data used, a value
for E_ calculated using these data would be expected to differ from the value
given in Fig. 7, for example,

Table B.2, Hardening coefficients for 316 stainless
steel at elevated temperatures

C's for average stress- C's for minimum stress-~
strain relations strain relations
Temperature (psi) (psi)
range
o . of . ; . o s
(°F) 2% maximum 5% maximum 2% maximum 5% maximm
strain strain strain strain

400 £ T < 1000 0.3132 x 10° 0.1762 x 10° 0.3152 x 10° 0.1784 x 10°

1000 < T < 1200 0.2465 x 10° 0.1562 x 10° 0.2573 x 10° 0.1617 x 10°®

curves that result from initial monotonic loadings., Yield stress values
as expressed by deviatoric stresses and that correspond to the KO(T) =
3/h (O§ield)2 values are plotted as a function of temperature in Figs,

B.1 through B.4., The conventional yield stress can be obtained by multi-
plying the stress values in Figs. B.1l through B.4 by 3/2. The stress-
strain equations given by Refs. 1 and 6 do not coincide at 1000°F. There~
fore, the yield stress curves shown in Figs. B.1 through B.4 are discon-
tinuous at that temperature. HEDL is undertaking the resolution of this
discrepancy and other features in their efforts to generate stress-strain

equations for these materials for use by the FFTF project.



Table B.3. Function KO(T) for 304 stainless steel?

Temperature
range

(°F)

k (T) for average stress-
strain relations

(psi)®

ko (T) for minimum stress-
strain relations

(psi)®

2% maximum 5% maximum

strain strain

2% maximum 5% maximum
strain - strain

500 < T < 1000

1000 < T < 1200

(17960 — 5,167T)% % (20387 — L,983T)%

=

(18397 — 6.591)% ¢ (24725 — 10.4b)2

(15477 — 4.3247)2 3 (17941 — k.17T)3
L

o W

(19222 — 8.665T)2 % (28076 — 14.665T)2

& g in °F.

T.



Tabie B.hL. meﬁanAT)fM'ﬁé

P a
stainiess sieel

r(T) for average stress-

«o(T) for minimum stress-
strain relations

strain relations
Tegperature (psi}® {psi)®
range
{°r 2% meximum 5% maximum 2% maximum 5% maximum
strain strain strain strain
/ 2 2 / 2 < 2
4O £ T < 1000 2 2189.29 . 11813/1 % (-230—8-'—9— N 1&875) % \_@9@_1&_ - 10256 ) i— G—B—QO—Z-S—— " :L3323>
‘ x 1072 T x 1073 T x 117° T x 107°
1000 < T < 1200 % (11624)% % (13542)% % (o7u7) % (11784)%

a . .
T ig in F,

2L
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Fig. B.l. Yield stress for 304 stainless steel based on average

equations.

Wote that deviatoric stress is used here,

The conventbional

yield stress can be obtained by multiplying the values shown by 1.5.
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Fig. B,2. Yield stress for 304 stainless steel based on minimum

equations.

Note that deviatoric stress is used here.

The conventional

yield stress can be obtained by multiplying the values shown by 1.5,
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APPENDIX C

NONISOTHERMAL PLASTICITY

Prager's kinematic hardening rule with a bilinear stress-strain re-
lation is recommendéd in this document for time-independent elastic-
plastic analyses of structures. The kinematic hardening model is pres-
ently developed only for isothermal conditions. The method is valid and
can be used for structural analyses at elevated temperaturés, if the tem-
perature of the structure remains constant. However, a modification is
required for analyzing structural behavior under the influence of tempera-
ture change.

We have expanded Prager's kinematic hardening analog to include a
temperature variable in the folldwing derivation of nonisothermal kine-
matic hardening theory. It is known from elevated temperature tensile
tests that a change of temperature in the material at some known stress
state may also causé some additional plastic deformation and change the
position of the yield surface in stress space. An additional postulate
which governs the motion of the yield surface subsequent to temperature
change is needed here and will be discussed.

For describing nonisothermal kinematic hardening we introduce an

f ( /- j > :’ T> ( ) J ( l)
g € 222 = K I C .

in which £ is the yield function, which is a regular function of its vari-

ables, ‘and k is a scalar function which depends on temperature T only.

/

Here, Gij is the deviatoric stress tensor defined by

o7 :a.:.-—%a (c.2)

i ij ij %

where Uij is the stress tensor aﬁd efj is the plastic strain tensor. When
von Mises' initial yield condition is used with Prager's kinematic harden-
ing model, Eq. (C.1l) takes the form

£ =5 (ofy — o )ofy = a ) = =(1) (c.3)



where Oﬁj is a tensor which describes the total translation of the yield
surface. The form of the x function, however, will vary depending on the
initial yield condition of the material at elevated temperatures. The
determination of the k function will be discussed later,

In order to derive a nonisothermal kinematic hardening theory, the

following postulates are used,

Postulate T

The nonisothermal theory must reduce to Prager's kinematic hardening

rule when the temperature variable is constant.

Postulate IT

When a temperature change causes plastic deformations without changing
the stress state, the yield surface is assumed to translate only in the
isothermal stress plane, The total translation of the yield surface is

described by the tensor aij'

Postulate III

The normality postulate remains valid, such that

™
de,. = dy of
iJ Baij

(c.h)

when plastic deformations are caused by the changes of temperature and
stresses, The coefficient d7 is a positive constant.

