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FOREWORD

The work reported here was done at Oak Ridge National Laboratory
(ORNL) as part of the ORNL Piping Program = Design Criteria fTor Piping,
Pumps, and Valves, under the direction of W. L. Greenstreet, Associate
Head, Solid Mechanics Department, and S. E. Moore, Program Coordinator.
The ORNL Piping Program is funded by the U.S. Atomic Energy Commission
(USAEC) under the Nuclear Safety Recearch and Development Program as the
AEC supported portion of an AEC-industry cooperative effort for the
development of design criteria for nuclear power plant piping components,
pumps, and valves. The AEC-industry cooperative effort is coordinated
by the Pressure Vessel Research Committee (PVRC) of the Welding Research
Council, under the Subcommittee to Develop Stress Indices for Piping,
Pumps, and Valves. J. L. Mershon of the AEC Division of Reactor Develop-

ment and Technology is the USAEC cognizant engineer.
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NOMENCLATURE

C Stress index

B Modulus of elasticity

J Polar wmoment of inertia of the curved pipe

k Flexibility factor

ﬁP Applied moment vector

Mi In-plane bending moment component

MO Cut-of-plane bending moment component

MJG Torsional moment component

P Internal pressure

T Mean cross-sectional radius of the curved pipe

R Bend radiue of the centeriine of the curved pipe

S Stress intensity

t Wall thickness of the curved pipe

W Displacement of the pipe wall relative to the centerline of
the bend

Wr’wt Radial and circumferential components of w, respectively

A Section modulus of the curved pipe

a Arc angle of pipe bend

o) Circumferential angle

v Poisson's ratio

B,n Position angles of the moment vector e

¥ R/r, radius ratio parameter

A tR/rEV/i—:Msg; bend characteristic parameter

Y PR® /Brt, internal pressure loading parameter

0,7 Normal and shear stresses, respectively






STRESS INDICES AND FLEXIBILITY FACTORS FOR MOMENT
LOADINGS ON ELBOWS AND CURVED PIPE

W. G. Dodge
5. E. Moore
ABSTRACT

Flexibility fTactors and stress indices for elbows and
curved pipe loaded with an arbitrary combination of in-plane,
ocut-of-plane, and torsional bending moments are developed for
uge with the simplified analyses procedures of present-day
design codes and standards. An existing analytical method was
modified for use in calculating these factors, the equations
were programmed for the IBM~-360 computer, and computed results
were compared with experimental data to establish the adequacy
of the modified method. Parametric studies were then performed
to obtain desired information. The results are presented in
both tabular and graphical form. Approximate equations of
best £it, developed from the tabulated values, are presented
in a form which can be used directly in the codes and standards.
The present eguations are slightly more conservative than the
ones in current use. However, experimental and analytical
studies now in progress may indicate further modifications in
the stress indices and flexibility factors for elbows.

Keywords: stress indices, pipe elbows, curved pipe,
stress analysis, piping code, ANSI B31.7, pressure vesgsel
code, ASME BPV Section ITX.

INTRODUCTION

The stress analysis of elbows and curved pipe has been the subject
of’ numerous theoretical and experimental studies since Bantlin,l* in
1910, first demonstrated experimentally that a curved pipe responds dif-
ferently under load than predicted by simple beam theory; and von Karman,2
in 1911, presented the first rational explanation of this discrepancy.

The purpose of the present study is to select, from among the existing

*Superscript numbers refer to sgimilerly numbered references at the
end of this report.



theoretical methods, the mcst appropriate analysis Tor use in developing
stress indices and flexibility factors; and to develop these factors in
a Torm suitable for use in codes and standards. This study is one of

several being conducted under the Oak Ridge National Laboratory's Piping

Program3

as part of a Joint USBAEC-industry program for the refinement,
extension, and development of methods of design for nuclear reactor plant
piping, pumps, and valves.

The general approach taken here is that of the nuclear power sec-
tion,* B31.7, of the American National Standards Instltute (ANSI) Stan-
dard Code for Pressure Piping, in which stress indices are used in con-
Junction with simplified design Tormulas for calculating design stresses
for class I piping. In this code the maximum shear stress theory of
Tfailure (Tresea condition) is used as the design criterion; and stress
indices are defined in terms of the ratio of the "stress intensity" to
a nominal stress, where the stress intensity is defined as twice the
absolute value of the maximum shear stress at a point in the component
for a given leoading condition.

In the simplified analysis method of division 1-705 of ANST B31.7,
the piping code® uses three types of stress indices, Bj, Ci’ and Ki’
corresponding roughly to the three categories of allowable glresses:
primary, secondary, and peak, respectively. ‘The Bj indices are used
with Eq. (9) of division 1-705 to assure against catastrophic membrane
Tailure, and are thus related tc the primary stresses. The Ci indices
are used with Eq. (lO) to insure that shakedown to elastic behavior will
occur aiter application of a few lcad cycles, and are thus related to
the sum of primary plus secondary stresses. The K; indices ave generally
elastic stress concentration factors and are used along with the Ci in-
dices in Eq. (11) to insure against fatigue failure.

For a conbination of loads applied simultaneocusly to a piping com-
ponent, the simplified design formulas of the code are based on the
assertion that the maximum stress intensity existing anywhere in the
component is equal to or less than the sum of the maximum gtress inten-
sities due to the loads taken individually. It is thus appropriate to
develop stress indices for moment loadings without considering other

loads which may exist on the component in application. The pregent study



deals with stress indices for elbows and curved pipe of the primary plus
secondary category for externally applied moment loadings [”02” as used
in Eqg. (10) of the piping code] and the corresponding flexibility factors
for use in piping system analyses.

The first task wag a rather extensive literature review of currently
available theoretical stress analyses for elbows, and selection of the
most appropriate methods for developing the stress indices and flexibil-
ity factors. Since there is scme advantage in treating an arbitrary
combination of in~plane, oub-of-plane, and torsional moment loadings, one
of the criteria for selecting the appropriate analysis was that consistent
solutions for each of these loadings should ve avallable, or easily devel-
oped. The analysis should also be accurate asg verified with experimental
data.

The remaining sections of the report deal with the flexivility fac-
tors and the mathematical development of stress indices for combined
loads. Numerical results, obtained from a parameter study, are presented
in graphical and tabular Torm, and as approximate Tormulas that are con-
servative and eazsy to use in design analyses. The last section is a dis-
cussion of the present results and recommendations for further study.

A summary discussion of the analytical method, which was selected
from the published literature and modified Tor use in this study, is
given in Appendix A; improved equations for use with this method are
developed in Appendix B. The eguations in Appendix B account for mem-
brane force components that were neglected in the originel development.

A list of symbols used in the text is gilven in the Nomenclature.

SURVEY AND EVALUATION OF ANALYTTICATL METHODS

Published closed-form theoretical stress analyses for curved pipe
and elbows with bending moment loads fall into one of three categories
depending on the approach taken in defining the mathematical problem and
solving the equations. These are the minimum potential energy approach

Tirst used by von Karman®

in 1911, the mechanics=-of-materials ap iroach
Tirst used by Turner and Ford® in 1957, and the thin-shell theory ap~

proach Tirst used by Tueda® in 1936. All of these early solutions were



for an ideal torus loaded with an in-plane bending moment, and in each
case the problem was simplified by neglecting the stress variations
along the length of the elbow. Various extensions and modifications to
these analyses have since been published and numercus experimental

studies have been conducted to verify the theoretical results.

Minimum Potential Energy Analyses

The first ratlonal stress analysis for elbows was published by von

Z in 1911 for the problem of in-plane berding of curved pipe.

7

Karman
Later, in 1945, Vigness' generalized von Karman's analysis to include
out-of-plane bending. They reasoned that due to the curvature of the
pipe bend, the longitudinal stresses in the tube wall tend to distort
the shape of the cross sectlon, which in turn produces a greater flexi-
bility and a different stress distribution than predicted by simple beam
theory. The forms of distortion of the cross section under the differ-
ent types of moment loadings are shown in Fig. 1. This flattening of
the cross section is due to the longitudinal stresses, which in a curved
tube produce component forces acting toward and away from the center of
the tuve.

