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I. TINTRODUCTION

The men and instruments aboard space vehicles must be protected
from the radiation encountered in extra-terrestrial flight. A signif-
icant research effort has been under way for some time to discover the
identity, energy, and abundance of the particles involved, and to
determine their ability to penetrate shielding materials.l’2 A manned
space laboratory orbiting through the Van Allen electron belts would be
exposed to a large number of low-energy electrons. A code is available
that treats low-energy electron transport by Monte Carlo methods.5
However, because of difficulties with the statistical accuracy obtained
in some cases, a nonstatistical calculational method is needed. The
purpose of this investigation is to study the adaptability of the
method of discrete ordinates, which was developed for neutron trans-
port, to the transport of low-energy electrons and the photons which
they produce.

Consideration here is limited to the energy range below 10 MeV,
since this is the area of primary concern for the shielding of space
vehiclesf However, this energy range is broad enough to be of general
interest. Other problems to which the calculational method developed
here might be applied include the effect of multiple scattering on the
response of beta detectors and the effect of the energy fluctuations

resulting when a monoenergetic beam of electrons is incident on a thin

target (for example, in a device such as the electron microscope).



In Section II a basic discussion of electron penetration is
presented, and previous efforts made toward the solution of this
problem are reviewed. The equations involved in the methods of solu-
tion used in this investigation are given in Section III. The specific
forms of the cross sections and other parameters utilized in the
equations are discussed in Section IV. Comparisons between the results
obtained from this investigation and results from other sources, both
calculational and experimental, are presented in Sections V, VI, and
VII. A pure angular spectrum from multiple elastic scattering and a
pure energy spectrum due to electron straggling are considered in
Section V, and comparisons with experimental results are given in
Section VI. Experimeptal data are limited, and none were available
to describe the penetration of an incident energy spectrum such as
that incident on spacecraft in the Van Allen belts. A comparison with
another calculational method for the electron energy distribution
resulting from a fission spectrum source of electrons is presented in
Section VII. Energy spectra for the photons produced by these elec-
trons and transported through large slab thicknesses are also included
here. Conclusions and recommendations for further investigation are
discussed in Section VIII. The detailed derivation of the transport
equation with a term corresponding to the continuous slowing-down
approximation is given in Appendix A, and the derivation of the high-
frequency end-point correction applied to the bremsstrahlung cross

section is shown in Appendix B.



II. LITERATURE SURVEY

When electrons with energies of a few MeV penetrate matter, they
undergo a large number of collisions within a very short pathlength.
Since there are many possible energy and angular changes for each col-
lision, this results in a distribution of electrons in terms of both
energy and direction of travel. The most significant interactions for
the prediction of the resulting distribution by transport calculations
are elastic nuclear (Coulomb) scattering, inelastic scattering from
atomic electrons, and radiative (bremsstrahlung) interactions with
both nuclei and atomic electrons. Birkhoffh described electronic inter-
actions and summarized the progress made on numerical models represent-
ing various aspects of electron transport. More recently, Zerby and
Keller5 presented a comprehensive state-of-the-art review of theoret-
ical and experimental investigations in the area of electron transport.

Coulomb interactions are very frequent, resulting in an angular
distribution heavily peaked in the forward direction. Since the mass of
the electron is minute compared to that of the nucleus, the energy loss
suffered by the electron is insignificant, and these collisions may be
considered elastic. Variocus methods have been developed for calculat-

6,7

ing multiple — (Coulomb) scattering distributions. Moliére formu-
lated a numerical function in terms of a reduced scattering angle to
describe the result of small angular deflections. Goudsmit and

5,8

Saunderson derived a Legendre series that can be evaluated for a
specific single~scattering cross section to give the distribution

resulting from angular deflections of any magnitude.



Flectronic collisions with atomic electrons resulting in a small
energy transfer and a correlated small angular deflection are also
gquite numercus. The atomic electron involved is either elevated to an
excited state or ionized if the energy transfer is sufficiently great.
Collisions involving a large energy transfer and angular deflection do
occur, but their frequency decreases as a function of increasing energy
loss. The secondary or knock-on electron produced in such a collision
becomes part of the transmitted spectrum. High energy-loss reactions
are therefore particularly important for an accurate determination of
the electron flux resulting at thicknesses approaching the range of the
incident beam. Inelastic scattering from atomic electrons is the pri-
mary mode of energy loss for electrons in the few MeV range.

9,10

Williams and Landa.u.l:L derived a universal curve to describe the
characteristic distribution of energies resulting when a monoenergetic
electron beam passes through a thin foil; i.e., one in which the
average energy loss is small compared to the initial energy of the
electron. Angular effects were not considered. The curve 1s basically
a Gaussian distribution centered near the most probable energy loss
with a long tail at lower energies. Collisions involving a small
energy transfer are responsible for the Gaussian distribution, while
larger energy transfers cause the tail. Blunck and Leiseganglg’15
give a correction for the Landau theory to account for the effect of
more tightly bound atomic electrons, especially the K-shell electrons
15

for high-Z atoms. Vavilovlh’ modified the Landau distribution to

make it more indicative of the incident-particle velocity.



Bremsstrahlung reactions also result in energy degradation,
although they are not of prime interest in the range considered here.
Bremsstrahlung becomes much more significant as the electron energy
and the atomic number of the target increase. However, bremsstrahlung
reactions are crucial in the determination of radiation effects at
target depths beyond the range of the incident electrons. Koch and
Mbtzl6 present a detailed review of the bremsstrahlung interaction.

Various attempts have been made to solve the complete electron-
transport problem by applying numerical techniques that combine the
results of several existing theories. In contrast to any of the
theories previously mentioned, such calculations distinguish between
electron pathlength and sample thickness.

The moments method is a semianalytical numerical solution to the
transport equation in which the energy, angular, and spatial depen-
dence of the flux are described by a series of polynomial expansions.
Spencer and Fano12 adapted the moments method to the electron trans-
port problem. Electron-electron collisions involving small energy
transfers were treated according to a continuous slowing-down model
which assumes that the form of the cross sections for these collisions
is unimportant as long as the correct stopping power (energy loss per
unit path length) is obtained. Specifically, the relativistic
Migéller17 cross section for electronic collisions with free electrons at
rest is assumed to be valid down to a very small fractional energy loss
which is defined so as to give the correct total stopping power.

Spencer and Fano's method assumes an infinite, homogeneous medium and



includes the production of secondary or knock-on electrons. Photon
production via bremsstrahlung reactions is accounted for, but there is
no provision for subseguent transport of the photons.

Theoretically, Monte Carlo calculations can follow each individ-
ual electron through every collision as the electrons are slowed down
and scattered through the target foil. In practice, this is not
feasible due to the staggering number of collisions involved. A single
electron with an initial energy of a few MeV will undergo in the
neighborhood of lO5 collisions in the process of downscattering to the
0.1 MeV range. 1Individual electronic collisions are therefore not
treated in the Monte Carlo calculations. Instead, theories describing
various segments of the transport problem are used to group together
large numbers of collisions. The computation proceeds by considering
successive spatial intervals, with the resulting distributions
determined by a conventional random sampling based on the suitable
multiple-scattering theories-l8 Berger and Seltzer3 have written a
Monte Carlo code ETRAN, in which the angular deflections can be com-
puted by the method of Goudsmit and Saunderson, Moliére, or Fermi's
Gaussian distribution. The spectrum resulting from energy loss is
determined by the modified Landau energy-straggling distribution or
from a continuous slowing-down model. Collisions involving large energy
transfers can be considered separately from the continuous slowing-
down model, and secondary electrons and photons are produced and trans-

18
ported through the target sample. In general, calculations based on



P

ETRAN have shown good agreement with experimental results. Neverthe-
less, the Monte Carlo method is restricted by the statistical varia-
tions inherent in random sampling.