A yield surface in a two-dimensional space — a tensile stress compo-
nent and a temperature component — is shown in Fig, C.1. When a stress
increment daij emanating from the point P is directed toward the outside
of the yield, or loading, surface, postulate T asserts that the yield sur-
face is assumed to translate from point P to point @ by a rigid motion.
Postulate IT asserts that when a temperature change dT is directed out-
wardly from the yield surface, say from point P to point 8, the yield sur-
face again translates in an isothermal stress plane from point R to point
S. Consequently, the incremental translation of the yield surface is a
function of Uij and T. However, the total translation of the yield sur-

™
face is a functional of the plastic strain tensor eij'
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/lr//x INITIAL YIELD SURFACE
, - SUBSEQUENT YIELD SURFACE

Fig. C.1. Yield surface in two-dimensional stress and temperature
space.

Without loss of generality we can write Eq. (C.1) as
£* (a’ 5 T> = x (o/. =, Wol, —a. ) ~w(T) =0 . (C.5)
’ 5y R Oy 2 i3 i3 ij ij ‘ ‘

Let a change in stress and temperature occur, with increments da{j and

dT; the corresponding incremental change of the function f is then

-~ N * >
ape = 95 qor 4 O qcP g, (c.6)
oo/, i . B i3 of
ij €ij

By the postulate previously stated, changes with defj # 0 are possible
only if they are consistent with the yield condition that

L LOEX L, Oft P OFF
a ST daij + T deij * 57 ar = o . (c.7)
1J eij

There are three possible situations that may occur due to the change of
state by doij and dT. They are:

1. Neutral loading. No plastic deformation occurs during the change

of state, which remains on the yield surface. As a result of the require-

ment that defj = 0, we obtain from Eq. (C.7) the condition

Or¥* ; of _
:ggzg dgij + S dT = 0 . (c.8)
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2. Unloading. No plastic deformation takes place while the point P
on the yield surface (see Fig., C.1) moves inward., It follows that during
such a change the function f* must decrease and Efj is constant. This

gives the following relation:

of* of¥ )
sgz; do{j TS dar <o . (c.9)

3. Loading. The remaining possibility is loading, with the point

remaining on the yield surface, and

%??7 daij + %%i dT > 0 . (c.10)

1J

It is assumed that only under this condition can changes in plastic strain
occur,

Let us assume that the following linear relation exists:

P "
dejs = Qg doy, + 7 AT, (c.1y)

/
o] . s
kg ij
where O, and 7ij are tensor functions of o’

P
13ke ko’ ke’

and T. Since de?.
1J
vanishes during neutral loading, Eq. (C.11) becomes

/ —
% sws g T 735 4T = 0 (c.12)

for neutral loading. It can be shown that

Of*

735 =My 3T (c.13)
_ Of¥

Yske = Mg S, 7 (C.1k)

and the constitutive relation (C.11) becomes

P Of* p of* )
deij = xsij 53;; dof, + <= 4T |}, (c.15)
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where )\ and 6ij are functions of qéz, eiz, and T, and A satisfies the con-

dition
A >0 . (c.16)

The normality postulate asserts that

Of¥
Bij = 802 . b (C.l?)
1
and Eq. (C.15) becomes
P . Of* [of% - ) '
EECIE AT T (c.18)

When a bilinear stress-strain relation is used with the kinematic
hardening theory and if the hardening manner of the material is indepen-

dent of temperature, the translation tensor Qﬁj can be given by the re-
lation:

P

daij = Cdeij , (c.19)

where C is a constant characterizing the material. Consider an incremental

translation of the yield surface that is caused by the application of

stress dﬁéﬁ and the change of temperature dT. Postulates I and II assume
that df* = 0 during loading, and this yields

Af* dk

/. — -
50{3 (dcij @uij) =5 dT = 0 (¢.20)

from Eq. (C.3). Substituting Eq. (C.19) into Eq. (C.20) and using Eq.
(C.18), we obtain

If* [ , Of% (Of*% 3% ] dk
o7y 145 ™ A o7 \Goy, e am )] mam e -0 (ce
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or

Of*  Of¥ > of* ,
(l O 557 7T ) o Yo
ij Tid k4

OF%  OfX OF* | adk’
NGRS JLECRNCED
iJ iJ

Since Eq. (0.22) must be satisfied for all arbitrary values of doﬁz and
dT, and their coefficients being independent of these increments, we find

the relations

1

T (c.23)

_1
X“c(ép«)
5o 7 503

mn mn

and

%%i::-%% . (c.2k)

The constitutive equation (C.18) can now be finalized in the form

Of¥%
dg? ‘
P 1 ij or* Ak
d%g“c(éﬁ*)(Bﬁe) <&§EdﬁQ deT) (c.25)
/ /
a GIIlIl a Omn

by using Egs. (C.23) and (C.24), and the translation of the yield surface

is given by

a,, = Ce.. (Cc.26)
1J 1J
for this special case.
Instead of using the form of the yield function in Eq. (C.3), Prager'®

proposed a yield function in the following form:

£ =5 (g =80y =85 —x% =0, (c.27)
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where T.. is related to o/, by
1J 1]

- ;oL
Tij m’q(T) Oij ; (Cc.28)
ﬁij is a tensor describing the total translation of the yield surface and
k is a constant. Equation (C.27)’is completely equivalent to Eq. (C.3).
Therefore no further discussion of Eq. (C.28) will be given here.
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APPENDIX D

OBSERVATIONS CONCERNING SOME ORNI. CREEP TESTS OF
A HEAT OF TYPE 304 STAINLESS STEEL

Observations are presented of how two strain-hardening creep models
describe results from some creep tests conducted by ORNL on a so-called
preliminary heat of type 304 stainless steel (heat no. 8043813). Experi-
mental results exist for a limited number of constant-load-creep tests
and for a few uniaxial creep tests wherein the loads are changed in a
stepwise manner. These tests were conducted at a temperature of 1200°F.