Both von Karman and Vigness obtained solutions by representing the
displacements of the wall with trigonometric series, and determined the
coelfTicients of these series by minimizing the total potential energy.
For torsional moment loading, they assumed that a curved pipe would re-
spond in the same manner as a straight pipe, and that the cross section
would remain clircular.

In order to simplify the analysis, three major assumptions were
nmade ;

1. The ratio of the plpe radius to the bend radius was neglected
relative to 1.

2. The circunferential mewbrane strain was assumed to be zero, so
that the length of any segment of the circumference of the tube wall
would remain constant.

5. Plane sections transverse to the centerline of the tube were

assumed to remain plane and perpendicular to the deformed centerline.
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Fig. 1. Cross section distortions of elbows loaded with in-
plane and out-of-plane bending moments,



N

For both in-plane and out-of-plane beniing, the analytical results indi-
cated that the angular rotation of the plane gections and the maximum
stresses were greater for curved pipe than for straight pipe, thereby
agreeing with the experimental results of Bantlin The rotation and the
maximum stresses for elbows relative to the same quantities Tor straight
pipe, that is, the flexibility factor and the stress-intensification
Tactor, were found to be greater than 1.0 and o depena only con the

dimensionless parameter lambda*

QL B — (1)

> \ WL

“ \/(l - VE)M

In 1955, Kafka and Dunn® incorporated the influence of internal
pressure into von Karman's in-plane bending analysis. This was done by
including in the potential eunergy cxpression the elastic work 3Jone on
the tube by the pressure during deformation of the cross section. The
influence of internal pressure is to reduce the distortion caused by the
bending load; hence, internal pressure tends to reduce both the bending
stresses and the flexibility of the elbows.

The follewing year, in 1956, Recdebaugh and George9 rederived ani
generalized the von Karman-Vigness analyses including the effects of in-
plane and out~of-plane bending as well ag the influence of internal pres-
gure. When internal pressure is included, the flexibility factor and
the stress-intensification factor depend on a second dimensionless param-

eter psi:

PR®
Vo= Ert

(2)

The more complete analysis of Rodabaugh and George was written in terms
of infinite series which they evaluated using one, two, and thre= terms
to obtain explicit expressions for the flexibility factor and the in-
plane and out-of~plane stress intensity factors. These expressions form

the basis Tor the stress indices currently in use in the nuclear power

*Since both von Karman and Vigness used uniaxial stress-sirain re-
lations in thelr analyses, neither author obtained the termx/fl - va),



piping code (see USAS B31.7-1969, Appendices D and F). Appendix A of
the present report contains a brief summary of the results obtained by
Rodabaugh and George.

There is one other analytical development based on the minimum po-
tential energy Tormulatiocn which is of interest in the current study.

In 1952, Gross™®

pointed out that von Karman's analysis results in a
logical inconsistency which may be significant for elbows with a small
bend radius. In his analysis, von Karman had reasoned that the deforma-
tion of the cross section of a curved tube is caused entirely by longi-
tudinal mewmbrane stress components acting toward and away from the center
of curvature of the bend. For simpliclity he assumed that the circumfer-
ential wembrane strain could be set equal to zero.

In order to wmaintain static eguilibrium in the tube wall, the inward
force resultant of the longitudinal membrane stresses must be balanced
by transverse shear forces and a circumferential membrane force. TFor in-
plane bending the circumferential force should have a maximum absolute
value at the side of the elbow along the neutral bending axis, (¢ = 0);
it should be symmetric about ¢ = 0; and equal to zero at ¢ = * n/2. The

© on elvows with pipe~radivs to bend-radius

experimental results of Grosst
ratios in the neighborhood of 1/3 and others indicate that this conclu-
sion 1s correct. However, because of the zero circumferential membrane
assumption, the von Karman analysis yields a circumferential meubrane
force which is skew-gymmetric about ¢ = O, and hence zero at ¢ = 0O [see,
for example, Appendix A, Eq. (A-14)].

In his analysis, Gross determined the circumferential membrane Torce
regquired to meintain static equilibrium bssed on the assumption that the
von Karman analysig gives the correct longitudinal membrane force; and
applied this as an additive ... "correction for transverse compression.”
Actually this analysis determines a more accurate approximation of the
circumferential membrane force and should replace the corresponding force
determined by the von Karman analysis. A generalization of this correc-
tion ig developed in Appendix B for use in conJjunction with the equations
developed by Rodabaugh and George (see Appendix A). Use of the modified

equations requires the introduction of a third dimensionless parameter,



gamma, defined by

T = Rfr . (3)

Mechanics-of-Materials Analyses

A second type of analysis, different from that developed by von
Karman, was used by Turner and Ford> to analyze the in-plane bending of
curved twubes without internal pressure. Their analysis, published in
1957, used a mechanics-of-materials approach which was more complex than
the strain-energy approach. Two of the simplifying assumptions used by
von Karman, however, were nolb utilized by Turner and Ford. The parameter
r/R was not negleched relative o 1, nor was the circumferential strain
on the midwall surface assumed to be zero. On the basis of their re-
sults, they concluded that the pesk stresses and Tlexibilities determined
by the minimum potential energy analyses are, by a combination of circum-
stances, unlikely to be in error by more than 5 to 10%. In 1966, Smith™t
generalized the analysis of Turner and Ford to include out-of-plane bend-

ing.

Thin~-Shell Theory Analyses

A third approach has been followed by several authors for the anale-
yeis of elbows and curved tubes loaded with in-plane bending moments with-
out internal pressure. Using thin-shell theory, Tueda® in 1936 reduced
the problem tc two coupled ordinary differential eguations which he in-
tegrated by means of a power series. In 1951, Clark and Reissner,lg
using the thin-shell theory developed earlier by Reissner,13 also ob-
tained two coupled ordinary differential equations with variable coeffi-
clents. In order to solve these equations, approximations were made
which were essentially equivalent to the assumptions made by von Karman
in his analyses.

In 1968, Cheng and Thailer'® published an analysis for in-plane
bending which was based on the two differential eguations of Clark and
Reissner'™® but without their simplifying assumptions. Thelr solution

wag in the form of a series expansion which identically satisfied the
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equilibrium equation, but satisfled the compatibility equation only for
small values of the pipe-radius to bend-radius ratio, that is, r/R < 1.0.
Rather than impose a restriction on this ratio, the ccefflicients were
determined so as to minimize the complimentary energy, and hence approxi-
mately satisfy the compatibility equation. The resulting series con-
verges quite rapidly, requiring only four terms for elbows with bend
parameter valuves around A = 0.05 and only six terms for A = 0.01. They
also investigated the convergence characteristics of a number of previ-
ously published analyses and found that, with the exception of the von
Karman~type solutions, convergence was very slow, requiring on the order
of 40 to 50 terms. Cheng and Thailer reported, or the other hand, that
six terme were found to be adequate for the minimum potential energy
formulation of Symonds and Pardue,ls which is a slight extension of the
von Karman-Vigness analysis to include the radius ratio parsmeter r/R in
the elastic energy equations; however, they still retained the assumption

of zero circumferential membrane strain.

Most Appropriate Solution for Design Use

Since Cheng and Thailer's thin-shell theory analysis retalns the
radius ratio v = R/r as a parameter and is not restricted by the assump-
tion of an inextensible circumferentisl midsurface, it should be more
accurate than the von Xarman-type minimum potential energy solutions.
The rapid convergence characteristics tend to favor its use over the
mechanicg-of~-materials analysis of Turner and Ford,5 which appears to
give about the same accuracy. Thus, if Cheng and Thailer's method could
be generalized to include out-of-plane bending and the effects of inter-
nal pressure, it would probably be the most satisfactory to use as a
basis for develcoping stress indices and flexibility factors. However,
since such an analysis is not available at this time, the minimum poten-
tial energy solution of Rodabaugh and George as corrected by the modi-
flcations developed in Appendix B was selected as the basis for the Cs
stress-index development. The wmodified analysis was programmed for the

ORNL computer and used in the remainder of the study.
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The computer program‘ElB¢W* was written to evaluate as many terms
in the series solution as needed to guarantee convergence. Previous
authors had shown that the number of terms required for convergence in-
creased with decreasing values of the elbow bend parameter A, usually
requiring between three and six terms for A greater than about 0.1. The
canputer program was therefore written to compute up to 20 terms if nec-
essary. For A values on the order of A = 0.01, 15 or 16 terms were suf-
ficient to achleve six~digit accuracy in the calculated stresses, whereas
only five or six terms were required for A ~ O0.1. This is an important
factor in the cost of doing large-scale parameter studies where several

hundred cases may be analyzed.

