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NUMERICAL CALCULATION OF ELASTIC PROPERTIES FCR
STRATGHT DISLOCATIONS IN ANISOTROPIC CRYSTALS

M. H. Yoo B.T.M. Loh

ABSTRACT

A computer program was written for the anisotropic elastic
solution of a straight dislocation based on the formulas devel-~
oped by A. N. Stroh [Phil. Mag. 3, 625 (1958)]. This program
is applicable to a straight dislocation of arbitrary character
and orientation in all crystal classes except monoclinic and
triclinic systems. Direct applications for the analyses of
dislocation interactions, the stability of a curved disloca-
tion, and the displacement field with respect to a dislocation
axis are discussed. ~

INTRODUCTION

The anisotropic elasticity theory of straight dislocations devel-
oped by Eshelby, Read, and Shockley! has been elaborated and applied by
several investigators, as given in an extensive review by Hirth and
Lothe.? Tn applying the theory to calculate the elastic properties of
a straight dislocation, it is not always possible to obtain analytic
expressions for the solutions. This difficulty results from a sextice
equation, which, except for few simple cases, cannot be solved analyti-
cally. The special dislocation orientations for which analytic solu-

tions can be obtained have been reviewed recently by Teubonico.’

17. D. Eshelby, W. T. Read, and W. Shockley, "Anisotropic Elasticity
with Applications to Dislocation Theory,"” Acta Met. 1, 251 (1953).

2J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw Hill Book
Co., New York, 1968, p. 41L. ‘

’1,. J. Teutonico, "Analytic Solutiong for the Stress Fields of
Dislocations in Anisotropic Media,'" Phil. Mag. 18, 881 (1958).




The original theory was modified into an alternate, but equivalent,
form by Stroh® so that it could give analytic solutions in simplest pos-
sible form. Analytic expressions of the elastic solutions for a dislo-
cation lying in a (111) direction in a cubic crystal have been obtained

5—7

by this modified formulation. Fven for a more general case, for

which analytic solutions are not tractable, the authors found earlier®
that an efficient numerical calculation was possible by using Stroh's
formulation. In the present study, the symmetry condition that the dis-
location line lies normal to a reflection plane — the only restriction
in the earlier work® — is eliminated so that numerical elastic solutions
for the most general case are now available.

The purpose of this report is to present an efficient method of
numerically calculating the elastic solutions for a straight dislocation
of arbitrary orientation in an anisotropic medium. The elastic equations
used for calculation are listed in the following section, and the sub-
sidiary equations are presented in Appendices A and B. A computer pro-
gram is given in Appendix C. As an illustration, the elastic fields of
both screw and edge dislocations of %(111) Burgers vector in CG-iron
are computed and presented in equal-value contour plots. Finally, sev-

eral applications of the present results are discussed by giving some

typical examples.

ELASTIC EQUATTONS

The derivation of elastic equations is based on the formulas devel-

oped by Stroh.* Stroh's equations referenced in this report are prefixed

“A. N. Stroh, "Dislocations and Cracks in Anisotropic Elasticity,"
Phil. Mag. 3, 625 (1958).

°A. K. Head, "The [111] Dislocation in a Cubic Crystal," Phys. Status

Solidi 6, 461 (1964).

®Y. T. Chou and T. E. Mitchell, "Stress and Dilatation Fields of
the (111) Dislocation in Cubic Crystals,” J. Appl. Phys. 38, 1535 (1967).

7J. P. Hirth and P. C. Gehlen, '"Dislocation Displacement Fields in
Anisotropic Media,” J. Appl. Phys. 40, 2177 (1969).

8M. H. Yoo and B.T.M. Loh, "Characteristics of Stress and Dilatation
Fields of Straight Dislocations in Anisotropic Crystals,"” J. Appl. Phys.




with an 8. The relationships between the tensor notation and the con-
tracted mabtrix notation (e.g., ij «> M) are based on the convention
given by‘Nye.g Both notations are used interchangeably. Three dif-
ferent types of subscripts are used; those of lower case Latin or Greek
letters may take on values 1, 2, or 3; and those of capital Latin type
may also take on values 4, 5, or 6. The summation convention is employed
for repeated Latin indices, whereas summation over Greek indices will

always be shown explicitly.

Dislocation Coordinate System

The dislocation line is parallel to the x5 axis of a right-handed
Cartesian coordinate system, and the unit sense vector g points in the
positive x5 direction. The start-to-finish/right-handed conventionl® for
Burgers vector b = [b1 bz b3] is adopted such that £ coincides with
(0 0 b3] for a positive or right~handed screw dislocation, and the posi-
tive x, direction coincides with [by O O] for a positive edge dislocation
having "an extra half plane' or compressed zone in the positive xj
direction.

Under the condition that the elastic solutions are independent of

®3, the generalized Hooke's law can be given by Egs. (s65) and (866) as

ey T Sy (1)

and

(2)

S = 3

vy = S~ SuSan/33 o

where SMN are the modified elastic compliances, and SMN are the elastic

compliance constants referred to the x5 dislocation coordinate axes. In

turn, s are related to the elastic compliance constants s;,  referred
! 1

MN MN
to the standard crystal axes x; by the transformation rule of fourth-rank

tensors,

°J. F. Nye, Paysical Properties of Crystals, Oxford University Press,
London, 1960, p. 131.

O7he closed Burgers circult is defined in a perfect crystal.




S, . = g, a, a_a, 8 3
ijkl im jn ko lp mnop ’ (3)
where aij are the direction cosines of a coordinate transformation

X, = a,. X, . (4)

Sextic Equation

The sextic equation, the secular equation of the elasticity theory,

is given in terms of S, by Eq. (874) as

RiRz — R = O, (5)
where
Ry = pésll - 2P3316 + Pé<2512 + Sge) ~ 2p.S2¢ * S22
= P ., {
Rz = p;Ss5 PoSss T Buy (6)

R; = P;S15 - Pé(314 + 8s56) + Pa(325 + S46) = Say

The Eq. (5) has no real roots; its roots occur in complex conjugate
prairs. The three roots with positive imaginary parts will be denoted
by Py = Ty + iqa (o = 1,2,3),'With complex conjugates ﬁd,‘where T and
%ﬁﬂer%l.

Stress Components

All the stress components can be given in the form

+
I 2 Aiso%s " Bises (7)
s T S T . )
ij =~ 2n - (x1 gyxz) + (qaxz)2

where b is the magnitude of Burgers vector b = (b; b2 b3] and K is the

energy factor. The coefficients A and K are related to the

ijo? Bijoc’
roots of the sextic equation and hence to the elastic constants. The
relationships between these coefficients as well as others to follow
and the coefficients defined by Stroh* are given in Appendix A, and

some relationships among Ai'

ja and Bija are given in Appendix B.
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The dislocation line energy per unit length, E, is given!l py

4ﬂ 1n()0) (3)

where ro and R are the inner and outer cut~off radii.

i

Displacements and Strain Components

The three components of the displacement vector, u, may be given as

I ‘
u, = i ,L (xj + r%xz) + (qwxz)‘} +;;,Tia tan™ | ————— (2)

Xyt YKo
and their gradients, in more familiar form, as

Z‘ JO! 1 1j()6x2 ) (10)
04

n rqu)Z + (o)

HE
m!o‘

The coefficlents Riof Tiof Pijoﬁ and Qija are given in Appendix A, and

some relationships among these coefficients are given in Appendix B.
The strain components can be readily obtained from Eq. (10) by the

definition
1 'ui auj
137 A TRy )
3 i
or from Egs. (1) and (7).