In order to perform any of the strain-hardening analyses discussed
in Section 3, an equation (creep lew) must be available which mathemati-
cally describes constant-uniaxial-stress creep behavior., The exponential
creep law discussed in Section 3 was used to fit data from ORNL constant-
uniaxial~load tests with initial stress values ranging from 8 to 25 ksi.

Specifically, the creep strain is given by
e(o,t) = £(0) (1 — expl~()t]) + glo)t , (D.1)

where

(o) = 3.476 x 10™* exp (0.20810) ,
I'(O) - 3.991 % 10—5 02,094 R

g(o) =1.02 x 107 exp (0.7430) .

Here, the stress, o, is measured in ksi and the creep strain, €, is in
(in./in.). It should be noted that this specific equation was developed
to provide a basis for making analytical predictions for stress values
within the range used in the development and not for general analytical
use,.* Extrapolation to general use will introduce some erronecus features
such as the prediction of a nonzero creep strain when the stress is zero.
For comparative purposes this creep law has been used with both of

the strain-hardening methods discussed in Section 3 to make strain

*A more generally applicable form of this representation is being
developed and is being reported in the progress reports for the ORNL pro-
gram — High-Temperature Structural Design Methods for IMFBR Components.
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predictions for some specific variable stress (within the indicated range)
conditions. The first procedure bases the sﬁrain-hardening on the total
creep~-strain present at the instant of a stress change. The second pro-~
cedure bases the strain—hardenihg on the primary creep strain present at
the instant of the stress change. Both of these procedures have been used,
in connection with the indicated creep law, to predict the results of ORNL
creep tests involving step changes in uniaxial loads, Figures D.1 through
D.Lk show these strain-hardening predictions along with experimental data
for four different loading programs. The specific stress histories are
illustrated by the insets in the corresponding figures.

The predictions of the two Strain»hardening methods subsequent to a
stress change remain quite close to each other until a significant amount
of secondary creep is accumulated, For example, the predictions of the two
strain~hardening procedures for the stress history shown in Fig. D.1 do
not differ enough tb be drawn separately. The same is true in Fig. D.2 ex-
cept for the last loading segment. Figure D.4 is included only to show
that predictions by the two methods may differ when significant secondary

creep has occurred due to relatively high stress and more extended test

ORNL~ DWG 71-10575
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Fig. D.1. Step-load creep test of type 304 stainless steel (heat
Hdo. 80k43813) at 1200°F.
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Fig. D.U., Step-load creep test of type 304 stainless steel (heat
Ho. 8043813) at 1200°F.

duration. In Fig, D.4, the predictions based on total creep strain-hard-
ening leads to only steady-state creep after the stress change, while the
predictions based on primary creep strain-hardening gives rise to some
additional primary creep strain.

Overall there is little difference in the agreement between the ex-
perimental data and the two predictions for the tests shown in Figs. D.1
through D.4. The influence of data scatbter must be considered when exam-
ining these comparisons, since the predictions are based on the use of a
previously determined creep law. The poor agreement between the data and
predictions in the latter part of Fig. D.h_can be attributed to the fact
that the specimen went into third stage creep shortly after the load
change. As mentioned earlier, Fig. D.4 is only included to illustrate the
difference between the two predictions for this particular stress history.

It should be noted that neither of the strain-hardening predictions
shown in Figs. D.1 and D.2 coincide identically with those reported in an
ORNL progress repor’c.13 This is because the predictions in Figs. D.1
through D.4 are based on the prescribed creep law, while the predictions

reported earlier were based on graphical procedures.
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APPENDIX E

ON ANALYTICAL METHODS FOR CREEPING METALS
AT ELEVATED TEMPERATURES

To obtain an independent evaluation of the current state~of-the-art
of inelastic analyses for high-temperature design, we asked Y, R. Rashid,
as an ORNL consultant, to prepare a write-up outlining current practices,
particularly with respect to equation-of-state versus hereditary-type
creep constitutive equations as a current design tool. Rashid is a recog-
nized expert in the finite element area, with experience in developing
both elastic-plastic and creep structural analysis programs. These pro-
grams have utilized both equation-of-state and hereditary constitutive
equations.

ecause of Rashid's familiarity and experience with both analysis
methods development and procedures for mathematically describing inelas-
tic material behavior, his views are thought to be particularly relevant
to the subject of this document. Consequently they are included in their

entirety here.

Introduction

Under elevated temperatures the response of metals to a given load
history in general involves interaction of the following types of defor-
mations: instantaneous elastic, instantaneous inelastic (plastic), and
time-dependent inelastic (creep). One observes, and can easily measure,
these three types of deformations in a simple extension structure under
controlled conditions in the lavoratory. Assume that such measurements

have been made producing the general formula
€ = F(O)Tﬁt) s (E'l)

where o, T, and t respectively are the simple extension constant stress,
the temperature at which the test was conducted (neld constant), and the
time. The measured strain is e¢. If the stress ¢ 1s below the yield
stress of the material, assumed known for the test temperature T, then

Eq. (E.2) is a creep formula. Several explicit forms of this formula can
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be found in the literature for various materials. Equation (E.1) is
nothing more than a mathematical fit of experimental data points and does
not represent any natural law.

