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IN-REACTOR RESTRUCTURING TEMPERATURES

AND KINETICS FOR (U,Pu)0,

A. R. Olsen R. B. Fittg W. J. Lackey
ABSTRACT

Data from a number of thermal flux irradiation tests of stainless-
steel-clad (U,Pu)0, fuels were analyzed in terms of proposed mechanisms
of fuel restructuring and actinide redistribution. The data indicate
that columnar grain growth is the result of a vaporization-condensation
process in fuels operating above about 1700°C. The columnar structure
is not fully developed in fuels with a center temperature of 2000°C
even after 28 days of operation, but the rate of restructuring increases
with increasing temperature. Sintering and equiaxed grain growth pro-
cegges are slower and therefore of éecondary importance in early-life
restructuring. A model is postulated in which the vaporization-
condensation procesg can account for observed actinide concentration
variations with either uranium or plutonium depletion in the highest
temperature reglons, depending on the operating temperatures and

probably on the oxygen activity in the gas phase over the fuel.



INTRODUCTION

In~-reactor restructuring of oxide fuels has long been studied,
primarily because of the effects on fuel operating temperatures. This
is of interest for two reasons: (1) one of the reactor design criteria
normally imposed is that there be no molten fuel during steady-state
operation, and (2) if the restructuring kinetics are known, the reactor
startup procedures can be optimized so that the condition of no fuel
melting can be met with new fuel subassemblies or with assemblies that
have been moved from a region of low to higher flux. In addition, an
understanding of the modes of in-reactor restructuring of (U,Pu)02 fuels
and the kinetics of the various processes as functions of temperature,
temperature gradient, and time are necessary for the analysis of fuel
pin performance.

We have examined the data on fuel microstructures, composition
gradients, and porosity from a number of irradiation tests, both instru-
mented? and uninstrumented,??> and analyzed these data in terms of
proposed processes of fuel restructuring. The data indicate that early-
life restructuring above 1700°C occurs by the vaporization-condensation

mechanism and suggest that this same process leads to observed varia-

tions in actinide distribution.

OXIDE RESTRUCTURING

Table I is a compilation of various structural phenomena observed
in irradiated fuel together with most of the conditions now thought to
affect these phenomena. Other facets of fuel or fuel pin performance,

such as fission gas release rates, are closely related to restructuring.



Table I. Conditions Affecting (U,Pu)0, Fuel Structural Phenomena

Involvement of Condition in Each Phenomenon

Condition Grain Growth . .
Columnar Equiaxed Sintering

Temperature % / v
Temperature gradient v/

Time / v v
Fuel oxygen-to- v/ v/
metal ratio

Fuel composition v/

Fuel density v/ v/ v/

Hydrostatic stress / e




Although it is beyond the scope of this paper to discuss each of these
items in detail or the effects of neutron flux and fissioning processes
on many of them, the tabulation does reveal the most important factors
to which our analyses of the experimental data have been directed.
Temperature is a key factor in all these phenomena and also
depends on the extent of restructuring, since the thermal conductivity
of the fuel increases with its density. The instrumented tests in our
program were specifically designed to investigate the effects of temper-
ature on restructuring in both pellet and Sphere-Pac fuels and to
evaluate the methods of predicting fuel operating temperatures in non-
instrumented tests. The Sphere-Pac process, which uses low-energy
vibratory compaction of fuel microspheres, has been described previously.4
The results of the instrumented tests confirmed the method of tempera-
ture prediction as reported previously.’ Briefly, these tests showed
that the predictions agree within 8% of the measured temperature and
that for equivalent smear densities there is no significant difference
in overall fuel pin thermal conductance for pellet and Sphere-Pac fuels.
The comparative data are shown in Pig. 1. The instrumented test results
are important for two major reasons. First, they provide confidence in
the temperature quoted for the uninstrumented tests. Second, postirra-
diation examination showed that the fuel form does not have a significant
effect on restructuring. This second point can be seen in Fig. 2, where
we have plotted calculated temperatures on radial cross sections of the
two fuel types — pellet and Sphere-Pac — from an instrumented test.
Note that above about 1650°C the original fuel form has been completely

obliterated by restructuring, and the two fuel forms are very similar.
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Slightly elongated grains occur in this high-temperature region for the
pellet pin. A second temperature demarcation for these tests is at
approximately 1300°C, where the first discernible outlining of grain
boundaries (porosity or bubbles in the grain boundaries) is observed in
both fuels.