Dilatation and Hydrostatic Pressure

The dilatation field, A = V'E = Cye can be given as

N R )
“EE_ﬂk1+rMQﬁ?+(%ﬁﬂ2’ (12

U‘

"

AL J.E. Foreman, 'Dislocation Fnergies in Anisotropic Crystals,'
Acta Met. 3, 322 (1955).



where the coefficients ﬁa and g, are related to the coefficients defined
previously as given in Appendix A.

In a polar coordinate system (r,G) the dilatation field is

s (13)

A: =~G~
r

mﬁd
2

where

- .
f cos@ + g sin®
67 07

-
G:ZE;J(COSQ +r, sinf )2 + (qa sind )2 (14)
Similarly the hydrostatic pressure, p = Mgii/B, can be given as
PogE g (15)
where
9 + ing
H :zij(cose +hf C:in@)zk? jln PEDE (16)
a qy Sin

The expressions for the coefficients ha and ka are given in Appendix A.

NUMERICAL CALCULATION

A FORTRAN computer program has been written based on the elastic
equations presented in the previous section, and it is given in
Appendix C. The essential steps of the program are depicted by a flow
diagram in Fig. 1. This diagram may be divided into two parts, the
input and the output, which correspond to the parts before and after the
dashed line. Each step of the computation, as marked by an arrow, is
carried out either with the equation quoted or with a subroutine program
such as Transformation (TRNSFM) or Inversion (INV). It is the step
marked by the dashed line that generally requires a numerical solution
of the roots of a sixth-order polynomial.

Although the 39 coefficients together with the energy factor will
suffice to give the elastic solution (Gij and ui) as mentioned in
Appendix B, all the coefficients defined in Appendix A are computed.

The total computation time with the TBM system/360 model 91 is
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TRNSFM

TRNSFM SEXTIC EQ.

(S74)

(S77)

Fig. 1. Flow Diagram of the Essential Steps of Numerical
Calculation.



approximately 15 sec and depends on the dislocation orientation with

respect to the crystal axes.

RESULTS

The computer print-out of the results for screw and (110) edge dis-
locations in @-iron is given in Appendix D. The output gives the two
vectors that define the slip plane and the dislocation coordinate sys-
tem, the Burgers vector, the elastic constants at room tem_perature,l2
the energy factor, the sextic roots, and the coefficients Ama and Bmof
where @ = 1,2,3 and m = 1,2...23. The correspondence between these
coefficients and those defined in the text may be obtained unambiguously

with the aid of Table 1.

Table 1. Correspondence Between the Results Am and Bma
and the Coefficients Defined in the Tex

du.
g - A P 11
ij ij’ ij i
n 16 7-16 17,18 19 21,22,23
e, Ao Fija Ty By i
Broy Bij00 % s0 Y Ky Yo

The results of Oij’ eij’ A, and p are plotted in Figs. 2 through 5
as equal-value contour maps for the values of 0, *2, #4, +6, +8, 10,
+12, and *14 in units of K/400n for Oij and p and in units of 1/400x
for ¢, ., and A.

%or a (111) screw dislocation 023, 013 and €3, €13 are the pre-
dominant stress components, whereas oq1, 022, 033, o012 and €17, €22,
€12 are relatively weak components, as shown in Figs. 2 and 3. These

weak components are the ones that give rise to the tangential or angular

127, Leese and A. E. Lord, Jr., 'FElastic Stiffness Coefficients of
Single-Crystal Iron from Room Temperature to 500°C," J. Appl. Phys. 39,
3986 1968).
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20 P \

2 6=33.56°| (2)

Fig. 3. Strain and Dilatation Fields of a Positive (Right-Handed) (111) Screw Dislocation in
Tron. Unit of strain: 1/400m. Unit of distance: D.
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Fig. 5. Strain and Dilatation Fields of a Positive {110}(111) Edge
Dislocation in Iron. Unit of strain: 1/40031'. Unit of distance: b.
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components of interaction force between a pair of screw dislocations.
These components are ncnexistent under an isotropic condition. This
tangential component of interaction force will be discussed further in
the following section. The nonzero dilatation, A, and the corresponding
hydrostatic pressure, p, around a (111) screw dislocation indicate the
existence of the first-order size interaction!’ between a spherical
point defect and the screw dislocation. This interaction is absent
under an isotropic approximation.

For a {110} edge dislocation, the weaker stress and strain compo-
nents, which are absent under an isotropic approximation, are 0,4, 013
and €33, €13, as shown in Figs. 4 and 5. In the case of a (112} edge
dislocation, where the dislocation line lies normal to a reflection
plane, all the nonzero elastic fields shown in Fig. 6 are asymmetric
with respect to the dislocation axis.l” The effects of asymmetric
stress fields on dislocation interaction were discussed previously.l5

The displacement components are plotted in polar diagrems in
Figs. 7, 8, and 9. The amount of displacement based on the isotropic
elasticity theory, 1° ui, is subtracted from the corresponding anigo~
tropic displacement components such that all the polar plots in Figs. 7,
g, and 9 are to diminish under an isotropic appreximation. Since each
displacement component obtained from the elastic solution is referred
to an arbitrary origin of the coordinate system, one needs to find the
exact location of the origin with respect to the crystal axis of the
dislocation. The significance of this problem will be given in the

discussion of applications.

°R. Bullough and R. C. Newman, 'The Kinetics of Migration of Point
Defects to Dislocations,” pp. 101-148 in Reports on Progress in Physics,
vol 33 (1970).

1“M. H. Yoo and B.T.M. Loh, "Structural and FElastic Properties of
Zonal Twin Dislocations in Anisotropic Crystals,” p. 479 in Fundamental
Aspects of Dislocation Theory, National Bureau of Standards Spec. Publ.
317, ed. by J. A. Simmons, R. deWit, and R. Bullough, Washington, D.C.,
1970.

M. H. Yoo and B.T.M. Loh, "Characteristics of Stress and Dilatation
Fields of Straight Dislocations in Anisotropic Crystals,’ J. Appl. Phys.

41, 2805-2814 (1970).
%7, P. Hirth and J. Lothe, Theory of Dislocations, MeGraw Hill Book

Co., New York, 1968, pp. 59, 75.
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UNIT OF STRESS: K,/400 7
UNIT OF STRAIN: 1/400 7
UNIT OF DISTANCE: b,
ELASTIC CONSTANTS: Cy = 22.6,

Cip = 14.0, C4q=11.6 IN UNIT OF

10" dynes/m? (LEESE AND LORD, JR., 1968)

Fig. 6. Stress and Dilatation Fields of a Positive (112}(111) Edge
Dislocation in Tron.
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(a) (b}

[170] %o

X3 Xy

@
[114] [112]

&= Y2 [11]
be=2.4823 A

(¢)

Fig. 7. Displacement Field of a Positive (Right-Handed) {(111) Screw
Dislocation in Iron. Three displacement components - (a) Uy, (o) s,
(c) U3—u% — are given in angstroms by polar plots.
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[11c] h *2

[112] [m]r

&=z [111]
b=2.4823 A

(c)

Fig. 8. Displacement Field of a Positive (11Q}(111) FEdge Dislocation
in Iron. Three displacement components — (a) uj;~-ui, (b) uz-ud, (c) uz —
are given in angstroms by polar plots.
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Fig. 9. Displacement Field of a Positive {112}{(11l) Edge Disloca-
tion in Iron. Two displacement components - (a) u;-uy, (b) uz-ud — are
given in angstroms by polar plots. b = (1/2) [111], b = 2.4823 A.