A specific form of Eq. (E.1l) may be written as follows:

n

¢ = Z;l £.(o,T) g,(t) . (E.2)

In going from (E.1) to (E.2) we have not only introduced a particular form
of experimental data but actually defined a phencmenon which may or may not
exist; namely, that the time function and the stress function are separable,
For some materials, e.g., stainless steel under primary creep, this is not
strictly true. However, we accept this interference with the natural be-
navior of materials as an "approximation” which we hope will not be too
serious.

Having introduced this first approximation we now proceed to synthe-
size Eq. (E.2) further. The number of terms in the series is controlled
in general by accuracy requirements, although a two~term equation has been
used to represent the primary and secondary parts of the creep curve.
Assuming that the experimental data are fitted "exactly" by n terms, the

second approximation can now be introduced as follows:
fi(o‘:T) = ai(T) o > (E-3)

where the separability of o and T is imposed as phenomenologically admis-
sible. Combining Egs. (E.2) and (E.3) gives

n

e =) a1 ot gy(t) . (E.14)
i=1

In the above we have introduced two phencmenological restrictions on the
material behavior represented as mathematical approximations. This is per-
haps not very serious and may be accepted. We must point out also that |
Eq. (E.L4) is not valid for variable o and T in view of the fact that this
formula was obtained from constant stress and temperature tests. In order
to generalize this equation to time-varying o and T we must introduce a

third restriction which, unlike the other two, is not an approximation but
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a postulation of a natural law, the exact form of which is not known,
This postulate assumes two main forms that define two alternatives to the
true natural law, namely:

1. The response of the material, e.g., €, depends on the present
state explicitly and on the previous history only implicitly, or

2. The material remembers its past explicitly and responds to the

present in a precise manner that reflects its past history.

These two postulates give rise respectively to the equation-of-state and
the memory theories which are two distinct fundamental generalizations

of Eq. (E.4) from steady-state to variable conditions. Although they are
independent of the functional form of Eq. (E.4) the approximations included
in that formula will manifest in diffevent ways in these two theories.

We are still, however, dealing with simple stress states, namely, uniaxial.
In order to treat general two- or three-dimensional stress states we need
further postulates for esach of the two theories, and as we continue the
process of generalization we get farther and farther from the common start-
ing point. It would appear, then, that Eq. (E.L) which is "exact" only

for single-step creep data is the point of departure for the variocus meth-
ods of analysis currently known, As one can see, this departure point
unfortunately occurs at an early stage, but one hopes that in the end all
the roads lead back to a common objective of predicting the response of
actual structures under actual conditions. From the pure mathematician's
viewpoint, this can hardly be expected. However, common sense engineering
being the product of intuition and experience often prevails with sur-

prising, bul comforting, results.

Equation-of-State Approach

Starting with Eq. (E.4), which may be the farthest common point of
all analytical methods, two computational schemes are well known: the
strain-hardening and the time-hardening rules. The use of the word hard-
ening comes from the fact that the creep strain is accumulated at a de-
creasing rate,

For purposes of this discussion the well-known particular form of Eq.

(E.L4) is used, namely,
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e = a(T) A b(T) % (E.5)

where n, &, and m are material constants, and a(T) and b(T) are functions
of tempersture. The first part of Edq. (E.5) is commonly known as the
primary creep and the second part as the secondary creep. Certain physi-
cal significance has been attached to each of these two parts of the creep
curve, and some investigators treat them as two distinet phenomena. This
author, however, holds the view that they are part of a single phenamenon
and cannot be distinguished analytically from one another except on an ad-

hoe basis, Differentiating (E.5) with respect to time,
98 ¢ = alr) o at™t 4 ou(T) & (E.6)

The material constant & is generally less than unity and therefore Eq. (E.6)
predicts infinite creep rate at time zero. This, however, is not the real
difficulty with the time hardening rule. By this rule the rate of creep,

as given by (E.6), depends on the passage of time t. However, the time
origin is ambiguous and cannot be easily identified in the process of gen-
eralizing Eq. (E,6) to time~varying o. This ambiguity can be removed by
eliminating time as an explicit variable between Egs. (E.5) and (E.6)

giving the following equation:

/o nfo a-1/a

t-aa + b (E.7)

This equation states that the creep rate depends on the stress and total
creep strain regardless of the way this strain is accumulated. Here the
origin of loading does not enter explicitly as it did in Eq. (E.6). 1In
actual computations one follows an incremental procedure in which the in-
crements of creep strains are calculated and summed, thus giving the total
creep strains. Equation (E.7) represents the strain-hardening rule in
an obvious contrast with the time-hardening formula, Eq. (E.6). Both of
these formulas reduce to the same form if one considers only secondary
creep.

When applied to actual problems the two rules give different results.

The obvious question to ask is: Why this difference since one is derivable
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from the other? The answer to this question can only be that the differ-
ence is procedural, not phenomenological. If, in using the time-hardening
rule, the origin of time is adjusted appropriately at every stress and
time Increment, the two rules must by necessity give the same results.
Such a procedure, however, offers no advantage over the strain-hardening
rule.