The method of discrete ordinates offers a viable alternative to
Monte Carlo methods in that it can follow each electron on a collision-
by~collision basis, it does not involve random sampling, and it requires
only basic cross-gection data. In the original discrete ordinates

19,20 the angular varia-

method for slab geometry as suggested by Wick,
ble is divided into a discrete number of intervals. The transfer
integral term in the Boltzmann transport equation is then approximated
by a Gaussian quadrature formula, resulting in a set of coupled equa-
tions for the discrete-angle fluxes. The Sn method 1s a special case
of the discrete ordinates method developed by Carlson-21 Here, the
directional flux is assumed to vary linearly between interpolation
points in both the angular and spatial variables. Carlson later sim-
plified and generalized the Sn method into the current discrete ordi-
nates method-22 The flux is now stated in terms of the average values
at the midpoints of the spatial and angular intervals. The discrete
ordinates method was developed for neutron transport and is now prefer-
entialiy used for the solution of one- and two-dimensional neutron- and
gamma-transport problems in the form of codes such as Al\TISNE5 and
DOT-ElL This investigation is the first attempt to adapt.discrete ordi-
nates procedures for the transport of electrons through matter. In
principle, ANISN may be used to transport electrons by the simple expe-

dient of introducing into the code the differential cross sections for



electron-nucleus elastic collisions, electron-nucleus bremsstrahlung-
producing collisions, and electron-electron collisions. 1In practice,
however, these cross sections are quite different from those which
occur in neutron transport, and the method has shown only partial
success in transporting electrons. The discrete ordinates method
allows the production of photons and secondary electrons, and their
subsequent transport through the target. Individual electronic colli-
sions are treated except in the continuous slowing-down version of
electron transport by discrete ordinates where electron-electron colli-
sions that result in a small energy transfer are handled by a continu-
ous slowing-down term.

Experimentally obtained electron-transmission data provide a basis
with which to test theoretical c¢alculations. The energy spectra of
electrons transmitted through slab targets have been measured as a func-
tion of angle. Rester and Rainwater25 considered 1-MeV electrons
normally incident on aluminum slabs. Rester and Dance26 studied the
spectra resulting from 1-MeV electrons on aluminum and gold targets.

7

Lonergan, Jupiter, and Merkle2 investigated the transmission of k-
and 8-MeV incident-electron beams through beryllium, aluminum, and gold

targets.



ITI. DISCRETE ORDINATES TRANSPORT EQUATIONS

The equations used to transport electrons and photons through

matter are developed in this section. The time-independent Boltzmann

transport equation can be written for electrons in a uniform medium as

d.vé(®,E,Q) = P(R,E,Q) + n / fd.Q T (BLEQ Q)R E'.G")

+

f dEvfdQ' S (5,5 F B (e 8 1)

T - —
n Ge(E)#R:E;Q) ’

and for photons in a uniform medium as

It

— — — T — —
vé (R P (},50) - no (E)® (R,E,Q)
Q) VQSy(R;E:Q) YC, P} ) v y s &y

'} _" '_‘ -é’E'ﬁa, (2>
. f fdg et (BEG n)qu( )
EO o
d g - - - , -
+n f dE'fdQ' _Tifﬁd%# (E',E,Q' O)HNR,E",Q")

E
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2 - 2 -
d O'e_.e (E',E,B"Q) d O'i(E')E,a" Q)
a50 =:z: 350 s i=-el, br, inel ,
i
T & (E',E,0%0)
Aw) « fan [ Lol 0
+ dEAQ ’
GE(E') = :E: cz(E') i=-el, br, inel ,
i
2 ' 2y 2 1 2 2 s _
d O-'Y"'Y(E Sy E,Q - Q) d Gi(E :E:Q ‘Q) i = ¢C0, pe, pPp,
dEdQ - - dEAQ
T T .
ag (E') = z Gi(E')) 1l = ¢Co, pe, DD,

Y 1

where

ﬁ = a vector denoting the position of the particle;

2l
1

a unit vector in the direction of the momentum vector;
dQ} = an element of solid angle;
E' = the kinetic energy of the incident particle;
E = the kinetic energy of the emergent particle;
(R, E,0)

¢Y(§, E, ()

the electron flux per unit energy;

the photon flux per unit energy;
EO = the highest kinetic energy considered;

n = the atomic number density:

P(-ﬁ: E;a)

I

the number of electrons per unit energy per steradian per

unit volume per second input at R from an external source;
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P (R,E,ﬁ) = the number of photons per unit energy per steradian
per unit volume per second input at R from an ex-
ternal source (Pv(ﬁ,Ega) = O in the calculations

undertaken here);
2 —
d 0]‘_<E':E;Q"a)
dEAQ

= the differential atomic cross section for a particle

with kinetic energy E' going in direction (' to
undergo process i, after which the particle has a
kinetic energy D and is traveling in direction 5;
for electrons,
i = el (elastic nuclear scattering, for which E' = E),
br (bremsstrahlung scattering from both nuclei and
atomic electrons, thereby producing a photon),
inel (inelastic scattering from atomic electrons,
thereby producing a secondary electron; the
differential cross section here includes the

production of both the primary and secondary

electrons);*

*The inelastic scattering cross section used in this investigation
is the atomic cross section, and is found by multiplying the differen-
tial cross section for an inelastic electron-electron collision by the
number of electrons per atom, Z. An elastic electron-electron colli-
sion involving an incident electron with kinetic energy E' results in a
primary electron with kinetic energy E and an energy loss of E'-E which
is imparted to the struck electron. If E'-E is large enough, ionization
occurs and a secondary electron is produced with kinetic energy E'-E,
neglecting the energy required for the ionization process. If E'-E is
too small for ionization, the struck electron is elevated to an excited
state. However, because of a lack of cross~-section information in the
region where the energy imparted is on the order of the binding energy
or less, it was necessary in this investigation to assume that a secon-
dary electron is produced in each inelastic electron-electron collision,
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so that the multiplieity for such collisions was 2. The differential
cross section dg (E',E,Q'-Q) in the equations in the text is

dEdQ
always assumed to include both the primary and secondary electron; that
is, integration of the differential inelastic cross section over energy
and angle gives the total inelastic cross section times the multiplicity,

inel

El

o —-
T 4. (E',E,Q'Q)
V. o, (E") :f f Oinel i
inel inel J dE dn ESTN

Since the multiplicity is 2 by assumption,

E' o o
T 1 do, (E',E,QQQ)
s (B') = = ag [ aq —oeL
inel 5 dEaQ
O

If the primary electron is defined as the resulting electron with the
highegt kinetic energy, then it has a possible range from E' to E'/E,

and g7, ., (E') may also be obtained from

E' s (E',E,Q' Q)
<:J_f[‘ (E") =/ dEfdQ inel 7
inel dEdQ
E'
P

T
Tt is this form of o inel (E') that will be used in the text.
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for photons,
i = co (Compton scatterings from atomic electrons)
pe (photoelectric absorption, thereby producing an
electron),
pp (pair production, thereby producing an electron
and a positron);
a% (E',E,B'-S>
ey
dEdQ

= the differential atomic cross section for an elec-

tron with kinetic energy E', going in direction ﬁ',
to produce a photon with kinetic energy E, going

in direction 5, by bremsstrahlung scattering;

2 — . -
ds  (E',EQ.Q)
X 350 = the differential atomic cross section for a photon

with kinetic energy E', going in direction 5', to
produce an electron with kinetic energy E, going

in direction a, by photoelectric absorption or pair
production.