When the coefficients Ria have values such that é?ia # 0, the dis-
placement component ui'will be radially dependent. Such is the case
for both displacement components of a [115} edge dislocation (see Fig. 9).
Significances and implications of this radial dependency will be discussed

elsewhere.
DISCUSSION OF APPLICATIONS

Dislocation Interactions

The interaction force between two straight dislocation segments
with arbitrary orientations may be obtained readily by substituting the

appropriate stress components expressed by Eg. (7) into the Peach-Koehler

formila 17

F o= ¢ b(l)q <2)g(1>

2" Ssketi iy o ck 2 (17)

17R. deWit, "Some Relations for Straight Dislocations, " Phys. Status
Solidi 20, 567 (1967).
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where Ejkﬂ
sense vector € for dislocation (1). The glide force F, and the total

elastic energy U of an edge dislocation dipole consisting of a pair of
dislocations (1) and (2) are given schematically in Fig. 10. The well-

known isotropic case 1s depicted by a solid curve (a) that shows two

denotes the unit permutation tensor and Eél) denotes the unit

Fig. 10. Glide Force on Dislocation (2) by Dislocation (1) and
Total Elastic Energy of an Edge Dislocation Dipole. (a) Elastically
isotropic case; (b), (c), (d) three cases of elastic anisotropy.

X4 ORNL-DWG 71-2278
(2) i
T =F,
X
X/ %o
S
2Ug
I | .
3 5 7 X,/%o
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stable equilibrium positions for xl/x2 = 1 (i.e., for 9 = #45°) and one
unstable position for x; = 0 (i.e., for 8 = 90°). According to Kroupa, 18
Ud is the total energy, Ubd is the binding energy, and AUd is the flipping
energy per unit length of the dipole.

There are three possible anisotropic cases, (b), (c), and (d), when
only the dislocation axis, xi, coincldes with a symmetry axis. The asym-
metric case (b) in Fig. 10 shows two minima at different angles, neither
equal to 45°, and a local maximum between the two minima at an angle
6 # 90°. There exists of course the absolute minimum to which Ud and
Ubd mist be referred. Along with the possible case (¢), which has a
minimum and an inflection point, a most interesting case (d), which has
only one minimum, may occur. This was called earlier an anomalous case. !’
In such an anomalous case, no flipping energy results from the only sta-
ble equilibrium position. Consequently, no contributions to the internal

20

friction by dislocation dipoles, as discussed by Gilman, are posgsible

in this case.

One may discuss the nature of glide force between a pair of like
edge dislocations by simply reversing the signs of both Fq and U in
fig. 10, In the isotropic case (a) as well as an anisotropic case having
orthotropic symmetry, the stable equilibrium position is at a right angle
(0 = 90°) such that, in the absence of an external stress field, both
finite and infinite edge dislocation walls will form normal to the slip
plane. Tn the anisotropic case (b) a finite wall will form at some angle
other than a right angle to the slip plane since the stable equilibrium

pogition is at an angle 9 4 90°. Even for this case, however, Stroh?!

1og, Kroupa, ''Dislocation Dipoles and Dislocation Loovs," J. Phys.

Radium 27, 23-154 (1966).

1°M. H. Yoo-and B.T.M. Loh, "Characteristics of Stress and Dilatation
Fields of Straight Dislocations in Anisotropic Crystals,” J. Appl. Phys.
41, 2805-2814 (1970).

207, J. Gilman, "Influence of Dislocation Dipoles on Physical

Properties, ' Dislocations in Solids, the Faraday Society, London, 1964,
p. 123, '

21A. N. Stroh, "Dislocations and Cracks in Anisotropic Elasticity,"”
Phil. Mag. 3, 625 (195¢).
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verified that a symmetric tilt boundary at right angles to a slip plane
in any crystal produces no long-range stress if it is composed of edge
dislocations with their Burgers vectors in this slip plane. Thus a para-
doxical conclusion may be drawn as given by Nabarro 22 that a tilt bound-
ary in an infinite anisotropic medium is in stable equilibrium when
perpendicular to the slip plane, even if the constituent edge disloca-
tions possess an asymmetric 0,2 stress field.

No paradox exists in the anisotropic case (d). 1In this case there
are no stable equilibrium positions for other like dislocations around
an edge dislocation. Therefore, a dislocation wall of any extent cannot
be formed by accretion of other like dislocations. This conclusion offers
some far-reaching influences on the physical processes of polygonization
and on the formation of an incoherent twin boundary by a group of twin
dislocations. An anomalous cj2 Stress field is found in zinc for the
{1122}(1123) slip system below room temperature and also for the
{10121} (1011} twin system at all temperatures. It also occurs in antimony
for the [110}{(001) twin system and in graphite for the {1121}(1126) twin
system at room temperature.

The radial and tangential components of interaction force between
a pair of parallel dislocations, Fr = fr/2ﬂr and FQ = fe/2ﬂr, respec-
tively, may be calculated directly from the following formulas given by
Stroh:??!

£ =1, .al1a(?) | (18)
r ij i 3
1 cos 9 — gin 9
o g, (A
fo = 3" 'Re / Loyt \Gs a7 p_sin g/ (19)
07

Minor modifications to the program given in Appendix C enable one
to write a computer program for the above two equations. Figures 11 and
12 show the results of f6 and fr between a pair of (@ + &) screw disloca-

tiong in zinc and titanium, respectively. The isotropic values for fr

22Fp . R.N. Nabarro, Theory of Crystal Dislocations, Oxford University
Press, London, 1967, p. 98.
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are obtained from Hill's average of elastic moduli (i.e., the arithmetic
means of Voigt's and Reuss' averages). The maximum of L reaches a value
as much as 14% of fr' For zinc and other metals fr and f@ both decrease
as temperature rises. It is interesting to note, however, that in tita-

nium fr decreases but f, increases with increasing temperature.

9
The processes of cross-glip and double cross~slip of screw disloca-
tions in an isotropic medium as induced by a locked parallel screw dis-

23 Such processes for the cases of (111)

location were analyzed by Li.
screw dislocations in bee crystals and (3 + E§ screw dislocations in hep
crystals will be strongly influenced by the magnitude of f@'

Various cases of dislocation interaction are summarized in Table 2,
which compares notable features between the isotropilc and anisotropic

cases.

Self~FEnergy and Line Tension

The elastic strain energy per unit length of a straight dislocation
is calculated by Eq. (%) in Appendix B with the results expressed by
Eq. (8). Defining, for a given slip plane, & to be the angle between
the unit sense vector E and the Burgers vector b, one can calculate
E/x) numerically for any <. Since the condition that E(Q) = E(a + )
mist be met because the elastic strain energy of a dislocation cannot
depeund on the sense of its Burgers vector, a computation over a 180°
range of @ will suffice to give a complete description of the angular
dependence. A knowledge of E(x) enables one to calculate the self-stress
of an angular dislocation by use of the formulas given by Lothe.?* Ffur-
thermore, the elastic fields of a dislocation loop of any configuration

25

may be solved, in principle, from such a knowledge of El(a).

237.¢.M. Li, "Cross Slip and Cross Climb of Dislocations Induced by
a Tocked Dislocation,” J. Appl. Phys. 32, 593 (1961).

24J. Lothe, "Dislocation Bends in Anisotropic Media," Phil. Mag.
15, 353 (1967).

25K. Malén, "Numerical Analysis of Properties of Dislocations in
Anisotropic Media within the Range of Linear Flasticity,” Phys. Status
Solidi 38, 259 (1970).




Table 2.