Being assured that the fuel fabrication form, Sphere-Pac or pellet,
is not a primary factor in fuel festructuring and that fuel temperatures
can be calculated with reasonable reliability, we can confidently
utilize the data from noninstruménted Sphere~Pac tests to investigate
the effects of temperature, temperature gradient, and time on
restructuring.

The effects of temperature and possibly temperature gradient on the
restructuring rate are shown in Figs. 3 and 4. Fach figure shows cross
sections from pins operated in the same capsule but at different flux
levels. The Ub.85Puo.1502.oo Sphere-Pac fuel in all six pins was iden-~
tical. The calculated temperatures of apparent restruqturing limits
(radii of observable equiaxed-grain growth) for Fig. 3 are approximately
1300°C, in agreement with the temperature limits defined by the instru-
mented tests. In Fig. 4 the temperature limits of restructuring are not
well defined becausé of the changes in temperature profilekas the heat
rate decreases and the power distribution changes with burnup.® The
change in radial extent of restructuring is difficult to define for [k d6
between 32 and 40 W/cm.but is quite apparent when [k d6 rises to a time-
averaged value of 46 W/cm.

A surprisingly long time dependence for restructuring in fuels oper-

ated with an [k d9 of 31 to 32 W/em is shown in Fig. 5. The upper two
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structures are from the instrumented tests, and the lower two are from
uninstrumented capsule irradiations in the Engineering Test Reactor (ETR).
These milcrostructures show that the columnar grain structure is indis-
tinct after two to five days of operation and not fully developed after
28 days of operation. For example, a large number of lenticular voids
are still visible in the columnar grain region. However, after 174 days
the structure is free of lenticular voids and has grown radially. We

do not have information yet on longer times: however, we believe that

in the 174-day structure the columnar grain growth is essentially
complete.

The unique characteristics of the Sphere-Pac microstructure indi-
cate that the primary restructuring process in fuels at temperatures
above about 1700°C is vaporization-condensation. Figure 6 clearly shows
the growth of condensed dendrites at the outer radial bhoundary of the
columnar grain region for the shorter term tests (28 EFPD). This phe-
nomenon has long been proposed as the process by which columnar grains
are formed as pores sweep up the temperature gradient.6’7 In fact,
calculations of pore distribution using the pore migration model of
Nichols® showed reasonsble agreement with porosity distribution measure-
ments made on our tests.” Our calculations and observations show a
slower rate of densification for these thermal flux tests than the pre-

10 for fast reactor conditions at similar linear heat

dictlons of others
rates. This difference is largely the result of a different fuel center
temperature, which is some 300°C higher in the fast reactor calculations;

the rate of pore migration in the model varies exponentially with tem~

perature. A secondary effect, resulting from flux perturbation effecis,
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Fig. 6. Fuel Deposits on the Inner Surface of Microspheress Located

at the Periphery of the Columnar Grain-Growth Region.
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may be the differences in local thermal gradients, particularly in the
higher temperature region.

Sintering and grain growth processes are of secondary importance
in short~term restructuring, although they do provide a means of agglom-
erating as-fabricated porosity for the vaporization-condensation process.
This agglomeration process is apparent in the electron micrographs
shown in Fig. 7. The irradiated structure showm in the figure is from
a fuel region with a calculated temperature of 1450°C. At this temper-
ature and higher we occasionally observed the rows of small voids seen
in Fig. 7. We believe these to be bubbles of fission gas at grain bound-
aries, These voids were 0.1 to 0.2 pm in diameter, an order of magnitude
smaller than the agglomerated porosity.

Examination of the cooler fuel regions from the higher buraup sam-
ples has revealed the structure shown in Fig. 8. Here we see the devel-
opment of subgrains, indicated by the arrows within the equiaxed grains.
Similar structural changes have been reported by Bailey et al.ll As yet
we do not know whether the subgrains are outlined by bubbles or inclu-

"surface

sions. The development of such a structure could increase the
area" of the fuel and result in increasing fission gas release with
burnup for fuel in the 800 to 1400°C range, as the experiments of
Findlay et al.1? have shown. Additional observations will be made on
higher burnup tests to see if this subgrain structure develops with
burnup. Preliminary measurements of equiaxed, gralo-growth kinetics
have been reported,”)l4 and additional measurements are in progress.
Since the current equations and constants are reported elsewhere® at

this conference, they will not be discussed here. However, we have seen

grain growth at fuel temperatures as low as 900°C.
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Fig. 7. Electron Micrographs of Pores in Coarse Microspheres.