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

Analytical results obtained with the computer program discussed
above were compared with experimental results published in the literature.
Since the analysis is capable of considering bending loads, both with
and without internal pressure acting at the same time, the experimental
data obtained by Rodabaugh and C—eorge9 in 1957 for the case of in-plane
bending was used as one test problem. Their elbow was a 30~in.-0D long-
radius (R = 45 in.) 90° welding end elbow witnh a 0.5-in. nominal wall
thickness. The average wall thickness was 0.515 in., with a variation
of +0.058 in. to ~0.094% in.; and the average outside diameter was 29.973
in., with a variation of +0.160 in. to -0.172 in. These dimensions give
a nominal bend parameter value of A = 0.1118 [cee Eg. (1)]. The elbow
was instrumented with SR-4 strain gages located every 15° around the
circumference at the midpoint of the bend (L5°) on both the inside and
outside surfaces. The elbow was tested with an in~plane bending moment
and internal pressures of 0, 400, 800, and 1100 psi; the corresponding
internal pressure parameter values from Eq. (2) were ¥ = 0, 0.0037,

0.007h4, and 0.0102, respectively.

*¥A listing of the computer program is given in the report, "ELB@W:
A Fortran Program for the Calculation of Stresses, Stress Ilndices, and
Flexibility Factors for Elbows and Curved Pipe" (to be published).
Copies may be obtained from the authors, Dodge and Moore.
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Using the nomenclature of Fig. 2, comparisons between the normalized
experimental stresses, Gi/(M/Z), in the circumferential and longitudinal
directione and the present analytical results as a function of angular
position ¢ are shown in Figs. 3, M, and 5 for internal pressure values
of 0, 400 psi, and 800 psi, respectively. The analytical results are
shown as dotted (...) and solid (~—) lines for the inside and outside
surfaces, respechtively; and the experimental results are shown as open
triangles and circles. As these figures show, the overall agreement is
good for both the inside and outside surfaces, and especially good for
the maximum values. Although not shown here, the present analytical re-
sults agree somewhat better with the experimental results than the un-
modified analysis used earlier by Rodabaugh and George.

A second example test problem was also compared with experimental
results for beth an in-plane and an out-of -plane bending moment applied
to the elbow. These data were obtained from the paper by Smith and
Fordl® published in 1967. Swmith and Ford reported in-plane bending re-
sults from three elbows, two of which were also tested with an out-of-
plane bending moment applied through the connecting pipes. The first of

of 6.556 in., a

these, their model no. 1, had an outside diameter, DO,
wall thickness, t, of 0.24k in., a mean radius, r, of 3.156 in., and a
bend radius, R, of 18.23 in. The corresponding dimensionless parsmeters
were ¥ = 5,776, A = 0.4846, and ¥ = 0. This model was instrumented with
electrical resistance strain gages at the center of the bend arocund the
outside surface. Although the éage lengths were not reported, since the
tests were conducted within the last few years (around 1966), it is pre-
sumed that reasonably small gages were used and that modern technigues
were used in the experimental stress analysis. The publisghed experi-
mental results for this medel should therefore provide a fairly good
test case for the present analysis, even though the bend parameter (X ~
0.5) is somewhat larger than desirable. Smith and Ford's other model,
their no. 5, was considered to be too thick for general theory validation;
the parameter values Tor this model were v = %.045 and A = 0.8903.
Comparisons between the normalized experimental stresses from Smith
and Ford's model no. 1 and the present analytical results are shown in

Figs. 6 and 7. TFigure 6 is for the case of in-plane bending and Fig. 7
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Fig. 2. Coordinate system and dimensions for analytical
model of elbows.
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ig Tor out-of-plane bending. The angular position ¢ is relative to the
same position used above (see Fig. 3). For the in-plane bending case

the agreement belween the experimental and analytical results is guite
good and is about the same as obtained in the previous example. For the
out~of-plane bending case the agreement between experimental and analyti-
cal results is also good for the circumferential stresses and reasonably
good for the longitudinal stresses, as shown in Fig. 7. When these fig-
ures are compared with Smith and Ford's paper, where they compared the
experimental results with analytical results cobtained using the mechanics-
of -materials analysis of Smith,ll it appears that both analyses give
about the same relative comparison with the experimental data.

These two examples thus tend to reinforce our conclusion that the
modified minimum potential energy analysis developed in Appendix B from
the work of Rodabaugh and George is the most suitable analytical method
for developing stress indices and Tlexibility factors for elbows aund
curved pipe. It would perhaps be more conclusive if the analysis could
be compared with experimental data from elbows with very small A-parsmeter
values,'say on the order of A = 0.01 to 0.1, which were loaded with in-
plane and out-of-plane bending moments in the presence of internal pres-
sure. After the present study was completed, two reports by Jacobs and

17,18 containing recent experimental data for nine elbows (X A 0.2)

Surosky
were brought to the attention of the authors. These data will be com-

pared with the present analyses at a later date. For additional informa-
tion and references, the interested reader is referred to the survey re-

port19 by Rodabaugh and Pickett published in 1970.

DESTGN FORMULAS

flor general design purposes, simple, reascnably accurate, and con-
servative stress analysis formulas are often more desirable than the com-~
plete set of equations, which in the present case requires the use of a
high-gpeed canputer. This is the approach taken by most design codes
and standards in an effort to minimize the combined cost of the piping
system components and the design stress analysis of the system. For

nuclear piping system design, Section TIT of the ASME Boiller and Pressure
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Vessel Code®® and Section B31.7 of the ANSI Standard Code for Pressure
Piping4 use simplified stress analysis formulas in terms of siress in-
dices and flexibility factors. Flexibility factors are used in the anal-
ysis of the overall Tlexibility of the system, and stress indices are
used to evaluate the adequacy of a specific component in the piping sys-
tem under specific loading conditions determined from the system flexi-
bility analysis. The detailed analysis procedures of these codes also
allow the use of the complete solutions described earlier if the conser-

vative stregs-index analysis should prove too restrictive.

Flexibility Factors

The flexibility factor k wmay ve defined as the ratio of a relative

rotation to a nominal rotation:

k = zab , (h)
nem
where
eab = rotation of end "a' -of a piping component with respect to
end "b" of that component due to a moment loading M, and
in the direction of the moment M,
€ o = nominal rotation due to the moment lozding M.

For curved pipe and elbows, it 1s convenieut to use the ratio of the
relative rotation of two transverse planes in the component which are an
infinitesimal distance apart to the relative rotation of corresponding
planes in similar straight pipe under the same loading conditions. Using
this definition the analysis of Rodabaugh sand George predicts equal
flexibility factors for both in-plane and out-of-plane bending moment
loads. When the effects of internal pressure are also included, the
Tlexibility factor kp is given as a function of the two parameters A and

s
k=% (A, . (5)
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Numerical values for kp (K,W) obtained from Eq. (A—lE), Appendix A, are
given in Table 1 for the parameter range 0.01 £ A £ 5.0 and 0 £ ¥ <
0.512; a graphical description is shown in Fig. 8.

When the internal pressure parameter ¥ is zero, k = kp (A,0) is
essentially a logarithmic straight line for wvalues of A < 1.0. This sug-

gests a simple formula of the type

k = AT A< 1.0 (6)
where the constants A and n may be determined from the numerical values
given in the table. The equation given by Rodabaugh and George [see Ref.
9, Eq. (33)] fits the tabulated values with an error of less than 5% if
A = 1.66 and n = —1.0, that is,

k = kp (X,0) = =22 ; A <1.0. (7

For internal pressure values greater than zero, they suggest using an

equation of the following form:

k

kp (A,9) = TTF (00 (8)

where T (\,¥) is a correction factor for the influence of internal pres-
sure .