The procedural differences notwithstanding, the two equation-of~state
rules express the response of the material at any instant of time t in
terms of the state of the material at t — At, where At can be arbitrarily
small, Such a state involves the previous history only in a gross sense,
i.e., the material recognizes only the amount, not the path, of the accu-
mulated creep strains, This value of total creep strain together with the
current stress determines the amount of additional creep the material will

undergo within a specified time increment Ab.

Memory Theory Approach

This approach is based on Boltzmann's old superposition priunciple and
Volterra's hereditary representation of material states. As was mentioned
earlier, and as its name implies, the memory theory states that the mate-
rial's response at any instant of time t depends on all previous states,

Starting again with the common point of departure, namely, Eq. (E.L),

and ignoring temperature dependence for the moment,

e =) ot (%) . (E.8)
=1

This equation, as is Eq. (E.h), is valid only for time invariant stress.
Equation (E,8) is generalized to time-varying stress through Volterra's
postulate that the strain (stress) is a functional of the stress (strain)
history. Symbolically this is written as follows for the stress-strain
relation:

R
e(t) = _[g(T)] . (E.9)

T -00
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Frechet showed that a continuous nonlinear functional, as the one
depicted in Eq. (E.9), can be approximated arbitrarily closely by the fol-
lowing series:

. da( ’T‘l)
E(t) = ft Jl('b"”f‘l) —a}—‘—' dTl

=0

£ .t do( ) do(rz)
[ Tulterys ) — — dr, dr,
00 =00 1 2
t ot .t dG(Tl) do(r,) do(Ty)
+ jm Jﬁ j‘ Js(t“T15 t—=T53 t=Tg) i i T dr, drz dvg
-0 -0 w0
oaeee . (E.10)

Equation (E.10) is the counterpart of the time-hardening (or strain-
hardening) equation. It is a mathematical representation of the symbolic
Eg. (E.9), but it can also be inferred directly from Eq. (E.8). If o does
not vary with time, then Eq. (E.10) reduces to

e(t) = o0 I (2) + o 3 (t,8) + o® (£,4,1) + ..., (E.11)

which is a polynomial representation of single-step creep test. The simi-
larity between Egs. (E.8) and (E.11) suggests that if one takes the simple

creep formula
e(t) = o (%) , (E.12)

which has been frequently used in creep analysis, and generalizes it to
variable o, the following is obtained:

) = [ [T (s e, o)

el -0

dao(,) do( 7))
X e L ~——1L-drl oo AT (£.13)

dTl dTn

For some metals of interest n can be as large as 6, which means that Eq.
(E.13) involves a sextuple integral. The utility of such a complex rep-

resentation of a seemingly simple equation in a computational procedure,
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even if material data for Jn exist, is not within the capabilities of
present day computers,

Equation (E.lO) is a power series of superpositions in which the
first term is a superposition of single-step creep curve; the second is
& superposition of two-step creep curve; the third is a superposition of
three-step creep curve; and so on. It should be stated, however, that
each of these multistep tests involves a complex test program involving
several loading times and several stress combinations, If we utilize Eq.
(E.10) in analysis, we must determine the kernel functions Ji, Jo, ...,

Jn experimentally. Such experiments for 304 stainless steel, for example,
do not exist at this time. Therefore, it would be fruitless to suggest

a computational procedure based on this equation. It should be mentioned,
however, that equations up to third order have been used to characterize
nonlinear polymers which, unlike metals, are characterized as weakly non-
linear materials, Therefore, if Eq. (E.10) becomes within the realm of
experimental possibility in the future, one can expect that the order of
this egquation will be high (five or six) for materials such as stainless
steel.

We see then that the use of Eq. (E.10) in its generality is not with-
in our experimental and computational means at this time, Several alter-
natives to Eq. (E.10) have been suggested, still within the framework of
the memory theory. These alternatives are, by necessity, approximations
to the general theory. We discuss this next.

In one approximate procedure, Eq. (E.10) is replaced by the following

equation:

e(t) = ft ac(glo,t”l dgi:) dr , (E.1k)

-~
where C(o,t) is the usual single-step creep curve depicted in any one of
Egs. (E.1) to (E.4). fquation (E.14) can ve rewritten as

e(t) = ft J(o,t~T) Q%(T—Tl ar , (E.15)

=00

where J is the creep compliance at stress level o. Fquation (E.15) pre-

dicts the strain due to time-varying o by superposing single-step creep
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data. This equation is exact only for linear materials and if serves as

a first approximation to Eq. (E.lO). It has the advantage that it requires
the same creep test as required by the equation-of-state theory. A second
correction term, namely,

£ A% Cdo(7y) do(ry)
j‘ j‘ Jalo(r), oltz); 1), t—15] dTl dT2 dr, drp (E.16)
-0 =00 1

2

can be added to Eq. (E.15). However, this requires further creep tests
which are not currently available. One can continue this process of cor-
rection until the required accuracy is achieved. In the limit this process
approaches Eq. (E.10); therefore it would seem that this approach offers
no advantage over Eq. (E.10). However, by including ¢ as an explicit argu-
ment in the kernel function, it is hoped that one can achieve satisfactory
accuracy with relatively few terms, perhaps three at the most.