Electrons produce photons by bremsstrahlung, and photons produce
electrons by photoelectric absorption and pair production. The photon
and electron transport equations are therefore cross-coupled and must
be solved together. DPositron coupling should also be considered since
photons produce positrons by pair production and positrons produce pho-
tons by bremsstrahlung and annihilation. However, positron transport
is not significant for the calculations undertaken here, and so the
positron transport equation is not included.

The photon-electron source term in the electron transport equation

is small for the transport of incident electrons in the few-MeV range,



1k

and will be neglected here. The electron transport equation is then
no longer coupled to the photon transport equation in the photon-
electron direction since electrons produced by photons are not included.

The electron transport equation to be solved is

E
0 2
Q-v(R,EQD) = P(R,E,Q) +n f dE'f a0 ¢ %e (E',EQ-0)PR E',D')
aEdn
E
(3)

- n oL (B)¢(R B,

which is obtained from Eq- (1) by dropping the photon-electron source

term,

© dec e - - - —
n f dE'fdQ' “EE%’ (E',E,Q'-Q)%(R,E‘,Q') :

Electrons still serve as a source for photons, and an electron-photon
transport case will be reported in Section VII. The one-way coupling
scheme (electron to photon) is similar to the neutron-photon problem
that for some time has been solved by the use of various discrete
ordinates codes.

The resulting Eq. (3) for electron transport is solved by the method
of discrete ordinates. This method was developed to solve the neutron
transport equation analogous to Eq. (3), and electron transport repre-

gsents a new adaptation. The code used for this adaptation, ANISNEB,
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has been notably successful in solving the neutron and photon transport
problems. Nevertheless, the cross sections involved for electron trans-
port are so different in form from neutron cross sections that it was

not at all clear whether they would be handled correctly. Theoreti-
cally, neutrons, photons, or electrons can be transported from an initial
angle and energy distribution to a final angular and energy spectrum
without a knowledge of the type particle and knowing only the proba-
bility of a reaction occurring.

ANISN is able to treat any one-dimensional geometry, but only slab
geometry cases are considered here. The exact procedure for obtaining
the discrete ordinates form for Eq. (5) is described elsewhere,24 28 but
a brief indication of some of the concepts involved will be presented
here for the one-dimensional slab gecmetry case.

The energy dependence of the flux and the cross sections is
expressed in multigroup form. Consider the energy group, G, which
extends from Eg+l to Eg’ where Eg = E + AE.,. The electron flux for

g+l G

group G is

¢G(-§,a) = fg dE P (E,R,0) -

The multigroup form of the cross section for an electron with energy
E' to produce an electron with energy E is found by integrating the

differential cross section over the energy bounds of the initial group
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to B, (

o'+l . Eg'+l + ), and averaging over the initial

G' from E AE

Gl

group and integrating over the energy bounds of the final group, G-

Then

E , E d2

g g o] (E',E,a'-?z)
f dE' f dE i
3' 3) dEdQ
T %) )

AE

Gl

The angular dependence of the cross sections is expressged in an

(zmax + 1)-term Legendre series expansion in ., Where  is the cosine

of the scattering angle. If the Legendre expansion is defined as

2
-, 2 ma.x
L Gog g @-0) S 220 )
an - I = G',G Hols

where Ll(uo) is the Legendre function. then the series coefficients are

given as

The angular variable is then expressed as a function of a fixed-coordi-
nate system in which the angular variable is divided into NOA (number
of angles) discrete angular intervals. This is done by use of the

addition theorem for Legendre polynomials. The integral over angle in
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the Boltzmann equation is replaced by a Gaussian gquadrature formula
NOA
S
Jos@h - Y 8, @
D=1

where

¢G,D(ﬁ) = ¢G(?)D,§) ’

NOA is the total number of points (angles) considered, and 5D

and w.. are the ordinates and weights for the Gaussian quadrature.

D
The weights, wD’ are normalized to give a sum of one instead of by, so

that for one interval, D,

with

.If aq = bm W

AQD

The integral over angle in Eg. (3) may then be represented by a summation
over the incident angle, D', from D' = 1 to D' = NOA (number of angles).

If p = a . E, where X is the unit vector normal to the slab, then

f u¢G(§,u)du = pp ¢G,D(§)wD°
A“D
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The spatial region of interest is divided into specific intervals

represented by the subscript I,

where
T = 1 to number of intervals, and
r, = the linear distance to the beginning of interval T,
ri+l = the linear distance to the end of interval I.

The mean value theorem is then applied to each term in the trans-
port equation giving average flux values for each energy group, spatial
interval, and angular interval considered- The resulting discrete

ordinates form for Eq. G) in the one-dimensional multigroup slab geometry

form is then

by (g i41,0 ~Pe,1,0) = (Fier ~ T3) Bao1p

d nax G NOA
{ yi 1
t ey mr) D A Mo > Mg Bge o g ()
£=0 G'=1 D'=1

where
¢G,I,D = the electron flux integrated over energy group G,
averaged over spatial interval I and evaluated at By
in angular interval D,
¢’G,i+l,D = the average electron flux in energy group G and angu-

lar interval D at spatial point ri+l’
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cg = the total reaction cross section for an electron in group
G,
{ /

P

|

G, I,D " the external source in a spatial interval I for electrons
in energy group G, angular interval D.

The initial Boltzmann equation, Eq. (3), is now represented by a series

of equations similar to Eg. (4), with each equation representing the

electron balance in a so-called "phase space cell”, for which ¢b,I,D

(energy group G, spatial interval I, angular interval D) is defined.

The third term in Eq. (4),

¢ NOA
max G 2 7
- W
CITE IO DR T IR TN DI NYSRCION
l=o G'=l D':l

then represents the number of electrons in energy group G and angular
interval D produced in spatial interval I by electrons in all angular
intervals (D'=1 to NOA), in all energy groups G' which represent
energies greater than or equal to the energies in group G.

In order to solve Eq. (4), it is necessary to evaluate ¢,G,I,D’
¢b,i+l,D’ and ¢b,i,D‘ First, it is assumed that the incoming fluxes,
¢b,i,D’ are known from boundary conditions or from the calculation for
the previous interval. Additional difference equations are then
assumed in the form

P, 1,p=2®

+ (l-a . H 0
G,i+1,D ( )¢b:1:D’ z

R

bo,1,px (1-8)8 s ptePg i p H<O
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where a is determined by a weighted difference model-29 The discrete
ordinates form for the photon transport equation is similar to Eq. (%)
with the appropriate photon cross sections used.

As shown in Eq. (4), the discrete ordinates form of the transport
equation categorizes the electrons at a particular spatial point in
terms of energy groups and angular intervals. The cross sections which
transfer electrons from one energy group to another are determined by
integrating the differential cross section over the wvarious energy
groups, and the angular changes are described by expanding the cross
sections in a Legendre series in the cosine of the scattering angle.