Using Eq. (8) and the tabulated values for kp (h,w) listed in Table
1, the following approximating expression for [ was developed in the

present study:

0.05 £ A < 1.0
=175 A2 exp (<1015 MYy (9)
0 <V < 0.1

where exp (...) is the Napierian number e raised to the power indicated in
parenthesis. This expression results in flexibility factors which are
slightly smaller than the tabulated values (less than lO%). The accuracy
is as good, however, as the expression given by Rodabaugh and Ceorge in

Ref. 9 and appears to it a wider range of nondimensional parameters.



Table

1. Flexibility factors for elbows loaded with
in-plane or out-of-plane bernding moments

Flexibility Factors for Elbows

PsS1

LAMBEA
0.0 0.0N1 D.0C2 0.004 0.008 G.016 0.032 T eCb& D128 C.5.2
C.010 173,206 55.377 35.3€8 21.927 13.460 8.304 5.205 34363 2.288 1.352
0,015 115.47C 504447 33.856 21.526 13.366 8.282 5.200 3.362 2.288 i.352
¢.020 86.602 45.719 32.124 21.020 13.22¢9 8.252 5.193 3360 2288 1.352
C.030 57.734 37.792 28.61¢ 19.827 12.907 8.17C 5.174 24355 2.286 i.352
€.040 43,300 35.832 25.45f8 18.547 12.502 8.062 5.147 34349 2.28E 1.352
C.020 34.63¢ 27.341 22.75¢ 17.292 12.055 7.932 5.114 3,240 2.23% 1.352
C.CER 28.865 232.886 20.482 16.115 11.589 7.787 5,075 3.330 20280 1.352
g.070 24,761 21.167 18.568 15.036 1l.lz2 Te63C 5.230 3.319 2277 1.352
0.080C 21.647 18,580 1€.94% 14.056 I10.663 7 o454 4,381 3.205 2.2773 1.350
C.1CC 17,218 15.€6€8 14.384 12.376 2.797 720 44871 Sed T4 2265 14351
0.150 11.555 10.919 10.357 9,419 8,706 65272 44556 3,176 24237 i.349
0.2C0 B.&75 8.252 8.025% 7.529 6o 584 5523 4,222 34056 26200 1.246
0,3C0 5.728 5.609 5.4¢6 5.285 4. G510 4,247 2,593 2790 26507 1.338
0.4C0 4.204 4ol &9 4.0¢7 2.997 3.81L5 32.511 3.065 24524 2.007] 1.328

0.500 3.293 2,265 3.238 3.185 3,088 2.916 2.645 2288 1.802 1.3%
€.600 24709 2.693 2.67¢ 2.649 2.593 244975 2.322 2.078 l.788 1,301
C.8C0 2.041 2.035 2.029 2.018 1.9%6 1.956 1.884% 1.768 1.508 1.27%
1.000 1.693 1.691 1.6E8 1.683 1.673 14655 T.8620 L4561 1471 Le240
14500 1.321 1.221 1.22¢ 1.31¢ 1.317 1.31% T 205 1.29C 1.264 Lel71
2.000 1.184 1.183 1.183 1.1832 1.182 Le1E] 1178 1.173 1.163 1.12

2,000 1.083 1.082 1.0¢€2 L.c82 1.082 1.082 L.cei 1.080 1.078 1.067
5.0C0 1.630 1.C30 1.020 1.03C 2.020 1.030 1.020 1.030 l.02¢ 1.028
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Stress-Index Development

In general, the moment leoadings which are applied to an elbow in a
piping system consist of in-plane bending moments Mi’ out-of'-plane bending

noments Mo’ and torsional moments M For each c¢f these loading condi-

L
tions the distribution of stresses will be different. TIn particular, the
maximum values will have different magnitudes and will be located at dif-
ferent positions, as can easily be verified by examining the equations

in Appendix A. It can also be verified that for combined loadings the
maximum stresses may be located at still different positions with maxi-
mum values which will in general be less than the sum of the individual
maximums. For design purposes it will therefore be advantageous to deter-
mine the maximum stresses for any arbitrary combination of moment lcadings,
and to represent these values in a convenient form. Since both Section
III and ANSI B31.7 use the maximum shear stress criterion (Tresca condi-
tion) for specifying design allowable stresses, this criterion 1s used as
the basis for developing stress indices for general design use.

According to the Tresca condition, multiaxial stress-state ylelding
will occur when twice the absolute value of the waximum shear stress, or
the gtress intensity 8 as defined in the piping codes, exceeds the yleld
stress of a simple uniaxial tensile specimen. At some position in the
component the stress intensity will have a maximum value Smax’ which in
the present case will depend on the dimensiocnal parameters of the elbow'

A, ¥, and v. Furthermore, if the total bending moment load is represented

a

2]

a vector Ni with individual vector components ﬁ;, ﬁ;, and ﬁ; as shown
in Pig. 9, then for a given vector magnitude ]ﬁj there will be some angular
position of the vector ﬁy(n,ﬁ) which will give the largest value Tor the
maximum stress intensities. Thus for combined moment loadings, Smax will
depend on the additional parameters 7 and 3.

Therefore let S be the largest value of the stress intensities Smax
corresponding to all moment vectors with fixed magnitude:

5 (0, =8 Ouv,7,m,8) (10)

In other words, for a given elbow which is loaded with any combination of

-,
in-plane, out-of-plane, or torsional moments whose vector Sum.\Mi is fixed,
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S is the maximum value of the stress intensity. The quantity S thus pro-
vides a convenient and conservative variable for use in developing stress
indices. 1In keeping with the format of the piping code and the desired
simplicity, we define the stress index as the ratio of 5§ (\,¥,y) to the

maximum bending stress in a corresponding straight pipe:

8 (A, 0,1)
¢ (M) = VA
where Z is the section modulus, M = |ﬁ1 is the magnitude of the resultant
monment vector,
2 o
M= AL (11)

and Mi’ Mo’ and Mt are the magnitudes of the individual vector components,

respectively. In the following development the megnitude M is set equal

to the section modulus so that
M/Z =1, (12)
¢ (A,7) =8 (M), (13)
and the magnitude of the individual vector components are:

M,
i

i

Z cos 1 cos B,

M =2 cos f sin B , (14)

Mt =2 gin n .

The stresses which are produced in an arbitrary element of the elbow

by this combination of loadings, as shown in Fig. 10, are

M., . M
g, = = 01 + =2 GO
Y Z 2 2 4’
Mi i Mo )
O, = 5= 0y 5o o0, (15)
Mtr %E
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where the subscripts £ and c¢ denote the longitudinal and circumferential
directions, respectively, T is the shear stress, and 0;, Gi, 02, and 02
are the normalized stresses in the elbow due to in-plane bending and out-
of-plane bending, respectively. The normalizing factor M/Z is the maxi-~
mum bending stress due to a moment loading M in a pilece of straight pipe
with the same secticn modulus Z as the elbow [see Egs. (A-13) to (A-16),
Appendix AJ.

The principal normal stresses for the state-of-stress indicated in

Fig. 10 are:
1 1 2
o =5 (oz + Gc) + V/E;(Gz - Gc) + T2,
1 1 2
0 =5 (0, +0) ~ /L (o, ~0 )% + 2, (16)
o5 = 0 .

Since the stress intensity S is twice the maximum shear stress, S will

be the maximum of the three quantities:

€]
il

2 o
1 IGJ. _02| = ﬂgﬂ ""Gc) + b= 5

2]
i
I
N

lo, — o

3' I(Gz + Gc) + 8,0, (17)

o=

S, = |o, = o5 (o, + o) =8| .
The problem for a given elbow, that is, fixed A,V¥,Y, thus reduces to
determining the maximum of 8,, S,, and B4 Tor all angular positions of
the moment vector ﬂf(n,ﬁ).