A promising scheme which is equivalent to a double integral formula
is the use of the shift principle. This is desecribed mathematically as

follows:

c(t) = [ are(e) - a(n)) ek g (E.17)

-0

where
g(t) = ft Flo(T)] ar . (E.18)

In Eq. (E.17) the physical time t is replaced by the equivalent time &(t)
defined in Eq. (E.18) where ﬁ(o) is called the shift factor which depends
on the stress. The basis for this formulation is the following: If one
plots specific creep curves for various o's on 4 semi-log plot, where J

is plotted against log t, one observes that all the curves can be obtained
by simply displacing a suitable base curve rigidly parallel to the log t

axis. For example, if the base curve J  corresponds to ¢,, then curves

(o34
for stress less than o, are obtained by displacing Jj to the right and
those higher than o, are obtained by displacing JO to the left. This pro~

cess, of course, is not exact; i.e., 1t does not always result in congruent
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curves, but it is possible to generalize this method to permit piecewise
shift of the base curve to obtain higher accuracy. The method, however,
is not yet fully developed and cannot occupy a position in the state-of-
the-art at this time. The temperature treatment using the shift hypothe-
sis is well developed for linear viscoelastic materials. It can be used
here, in the memory, as well as in the equation-of-state theories, in a

manner similar to the above.

Elastic-Plastic-Creep Interaction

The preceding discussion dealt with the creep problem where stresses
are kept below the yield 1limit. If the yield stress is exceeded, then
"time~-independent” plasticity will occur. The problem of combined creep
and plasticity has been treated on the basis that the total strain at any
instant of time { consists of three parts — elastic, plastic, and creep —

namely,
c(t) = °(6) + P(e) + C(t) . (E.19)

This equation is one more approximation of a natural law, The approxi-
mation lies in the fact thal the creep and plastic strains, which are the
micro level may be similar, are separable at the macro level of observa-
tion. We cannot postulate anything different at this time and therefore
Eq. (E.19) is considered acceptable.

The previous development giving formulas for ec(t) for both the
equation~of-state and the memory theories holds here also. One can then
substitute for < (t) from Eq. (£.7) or Eq. (E.17), and for c°(t) from
Hooke's law., It remains to find an expression for ep(t) which completes
the problem.

The elastic~plastic problem is well developed and need not be dis-
cussed in detail here, DBriefly, however, there are two possible techniques
which have been used in the past. The first is to treat the plastic
strains as initial strains in an incremental procedure., The second is to
derive the nonlinear stress-strain relations which satisfy the appropriate
yield condition and a corresponding flow rule, The first approach is re-

ferred to as the initial stress approach and the second as the tangent
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modulus approach. We see here again that we have two alternatives for
incremental plasticitly similar to the creep problem. However, the dif-
ference between the initial stress and the tangent modulus: approaches is
not as fundamental as the difference between the equation-of-state and
the memory theories. It would be interesting to point out the analogy,
from a computational point of view, between the creep and plasticity prob-
lemg: Experting some degree of poetic license we can say that the ini-
tial-stress approach in plasticity is equivalent to the equation-of-state
approach in creep, and the tangent modulus approach is equivalent to the
memory theory.

By virtue of Eq. (E.19) one can use the initial stress (or the tan-
gent modulus) method with the memory theory (or the equation-of-state)
approach or vice versa. The use of the tangent modulus approach is recam-
mended as a more reliable procedure, and we will base our next discussion
on the fact that it is the accepted state~of-the-art for elastic-plastic

analysis,

Comparisons of the Two Methods

In this section we compare the equation~of-state approach and the
memory theory approach assuming that the plasticity formulation in both

methods is based on the tangent modulus procedure.

Equation-of-state

Advantages

1. It has been extensively applied and there is a great deal of
experience with this method.

2. It is simple to apply and understand by most engineers,

3. It is easy to incorporate in existing finite element computer
programs.

4., It requires minimum experimental data, only single-step creep
tests at various temperatures and stresses.

5. Once the creep formulas are obtained they can be easily and
guickly incorporated in a stress analysis program.

6. It ig known to give good resulis for constant loading.
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7. The method does not overtax the storage capacity of the computer.

Disadvantages

1. The method being an initial strain (or stress) approach is com-
putationally sensitive to the size of the time step. For large time steps,
errors can accumulate and eventually cause instability.

2., TDue to the limitation on the time step, large number of incre-
ments may be required,

3. The method is limited in its capacity for improvement. No mech-
anism exists for adding correction terms as there is in the memory theory.

4, Because of item 3 above, any complex structural or material test-
ing such as variable loading, variable temperature, recovery, relaxation,
ete., can only be used to verify the theory, not to improve it.

5, 'The method becomes less reliable under variable load histories

and cyclic loading leading to elastic-plastic-creep interaction,

Memory theory (as it is used today)

Advantages

1, The method is computationally less sensitive to the size of the
time step.

2. It requires fewer time steps for any given analysis.

3., It is a second-order approximation of the more general theory
and therefore it is very adaptable to continuous improvement to accommodate
new knowledge of material and structural behavior,

4. Tt takes the structure's past history into account. However, the
significance of hereditary of wetals is not yet fully understood in prac-
tical applications.

5. It is more consistent with the tangent-modulus formulation of in-
cremental plasticity.

6. t gives better results for combined variable loading.

Disadvantages

1. It requires much more extensive material testing to introduce

further improvement by including higher order terms.
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2. Tt is not easy to introduce into existing, equation-of-state
type, computer programs; major modification of the program is required.
3. It is not yet within the state-of-the-art and being in the

developmental stage experience with it is rather limited.
4. Incorporation of new material data is not as straightforward as
the equation-of-state approach.