If the energy and the angular changes are small enough for a particular
collision, the incident electron would be in the same energy group and
angular interval after the collision as before it. Thus, within the
limits of the accuracy of ANISN's calculations, no change has occurred
in the energy and angular spectra. Such collisions are very numerous
for electrons. An approximation known as the delta-function correction
is therefore made in an effort to remove those collisions from the cross
sections. The explanation given here is similar to that presented by
Mynatt.26

Let the within-group Legendre geries expansion coefficients be

expressed as

Myg = (24+1) £, (5)

so that the within-group scattering angular distribution, which was

given earlier by an (Zmaxfl)-term Legendre series as
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max
1 b4 2
noge o) B D0 Mol
=0
may now be represented as
1
max
1 )
~ +1): . 6
O E ~aD DI T DEEA O (6)
=0

Because the cross sections are heavily forward peaked, they can be

approximated by an lmax—term Legendre series plus a delta function in

the forward direction:

max

1 . 4 1 .
nog o) T D, (eml) £y tPG) e s 1), (1)
1=0
where it is assumed that
{
max
5( -1)~5 (21+1)LZ( )
o -2 Mo
4=0

The (zmax+l)—term of the within-group expansion coefficients is there-
fore assumed to be a delta-function coefficient. Since the accuracy of
the initial Legendre series representation increases with the number of
terms used in the expansion (lmax+l), the delta-function coefficient
assumption should also be a better approximation as Imax increases. To

determine f, and C, equate Eqs. (6) and (7), multiply through by a

Legendre polynomial LN(MO), where N varies from O to zmax’ and then

integrates over He °
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Since
zmax +1
> (2241) £ 1H LN (u Dau
£ Wo o ©
1=0 -1
= EfN, for N < lmax’
=0 for N > lmax’
and

+1
[ estwa, - o

-1

then it is found that

2f!' = 2f - C for £ < Zm

Y4 4 ax

and

C=2f
tmax

Multiplying Eq- (9) by (24+1), and combining the result with Eq. (5)

gives the equation for the corrected coefficients:

)
b b [ 244 max
MG,G‘MG,G 27 +1 MG,G ’
max

(10)



23

The modified lmax - term Legendre series coefficients are used in the

scattering integral and the delta function is accounted for by sub-

tracting fl from the total cross section, where
max
C
f = =
lmax 2
M ﬂmax
_ GG
2
lnaxt

The corrected cross-section coefficients are commonly referred to as

PZ -corrected-Pl -1 The cross sections used in this investiga-
max max

tion were P7—corrected-P6- (PZ here refers to the Legendre coeffi-
clents and is the standard representation. Ll has been used as a

matter of convenience). The magnitude of the delta-function correc-
tion is quite large for electrons, so that it greatly facilitates the
ANISN calculation, especially since the within-group cross section
determines the number of iterations required for convergence.

If the required cross sections were known, the solution could now
be obtained. With the proper input data, ANISN could be used for obtain-
ing the transmitted electron spectra. However, all the necessary cross
sections are not available. The inelastic electron-electron atomic
cross sections that are available were derived assuming a collision in
which the energy lost by the primary electron is significantly larger
than the binding energy of the target electron. Inelastic electron-
electron collisions involving a large energy transfer will be referred

to as hard collisions. No adequate cross sections are known for colli-

sions involving energy transfers of the order of the binding energy or
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smaller. WNevertheless, these cross sections were estimated by Spencer
and Fano,12 and calculations based on a similar estimate have been done
as a part of this investigation. Inelastic electron-electron colli-
sions involving a small energy transfer per collision are very frequent
for electrons and account for a large part of the total energy degrada-
tion. They will be termed "soft collisions.”

Inelastic collisions occur so frequently that, as an approxima-
tion, electrons can be considered to undergo a continuous slowing down,
with a fixed energy loss per unit path length travelled. This quantity
is referred to as the stopping power and is well known both experimen-
tally and theoretically-BO Unfortunately, the needed cross sections
cannot be derived from the stopping power alone, since the stopping
power represents an integral over the cross section. However, the
stopping power is adequate for many applications, and one can account
for the energy loss due to soft collisions by utilizing the appropriate
stopping power in a continuous slowing-down term. This procedure uses
the best information available and has the advantage of avoiding the
cross section for low-energy transfer collisions. The continuous
slowing-down equation was obtained by the method used by Rossi-31 A
complete derivation can be found in Appendix A, but an outline of the

procedure is given here.

Beginning with the electron transport equation, express Eq. (3) as
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T — - T — -
- n o] (B)AR,E,0) - n o (B)HE,E,Q) -

a%o*
e—e

dEdO (E')E?a" 5)¢(§)E' )a’)
(B',E,Q" Q)R E',0")
(11)

n U;e(E)#R: E)a)

BT
1nel =, = -
T f fdQ' dEdQ (E')E:Q"Q)¢(§:E')Q) )
where
* —
Oese = %1t Tpyr’
E-TI' 2
it 405 ne1 2, =
oy (E) = f dE'f O —pren— (BELQA)
£
2
9inel 2y =
aq W (E)E sQ ’Q) })
E-I'
I' = an arbitrary value taken to be the minimum energy loss allowed

in a large energy transfer or hard collision (a collision

involving an energy transfer smaller than I' is a soft colli-

sion)
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The inelastic scattering terms are now separated into terms
describing soft and hard collisions.

Let

E+T' 2
d Iinel =2y 2\ L =
T =n f 4aE' fdQ' —aﬁa—ﬁ— (E',E,Q"Q)¢(R,E';Q')
E

where T now describes the scattering due to soft collisions. Now

add and subtract

E+T do
n/ aE' égel (', E)P(R'E',Q)
E
where
42
inel ' _ 9inel ' =, =
5 (E'E) —fdo g (BHEQQ)
d%jlnel -
_ 1 i ', .
—fdo T30 (E',E,Q"- Q)
Assume
inel = _ inel ’ 5(1-0'-0)
dEdN - dE 2m

That is, the soft collisions involve only an energy degradation and

an angular change. Then

(12)

not
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E+T'
do, l( 'y )
T=n f dg' —==5 AR, E',Q)
dE
E
(12)
B
0 aF dc1nel(E E') ¢(§ E 5)
dE >
E-T'
(E',E)
lneéE #(R,E',Q) is now expanded in a Taylor series, and after

defining the soft stopping power S(E) to be

do 1nel(E E') .
S(E) = n ./” G (') —2eL , (14)
E-T'
it is found that
7 - ASE®HEEQ)] | (15)
dE

Substituting Eq. (15) into Eq. (11) gives the electron transport

equation as solved by ANISN with continuous slowing down (AWCS):

Q.9¢(R,2,0) = P(R,E,0) + n f fdo' % * J(EE )R, E, Q")

Eed

(B',E,3" Q) .
+ 0 f /dQ' 1nelEdQ ‘P(ﬁ;E"Q') (16)

BTt

- not  (D)PRED) - 0oy (BIHEED) + I [8(R)(E,5,8)] -
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The difference between Egs. (3) and (16) is that the inelastic
e—e collisions resulting in an energy loss less than I' (the soft
collisions) are now handled by a continuous slowing-down term. The
soft collisions are treated as part of the inelastic and total removal
cross sections in Eq. (3), although the cross sections for the soft
collisions are not well known. In Eq. (16), the energy loss due to
these soft collisions is treated by a continuous slowing-down term-.
The stopping power used in the continuous slowing-down term is not
the well-known energy loss per unit distance due to excitation and
ionization but a portion of it, and will be described in detail in the
next section. No knock-on electrons are produced from soft collisions
treated by Eq. (16), and the incident electron involved suffers an energy
degredation, but no angular deflection. To obtain the discrete ordinates
form for T [Eq. (15)], integrate over the energy bounds of group G.