Some Examples of Dislocation Interaction

Arrangement of Dislocations

Isotropic

Anisotropic

A screw parallel to an edge

A screw perpendicular to an edge
not in the same plane

Two parallel edges of same sign
in a slip plane

Two parallel screws of same sign

Two parallel edges of same sign
in different slip planes

Edge dipole

No interaction

No resultant force on each other;
the screw exerts a couple on the

edge
No climb force

No tangential force

Bquilibrium positions lie along
slip plane normal

Bquilibrium positions lie sym-
metrically 45° from the slip
plane normal

Interaction exists

No resultant force on each
other; the screw exerts a
couple on the edge and vice
versa

Climb force exists

Tangential force exists

Bquilibrium positions lie along
a direction making an angle
with the slip plane normal; in
some cases, no equilibrium
position exists at all

Equilibrium positions lie asym-
metrically about the slip plane
normal; in some cases, only cone
equilibrium position exists

€
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An explicit expression of the line tension, T(®), of the curved

portion of a dislocation line is given by deWit and Koehler :°°®

T() = B + gaz = n( >( doc2> : (20)

The interaction hetween the bowed and straight portions of a dislocation
was neglected in the derivation of Eg. (20).

The line tension is important in the analysis of the stability of a
dislocation.”’ If T(a) < O, the dislocation is unstable and it assumes
a polygonal shape along such directions as to satisfy the stable condi-
tion, T(x) > 0. 1In Fig. 13 inverse Wulff plots of K(a) normalized to

K(x = 0) of screw orientation are given for (¢ + &) dislocations in the

263, deWit and J. S. Koehler, "Interaction of Dislocations with an
Applied Stress in Anisotropic Crystals,'” Phys. Rev. 116, 1113 (1959).

275, K. Head, "Unstable Dislocations in Anlsotroplc Crystals,'
Phys. Status Solidi 19, 185 (1967).
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Fig. 13. 1Inverse Wu]ff Plot of Energy Factor Normalized to that of
Serew Orientation for (¢ + &) Dislocations in {1122) Planes of Some Hex~-
agonal Metals.
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second~-order pyramidal [1152} plane of several hexagonal metals. A

region of negative (o) corresponds to a concave region bounded by two
inflection points. While the dislocation in titanium is stable for all
orientation at room temperature, it is found unstable for 75 < @ < 105°

at 1156°K. The inverse Wulff plot for the dislocation in beryllium appears
mich closer to a circle, indicating that the line energy of an edge ori-
entation is not too much greater than that of a screw orientation. This

is indicative of the peculiarly small value of Poisson's ratio in beryl-
lium. The same dislocation in thallium is found to be unstable near the

edge orientation at a range of 70 <« @ < 110°.

Displacement Fields

Two notable areas of application requiring the exact solution of
the displacement field are dislocation contrast analysis in transmission
electron microscopy and the atomistic calculation of dislocation core
structures. In the former case one need not know the origin of the
coordinate system or the integration constants, since the differential

28 involve

equations of the dynamical theory of electron diffraction
only the gradient of displacement vector in the electron beam direction
along the column under consideration. When referred to an appropriate
coordinate system, therefore, Eq. (10) can be used to compute the
images from dislocations in anisotropic materials, as demonstrated by
Head et al.”?

In the latter application, however, one needs to find the integra-

tion constants, since the exact magnitude of the displacement is to be

28p. B. Hirsch et al., Electron Microscopy of Thin Crystals, Plenum
Press, New York, 1965, p. 247.

29A. K. Head, M. H. Loretto, and P. Humble, "The Influence of Targe
Flastic Anisotropy on the Determination of Burgers Vectors of Disloca-
%ions)in B-Brass by Electron Microscopy,” Phys. Status Solidi 20, 205
1967 ). ==
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used as a boundary condition.?®32 In other words, the origin of the
coordinate system used to describe the long-range elastic displacement
field of a dislocation must coincide with that of the discrete structure
of the dislocation.

For (111) screw dislocations in Q-iron, for example, imposing a
threefold symmetry about the dislocation axis, xs3-axis, shows that the
only integration constant necessary is cp = 0.0327 A. The component of
the displacement vector directed normal to the dislocation axis may be
obtained from u; and uz + ¢ in Fig. 7. This is shown in Fig. 14. The
solid closed curve describes the displaced positions of a medium with

respect to the unstrained medium, the dashed reference circle, and the

30y. Vitek, R. C. Perrin, and D. K. Bowen, "The Core Structure of
w(lll> Screw Dislocations in B.C.C. Crystals," Phil. Mag. 21, 1049 (1970).

217. S. Basinski, M. S. Duesbery, and Roger Taylor, "Screw Disloca-
tions in a Model Sodium Lattice,” Phil. Mag. 21, 1201 (1970).

32p. ¢. Gehlen, "The Structure of the 5(111) Screw Dislocation in
a-Iron," J. Appl. Phys. 41, 5165 (1970)

ORNL-DWG 71-1897R
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b= Y, [111]
b=2.48234

Fig. 4. Displacement Field Normal go the Dislocation Line of
a~Tron at Room Temperature. Cp = 0.0327 A
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arrows indicate the directions of displacement vectors. It is interesting
to note that the displacements are radially either inward or outward along
the two sets of three (110) directions, whereas they are purely tangential
to the reference circle along the two sets of three (112) directions.

A general method of determining the integration constants in accor-
dance with the crystal symmetry with respect to the dislocation axes will

be described elsewhere.
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APPENDIX A

Definition of Coefficients Used to Calculate Elastic Fields
of a Straight Dislocation

The coefficients introduced in the text are related to the follcwing
set of matrices and vector introduced by Stroh: 32 [Lia]’ [M [L ] -1
(a0, (B ], and Fd J. Onece ;] is defined by Eq. (877),34 [Aia] can
be obtalned from [Lia] by use of Eq. (814) or (S15). One determines
[Bij] directly from Egq. (S40), where [Bij] is related to [dj] and Burgers
vector [bi] by Eqg. (s50). Then the energy factor is obtained from
Bas. (856) and (S50) as follows

Kb? = B, .d.d, (a1)
137173
or
- =1
K lJBlBJ s (A2)

where Bi are the direction cosines of the Burgers vector. The coeffi-

cients for the stress components are determined from Eq. (S51):

Ay = -Re[LiGpQMdjdj]/Kb , | (a3)
By = —Re[LiQpQE&Mdjdj]/Kb ; (a4)
and from Eq. (852):
Aty = Re[LiOy%gdj]/Kb , (a5)
B, = RelL, OpOybUdJ]/Kb . (46)

Re and Im denote the real and imaginary parts, respectively, of the com-

plex functions that follow.

1

°’A. N. Stroh, "Dislocations and Cracks in Anisotropic Flasticity,
Phil. Mag. 3, 625 (1958)

*“As was mentioned in the body of this report, the prefix S denotes
Stroh's?? equation numbers.
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By setting e3 = 0 in Eq. (S64) the coefficients for the 033 component

are found as
Azzy = “(S3N/533)AMQ

B3szqy = ~(83M/834 ) By -

(A7)

(A8)

The coefficients for the displacements are obtained from Eq. (845)

R, = RelAjoMy;d;1/0

Ty = ~Im[A30My5dy1/b

and those for the strain components are

O
i

i1 = Re [AiotgaMcxjdj 1/b

d
i

saq = Rely p M, d, 1/b

12

Q. . = Re[AiapapaMajdj]/b .

For the dilatation, then, the coefficients are

T ™ P

8y = 9
or

£, = K(Siy + Sap)Avp

g, = K(S1y *+ S2p)Bypy »

and for the hydrostatic pressure they are

(A9)

(410)

(A11)

(a12)

(a13)

(a14)

(a15)

(A16)

(A17)

(a18)

(A19)

(A20)



All the coefficients defined here, Aiij Bija’ Ria’ Tia’ Pija’
Qija’ fqp 8 ha’ and ka’ are dimensionless real numbers. The energy
factor K has dimensions of dynes per square centimeter, and the Burgers
vector b is in centimeters.