5. It is not easy to apply and understand by the average engineer,

Conclusion

This report was written in an attempt to answer the following ques-
tion: What method of analysis based on what constitutive relations should
be used for the design analysis of reactor components under elevated tem-
peratures? By this time one hopes that this question has already been
answered. However, in order to bring this answer into focus, the follow-
ing statement is made.

The state-of-the-art at the present time consists of (1) single-step
creep data, (2) finite element computer programs based on the eguation-
of-state approach, and (3) a develogpmental progrem on analytical methods
and material characterization to improve upon existing technology. Item
(2) is well developed and whatever material data it requires exist in
item (1). Therefore, by incorporating the available material data in
those camputer programs, one has at his disposal an analysis tool that is
consistent with the accepted state-of-the-art and is regarded as a good
engineering approach.

The adequacy of this state-of-the~art is being investigated in pro-~
gram (3).* In this program the general problem of analybical methods and
material characterization for elastic-plastic-creep analysis under high
temperatures is being studied. As part of this investigation the memory
theory is being developed, first on the basis of existing (single-step)
creep data and secondly as a first step in a research program aimed at

improving the present state-of-the-art. Incidentally, the memory theory

*High~Temperature Structural Design Methods Program for IMFBR Compo-
nents, Oak Ridge National Laboratory.
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is not the only alternative to the equation-of-state, but the "State Vari-
ables' approach adopted by Onat is another. The latter, however, is even
less developed and is perhaps better left to future considerations. It

is important to point out that the development of the memory theory as a
viable analysis tool can only proceed on an incremental basis since it re-
quires much more extensive material tests to take advantage of its full
potential., The fact that only single-step creep data exists at this time
limits the utility of the memory theory to the use of a single hereditary
integral in conjunction with the stress-time~temperature correspondence
hypothesis., There are indications that this treatment might offer reason-
able correlation with experiment, but it still requires further study to
understand fully its implications, The computational advantages it offers
at this time encourages its adoption by analysts as another alternative.
Since the basis for the equation-of-state theory and the current form of
the memory theory is single-step creep data, the difference between the
two theories is more procedural than fundamental. They begin to diverge
more fundamentally as multistep creep data are incorporated in the memory
theory thereby increasing its capability for closer prediction of struc~-
tural response under variable loading. However, until such time as this
becomes possible, the two methods must be regarded as equally valid, and

the one to be preferred is the one that is most accessible to the analyst.
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APPENDIX F

STRESS AND STRAIN QUANTITIES IN INDEX NOTATION

In this appendix, some of the stress and strain gquantities that are
used frequently in the text and that are written there in index notation
are briefly explained in terms of the stresses and strains related to
rectangular cartesian coordinates (x,y,z). It is hoped that this explana-
tion will be useful to the reader who may not be familiar with tensor
quantities and index notation.

In index notation, coordinates are indicated by indexes (1,2,3) in-
stead of letters (x,y,z). For example, the coordinates of a general point
in (x,y,z) space are denoted by X, = (xy, %z, %3), or more briefly by X,
with the understanding that 1 takes the values 1,2,3. Similarly, axes

(x,y,2z) may be denoted by (xy, X», Xz) or simply by X, .

Stress Quantities

The nine components of stress taken collectively are called the stress

tensor or the stress array. With the following change in notation, the

stress tensor may be denoted in index notation* by Oij, where 1 and j can

take the values 1,2,3, and where Oij = 0.,

Ji
O% = O115 Oy T U2z O, * Ogas
(F.1)
T = 01 T =0 T = 013
Xy 1=z, vz 23> X7 13

More generally, an array of numbers such as the stress array is called a

matrix. The matrix of the stress tensor can thus be written as-:

o] a o1 o} T T
11 12 13 % Xy -
o.. = g2 Opo Oza = T a T . (r.2)
i3 xy y ¥z
o I} o1 T
31 32 33 <2, vz Iy

*The particular letters used for the index are arbitrary,
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It should be emphasized that the notation Gij refers to the stress com~
ponents collectively. However, when specific values are assigned to 1 and
J, the notation refers to a specific stress component., For example, o032
refers to a specific stress component (Txy in the more familiar engineering
notation).

It is possible to resolve the stress tensor Uij into two additive

component tensors:

defined as follows:

] 0 0
m
2 )
o5 0 o o |, (F.1)
0 0 o
m
where
1
Ul’[l E (GX + Uy + GZ) )
and
B B
3 Txy Txz
20y - GZ — 0y
o/, =o,. ~oll ={T ' T . (F.
by iJ Yy Xy 3 yz (.5)
20 — o — 0
T T J
XZ Yz 3
L. -

The quantity O{j is called the deviatoric component of the stress tensor,

and the quantity c{ﬁ is called the spherical component of the stress tensor.
The deviatoric component is an important, and often encountered, quan-
tity in constitutive relations. In index notation the deviatoric stress

component can be written as
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1
i - o . F.
13 7 %3 T3 1 Tk (%.6)
where Eij is called the Kronecker delta and has the following simple mean-
ing:

1 for i = j

aij o for i £

(F.7)
To read Eq. (F,6), we Tirst must recognize that a repeated index in a
single term implies summation over the values 1,2,3., Accordingly, the

quantity Ol becomes

O = O13 * U2z * sz = 0yt oo+ oo, . (F.8)
Thus as specific values are assigned to i and j in Eq. (F.6), we readily

obtain the specific components of the deviatoric stress given in Eq. (F.5).