Then

E
o4 - -
f (a[S(Eg‘é’(R’E’Q”)dE = S(BIMNEELE) - 8(B,, )8R, 5,,,8),  (17)

Eg+l

which is then incorporated into Eq. (16) to give
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% a
max I
@ 1410 = Pe.1.D) - _ ] .
0'%6,1+1,0 © ¥6,1,0) = (ri,y - 7)) g p+ (7 - 7y) Ay 2
1=0 G'=1
NOA
2 /4 T
% V] - - *
* Mo e Z AD'qSG',I,D' o7 (i - rdnoE 1P 1 p (18)
D'=1
- -8
trg - T 085 1P 1 n 7 e, 1 Pent, 1)
In Eq. (18),
¢% I.D°~ the average electron flux in spatial interval I, evaluated
2 2

at W in angular interval D with energy Eg’
S 1T the stopping power (energy loss/cm) due to soft
collisions for electrons in interval I with energy Eg,

E)=0§e@)+0$@%

~ o,y (8) + o (B) + oy(E),

+1
1 24+1 2z 3y 12
Mé,,G—,- Yy [ 5 ] n f 03‘—»(},_1(9' @) L7(n, ) aug

-1

= fth Legendre expansion term for the e-e scattering due to
elastic, bremsstrahlung and hard inelastic collisions.

and ¢ are interrelated by a weighted

¢g,I,D’ Pet+l, T, D’ ,I,D

difference mode129 gimilar to that used for spatial intervals.
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IV. TRANSPORT CROSS~SECTION DATA

Described in this section are the cross sections and other param-
eters used in the electron and photon transport calculations presented
in Sections V, VI, and VII.

Electrons with kinetic energies below 10 MeV undergo three signif-
icant reactions:5 inelastic scattering from atomic electrons, elastic
or Coulomb scattering from atomic nuclei, and bremsstrahlung (radiative)

interactions with both atomic electrons and nuclei.

A. Inelastic Electronic Scattering from Atomic Electrons

2,17

Mdller derived a relativistic cross section for an inelastic

electronic collision with a free electron at rest, which may be stated

as
do, (E',E) 2nr2¢z
M\“ R 0 1, 1
I B% | (®/E)°  (1-E/E)P
(19)
2

DK-1 1 L k1

2 * TE/EDQ-E/E) © K ’
where

. —-v'-) 1
doy, (E',E, " .00) ) doy, (E',E) . Blcose-f(E',E)]

dEaQ - 4aE 2m

since in a two-body collision the scatter-
ing angle is a function of the initial and

final energy of the particle considered;
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E' = the initial kinetic energy of the incident
electron;
E = the final kinetic energy of the primary
electron;

E'-E = the kinetic energy lost by the primary
electron in the collision, which is also
the kinetic energy of the secondary
electron produced by the collision;

Z = the atomic number of the target atom;*
K= (E'+m)/m;
m = the electron rest mass;
r = the classical electron radius;
v = /8%
B = the ratio of the velocity of the incident
electron to the velocity of light;
£(E',E) = cosg, B = E'/2;

= cosf,, E < E'/2.

The resultant electron with the highest kinetic energy is defined as
the primary electron. The maximum energy transfer per collision 1is
therefore E‘/2. The angle of scattering el of the electron emerging

5

with the lower energy (secondary or knock-on electron) is given by

*The cross section given here is not the normal Mﬁller formula
but Z x Mgller cross section for an electron-electron collision, since
the atomic form is used in this investigation.
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L

1 t 2
= (20

and eh for the primary electron by

ol

E(E'+2m
B = [‘é‘f@l] , (21)

where coseh 2 cosez 2 0.

If the energy transferred by the incident electron to the atomic
electron is large enough so that the binding energy is insignificant
(hard collision), the atomic electron can be assumed to be free, and
the Méller cross section is applicable. When the energy transfer is of
the order of the binding energy, the collision does not fit the M&ller
cross-section criteria. One approach used in this investigation to
treat such collisions was based on the work of Spencer and Fano.12
This method assumes that for inelastic electron-electron collisions
involving a small energy transfer, only the rate of energy dissipation
is important. The procedure used to determine the energy loss per unit
pathlength is similar to that formulated by Rohrlich and Carlson.9
From Eq. (14), the stopping power for the low-energy transfer (soft)

collisions is

El
S(E') =n / dE (E'-E)
E'-T'

\
doinel(E E)

dE
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The Bethe9’52 theory of stopping power, in which an explicit summation
is conducted over the excitation probabilities of the atom, predicts

that for low-energy transfer collisions

I2

S(E') = ne(2nr§\];) ; in [Q—Eﬂ@] - 62-6* 2 s (22)

where
n = the electronic number density of the target material;
&% = the Sternheimer55 correction for the density effect, the
mean-energy-loss reduction due to polarization of the medium;
I = the average ionization energy for the target material;
I' = the minimum energy transfer for a hard (high-energy

transfer) collision.

Analagous to Eq. (14), the stopping power for hard collisions may be

expressed as

E'-I'
do, (E',E)
Shard(E'):n f dE(E'-E) MdE . (23)
E'/2

Direct integration yields

Shard(E') = ne(2nr§¢) g fn (5%;) + 4o [EREE%TS] te- §T¥%T

(762 (2) [ -

(2h)
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From Eqs. (22) and (24), the total energy loss per unit pathlength due

to inelastic electronic collisions with atomic electrons is

Sy oray (E') = 1, (2m2y) J i [iﬁK—ﬂ)—} 2. &

oT2(E'-T") B'-1!
(25)

2 2
K=1 1 I’ 2K-1 E? 2 %
() G- 22) (3) o [z |-

Eq. (25) differs from the result of the Rohrlich and Carlson derivation

by the presence of smaller terms (no assumption was made as to the
relative sizes of E' and I') and the inclusion of the Sternheimer35
correction. Spencer and Fano defined a minimum energy loss per
collision so that the correct stopping power, here given by Eq. (25),
is obtained by the use of the M¢11er cross section. The definition may

be expressed as

E'-1!

do '
n ./. dE(E'-E) u'= ")

dE ’

il

Stotar (E)
Y
2
(26)

]
Sha,rd(E )

Since I' here is the minimum energy loss allowed in any collision,
there is no separate soft energy loss term. I' is now a function of E'.
Setting 8, . [Eq. (25)] equal to S ara (Eq. (24)] and solving for I

gives
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1° exp (p2+5)

! -
T 2(X+1)E'

(27)

as the minimum energy loss per inelastic collision with an atomic
electron for an incident electron with kinetic energy E'. The I
values obtained from Eq. (27) are approximately four orders of magni-
tude smaller than I and therefore far below the energy loss range for
which the Mgller cross sections were derived. However, in the absence
of an adequate differential cross section for soft collisions, the use
of the M¢ller cross section down to I' in Eq. (3) does guarantee the
correct stopping power. This should be sufficient if the form of the
cross section is unimportant for soft collisions and only the energy
loss matters, as Spencer and Fano assumed. This type of calculation
will be referred to as ANISN with the Mﬁller cross section used to
treat low-energy transfer collisions (AWMC). A typical first within-
group cross-section expansion coefficient, (PO term of ZGHG)’ is of the
order of lO6 before correction, but of the order of lO2 after the
delta-function correction.

As an alternate treatment, these lower energy transfer (soft)

collisions were approximated by a continuous slowing-down term,

—

3s (E)o(R,E, Q)
oF ’

in Eq. (16). The stopping power for soft collisions, S(E), is defined

by Eq. (22) as
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I2

S(E) = ne(21'tr§¢) ; in [2&'_@11_2]_52_6* ‘

The only undetermined paraﬁeter in the S(E) definition is I', the
minimum energy transfer for a hard collision. It is not at all clear
what value should be used. I' must be high enough for the Mdller

cross sections to be valid. On the other hand, too high a value would
have undesirable effects on the angular distribution and electron
population since the continuous slowing-down approximation assumes
collisions are straightahead and does not account for secondary
electrons. In general, it seems reasonable to assume that I' should
be greater than I, the average ionization energy. The use of the
continuous slowing-down approximation to handle low-energy transfer
collisions does have some advantages as a method for calculating
electron transport. The correct total stopping power is assured when
the hard energy loss obtained in Eq. (23) is combined with the soft
energy loss from Eq. (22). Also, the continuous slowing-down approxima-
tion alleviates the need for a soft-collision cross section by assuming
a uniform, continuous energy loss involving no change of direction.
This type of calculation will be referred to as ANISN with continuous
slowing-down used to treat low-energy transfer collisions (AWCS).