Consider first the equation for 8;. After substituting Egs. (14)
and (15) into the first of Egs. (17):

S, = ~/(A cos B + B sin B)z cos® 1 + sin® 7 , (18)

where



A = Oy 0.
(19)
o 0
B o‘6 Gc '

Stationary values of £ and 1 are found by setting the partial derivatives
of Si with respect to B and 71, respectively, equal to zerc. The resulting

equations are:

(A sin B — B cos B)(A cos B + B sin B) cos® 1 = O

(20)
[ —-(AcosB +B sinpB)®] sinncos n =0 ‘
The solutions fTor Egs. (20) yield either a maximum at n = 90° of
S, =1, (21)
or a maximum at 1 = 0 and B = arc tan (B/A) of
s, = J& + B . (22)

Determining maximum values for S2 and. S, 1s somewhat more compli-
cated. After substituting Egs. (14) and (15) into both the second and
third of Bgs. (17):

SE :::% |(C cos B + D Siﬂ B) CcOSs T] + Sll (25)
and
Ss :::'%- I(C COs B -} D Sil’l B) cos 7] - Sli s (2h‘)
where
i i
C:UE +CYC 3
. (25)
D = Uz + 0,

and as before, Eg. (18),

S, = \/ZA cos B + B sin B)® cos® 1 + sin® q
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For stationary values of 5., the following two equations obtalned from

Eg. (23) must be solved:

33

EEE'Z 0= (~C ein B + D cos B) cos 7

+ [(A cos B + B sin B)® cos® 1 + sin® q]-l/2

X [(—A sin B + B cos B)(A cos B + B sin B) cos® 1] , (26)

i 0=~{Ccos B + D sin B) sin 7
+ [(A cos B + B sin B)® cos® n + sin® 1]
X [1 — (A cos B +B sin 6)2] sin 1 cos 1 . (27)

A similar set of equations is also obtained for S5, differing only in the
sign (%) of the second terms. Because of the complexity of these equa~

tions, explicit solutions for B and 7 were not determined. However, the
angle 7n can be expressed as a function of the angle B from Eq. (27). Re-

arranging this equation gives the three-term product:

0 = {sin n}{[(A cos B + B sin B)® cos® n + sin® 1]

-1/2}

{(Ccos B +DsinB)[(A cos B +B sin B)® cos® 1 + sinf n]l/2

—[1 - (A cos B +B sin B8)% cos 1]} . (28)

Since the second term in braces {...} cannot vanish for any value of 7 or
B, it may be discarded immediately leaving the first and third terms,
which may be set equal to zero independently. If we consider the first
term, that is, sin 71 = 0, then a maximum stress intensity occurs at 1 = O,

Then using Eqs. (18) and (23),

S

2=%|(C+A) cos B + (D + B) sin B (29)

or, in terms of stress components from Egs. (19) and (25),
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i o .
S, = loz cos B + o, sin Bl . (20)
Thus by setting 3S,/B = O from Eq. (30),
B = arc tan (62/63) 5 (51)
and a maximum value for 5, is given Dby
iz o2
5, = Aoh? v (6D . (32)

A similar result is obtained for 8S5. At 7 = O,

83 =z ‘(jz cOos S + Ui sin Bl » (55)

and from setting 385/ = O,

arc tan (Gg/ﬁi) s (34)

™
i

giving a maximum value at 1 = 0 of

i

5, = oD + (697 . (35)

When the third term in Eq. (28) is set equal to zero, we obtain the fol-

loving:

(C cos B + D sin B) .ﬂA cos B + B sin B)® cos® 7 + gin®
= (1 ~(AcosB +3B sin B)?] cos 7 . (36)
Squaring both sides and collecting terms gives

*l

Ccos P + D sin B {1 +(Acosp +B sin B)2 [(A cos P

1/z

+ B sin B)® — (C cos B + D sin B)* — 2]} . (37

tan 1 =

The same result is obtained when the corresponding equations for S3J

Egs. (2&), etc., are used. Hence, Eq. (37) gives the value for 7 which

wmakes both S, and 85 stationary for cach value of B.
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Parameter Study and Results

The stress index C, (A,W,Y) for a given elbow was determined numeri-
cally by first solving the eguations of Appendices A and B for the indi-
vidual stress components as a function of angular position ¢ around the
circumference of the elbow for each of the applied loads Mi’ Mo’ and Mt'
The maximum stress intensity S (k,w,r) and consequently the stress index
C, [see Bq. (13)] was then determined by combining the stresses as indi-
cated above and choosing the largest of the values obtained by evaluating
Eqs. (21), (22), (32), and {35) and those obtained from Egs. (23) and (24)
when B was scanned with 71 given by Eq. (37). A complete parameter study
wag conducted using a Fortran program written for the ORNL IBM-360 com-
puter for values of A which ranged between 0.0l and 5.0, for values of V¥
between O and 0.512, and for four values of the radius ratio parameter
T =2, 5, 5, and 10. The resulting stress indices are plotted in Figs.
11 through 14, and tabular values are given in Tables 2, 3, 4, and 5. As
one might expect from the work of previous authors, the stress indices
are not strongly dependent on the radius ratio for y = R/r > 2.0, which
can be verified by comparing the numbers in the different tables.

A conservative approximation for stress indices, which slightly over-~

estimates the tabulated values, ig given by

s N
02 _ 2.25 A . 0.05 = A £ 1.0 (jB)

on ) - 2
14 A" exp (~y l/‘*) 0<v <0.1 .

In order to take advantage of the slight dependence of C, on the parame-
ter v, one might use the better approximation

2223 (1 4 0.05 ™) . 0.05=A<1.0

14 A4/ exp (-w’l/4) ’ 0<vVy < 0.1 .

C = (39)
For ¥ = 0, Eq. (59) is similar to an approximation proposed by Cheng and
Thailer.®' For zero internal pressure it gives stress indices which are
about 12% higher than the code values (Table NB-368%.2-1, Section III,
Ref. 20) for y = 2, and values which are equal to the code indices for

T = »,
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Table 2. ¢, stress indices for elbows with radius ratio vy =2.0

STRESS INDICES FOR ELEBOWS
WITH
GAMMA = 2.0

PSI

LAMBLCA : _—
0.0 0.001 0.002 0.004 C.0C8 0.016 C.032 0.C64 0.128 C.512

€.01¢C 45,669 13.394 S.027 6.223 4.438 3.284 2.510 1.593 1.656 1.240
¢.015 35.054 1z2.617 G573 £.519 4.568 3.321 2453C 2.0GC1 1.663 1.341
L.020 29.062 13.548 9.911 b.782 446589 3.384 2.553% 2.C10 1.667 T.262
£.020 22.322 13.%523 10.123 7.156 44545 3.502 24597 2.030 1.676 1e344
C.040 18.515 12.906 S.97%1 7.339 5.14% 3.615 24649 2.051 1.685 L.367
0.05C 16.020 12.15% S.7685 7.282 5.282 3.71¢8 2.701 2.073 1.6%5 1.34¢
0.020 14,233 11.420 9.52¢ 7.331 5372 2.807 2.751 2.057 1.7¢5 i.351
C.07¢ 12.877 104745 9.2i1 7.225 5.42C 3.E82 2.799 2.120 «7i5 1.253
€.080 11.81C 10.142 8.8583 7.113 Se424 3042 20843 2.164 1.72¢ 1.35%
C.1C0 i¢.218 5.123 8.24C be 303 5254 4,021 2.922 2..88 1.743 Le361
C.1%20 7.356 T+3£0 5.924 6.162 5.120 4,043 2.047 2.287 i.8C2 1.274
C.2CC €.52¢ L 5.652 5.542 4o 824 3.922 3.084 2.256 1.851 1.387
.30 5.017 44867 44783 4,571 4,203 34631 3.G12 2.413 1.925 i.414
{.4C0 40137 4.074 4.012 %4895 3683 343258 2.863 2401 1.96% 1ty
C.5C0 3.542 3. 504 3468 3.3297 3.266 3.032 2599 2.250 1.681 LebéE
C.600 3.109 3.086 3.062 3.017 2.931 2.77¢% 245456 2.284 l.677 i.486
{.8CC 2.524 2.515 2.5C2 2.480 2.442 2 .328¢ 24294 143 1.c638 T.517
1.0¢¢ 2.223 24219 2.215 2.2C7 2.192 2,142 Z2.10% 2.018 1.88C Le52€
1.500 1.85¢9 1.858 1.587% 1.8%¢4 1.850 1.840C 1.823 1.75C 1.724 1.5%8
2.0CC 1.688 i.688 1.687 1.686 l.684 1.68C 1.672 1.657 1.630 1.815
2.00¢C 1.516 1.216 1.51¢ 1.515 1.515 1,51z 1.51% 1.505% 1.497 14483
5.0C0 1.37¢9 1.279 1.379 1.37¢ 1.378 1.27¢ 1.278 1.277 1.275 1.2¢4