Thirty coefficients (15 for each of Aija and Bij@) for stress ten-
sor and 18 coefficients (nine for each of Ria and Tia) for displacement
vector will suffice to give a complete degcription of the elastic prop-

erties of a dislocation.
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APPENDIX B

Some Useful Relationships Between the Coefficients
Defined in Appendix A

Since [Mbi] is the matrix reciprocal to [Li 1, Eq. (838) must hold:

(97

Z LMy = By 0 (51)

where Bij is the Kronecker delta (1 if i = j; O if i ¥ j). The above

relationship yields a number of relationships among certailn Aija and

[

Biia coefficients for a pure edge or screw dislocation with Burgers

o

vector components bi’ Namely for a given value of 1

§A12a= 1 (B2)
. 2 2y o _
é Bila/(ra, + qa) = 1 , (B3)

With the relationshlps given above, the dislocation line energy,

R
1 1
E=3 frobiciz (x,,0)dx, = -5 frobicril(o,xz) ax, , (4)

can be simplified to the form given in Eq. (8) with the corrésponding
energy factor and the magnitude of the Burgers vector.

According to Stroh, >’ the matrix [é Aia}\/laj] is skew~Hermitian and
satisfies EBq. (839)

& A5 = & Ay (85)
The following relationship results from Eq. (B5):
ST, =B, , (B6)

where Bi is the direction cosine of the Burgers vector, such that the
residue of a displacement component upon going around the dislocation

line, along a closed path c, is
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.
é @f) de = b, , (B7)

the corresponding Burgers vector component.
Thus, using the relationships given by Eas. (B2), (B3), and (B6), one
can reduce the number of independent coefficients by nine = three from

each equation -~ to the total of 39, 24 for stress and 15 for displacement.



APPENDIX C






43

APPENDIX C

Program to Calculate Elastic Fields of a Straight Dislocation

FEFTN oL +E2G g Ms

C
C

OO0

DGO O0

A PROGAM TO CALCULATE THE ELASTIC FIELDS OF A STRAIGHT DISLOCATION
OF ANY ARBITRARY ORIENTATICN IN AN ANISOTROPIC HCMCGENEOUS CONTINUUM

IMPLICIT REAL*8 (A-H,0-1)

COMPLEX%16 XCP4XCL 4 XCCL yXCM,XCA, XCBy XXX
COMMON TA(214-IB(21)04IC(211,ID(214,MM(3,3)

COMMCN/T/RU3),Q(3)

DIMENSION ARRAY(4)+C(6+6) 95{696),CT(6,6)45T{H6461,4C5(6,61,AA(3,3)
INJE3 1, NK(3) ,NB(23),X2(31,X2(3),:X3(3),X4(3}1,A(3,3}),BD{3),8V(3)
2XCP{3) 4 XCLI3 1o XCCOL(393) s XCM{3 43} 4 XXX (3,2}, XCA(3,3},XCB(3,31,5D(3)
3CB(3,3),CBI1(3,3),VER(3,2),A1(23,3),B1(23,3)

THE ARRAY OF MM FCR INTERRELATING TENSOR AND MATRIX NOTATIONS

READ 1y MM{1,1),MM(2,2} 4MM(3,3),MM(2,3),MM{1,2),MM(1,2)}
1 FORMAT(6111

DO 11 I=1.3 $ DO 11 J=1,3
11 MM, T)=MMT, )

THE ARRAYS OF 1A,1B,IC, AND ID ARE THE 21 COMBINATICNS OF TJKL USED
IN THE SUMMING PROCESS OF THE TRANSFOMATION SUBROUTINE

READ 2, {((IACI),IBCID,IC{I},IDCI)), TI=1,21)
2 FORMAT(80I114

THE ALPHANUMERIC VARIABLE, ARRAY, IS FOR IDENTIFICATION OF MATERIALS

102 READ 3, ARRAY
3 FORMAT (4A8)

C(I,Ji= ELASTIC STIFFNESSES REFERRED TO CRYSTAL AXES
S{I+Ji= ELASTIC COMPLIANCES REFERRED 7O CRYSTAL AXES
CT(I,4)=TRANSFORMED C({1,J) TC DISLOCATION COORDIMNATE SYSTEM
ST(I+J¥=TRANSFORMED S{I,J) TO DISLOCATION COORDINATE SYSTEM
CS{I,J)=MODIFIED COMPLIANCES

DA 12 I=1,6 § 00 12 J=1,6
12 CUI,d)=S{1,J)=CTLI » 3} =ST(1,J)=CS{1:J1=0.,0

INPUT NO=STOP(WHEN NONZERC) SIGNAL OF THE PROGRAM
N1=IDENTIFICATION OF CRYSTAL CLASSES
1=CUBIC, 2=HEXAGONAL, 3=TETRAGONAL,
4=0RTHORHOMBIC, S5=TRIGONAL
GAMMA=C/A RATIO, BETA=B/A RATIO, ALPHA=RHCMECHEDRAL ANGLE
PLAT=LATTICE PARAMETER

READ 45 NOSNL,GAMMASBET A ALPHA,PLAT,C{1313+C(2,2)1,C(3,3),C(4,41},
1C(5,514C {6461 yC{1228,C(1,53),C(2,31,C(1,41
4 FORMAT(I1.X,I1,7X, TF10.0/8F10.0)
C{244)=~C(Llyad & C(5,6})=C(144)
DO 13 I=1:6 % DO 13 J=1,6
13 CUd, =01, 3}

SUBROUTINE INV INVERYS STIFFNESSES INTO COMPLIANCES OR THE REVERSE
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CALL INVI(C,Si

SUBROUTINE CRYS ESTABLISHES YHE MATRIX, AA, WHICH RELATES THE
COMPONENTS OF A VECTOR IN CRYSTAL AXES TO THOSE IN THE REFERENCE
CARTESIAN COORDINATE SYSTEM

CALL CRYS(Nl,GAMMA,BETA,ALPHA,AA,PLAT)

INPUT N2=STOP(WHEN NONZERC} SIGNAL QF SLIP SYSTEMS FOR A GIVEN MAT'L
NK=CRYSTALLOGRAPHIC OIRECTION OF THE DISLOCATION LINE
NJ=A VECTOR LYING IN THE SLIP PLANE SUCH THAT A CROSS PRODUCT
OF NJ AND NK GIVES A VECTOR, X2, NORMAL TQ THE SLIP PLANE
NB=DIRECTICN OF BURGERS VECTCOR IN MILLER INDICES
NM=MODULUS SUCH THAT BURGERS VECTOR IS EQUAL TO (NBI/NM

100 READ 54 N2yNJsNKsNBsNM
5 FORMAT(I1,X,312,X,312,2X,412)

SUBROUTINE DCCM CONVERTS THE COMFONENTS OF A LATTICE VECTOR TO THOSE
IN THE CARTESIAN COORDINATE SYSTEM(EeGe NJ TO X43SGH=STREGNTH OF X4}

CALL DCOMINJsAA,X44SGH) $§ CALL DCCM{NK,;AA,X3,SGH)

SUBROUTINE XPDT YIELDS THE CROSS PRUDUCT OF TWO VECTORS(E.Ge X4 CROSS
X3=X2)

CALL XPDT(X4,X3,X2,SGH) $ CALL XPDT(X2,X34X1,SGH?
DO 14 I=1,3 ¢ A(1l,I)=XL(I} $ A(2,1)=X2(1)
14 A(3,11=X3(1)

SUBROUTINE DCD TRANSFORMS A VECTOR FROM THE REFERENCE CARTESIAN
COORDINATE SYSTEM TO THE DISLOCATION COORDINATE SYSTEM

CALL DCCM(NB,AA,BD,DSGHY $ CALL CCD(BC,4,8V)

THE BURGERS VECTUR, BV, IS REFERRED TO THE DISLOCATION COORDINATE AND
ITS MAGNITUDE IS BM

BM=DSGH/NM*PLAT
SUBRDUTINE TRNSFM TRANSFOMS C(I,J) TO CT(I,J) IN DISLOCATION COORD.