A typical first within-group cross-section expansion coefficient is of
the order of lOLL before correction, but of the order of 102 after the

delta-function correction.
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B. Elastic Coulomb Scattering from Atomic Nuclei

The differential cross section used here for elastic scattering

5,34

from a nucleus is based on the Mott series (evaluated as the ratio

of Mott~to-Rutherford cross sections
35

Sty

, with the Moliére7 screening

angle and Spencer's
5,8

treatment for low-angle scattering. Goudsmit

and Saunderson's expression for the screened Rutherford cross

7

. . o\ . .
section with Moli€re's' screening angle is

o o L
' .
dogEd,g Q) _ 2ne2FéZ) N sing df — | * &, (28)
pVv (1-cos® + = Gs)
where
B = MoliEre's7 screening angle that attempts to account for

the screening of the nuclear potential by atomic electrons;
F(Z) = 2° for nuclear scattering;
e = the electron charge;
p = the relativistic momentum of the incident electron;
v = the relativistic velocity of the incident electron;
R = the ratio of Mott—to-Rutherford* scattering cross sections.

36

Spencer”  rearranged the cross section in Eq. (28) to get a better

expression for small scattering angles and obtained

*Since the Mott series is infinite, the Mott-to-Rutherford ratio
can be represented only by an infinite series. The series representa-
tion was not given here because it is too complicated, bug a full
discussion can be found in Doggett and Spencer's article. >
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dcgg,ﬁ.ag _ I:EnehF(Z) « sing 46 ]

PV (1-cos® + 5 SS)
1
m o, Z 1 42y2 -1- L
x { [1+ = (157)6 cosy] (1-cose + > es) + [R-1 75 (29)

2
l-cosg + L 65]
J

x (%7)6 cos §(1-cos8)?] [ 1-cose2

where
1.z .z
r (e 1 1373) r (1 ti 1575)

cosy = R .
) r(% v 1%76) r <1 -1 1%76)

C. Bremsstrahlung (Radiative) Interactions with Nuclei and Atomic

Electrons

The differential cross section used to describe bremsstrahlung
37

interactions is given by McCormick, Keiffer, and Parzen, who

recalculated the work of Racah,58 as

—_ — 2 2

H L

do(E',E,Q'.Q) _l 27 (e 2' 1,0 x P (30)
dEdQ 2n 137 p' k



39

where
p = the relativistic final momentum of the electron;
p' = the incident momentum of the electron;
k = the energy of the emitted photon;
C = a dimensionless parameter, defined in Ref. 35, which is a
function of the initial and final electron energies;
F = a high-frequency limit correction factor, defined as

X

= ) P¥03
l-e X
=X, p = 0;
where X = %%%% .

The high-frequency end-point correction is necessary so that, after
integration over angle, the cross section will not approach O as the
kinetic energy of the electron after the collision approaches O. Koch
and Motz16 present Fano's formula for the high-frequency limit cross
section. The derivation of the correction factor used here is presented
in Appendix B. It should be noted that this correction is only very
approximate since it is designed to give the correct limit after
integration over angle. There is no indication of the effect of the
correction at a specific angle. Eq. (30) exhibits the well-known X

K

divergence when E'=E(K=0), so the energy integral over the differential
bremsstrahlung cross section was cut off at E':E-lo-u. Therefore,
collisions that involve an electron energy loss of <10-u MeV and

photon production with a maximum energy <3_O-le MeV are not considered.
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D. Photon Interactions

The photon cross sections used in the solution of the electron-

photon case presented in Section VII were taken from a photon cross-

39

section library tape prepared by MUG. The Klein-Nishina approxima-
tionLLO for unpolarized photon scattering from free electrons at rest
was used to account for Compton scattering. The photoelectric and
pair-production cross sections were obtained from data evaluated by

McMaster et al.ul and by Plechaty and Terrall.hg
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V. COMPARISON WITH THEORETICAL MODELS

A. Elastic Multiple-Scattering Angular Distribution

Goudsmit and Saunderson8 obtained an analytic expression for the
angular distribution of transmitted electrons when monoenergetic
electrons are normally incident on a sufficiently thin slab so that
the energy degradation of the electrons may be neglected. Bergerl
used the Goudsmit-Saunderson theory to obtain the angular distribution
of the transmitted electrons resulting from 1-MeV electrons normally
incident on an aluminum slab of thickness 0.0287 g/cmg. The Mott53
elastic scattering cross section, modified to account for the screening
of the nuclear charge by the orbital electrons, was used in the expan-
sion. The transmitted angular current of electrons calculated by
Berger is represented by the histogram shown in Fig. 1. The ANISN
results for this case are given as the plotted points. In the ANISN
calculation, one energy group with a range from 1.0106 MeV to 0.9894
MeV and a midpoint of 1.0 MeV was used. No energy degradation was
allowed and only elastic scattering was permitted; i.e., in this

= 0. = 0.

calculation Eq. (3) was solved with o, -

inel
The two calculations shown in Fig. 1 are in excellent agreement,
and thus the method of discrete ordinates can handle small-angle

multiple Coulomb scattering successfully.

B. Inelastic-Scattering Energy Distribution

An analytic solution to the electron transport problem is
N
reported by Passow 5 and by Alsmilleruu for a particular form of the

scattering cross section in which the straightahead approximation is
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Fig. 1. Angular distribution of transmitted electron current
for 1-MeV electrons normally incident on a O.0287-g/cm2-thick
aluminum slab.
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assumed so that there are no angular effects. The source for mono-

energetic incident electrons of kinetic energy EO is expressed as

¢(E,0) = N, 6(EO-E) s

where
NO = the source strength, taken as 1.0 in the calculations
reported here.

The flux at distance r is
$(B,r) = N_ 5(E -E)e”¥+¢ (8,r) , (31)

where
Q = the total cross section, which has a constant value for
all energies;
¢S(E,r) = the secondary electron flux.

The solution for the secondary electron flux is

v} Iod

8, (E,r) = Q" ¥F_ (8", E)N g(B) [g(E—Z—E;] X I, [a/rBZEO,E5] ,» (32)

where

the number per unit energy of electrons with energy E

1
F,(E',E)

produced in a nonelastic collision of an electron

with energy E',

(2-m) <§L)m ]

E! E ?
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m = an input parameter;

g(E ) = EO(m b
Eo
B(E_,E) = Q / -(2:—'“1 dE ;
i E
Il = the modified Bessel function of the first kind.u5

The differential inelastic cross section used in the analytic calcula-

tion is
do, (E',E)
AN T . 5(1l~cos®)
dEdQ - OZFee(E }E) 21_[ 2 (55)
where

o = % , the total microscopic cross section.

A set of comparisons was made with this analytic solution in order
to verify ANISN's ability to calculate the energy distribution result-
ing from inelastic collisions. Since the inelastic cross section is
proportional to (E'/E)m, a small, positive m allows downscatter over a
considerable range of E values, while a large, negative m severely
restricts the E values from a given E'. It was therefore possible to
simulate inelastic collisions resulting in a large energy transfer and
those resulting in a small energy transfer. With a known solution and
knowh cross sections, any discrepancy between the analytic results and

ANISN's calculations must be due to ANISN's method of solution.
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Equation (3) was solved with Opr = %1 = 0, and s nel was replaced

with g, from Eq. (33), except that

ay(EsE')

"AN°TAN(E) = de'f dQ dE a0

where OTAN = 0, a constant, and the multiplicity
E
vay = de'F(E',E),
0

because the analytic cross section is not symmetric about g .