(A) As fabricated and (B) after irradiation at temperatures below 1450°C

tor 28 effective full power days.
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Fig. 8. Subgrain Growth in (U,Pu)0, Irradiated for 174 Effective

Full Power Days.
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URANTUM-~PLUTONTUM REDISTRIBUTION

The vaporization~condensation restructuring process does have a
secondary effect on actinide distrivbution. Although we have not been
able to establish a guantitative method of predicting such redistribu-
tion, our observations and calculations have allowed us to establish a
gqualitative mechanism.

The unique structure of Sphere~Pac fuels allows us to see the
effects of the vaporization process on plutonium distribution. Figure ©
shows the o and B-y autoradiographs along with the photomacrographs for
two different pins from the same capsule. Figure 9(a) from the pin with
the lower heat rate does not show the ring structure in the B~y auto-
radiograph typically seen where fuel melting has occurred. The interest-
ing features are revealed in the ¢ autoradiograph. First there is a
large increase in plutonium content near the central void. Secondly,
there are spherical islands of higher plutonium content in the cooler
parts of the regions with the columnar grain-growth structure. We
attributed®>1% these observations to a migration of uranium-rich vapors
down the temperature gradient, with condensates filling the voids around
the larger microspheres. At intermediate temperatures, diffusion and
short-range vaporization-condensation processes provide homogenization.
The loss of the uranium-rich vapors from the fuel near the central void
leaves a plutonium-enriched solid behingd.

Figure 9(b) is from a pin with a higher heat rate where, at least
in the early stages of irradiation, a portion of the fuel was molten.
The extent of melting is indicated by the inner edge of the high B~y

activity ring. The @ autoradiograph shows the plutonium~rich spherical
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islands in the cooler regions of the columnar grains, although they are
less distincet than those in Fig. 9(a). The major difference between
this pin and the one with lower heat rate is in the plutonium concentra-
tions near the central void. The pin with the higher heat rate does

not show the sharp rise in concentration at the void, but, in fact,
indicates a small decrease. Such a decrease cannot be attributed to
solidification from the melt because this process would yield a peak in
plutonium content for the last segment to solidify. Thermal diffusionl?
is another means of establishing a plutonium gradient but would not
explain a peak away from the vold surface. We feel that the vaporization-
condensation process can explain both observations and we will show our
reasoning.

As a first step in developing this model of actinide redistribution,
we calculated the vapor pressures of Pu, Pu0O, Pu0,, U, U0, UOy;, and UOs
over different solid compositions as functions of temperature and the
Hy0:Hy ratio in the gas phase, using the thermodynamic data of Rand and

Markin.®

Figure 10 shows the vapor composition over a hypostoichiometric
Up.ePup.202.x Tuel with different HpO0:Hpy ratios. Similar curves have
been calculated for different solid compositions, and the effect of the
solid composition at a constant HpO:Hy; ratio can be seen in Fig. 1l.

The total combined pressures of all uranium-~ and plutonium-bearing

species are shown in Fig. 12. We were unsuccessful in attempting to
calculate radial variations in plutonium contents for the solid by the

method proposed by Aitken and FEvans.t’

Contrary to their results, our
calculation for hypostoichiometric fuels predicts that the plutonium-

to-uranium ratio in the gas phase increases with increasing temperature
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for any given water-to-hydrogen ratioc in the range 107193 4o 1073-0,
We have no explanation for the difference between our results and
Aitken's.

On the basis of our observations and calculations, we postulate
the following qualitative model:

1. Vaporization-condensation will occur in the steep temperature
gradients (10° to lO4CC/cm) of fuel under irradiation, since the fuel
vapor partial pressures change by approximately an order of magnitude
for every 200°C.

2. On the basis of currently available thermodynamic data, the
vapor composition over a (U,Pu)02,.X fuel will become enriched in
plutonium~bearing species as the temperature increases.

3. The temperature at which the plutonium content in the vapor
exceeds the plutonium content in the evaporating solid decreases with
decreasing oxygen activity in the atmosphere (lower H,0:H, or CO:COs
ratios, as determined by initial fuel oxygen-to-metal ratios).

4, TIf a fuel is irradiated under conditions such that the center
temperature is below the temperature at which the plutonium content in
the vapor equals the plutonium content in the solid, there will be a
net migration of uranium down the temperature gradient, leaving a higher
plutonium content in the higher temperature regions.

5. Tf the fuel is operated with center temperatures above the
temperature at which the plutonium content in the vapor exceeds that
in the solid, the plutonium content will peak at some temperature below

the peak temperature.