CALL TRNSFM(C,yA,CT)
CALL INV(CT.STI
DO 15 I=1,6 % DO 15 J=1,6
IF(J~1115,1¢,16
16 CSUI4J1=ST(IJ)-ST(I,3)%ST(3,4)/5T(3,3)
15 CS(J,11=CS(I,J}

SUBRQUTINE SEXTIC SOLVES THE SEXTIC EQUATICN TO GIVE THE COMPLEX
RDOTS, XCP, AND A VECTOR, XCle

CALL SEXTIC(CS+XCP4XCL,IK)
THE MATRICES, XCCL AND XCM, ARE DEFINED IN TERMS OF XCP AND XCL

THE STEP 31 IS FOR THE SPECIAL CASE WHEN THE DISLOCATION LINE IS
NORMAL TO A REFLECTION PLANE OF THE CRYSTAL
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Do 21 1=1,3
XCCL(1, 0 }=~XCP(1} $§ XCCLI{2,1)=(1+0,0,0)
21 XCCL(3,.I)=XCL(I}
IF{IKI31,32
31 XCCL{1+31={0s0:0e01) $ XCCL(2+3)1=(0,0,0,0)
32 DO 22 J=1+3 $ D0 22 I=14+3 $ XXX{I,J)=XCCL(I+J)
IF{leEQaJi33,34
34 XCM{I,Ji={0e0+0.0) $ GO TC 22
33 XCM(I,d1={1a0,060}
22 CONTINUE

SUBROUTINE CMATEQ AVAILABLE AT ORNL SUBROUTINE LIBRARY(F04011) GIVES
INVERSIGN OF A COMPLEX MATRIX(EeGe XXX{3,3) INVERTED TO XCM(3,3))

CALL CMATEQIXXX,XCM43,3,3)

SUBRDUTINE SAKA CALCULATES A COMPLEX MATRIX, XCA,; FRCM XCCP, XCP, CT
CALL SAKA(XCCL,XCP¢XCA,CT}

SUBROUTINE SBI1J CALCULATES A SYMMETRIC REAL MATRIX,CB, FROM XCA, XCM
CALL SBIJ(XCA,XCM,XCB,CB}

CALCULATION OF A VECTOR, 5D, FROM THE INVERSE OF CBy CBI, WHICH IS
OBTAINED BY A SUBROUTINE OMATEQ AVAILABLE AT ORNL SUBROUTINE LIBRARY
(F04013),

00 41 J=1,3 $ DO 41 I=1+3 $ VER(I,Jd)=CB(I,J)
IF{I+EQasJ151,52
51 CBI(1,J}1=1.0 & GO TO 41
52 CBI{I+J1=0.0
41 CONTINUE
CALL DMATEQ(VER,CBI+3,3,3)
D0 42 J=1,3 $ SD{JI=0.,0 $ DO 42 1=1,3
42 SDEJUI=SD{II+CBI(J, 1 I*BV(])

CALCULATION OF THE ENERGY FACTOR, EF, FRCOM CB ANL SD

EF=0.0 % DO 43 J=1,3 $ DO 43 I=1,3
43 EF=EF4CB (I JI*#SD{II*SD(JI}

THE COEFFICIENTS OF THE ELASTIC SOLUTIONS, A1(M,N) AND Bl(M,N}, ARE
CALCULATED IN SUBROUTINE COEFF, WHERE N TAKES ON 1,2,3 AND M TAKES
ON 1 TO 23 SUCH THAT
M=1,243+4+5,6 FOR STRESS CCMPONENTS(1J=11,22,33,23,13,12)
M=7,8+9,10 FOR DULIN/DX{(J1(1J=12+21,31,32)
M=11,12,12,14,15,16 FAR STRAIN CCOMPONENTS(1J=11,22,33,23,13,12}
M=17 AND M=18 FOR DILATATION FIELD
M=19 FOR HYDROSTATIC PRESSURE FIELD
M=21,22,23 FOR DISPLACEMENT COMPONENTS(I=1,2,2}

CALL COEFF{XCCL,XCM,XCA,XCP,50,EF,ST,CS,A1,81)

auTPuY PRINT QUT THE FOLLOWING RESULTS~ MATERIAL, TEMPERATURE,
ELASTIC CONSTANTS C(I,J), SLIP SYSTEM NJ AND NK, BURGERS
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VECTOR BV AND BM, ENERGY FACTOR EFf, SEXTIC ROOTS, AND
COEFFICIENTS Al(MyN} AND B1(M,N}

PRINT 91, ARRAY,NJ+NK,BV,EM
91 FORMAT(1H1,4A8/7//10X¢312,5X4312+20X,3F1045,5X4F10e5//)
PRINT 92, (Jy J=1,:6)
92 FORMAT{1HO+24X+6(11,9X))
PRINT 93,y ((I4(CUI4ddsJd=146)),1=1,6)
93 FORMAT(1HO+/76(14X:1145X46F10e5/1)1)
PRINT 94, EF
94 FORMAT(1HO,F1848)
PRINT 95, (Ny N=1,31)
95 FORMAT(1HO,/27X,11,2(39X,11))
PRINT 96,(R{11,Q(I)+1=143)
96 FORMAT(L1HO +/6X+3(2F1848+4X))
PRINT 974 ((M;(AL(M,N),BL(MyN),N=1,200,M=1,23)
97 FORMAT(1HO/76(4Xs12+3(2F18s8+4X)/ ¥/ +v4(4Xs12,3(2F184824X)/1/,6(4X,
112,3(2F18: 844X}/ )1/ +4(4X312,3(2F18e8,4X}7)/+3(4X+12,3(2F1848+4X)/1)
IF(N2)101,100,101
101 IF(NO)103,102,103
103 sTOP
END
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SUBROUTINE INV (C,S)

IMPLICIT REAL*8 (A-H,0~2}

DIMENSION C(6+61,5(6,6),A(21)

N=0 $ DO 1 J=146 § D0 1 I=J,6 $ N=N+1
A(NI=C(J,T1}

C SUBROUTINE DCHOLY AVAILABLE FROM ORNL SUBROUTINE LIBRARY(F040241
C GIVES MATRIX INVERSION

11

1
2

3
4
5

10

1z
13

14

CALL DCHOLY(A,6,NF)

N=0 $ DO 2 J=1,6 $ 00 2 I=J,6 $ N=N+1
S(I.d0=S(Jd,1)=A0N)

RETURN

END

SUBROUTINE CRYS{NsGsBsAL, AP
IMPLICIT REAL¥8 (A~H,0-2)