As examples,

20 — 0 — O
0{y = 01y — = (0,4 + + o Ohs) = —2 ¥ Z -5
11 T U313 3 11 Oz2 Yag/ = 3 =0

and

’ 1
%12 = 12 T 3 (0)(oy; + 0o + 0za) = Ty
Often, scalar quantities called invariants of the stress tensor are
useful. The term "invariant" derives from the fact that the magnitudes

of these quantities are independent of the particular set of coordinate

axes being considered. The second invariant, Jé, of the deviatoric compo-
nent of the stress tensor is used in this document. In terms of the usual

engineering nomenclature,

/R Y /7 VN - = S
J4 = (GXGy + 0L, * o0y O el Tiz) . (r.9)

In index notation, Eq. (¥F.9) can be written simply as

4 =g ol ol . (F.10)
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Recalling the rule that repeated indexes imply summation over the values
1,2,3, we may expand Eq. (F.lO) as follows: Considering the index i

first, we write

1, 4 s ;7

/S = f .

J5 =5 (uljalj + Op5Ug t OSjGSj) ,

and then considering the j index, we expand each of the three terms in

parenthesis, in turn, into three terms, so that

1 /2 /2 ,2
Jé ::5 [(Oll + 012 + O’ls)
+(%f+<%§+c%3 +(%f+<%g+<%®], (F.11)

Now we observe that

so that
(0f, + oo + 045)% =0 = 0{% + o045 + off
+ 2(0] 005 + 07,045 + 0ho0da)
or
G{f + Oég +0l5 = -2(0110é2 + Oilgés + Uézgéa)

Substituting this last relation into Eq. (F.11) we find

R A ;7 ;s 2 2 2 :
Jp = = (011082 + 071045 * 022043 = 072 = 015 = 023) - (F.12)

Finally, if we meke the change in notation specified by Eqs. (F.1) we see
that Eq. (F.12) agrees with Eq. (F.9).

Often a scalar quantity called the effective stress, or the von Mises

effective stress, is utilized., In the usual notation, this guantity is

defined as

- _ _ 2 _ 2 . . 2 2 N~
o = Cl~/{0X Uy) + (Oy OZ) . (OZ cx) + 6(rxy o, Tyz) . (F,13)
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If C, = 1/3, the effective stress is equal to the octahedral shear stress;
if ¢, = 1A/g, the sguare of the effective stress is equal to the second
invariant J5 of the deviatoric component of the stress temsor, Finally,
if €, = lA/E then in a uniaxial test, for which Ty is the axial stress and

all of the other stress components are zero, ¢ = O

Strain Quantities

Strain quantities are written in index notation in a manner analogous
to stress quantities. The nine components of strain taken collectively

are called the strain tensor. With the following change in notation the

strain tensor may be denoted in index notation by eij’ where Eij = €

Ji
EX = €11 Ey = €22 l:Z = 633
ey i~ . ? (r.14)
BT €12 5 = Ca3 5 % €13

As in the case of stress, the strain tensor €ij may be resolved into

two additive component tensors, the deviatoric strain tensor, eij, and the

spherical strain tensor, e{é. The matrix of the spherical strain tensor

is given by

€ 0 ¢
m

~ /7

eff =|o S (F.15)
0 0 €

m
where
1
=3 (ex te t ez)

is the mean strain. The matrix of the deviatoric strain tensor is
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2¢ —«c'Y —-CZ 7xy z&%
3 2 2
Yo 2ey e, T e yyz
/o Xy
€5 = 5 3 5 . (F.16)
7 2c — g — ¢
Xz Y% A X y
2 2 3

It is important to note that in both plasticity and creep the assump-

tion of incompressibility is made, This means that when only the inelas-

tic portion of the total strain is considered,

e =0. (F.17)
Consequently,
€/, =0
1d
and
eij = eij . (r.18)

The second invariant, Ié, of the deviatoric component of the strain

tensor i1s in the case of inelastic strains equal, because of Eq. (F.l?),

to the second invariant, I,, of the strain tensor, and is given by

(F.19)

H
-
il
-
v
P
™
™

ij i
For inelastic strains only,

(ell +oe , + 633)2 =0 = €2 2

to€ag T 2(e  €pn * €11€55 * €22€455)
so thav
2 2 2 sl ~
€Tyt €3p t €55 =~ 2165 * €1 655 * Caplgy)

Expanding Eq. (F.19) and substituting this latter relation into it, we find
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I, = — (611622 + € €qg * EpnEag — €

or, in the usual engineering strain notation,

y 4 7z s
. 4. Xy xm o zz)
I, <€x€y tel, tes, Tl ) (F.20)

Equation (F.20) holds only for the inelastic components of strain.

An effective strain quantity is, in the usual strain notation, de-

fined by

T -0 _ 2 c e )2 — e V2L 3 (2 L 42 2 o
€ 2N/(é1 ey) + (¢ CZ) 4 (ez LX) 3 (/Xy Vg * 7yz) . (F.21)
If Cs = 2/3, the effective strain is equal to the octahedral shear straing
if €, = lA/@, the square of the effective strain is equal to the second
invariant I, of the strain temsor, provided only inelastic strains are

being considered, TFinally, in the case of a uniaxial test we have, for

the inelastic strains,

since € 0. Therefore, € = €, for a uniaxial test provided that C, =

J2/3.
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