It should be noted, however, that the cross section form given in
Eq. (33) is only a very rough approximation to the Mdller cross section
given in Eq. (19). It is difficult, therefore, to predict ANISN's
ability to handle the Mdller cross section on the basis éf the
analytic results presented here. Figure 2 shows the differential
cross section at E' =1 MeV, O < E < 1 MeV, for the analytic cases
considered and for the Mdller formula. Since the Mdller cross section
diverges as E - E' and is symmetric about E = E'/2, the primary
electron from a M¢ller collision is considered to have a kinetic
energy E, where E'/2 < E < E'-I', and the secondary electron has a
kinetic energy of E'-E. The total microscopic Mdller cross section
for a 1-MeV incident electron in aluminum is 2.18 x 102 barns for

-2

I' =100 T (1.63 x 10 -h

MeV), 2.29 x :LoLL barns for I' = I (1.63 x 10

8
MeV), and 3.53 x 10  barns when I' is determined by the Spencer-Fano

-8

procedure (1.07 x 10 ~ MeV).
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Two separate analytic cases were run, both for 1-MeV electrons
normally incident on aluminum slabs, so that EO = 1.0 MeV and Q =
0.0602252 x g. The first case set m = 1/2 and o = 105. Figure 2
shows that the analytic differential cross section for this case very

b

slowly increases from a value of 1.5 X 10 barns/MeV at E =1 MeV to

5

b7 x 10 barns/MeV at E = 0.1 MeV. By comparison, the Mdller Ccross

section is much larger near E = 1 MeV but much lower from E = 0.9 MeV

5

to E = 0.5 MeV. With a total microscopic cross section of 10” barns,
this analytic case has more large energy~transfer collisions, over a
wide range of possible transfers, than does the Mdller cross section.
The ANISN calculation used 40 energy groups from 1.0 MeV to 0.1 MeV.
In Fig. 3, results are plotted for aluminum slabs 0.11 g/cm2 thick
and 0.33 g/cm2 thick. Both plots show extremely close agreément
between the analytic solution and ANISN's calculated values. This
indicates that the method of discrete ordinates can successfully be
used to calculate the results of 1nelastic scattering over a wide
energy range for the specific cross-section form given here. The small
high-energy peaks appearing in Fig. 3 represent the uncollided current,
expressed as N_ 5(E-E) &Y for the analytic case in Eq. (31), and the
electron current remaining in the source group for ANISN.

The second analytic case set o=lOLL and m = - 100. As can be seen
from Fig. 2, this results in a large differential cross section for

small energy-transfer collisions, with relatively few collisions below

E = 0.9 MeV. However, this analytic differential cross section has a
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finite value of 1.02 x 10° barns/MeV at E = 1 MeV, while the Mgller
differential cross section diverges as E — 1 MeV. The Mgller cross
section then results in a great number of very small energy-transfer
collisions that are not present in this analytic case. The total
microscopic cross section, th barns, roughly corresponds to that
obtained from the Mdller cross section with I' = I = 1.63 x lO-u MeV
(2.12 x lO“ barns), but it is much smaller than in the case where
I'=1.07 x 10-8 MeV (3.53 x 108 barns). The target was a 0.66 -
g/cm2 - thick aluminum slab, and results were obtained for several
depths within the slab. 1In Fig. 4 the analytic transmitted energy
spectra are plotted along with ANISN's solution for 0.11 g/cme,

0.33 g/cmg, and 0.66 g/cm2 thicknesses. In the ANISN calculation 80
energy groups from 1.0 MeV to 0.1 MeV are used. Agreement between
the analytic solution and ANISN's calculation is reasonable for all
three thicknesses, indicating that the transmitted energy spectrum
obtained from this particular cross section can be correctly calculated
using the method of discrete ordinates. It should be noted that a
large number of smaller-energy-transfer collisions results in a

transmitted spectrum in the form of a thin spike, somewhat like a

delta function distribution.
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VI. COMPARISON WITH EXPERIMENTAL RESULTS

In this section the transmitted current of electrons calculated
by the method of discrete ordinates is presented, along with the
experimentally measured spectra for cases involving monoenergetic
electrons normally incident on target slabs of varying thicknesses.
Calculational results from the Monte Carlo code ETRAN5 where available

in suitable form are also included for additional comparison.

A. Experiments of Rester

The experimental data presented here are taken from the work of

b

Resteru6 and Rester and Derrickson. The Monte Carlo spectra were
calculated using ETRAN-15. Results are given for normal incidence of
1-MeV electrons on Al and Au targets and for 2.5-MeV electrons on Al

targets.

1. 1-MeV Electrons Incident on Aluminum

The points plotted in Fig. 5 show the measured transmitted electron
current per unit energy for 1-MeV electrons normally incident on
aluminum slabs of thicknesses of 0.10 g/cmz, 0.22 g/cmg, and 0.32
g/cmg, respectively, roughly corresponding to 0.2, 0.4, and 0.6,
respectively, of the range of the incident electron. The solid
curves in the figure represent the results from the discrete ordinates
calculations using a continuous slowing-down term with I' = 10I to
treat soft inelastic collisions, designated by AWCS (ANISN with
continuous slowing down), and the dashed curves represent the results

from the discrete ordinates calculations using the Mgller cross section



electrons /MeV (incident electron)

1

5 1.0
/,.: . AWCS 0.9 .
PO | T AWMC L
" 4 08 ﬁ
#=0.10 g /cm? . t=0.22g/cm? ..P Li

... ' k O..3 Vs
\ f

g Y

o
e 0.4
...... o % e
x U o) )
0.7 0.8 0.9 0.2 0.4 0.6 0.8 0.4 0.3 0.5
£ (MeV) £ (MeV) £ (MeV)

Fig. 5. Transmitted electron current per unit energy per incident
electron for 1-MeV electrons normally incident on O.lO-g/cm -, 0.22-
g/cm2-, and O.BZ-g/cmg-thick aluminum slabs.

2s



53

to deal with soft inelastic collisions, designated by AWMC (ANISN with
M¢ller cross section). The solid histograms represent the Monte Carlo
calculations. For the O.lO-g/cm2 case, the experimental results are
lower than the calculated results at the peak of the distribution, but
they are greater elsewhere, especially at the higher energies. In the
O.22-g/crn2 and O.52—g/cm2 cases, however, agreement between experi-
mental results and theoretical calculations are better along the high-
energy edge of the distribution than at the peak or lower energy edge.
In general , the results of the discrete ordinates calculations are in
reasonably good agreement with those of the experimental measurements.
It should be noted, however, that the results of the discrete ordinates
and Monte Carlo calculations appear to be in better agreement with each
other than with the experimental measurements. The AWCS results are
somewhat higher than the AWMC results and for the O.lO-g/cm2 and
O.BE-g/cm2 cases, are in particularly good agreement with the Monte
Carlo calculations.