DIMENSION A(3,3)

DO 11 I=1,3 $ DO 11 J=1,3

AL1,39=0,0

PI=3,1415926536 § AN=PI/3. $ AR=PI*AL/90a

60 TO(152+3+4,5) 4N

A(1,10=A(2421=A(3,31=1,0 $ GC TO 10

A{1,11=1,0 & A(1,2)=-DCCS(AN) $ A(2,2)=CSIN(AN) $ A(3,3)=G

60 TO 10 »

A{l,1)=A(2,2)=140 % A(3,2)=G $ GC TO 10

All,1)=1s0 $ Al2,21=B $ A(3,3)=6 $ GO TO 10

A(l1,1)=140 & A(1,2)=-DCOS{AN) $ A(2,21=0SINCAN) $ A(3,3)=DSQRT(9./

1{44 ¥DSIN(ARIXDSIN(AR) 1=24 ) $ P=DSQRT (9 *P*P/A(3,3)%A(3,3)43,.1}

RETURN
END

SUBROUTINE DCOM{IN+A,X,55)

IMPLICIT REAL*8 (A~H,0~Z)

DIMENSION N{2) ,A(243),X(3)

5=0.0 $ 00 13 J=1,3 $ X(J)=0.0 & DO 12 I=1,3
XKEdh=X(J1+A{J TI*NIT)

S=S4X{J)¥X{J} $ SS5=DSQRT(S)

Do 14 J=1,3

XEJ)=X(d41/58

RETURN

END

SUBROUTINE XPDTI{XyY4Z4+55)

IMPLICIT REAL¥8 (A-H,0-2)

DIMENSION X(31},Y(3).2(3)

ZOLy=Xe2 1Y L3)=-X(312Y (23 § Z{21=X3¥*Y(11=-X(1)1*Y(3)
Zi31=X(10%Y(2)~X{2)*Y(1) & SS=0SQRT(Z(LIRZ{LI+Z(2*Z{ 2142 (3)%2(3))
00 1 1=1,3

ZAT)=Z¢113/SS

RETURN

END
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SUBROUTINE DCO(X,A,B)

IMPLICIT REAL*8 (A-H,0~2)
DIMENSION X(21,A(3,3).8(31

D0 1 J=1,3 $ B(JI1=0.0 $ OO 1 I=1,3
B(JI=B(JI+X{(I1*A(J,T)

RETURN

END

SUBRQUTINE TRNSFM{C,A,CT}

IMPLICIT REAL*8 (A-H,0-7}

COMMCN TA(21),IB(21),1C(21),1ID(21),MM(3,3)

DIMENSION Cl&4,614A(3,3),CT(6461,5(21)

DO 10 M=1,21 ¢ II=TA(M) $ JJ=IB(MI $ KK=IC(M} $ LL=10D(M)
S(Mp=Ce0 & DO 9 I=1,3 $ L0 9 J=1,3 & NI=MM(I,J)

DO 9 K=1,3 $ DC 9 L=1,3 $ NK=FMM(K,L}
R=CINIsNKIXACTT I *ACSS s JIHA(KK, KI¥ALLL,LY

S(MI=5(MI+R

LIC=MM{I T JJ1 & LJL=MM(KK, LT $§ CT(LIL,LJLI=CTILIL,LILI=S{M)
CONTINUE

RETURN

END

SUBROUTINE SAKA(XCCL+XCP4sXCA:C)

IMPLICIT REAL*¥8 (A-H,0-7}

COMPLEX%*16 XCCLyXCPyXCA+XCTyXCTI ¢ XCAT s XCyXLLyXABsXCOL

COMMON TA{21),1B(21),1IC(21),1D(21),MM(2,:3)

DIMENSION XCCL(3,3),XCP(3)4XCA(2,3),XCT(343),XCTI(343),XCAT(3}

IXCO4) s XLL(343),XAB(3,34,XCDL(3),C(646)

DO 9 J=1,3 ¢ 00 1 K=1,3 $ XCCL(K)=XCCL{(K,J)

00 1 1=1,3 $ TI=MM(1,2) $ JI=MM(K,1}) $ KK=MM({K,2)
XCUY1=DCMPLX(C{IT,JJ} 0001 $ XC(2)=DTMPLX(C(IT,KK},0e0)
XCTLI4KI=XC (L) +XCP (JIxXC(2)

00 2 K=1,3 6 DO 2 I=1,2 $ IF(leaEQeKI11,12

XCTI(I K1=(0,0,040) $ GC TO 2

XCTI(I'K’:‘IQOr()nO,

XAB(I +K)=XCT(I,K)

CALL CMATEQ(XAByXCT71+3,3,3) ¢ DO 3 1I=1,3 $ XC(3)1=(0a0+0e0}
D0 4 K=1,3 $ XC(4)=XCTI{I,KI*XCOL(K} $ XC{3)=XC(2)+XC (4)
CONTINUE

XCAT(I1=XC(3i

D0 5 I=1,3

XCA(I J)=XCATII)

CONTINUE

RETURN

END

SUBROUTINE SBIJ(XCA:XCM,XCB+CBI
IMPLICIT REAL*8 (A-H,0~21}
COMPLEX*16 XCA+XCMsXCByXCoXCN
EQUIVALENCE (G(1,1),XCN(1,11)

DIMENSTION XCA(3,31yXCM{2+3)+sXCB(3,3),CB(3+31,XC(3)yXCN(3,3),G(6,43)

XC(2)=(0s0,065)

DO 1 J=1,3 $ DC 1 I=143 $ XC(3)=(0.0404C) $ CC 2 1L=1,3
XCO31=XC(3)4+XCA(T4L)*XCMLLoJ)-~DCONJGIXCA(T L) )I*XDCONJG(XCM(LJ)}
XCN(T,J1=XCl2}*XC(3) $ IW=2%1-1 $ XCB(I,Ji=XCN(I,J}
CB{I,)=G(IW,J}

RETURN

END
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SUBROUTINE SEXTIC(C,XCP4+XCL,IK)

IMPLICIT REAL*8 (A-H,0-Z}

COMPLEX%16 XCP,XCL 4 XCyXCN

COMMON/T/R(3),Q(3)

EQUIVALENCE (XCPD(1hs4XCN{L1))

DIMENSION C(646)+G(T714GL{T7}RRI6),RT(6)4XCP(3},XCLI3) ,XCL1L)
1IXCPD(61) s XCN(3)

C CALCULATION OF THE 7 COEFFICIENTS, G{(I), OF A SEXTIC EQUATION

[eNaEe]

Al=C{1,5) $ A2=C(1+4)4C(5,6) % A3=C(2,514C{4,¢€) B A4=C(2,4)
B1=C(191) § B2=2%C(146) 5 B3=24%C{(1421+4C(646) $ Ba4=24%C{246)
B5=C{2:2) & C1=C(5,5) § C2=2.%C(4,5) $ C3=Cl4+4)
G{l)=C3%B5~A4%A4 & G(2)=-(C2%B5+C3%B4~2,*%A3%A4)
G(31=Cl*B5+4C2%B4+BI*C3-AZ¥A3-2,%A2%A4
Gl4)=~(C1*B44C2+B3+B2+C3~24 ¥ (AL *¥A4+A2%AZ})
G({5)=C1*B3+B2%C2+4B1%C3-A2%A2-2,%A1*A3
G{oi==(BLl*C24B2%(CL -2+ %A1*A2) $ G(T)=Bi*C1-A1%A])