f1e



Table 3., C5 stress indices for eibows with radius ratio v = 3.0
STRESS INDICES FOR ELBOWS
WITH
GAMMA = 3,0
PSI
LAMBCA
0.0 C.001 0.0G2 0.004 C.0C8 C.0lé C.032 £.C64 c.1l28 C.512
0.01C 44 ,85C 12.C¢7 8.82F 6.076 4,332 5.189 24427 1.916 1.586 1.27¢C
0.C15 34.238 13.589 9.325 6,341 boeb4l 3.23E 2.442 1.923 1.58¢ 1.271
C.C2E0 28.412 13.6(7 S.642 6.587 4,556 2.278 2.459 L.230 L.592 i.272
.20 21.755 13,062 9.824 €.939 4,782 2,378 24500 1.944 1.598 1,273
0.040 17.999 12.462 9.675 7.107 4, 567 2447¢ 24543 1.962 1,665 1.275
C.CE0 15.840 11.728 G374 7.140 5.668 3.575 2.587 1.981 1.6132 1.27¢
0.060 13.781 11.008 9.1328 7.084 «18C 3.658 2.633 2.C0C 1.621 1.278
0.070 12.448 1C.347 8.836 6.976 5.222 3.727 2.677 2020 1.62C .28
.80 11.39¢ S. 756 8.51¢€ 6,836 5,222 2.781 2,718 2.041 1.83¢ 1.282
C.1C0 G.83¢ 8,759 7.88¢ 6.574 5,184 3.85¢C 2.788 2.081 i.657 1.286
€.150 7.522 T.034 6.606 5.886 4,875 Z.862 20897 2.168 1.702 1.2596
€.2C0 b.222 £.548 5.6¢8 5.255 4,558 3.748 2+92% 2ec29 1.7¢7 1.307
G.+3C0 4.752 4.634 4.522 4,314 3.55¢2 Z.412 24855 2.27% 1.812 1,331
0.4C0 3.897 2,834 2.773 3.658 34450 2.102 2.707 2.264 1,85¢C 20355
0.5C0 3.317 3.280 3.244 3,175 3.045 Z.81l8 24550 Z2a.2lb l.8¢6¢ 1.377
€C.6C0 2.895 2.872 2.849 2.804 2.71¢ 2.579 2.403 24153 1.862 14367
C.8C0 2.363 2.356 2,349 2335 2.307 £+256 Z.165 2.020 i1.824 i.42
i.0Co 2.096 2.082 2.0¢88 2.081 2.066 2.038 1.988 1.902 1.77%2 1.448
1.500 1.771 1.770 1.7¢66 1.767 l.762 1.75% 1.735 1,705 14651 1.461
2.000 l.612 i.612 1.611 1.610 1.608 1.6C5 1.597 1.582 1.556 1.442
3.C00 1.451 1.450 1.450 1.450 1.449 1.448 Tellt Lotk él 1e4322 1.288
5.C00 1.317 1.217 1.317 1.317 1.316 1.316 1.316 1.315 1.313 ie30I



Table 4. Co stress indices for elbows with radius ratio v = 5.0
STRESS INDICES FOR ELBOWS
WITH
GAMMA = 5,0
psSt

LAMBCA
0.0 C.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128 £.512
0.010 44,195 12.880 B.€823 5.672 4a 261 3.137 2.380 i.873 1.54% 1.253
0.015 33.766 13.334 S.1¢4 6.228 44,353 2,170 2.393 1.878 1.547 1.233
0,020 27.891 13.340 9.460 6.460 el 3.208 2,407 1.883 L1546 14233
€.03C 21306 12.720 9.62°% 6.786 44,673 2,296 Z2.438 1.896 1.555 1.23¢4
0.040 17.585 12.iC7 Se4S4 6.939 &4aB42 34392 Ze.476 L.909 1.56C 1.235
{.050 15.156 11.386 9.137 $.963 4a.362 3.477 Z+516 Le924 L4566 1.237
{080 13.420 1G.578 8.8%0 6.9062 5.0356 34551 2.556 L.941 Z.572 1.238
C.07C 12.104 10.028 B8.52¢ 6.792 5.072 .62 2.594 1.959 1.57¢9 1.030
.08 11.07¢ 9,447 8.223 6.650 5.078 3.661 2630 1976 1.587 T.240C
C.1{0 S.531 Be 467 T7.6(6 £.328 5.025 3.72% Z2.694 2.0l 1.604 1.24%
f.150 7.254 6774 632 5.641 4. 714 3.727 24793 2.038 l.é42 1.252
C.2C00 5.6768 5.,7C9 5.4¢2 5.024 44345 3.612 Z.B17 2.142 LeE&ET 1.261
04300 44540 beb2b 44313 4,108 3.751 3.280 20738 24185 1.7&8 1.282
Ce4lC 3.704 3.642 2.5872 34466 3.263 2.956 Z2.5%9% 2.168 1.772 1.304
0.500 3.137 3.101% 3.0¢5 2.997 2.868 2.686 Zebld 2.12% 1.786 i.324
L+6C0 2.724 2.7CL 2.678 2.634 2.573 Z.470 Z.301 2.061 1.781 1.343
£.8¢C0 2.262 2.255 2e243 2.234 2.208 2.158 2.070C 1.935 1.753 1.379
1.000 2.024 2.021 2.017 2.010 1,996 1.976 1.921 1.838 1.7153 1401
1.500 i.72¢6 1725 Le726 i.722 1.717 1.709 1.692 1.662 1.50% 1.425
2.000 1.588 1.587 1.587 1.586 1.584 1580 14572 1.558 1.53%2 1420
3.00C0 1.441 i.440 L.440 1440 1.429 L.438 1.436 1e431 1.422 1.375
5.000 1.307 1.3¢7 1.307 1.307 1,307 1.307 1.3086 L <305 1.3G3 Le29%

9t



Table 5.

Co stress indices for elbows with radius

STRESS INDICES FOR ELBOWS

ratio v = 10.0

WITH
GAMMA = 10.0
PSI

LaMBLA
¢.0 0.001 ©0.002 0.004 0,008 0.016 0.632 0.064 0.128 0.5.2
0.010 43,704 12.745 8.5$6 5,917  4.217 3,108 2.358 1.8546 1.52€  1.21¢
0.615 33.336 13.174 9.051 6.155 4,368  3.133 2.367 1.857 1.529  1.216
0.020 27.501 12.158  $.231  6.371  4.408 3.,17¢ 2.377 1.861 1.530  1.216
0.030  20.959 12.522 9.478 6.676 4.599 3,251 . 2.406 1.869 1.533 1,217
0.040 17.275 11.841 9.300 6.817 4.755 3.333 2,438 1.881 1.537 1.2:8
0.650 14.868 11.130 8.S8C 6.835 4.865 3.410 2.472 1.894 1.542 1,218
0.060 13.149 10.4231  8.611  6.770  4.933 3,486 2,508 1.908 1.547  1.219
G.070  11.847 S.790  8.211  6.657  4.964 3.538  2.544 1.923 1.55%  1.220
C.C8C 10.822  6.216 8.003  6.515 4.967 3.584 2,577 1,939 1.55¢  1.221
£.100  $.302  8.248  7.3%8  6.192  4.910  3.641  2.635 1.970  1.572  1.223
C.L50  T7.054  £.578  6.15¢  5.458 4,598 3,635 2.722 2.0329 1.5°7  1.230
C.200 54796  5.529  5.265  4.853 4,233 3,517  2.742  2.087  l.64%  1.238
C.300  4.381  4.266  4.156  3.953 3,600 3.185 2.660 2.124  1.694%  1.258
C.ooC0  3.560  3.498  3.43S 3,327  3.123  2.868 2.517  2.105  1.735  1.277
.5CC 3.003 2.566  2.931  2.863 2,758  2.605 2.368 2.058  1.734  1.298
0.6CC  2.611  2.565 2.580 2.551  2.496 2.396 2.232 1.998 1.729  1.319
0.80C  2.199 2.162 2.166 2,173 2,149 2,102 2.021 1.891 1.712  1.352
1.600  1.S76 1.973  1.96S 1.962 1.%49 1.923  1.875 1.796 1.877  1.381
1.5C6 1.711  1.710  1.7€S  1.707 1.703  1.695 1.679  1.649  1.599 1,419
2.000  1.587 .587  1.56€ 1.585 1.583 1.579 1.572 1.558 1.531  1.420
3,000  l.441l  1.440  1.440  1.440 1.439  1.438 1.436 1.431  1.422 1.375
5.000  1.307 1.3€7 1.3€7 1.307 1.307 1.207 1.306 1.305 1.303 1.291