We have only a limited amount of microprobe data available at this
time, but the data to date support this postulate. Figure 13 shows the
plutonium-to~uranium ratio in an irradiated fuel near the central void.
The initial oxygen-to-metal ratio for the fuel was between 1.99 and
2.00, so an oxygen activity equivalent to a HpO0:Hp ratio less than 1077
is expectedl8 in the gas atmosphere. With a center temperature of
approximately 2000°C, a rise in plutonium content to a maximum at the
edge of the central void is expected and was observed.

Figure 14 showg the microprobe analysis for the pin operated with
center melting at the start of life and with center temperatures about
2700°C (3000°K) at the end of life. The initial fuel was the same, so
the oxygen activity in the gas would be gimilar. However, at this
higher temperature a peak in plutonium content would be expected in the
columnar grains away from the center void. A reported microprobe anal-
ysis for a fuel irradiated in the EBR-I1 with central temperatures near
the melting point shows a peaking in plutonium away from the central
vold, further confirming our evidence on the temperature effect.'” We
still see the decrease in plutonium content at the outer edge of the
colummar grain region; the 1400~ to 1600-pm distance in the figure.

We have not yet examined any fuel with a lower oxygen-to-metal
ratio, so the expeéted effects of oxygen activity are less well sub-
stantiated. There 1s some indication in reports of the General Electric
Compan},rzo-22 that plutonium gradients vary with initial oxygen-to-metal
ratios, but the test conditions (88 hr with central melting) were such
that equilibrium was probably not attained. A preliminary report?’

indicated that in EBR-II irradiations of the same Tuel in two different
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claddings, one of which would act as an oxygen sink, distinctly different
end-of-1life plutonium contents were found in the intermediate columnar
grain regions -~ 31 compared with 26%, with the higher councentration being

associated with the possibly lower oxygen activity.
DISCUSSION

The proposed mechanism for uranium and plutonium redistribution by a
predominantly vapor phase transport mechanism is similar to that discussed
by Bober?* and Aitken.?® The major differences are that in this case we
show the effects of peak temperature on the equilibrium plutonium distri-
bution and the effects of the compositional changes on restructuring
forces (kinetics). The extent of actinide redistribution is initially
established by the rapid decrease in vapor pressures with decreasing
temperature, The composition of the solid state at various radial
locations approaches a guasi-equilibrium when the uranium-to-plutonium
and the oxygen-to-metal ratios in the solid are balanced with those in
the vapor phase, The variation of equilibrium oxygen-to-metal with
plutonium content 1s supported by the experimental observations of Ohse
and Olson®® and J. E. Battles et al.?’ who report differing oxygen-to-
metal ratios for vapor pressure minimums (congruent vaporization) in out-
of-pile experiments with two different compositions of solids. The
pressure minimums occur at (Ug.g, Pur.2)01.92-1.03 and (Uy.gs, Pug.15)01.97.
Since the total vapor pressures at all oxygen-to-metal ratios less than
approximately 1.99 are essentially controlled by the partial pressure of
U0, (refs. 26 and 27), and this decreases with decreasing oxygen-to-metal
ratios in the solid, the pressure gradient will be reduced as the solid

compositions change in the higher temperature reglons to higher plutonium



contents and lower oxygen-to-metal ratios. During restructuring the
lowering of temperatures due to increased thermal conductivity resulting
from fuel densification will lower the vapor pressure. The compositional
changes will further lower these pressures so that the vaporization-
condensation process essentially reaches equilibrium. The closing off of
channels for vapor movement with densification will also reduce the
possibilities for vaporization-condensation; but porosity sweeping up the
temperature gradient will continue to provide a path along which such a
process might proceed.

Even without the alternate possibility of thermal diffusion, the
change in oxygen-to-metal ratios with burnup will provide a driving
force for continued redistribution by the vaporization-condensation
process, As the oxygen activity increases, the vapor pressures at all
temperatures will also increase; and new quasi-equilibrium compositional

distribution reguirements will develop.
CONCLUS TONS

The analysis of our observations to date may be summarized as
follows:

1. We have clearly defined vaporization-condensation as the
principal process for restructuring in (U,Pu)0, fuels for operating
temperatures above 1700°C (the columnar grain-growth region).

2. Sintering processes and grain growth were shown to oceur at
all temperatures observed down to approximately 200°C, but these pro-

cesses are of secondary importance in early-life restructuring.
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3. Early-life restructuring has a distinct time dependence, which
is an inverse function of the fuel operating temperatures. At a center
temperature of 2000°C the restructuring is incomplete even after 28 days
of full power operation.

4. The vaporization-~condensation process can account for actinide
redistribution. ZFEither uranium or plutonium can concentrate in the
fuel at the highest temperature, depending on the fuel operating temper-

ature and probably on the oxygen activity in the gas phase.
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