SUBROUTINE PDLRT AVAILABLE FRCM CRNL SUBROUTINE LIBRARY(CO2007}
SOLVES FOR THE ROOTS(REAL PARTS, RR, AND IMAGINARY PARTS, RI) OF
A SIXTH CRDER PCLYNOMIAL EQUATICN

CALL POLRT(G+Gly&4RRyRISTER)
CALCULATION OF THE VECTOR XCL FRCM THE ROOTS AND C(I.,Jd9

XCO21=DCMPLX(AL,0e40) $ XCU(3)=DCMPLX{A2:,0s0) $ XC(4)=DCMPLX{A3,060)
XC(S5)=DCMPLX(A4,0,0) $ XC(&6)=DCMPLX{C1,040) % XC(TI=DCMPLX(C2,0.0)
XC(8)=DCMPLX(C3,0.0)

SELECT THE THREE ROOTS WITH POSITIVE IMAGINARY PARTS

I1=0 & IK=0 $ DO 10 L=2,6,2 $ 1I=11+1
IF(RI(LI120,21,21

20 [=L~1 $ GO TQ 22

21 I=L

TEST EACH ROOT wITH THE QUADRATIC EQUATICN FOR THE SPECIAL CASE

22 XCL10)=DCMPLX(RR(I}LRICI}) $& XC(11}=XCLLO)*XC{1C})
XCUGI=XCEIRXC(LLI-XCATIXXCL10)+XC(8) % AX=COABS{XC(9i)
IF{AXelTalaD-6111,12

11 XCN(3}1=XC(10?) $ II=IT~-1 % IK=IK+1 $ GO 70 10

12 XCN{II¥=XC{10}

10 CUONTINUE
D0 30 I=1,3 $ IwW=2*I-1 $ Iv=2%] $ R(Ii=XCPD{IW} $ XCP({(I}=XCN(I)

30 Q{II=XCPD(IV)

IF(IK)I13,14,13

13 XCL{3)=(1.0,0.0) $ K=2 $ GO TO 15

14 K=3

15 DO 40 I=1,K $ XC{1}=XCN{II=XCN(I)

40 XCLAOII={XCOLI%=XON(I 1%XC{21-XC(1 ] *XC O3+ XCN(TI*XC(41-XC{5)}/

TOXCALI%XC(O) ~XON(I I AXCLTI+XC(8))
RETURN
END
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SUBROUTINE COEFF{(XCCLyXCMyXCA+XCP+SD4EF,ST,CS4A,B}
IMPLICIT REAL#*8 (A-H;0-7)
COMPLEX*16 XCCLyXCM4XCA XMD s XMY 4 XX XCoXCP
COMMON/Y/R(3}),Q(3)
EQUIVALENCE (PP(1),XC{1}}
DIMENSION XCCL(343)+XCM(3,3)4XCA(3,31,XCP(3),SD(3),XC(23),PP(4%6)
1ST(64+€)4CS(646),4023,3),8(23,3),.XMD(3)
DO 11 I=1,3 $ XMY=(0e0,0401
DO 12 Jd=1:3 $ XX=DCMPLX(SD(J),0401}
12 XMY=XMY+XCM{T,d)%XX
11 XMD(I)=XMY
F=le/EF
DO 3 I=1,3

CALCULAYION OF THE COEFFICIENTS FOR STRESS COMPONENTS 1,246

XC(L)=XCCL(L1,I)EXMDLT) $ XC(2)=XC(1)*XCP(1}
XCU{3)=XCCL(2,I11%XMD(I) $ XC(4)=DCONJG(XCP(I})
XC(5)1=XC(2)%xXC(4) $ XC(61=XC(3)%XC(4) $ XC(Ti=XCL1)*XC(4}
A(lsI1)==PP(3})*F $ A(2,1)=PP(5i%F $§ A(6,1)=PP(1}*F
B(lyI)=-PP(G1*F $ B{2,1)=PP(11)*F & B(6,41)=PP(1l31%F

FOR STRESS COMPONENTS 4,5

XC(8)=XCCL(3,I)*XMD(I) $ XC{II=XC(B)I*XCP(I)
XC(10}1=XC(BI*XC(4) $ XC(11I=XC{9I%XC (4}
A(44,1)=PP(151%F $ B(4,]11=PP(191%F
A(5,1)==PP(17)%F $ B(S5,1)=-PFP(21}*F

FOR STRESS COMPCNENTS 3 AND CILATATION FIELD 17 CALCULATED FROM THE
NORMAL STRESS COMPONENTS

A(3,1)=B{(3,1)=A(17,1}1=8{(17,1)50e0
DO g IQ=1,6
IF{ICeEQ.319,10
10 GW=ST(3,IQ1/ST(3,3) $ GU=EF*(CS(1,IQI+CS{(2,IQ))
A(3,11=A(3, 1) ~GW*A(IQ,I) $ B(3,11=8(3,1)-GW¥B(IC,T1)
ACL7,10=A017,1)4GU*A{IQ,T ) $ B(17,11=BL17,114GU*B{IQ, I}
9 CONTINUE

FOR DISPLACEMENT COMPONENTS 21,22423

XC(121=XCA(1l,I)%XMD(T) $ XC(13)=XCA(2,Ti%XMD(I)
XC(14)=XCA(3,I1)*XMD(I) $ XC(15)=XC(12)*%XC(4}

XC(16)=XC(L2}*XCP(I) $ XC(1T)=XC(15)%XCP(I1}

XC(181=XCU13)%XC(4) $ XC(19)=XC(Ll3}*XCP(I) $ XC(20)=XC(1BI*XCP(I)
A(21,1)1=PP{(23) $ B(21,1}=—PP(24}

A(22,11=PP(251 $ B(22,11=-PP(26)

A(23,1)=PP(271 $ B{(23,1)=-PP(28)

FOR DISPLACEMENT GRADIENTS 7,8,9,10 AND STRAIN CCMFCNENTS 11,12,13,
14,15,16

XC(211=XC(14)%XC(4) $ XC(22)=XC{141#XCP(I) $ XC(23)=XC(21)1%XCP(I)
A(7,11=PP(31) ¢ B(7,1)=PP(33)
A(B8,1)1=A(22,1) & B{(8,I)=FP(35)
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A{9,1)=PP(27) $ B(9.1)=PP(41}

A110,41)=PP(43} § B(10,1)=PP(45)

A(lL.T)=A(21:1) % B(l1,1¥=PP(29}

A(12,10=PP(37) & B(1l2,1}=PP(39) $ A(13,11=8(13,11=0.0
All4,10=0e5%PP(43) § B(1441)=0s5%PP(45)
A(15,11=0.5%PP(27) $ B(15+1)=0e5%PP{41)
All6411=00 5% (PP(311+A(B,1)1 $ B(l6+I1=0,5%(PP{(22)4PP(35)}

C FOR DILATATION FIELD, 18, CALCULATED DIRECTLY FRCM THE NORMAL STRAIN
 COMPONENTS AND FOR HYDROSTATIC PRESSURE FIELD 1%

A(18,I9=A(11,1)4A(12,1} ¢ B(18,10=B(11,1)+B(12,1)

A{L19,T1==-{A{1 T1+A(2,144A(3,1)) $ B(19,1)=~(B(1,1)4B{2,104B13,11)1}
2 A{20,11=B(20,1)1=0,0

RETURN

END






APPENDIX D






53

APPENDIX D

Results for a Screw and an Edge Dislocation in &~Iron

The results for a screw and an edge dislocation in G-iron are given

as computer print-outs. The diagram preceding the print-outs identifies

the mamerical wvalues.
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