LE
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SUMMARY AND DISCUSSION

During the past 60 years many analytical and experimental studies
have been conducted to determine the stresses in and the flexibility of
pipe elbows and curved tubes under moment loadings. Minimum potential
energy methods, mechanics-of-materials, and thin-shell theory have all
been used to formulate equations and to derive solutions. Of these, the
minimum potential energy approach has been most widely studied, and at
present is the most well developed, although thin-shell theory appears 1o
have a good deal of undeveloped potential. The minimum potential energy
approach was Tirst used by von Karman® in 1911 to cbtain an analytical
solution for the case of in-plane bending. His solution has been extended
by Vigness,7 Symonds and Pardu6715 Kafka and Dunn,8 Reodabaugh and George,9
Gross,lo and in the present study to lmprove the accuracy and to include
other loading conditions.

Recent advances in the development of safety codes and standards®s2°
for the nuclear power industry, where structural integrity is of the ut-
most importance, have emphasized the need Tor practicable as well as con-
servative design formulas. The present study was therefore undertaken
to develop conservative stress indices and flexibilily factors for elbows
loaded with an arbitrary combination of in~plane and out-of-plane bending
and torsional moments using the best available analytical solutions. For
various reasons, including theoretical considerations and comparisons
with experimental data, the paper by Rodabaugh and George was selected as
the basis from which to proceed.

The Rodabaugh and George solution was modified to provide a more
accurate approximation for the circumferential membrane stress, and equa-
tions were derived for calculating the stress indices and flexibility
factors. These equations were progrsmmed for the ORNL IBM-3%60 digital
computer and a parameter study was conducted [or a range of dimensionless
variables which includes those of current interest. Tabulated values and
graphical plots of the resulting indices and Tlexibility Tfactors are
given in the body of the report. The tabulated values were used to

develop approximating formulas, which are slightly conservative, for a
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restricted range of the variables in a form which can be used directly
in the nuclear piping codes and standards.
The flexibility factor is glven Dby

X, (A, = 1.66 A ] 0.05 4 £ 1.0 ()

1+ 1.75 X_4/3 exp (~1.15 ¢—1/4) ’ O£y < 0.1

where*

LR

¥ Sl -

is the bend characteristic parameter of the elbow or curved pipe, and

PR®
V= Bt

is the nondimensional internal pressure parameter.
A conservative approximation for the stress index (which is simply
multiplied by the maximum sﬁress.M/Z in gstraight pipe due to bending to

calculate the maximum stress intensity in the elbow) is given by

-2/3 -1 .
_ 2 (1L +0.25 v7™1) 0.05 < A £ 1.0 (41)

Co 5
1+ h~4/3 exp (—Wﬁl/é) 0= < 0.1

where v = R/r is the ratio of the bend radius to pipe radius of the elbow.
The influence of internal pressure is to reduce both the flexibility
factor and the stress index. The major porticn of the hending loads in
2 piping system results from restraining the thermal expansions. Thus,
the effect of internal pressure is to increase the bending loads due to
the reduction in flexibility and simulteneously to reduce the effective-
ness of the bending leoads in producing stresses. A conservative approach
to piping system analysis is to determine the bending load using a flexi-

Dility analysis which includes the effect of internal pressure but to

*The upper limit of A = 1.0 on the applicable range may be replaced
by the more conservative condition that k (K,W) 2 1.0 with very little
loss in accuracy in order to conform with present code practice.
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neglect the effect of internal pressure in determining the stress inten-
sity due to these loads.

Two potentially important problems have not been discussed in the
present study. These are end effects and geometric deviations from the
ideal torus used as the basic analytical model. Several publications
report results ol experimental investigations to determine the effect of
the attached structures at the ends of pipe elbows. Pardue and Vigness®®

3

and Vissat and del Buono™ verify +that the attached structures have a

gsignificant effect on the stresses and flexibilities. At present there

1. M

does not appear to be any "in depth” theoretical investigation into the
problem of end effects. Buch an investigation is needed. Kalnins®™ has
developed a theoretical analysis which utilizes thin-shell theory to
treat this problem. If his analysis proves to be satisfactory from a
computational viewpoint, it could be used as a basis for further study.
The desirable results of such a study would be simple correction factors,
which could be applied to the results given in this report, to account
for the effects of end conditions. As the Tlexibility factor is related
to the degree to which the cross section becames oval during deformation,
the use of the flexibility factors developed in the present study will
lead to an overestimation of the overall flexibility of an elbow. Also,
the stress indices may be more conservative than necessary because of the
effects of end conditions.

Additional work is alsc needed on the influence of geometrical devi-
ationg of commercial elbows from the idealized perfect toroidal section,
particularly out-of-roundness and nonuniform wall thickness. AlL pub-
lished experimental studies have used commercilal grade elbows where these
geometric deviations are present to at least some degree; however, it is
not possible to determine from these data what portion of the stresses is
due to geometric deviations and what portion is due to other effects.
There are, however, two theoretical papers which give some insight into

the problem. These are the paper by Clark, Gilroy, and Reissner®>

pub-
lished in 1952, and a recent paper by Findley and Spence,ﬁi both of which

treat bends with out-of-roundness.



41

An experimental study currently under way at Osk Ridge National
Laboratory (see Ref. 3 , Task 4) will shed further light on both the above
questions. As a result of that study, it is expected that modifications

to the stress indices and flexibility factors developed in the present

study will be made.
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APPENDLIX A

THE ANALYSIS OF RODABAUGH AND GEORGE

In 1956, Rodabaugh and George9 publiched an analysis of the stresses
and deformations for pipe elbows subjected to external bending loads in-
cluding the effect of internal pressure on the bending stresses. A briefl
summary of that analysis and a restatement of the pertinent'equations are
given below.

Following the analyses of von Karman®

and Vigness,7 the strains were
ascumed to be due to two distinct forms of deformation — the warping of
the tube cross section, and the beam-type bending of the tube centerline.
The warping of the cross section was assumed to be independent of posi-
tion along the tube centerline, the ratio r/R of the tube radius to bend
radius was neglected in comparison to unity, and the circumferential
membrane strain was assumed to be zero. The strain-displacement equa-
tions of thin-shell theory, incorporating the above assumptions, were
used to cbtain the gtrain due to warping of the cross section. A strength-
of-materials analysis was then used to determine the strain due to beam-
type bending of the tube centerline. The resulting longitudinal strains,

given by the following equations, are constant across the tube wall.

In-Plane Bending:

/ dw
= l Aa i h? a P ......._t.. 3 . )
€ =R (a r sin ¢ + W, COS ¢ a5 oin ¢> 5 (A-1)
Out-of-Plane Bending:
aw
= -J: B., [ s .._....E i . ( -
€ =7 5 r cos ¢ + W, cos ¢ 3 sin ¢> 3 (A-2)

where Aaﬁx ig the change in curvature of the tube centerline due to in-~
plane bending, p is the radius of curvature of the deformed tube center~
line in the plane perpendicular to the plane containing the pipe bend,

and Wy is the circumferential displacement of the tube wall relative to

the centerline. From the assumption that the circumferential membrane
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strain is zero it follows that the radial displacement (positive

outward) of the tube wall relative Lo the centerline is

W_ = T ommT . (A"E)

The warping of the cross section was assumed, for out-of-plane bending,

to be given by

fee]
ul
W, = C cos 2ng (A-kL)
n;::l
and, for in-plane bending, by
o0
W F Z C sin 21’1(# ’ (A"S)
t n
n=1

where the ccefficients Cn are to be determined.
Using these expressions for the deformatiam, the total strain energy
due to deformation is given by:
nrtE

U = {12@2 + 3reC, + E ¢
oR?

+ ij Z {'ci (1 —2n)2 — 2€.C 4 (2n — 1)(2n + 3)

+ Ci+l (2n +~3)2J + %;uZD Ci (8n® —-Qm)z}-, (A-6)

where ngqhibrim@kmebaﬂugemdg:lﬂrfmﬁmmwﬁﬁmmebmﬂﬂ%.
The change in potential energy of the internal pressure per unit length

yal

of the pipe, due to the warping of the tube wall, is given by

v, = 2xP ) 2(h? - 1) ci . (A-T)

The principle of least work requires that the coefficients, Cn’

satlsfy the set of linear equations:
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o)
ggl-(U+vp)=0=3+(5+6A2+2u¢)dl—g.d2 ,
d . ' o1
x 0+ =0==2a, + (17 + 600X + 48OV d, — 5= dy ,
‘ (A-8)
0 (U +Vv) —O~~l'-(2n-—5)(2n+l) a
56; p T2 n-1
2 )2 I
+-{(hn2 + 1) + (8n® - 2n) T+ 82 (hn® ~ l)WJ d,
—d (on - D(en +3) a
2 n+l ?
where
Cl’l
8, =% (A-9)

Truncating the series after N terms, a set of N linear equations for
N+1 unknown values of d_ 1s cbtained. With dN = 0, the values of d

n +1 1
Aoy eee, dN are the solution to this set of equations.

These values of d,, dy, ..., 4. yield a minimum for the energy

N
U + Vp. The value of & is determined by equating this minlmum energy to
the work done by the bending moment, that is,

(U + Vp) = %% £ . (A-10)

min

The values of Cp, Cy, ..., Cy are obtained from Eq. (A-9).

The flexibility factor, kp, is given by
kK ===t . (A-11)

After simplification, kp may be expressed as



48

(A-12)

Utilizing the strain-displacement relations (A-1) and (A-2) and the
appropriate stress-strain relations, the nondimensional stresses, ob-

tained by dividing the calculated stresses by M/Z are, for in-plane bend-

ing:
‘ N N -
or = F |D sin ¢ + = 23 A sin {2n + 1)¢ * vA z: B cos 2nd | , (A-13)
4 2 n 2 n
- n=J1 n=1 )
. N N -
ol = F (VD sin ¢ + = 2_, A_sin (2n + 1)¢ * A Z B_cos 2nd | , (A-14)
c 2 n 2 n
- n=1 n=1 -
and for out-of-plane bending:
1 N A\ 7
oj =F I>D cos ¢ + = Z A cos (2n + 1)¢ * 2= ), ~B_ sin 21’1(1)‘ , (A-15)
2 n 2 n
n=J. n=1 -
N . N
60 = F | vD cos ¢ + = E: A cos (2n + 1)¢ + = Z:-B sin 2n¢ | , (A-16)
c 2 S 2 o1 B

where the terms with positive and negative signs correspond to the cutside

and inside surface bending stresses respectively, and

(a-17)

A = (1 — 2n)dn + (2n + 5)dn+]_ 5

B_ = (2n — 8n®)a
n n
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APPENDIX B

CIRCUMFERENTTIAL MEMBRANE FORCE CORRECTION

In comparing his experimental results with the analytical results

10 noticed that this theory re-

obtained from the von Karman theory, Gross
sulte in a logical inconsistency. 1In his analysis, von Karmen had rea-
soned that, due to the curvature of the pipe bend, the longitudinal mem-
brane forces yield components which deform the tube cross section, and
logically, produce a compressive circumferential wembrane force. For in-
plane bending, this force should be symmetric about ¢ equals zero, be
zero at ¢ eguals iﬂ/2, and have its maximum sbsolute value at ¢ equals
zero. The experimental results of Gross and others indicate that this
conclusion is correct. The von Karman analysis, however, yields a cir-
cunferential membrane force which is skew-symmetric about ¢ equals zero
and hence zero at ¢ equals zero; see, for example, Eq. (A-14).

By assuming that the von Karman analysis correctly determines the
longitudinal mewbrane force and the circumferential shell bending moment,
Gross determined the circumferential mewmbrane force necessary to satisfy
the static equilibrium conditiong. The following constitutes a general-
ization of his analysis.

Consider the two free bodies, A and B, shown in Fig. 15. These free
bodies are obtained from a segment of curved tube of arc length O by
passing longitudinal planes with fixed values of ¢. The longitudinal
meubrane force is denoted as g5 W is the circumferential shell bending
monent, and Q dencotes the transverse shearing force.

For in-plane bending, the longitudinal membrane force obtained from
Eq. (A-13) is:

tFM, N ~
nL(¢) = —Z—i [D sin ¢ + % 23 A sin (2n + l)¢J . (B-1)
n=1L

The transverse shearing force Q, obtained from Eq. (A-14), is

2 N
dmC AT 2

a(¢) = i 221 nB_ sin 2nd .

I
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Fig. 15. Free body diagrams for the determination of circumferential
membrane forces.
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Thus,
Q(180 — ¢) = “2 ZnB sin 2n (180 — ¢)
- ktg ),B_ sin 2ng
= —Ql¢) . (B-2)
Also,
a-4) = - 22 Vp_ ain 2n ()

]

2
kt zjnB sin 2n¢

= —Q(¢) . (B-3)

On free body A, from statics the sum of the forces in the y direction is

ZeYr 03

ZFy = 0 = Ra {—~[Q(¢) + a(—¢)] sin ¢ + [nC(¢) - nC(—¢)] cos ¢} ,

but from Eq. (B-2),

al¢) = —a(-9) ;
hence,

0) = n(~9)

Also from statics, the sum of forces in the x direction is zero:
IF_ =0 = Ry {[a(-¢) —al(e) ] cos ¢ ~ [nc(¢) + nC(¢)] sin ¢}

Thus,

al9) = — nil) 222

cos ¢

Similarly for free bvody B:



1
f
5o
TF =0+ Ra {[Q(¢) + a(180 — ¢)] cos ¢

n [nC(d)) - nC( 180 — ¢) 1 sin ¢} ;

thus,
nC(qs) = nC( 180 — ¢)
Also,
IF = 0 = — 2sin 5 f;Bomqb b, rdg
[al¢) — (180 ~ ¢) ] sin ¢
— R [nC(qS) + nC( 130 — ¢) ] cos ¢ ;
or % f(;/g n dt = R [Q(¢) sin ¢ — ny(¢) cos ¢]
= = R ny(¢) [sin® ¢ + cos® ¢l/cos ¢ ;
or
n(¢) = - = C§S f(;/g n_ at . (B-k4)

Substituting the expression for nL given in Eq. (B-1) and performing the

integration indicated in Eq. (Bmh) we obtain for the membrane force

M.t

HC(¢) = kp m {D cos ¢

N

-

+
Tz

(EE"I“1T cos (2n + l)é} cos ¢ , (B=5)

n=1

where y = R/r is the radius ratio parameter. Performing a similar analy-~

sis for out-of~plane bending gives the membrane Torce
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T
A s ot ©

(9 A
=k —2—— 4D sin ¢
na PR sin

e N

A
l .
t 35 n_z (———————Hn 2 T sin (2n + l)jb'} cos ¥ . (B-6)

=1

The normalized circumferential stresses, t0 be used in place of Egs.
(A-14) and (A-15) for in-plane and out-of-plane bending obtained from
Eqs. (B-5) and (B-6), respectively are then:

In-Plane Bending:

N
A -
1 1y n
o, = F-{ = [D cos ¢ + 3 221 BTy oo (2n + l)¢J cos ¢

t

N
}3 B cos 2n¢}-; (B-T)

n=1

N>

Qut-of -Plane Bending:

N
o 1 ; 1 An
o, = F {; [D sin & + 5 Z} ) sin (2n + l)Q} cos @

n=1

-+
nojz
L=

~ B sin QHé} ;3 (B-8)
n
where ¥, D, Ah’ and Bn are defined in Appendix A, and the radius ratio
parasmeter ¥ = R/r has been introduced into the analysis. It might be
noted that although Egs. (B-7) and (B-8) are approximate, they do satisfy
the conditions of static equilibrium and as a consequence the circum-
ferential membrane strain is not zero as originally assumed by von Karman.
These equations should be as accurate as any of the analyses discussed in

the body of the text.