Since the discrete ordinates approximation approaches the
Boltzmann transport equation as the number of energy groups and spatial
intervals are increased, the accuracy of the calculation is dependent
on these parameters. In general, for the discrete ordinates calcula-
tions undertaken in this investigation, an increase in the number of
energy groups used to describe a case causes the resulting spectrum to
become more sharply peaked and to shift the peak of the spectrum to a
slightly higher energy. Increasing the number of spatial intervals
tends todecrease the magnitude of the transmitted spectrum. Both of

these effects continue up to a point, beyond which no change is noted
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in the transmitted spectrum as a result of an increase in the number

of spatial intervals or energy groups. Unless otherwise stated, the
results presented in this investigation are considered to be converged.
The number of energy groups and spatial intervals utilized in a partic-
ular calculation is limited by the core storage capacity of the computer
and by the time required for the computation. Various calculations were
made for the case of 1-MeV electrons normally incident on a O-22-g/cm2
thick aluminum slab in order to make a direct comparison between the

two discrete ordinates calculational methods and to show the effects of
some factors. Two AWCS calculations were made, one with I' = 10I using
160 energy groups and 100 spatial intervals and another with I' = 100I
using 166 energy groups and 155 spatial intervals. In addition, two
AWMC calculations were made, one using 175 energy groups and 101 spatial
intervals and another using 218 energy groups and 145 spatial intervals.
The results of all four calculations are shown in Fig. 6 in the form of
the total transmitted electron current per MeV per incident electron.
The 218-group AWMC calculation represents a set of converged results

and gives higher values and a more sharply peaked distribution than

does the 176-group AWMC calculation. However, in order to achieve the
converged results, the 218-group AWMC calculation requires a larger
number of spatial intervals and a much longer run time than the 176-
group AWMC run. The two AWCS calculations give fairly similar results,
although the I' = 100I calculation requires a larger number of spatial
intervals and a longer run time than does the I' = 10T run. It should

also be noted that the I' = 100I calculation gives a very strongly
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forward-peaked angular distribution for a thin case (such as 0.10
g/ch), since the soft collisions are straightahead and the number of
soft collisions increases as I' increases. In general, the AWCS

method requires fewer energy groups, fewer spatial intervals, less

time to produce the cross section coefficients, and a shorter time for
calculational than the AWMC method requires in order to obtain

converged results. Details on the calculations shown in Fig. 6 are
given in the following table. The running times shown are for the

IBM 560/91 computer. The cross-section production time represents

the time required to produce the cross-section coefficients used for
the particular calculation. Other calculations (especially for other
target thicknesses) were frequently made with the same set of coeffi-
cients. The calculational time is the time required for ANISN to obtain
a solution for the problem using the previously determined cross-section

coefficients.



Table I. Requirements for the Discrete Ordinates Calculation Shown in Fig. 6

Time for Time for
ANISN Cross-Section
Discrete Ordinates Number of Number of Calculation Production
Calculational Method Energy Groups Spatial Intervals (min.) (min.)
AWCS* (ANISN with
continuous slowing-
down
I' = 10T -3
= 1.6% x 10 ~ MeV 160 100 11.5 18
AWCS
I' = 1001 -5
= 1.63 x 10 ~ MeV 166 155 35 15
AWMC* (ANISN with
Mgller cross-section) 218 145 L 24
AWMC 175 101 14.5 16

*This calculation also appears in Fig. 5.

LS
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The calculated and measured transmitted electron current per unit
energy per unit solid angle is presented in Fig. 7 for transmission
angles of 7.5°, 47.5° and 77.5° through a 0.10-g/cm-thick aluminum
slab. Both the AWCS and AWMC calculations give good agreement with
the experimental results at 7.5°, although the AWCS values are slightly
high, probably due to the tendency of the AWCS calculation to produce
a forward-peaked angular distribution for thin cases. Both discrete
ordinates methods are in reasonable agreement with experiment at L47.5°
and in poor agreement at 77.5°. It should be noted that the Monte
Carlo results at 77.5° show evidences of difficulty with statistical
accuracy .

The transmitted electron current for 1-MeV electrons through a
O.22—g/cm2-thick aluminum slab at angles of 7.5°, 47.5°, and 77.5° is
shown in Fig. 8. Both discrete ordinates calculational methods show
good agreement with the measured results at 7.5°, except at the peak
of the experimental distribution. Agreement with experiment is fair
at 47.5° and poor at 77.5°, with the discrete ordinates results again
being low. The angular transmission for the two discrete ordinates
calculations were a little more consistent for the 0.22-g/cm2 case
than for the O.lO-g/cm2 case. Presumably this occurs because the
increase in target thickness allows sufficient elastic angular
scattering so that the differences in the way in which the inelastic

scattering is handled are not extremely significant.
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The angular distributions of the transmitted electrons per unit
solid angle resulting from 1-MeV electrons normally incident on
O.lO-g/cmE, O.22-g/cm2, and O.BE-g/cmg-thick aluminum slabs are
presented in Fig. 9. The AWCS calculation does show a slightly
forward-peaked distribution in the O.lO—g/cm2 case, but is in good
agreement with the experimental values. The AWMC results show
reasonable agreement for the O.lO—g/cm2 slab. The discrete ordinates
calculations are very similar for the O.22-g/cm2 case, and are in
reasonable agreement with experiment. In the O.BQ-g/cm2 case, the
AWCS values are in good agreement with experiment, while the agreement
for AWMC is only fair. The higher results for AWCS are similar to
those shown in Fig. 5 for the total transmitted electron current for

0.32 g/cm2.

2. 1-MeV Electrons Incident on Gold

The total transmitted electron current per unit energy resulting
from 1-MeV electrons normally incident on a O.lS-g/cmg-thick gold slab,
representing 0.2 range, is shown in Fig. 10a. The experimental points
and Monte Carlo histogram are similar to those used earlier for the
aluminum cases, and the solid curve represents the results of a

L

discrete ordinates AWCS calculation with I' = I(7.97 x 10" MeV). This

value was used because it is close to the value used for the 1-MeV

3 MeV). The discrete ordinates results

aluminum runs (I' = 1.63 x 10~
are much lower than the experimentally measured values and significantly
lower than the Monte Carlo calculation. Additional work is necessary

to determine if the poor agreement noted here is due to the cross
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sections or to the method of the calculation itself. At least part
of the difficulty must be in the cross sections, since the hard
inelastic atomic cross section was determined by multiplying the
Mdller cross section by Z. This is obviously incorrect since the K
shell electrons in gold are far too tightly bound to be considered
free, but no tested correction factor was available. The angular
distribution of the transmitted electron current per unit angle for
this case is given in Fig. 10b. It shows the distribution calculated
by discrete ordinates to be much smaller at low angles than the
experimental distribution, as is expected from Fig. 10a, but that it
increases in relation to the experimental points at larger angles.
The same general behavior is shown by the Monte Carlo calculation of
the distribution, which is lower than the experimental measurement at

low angles but actually higher at large angles.

3. 2.5-MeV Electrons Incident on Aluminum

The points plotted in Fig. 11 show the total transmitted electron
current per unit energy per incident electron resulting from 2.5-MeV
electrons normally incident on O.Bl-g/cmE(O.E range) and O.62—g/cm2-
(0.4 range) thick aluminum slabs. The experimental points, Monte Carlo
histograms, AWCS and AWMC representations are similar to those used
for the 1-MeV case. Reasonable agreement is shown between the discrete

ordinates results and the experimental measurements in both cases.
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However, the discrete ordinates calculations here are somewhat lower
than the Monte Carlo values, especially at the peak of the distribution,
while agreement between discrete ordinates and Monte Carlo calculations
is good for the 1-MeV cases.

The transmitted electron current at 20°, L5°, and 60° resulting
from 2.5-MeV electrons normally incident on a O.5l—g/cm2-thick
aluminum slab is shown in Fig. 12. The calculated values at 20° are
in fair agreement with the experimental points, but at 45° the agree-
ment is poor at the peak of the distribution, with the calculated
results higher than the experimental results. At 60°, the discrete
ordinates calculations are considerably higher than the experimental
measurements over most of the distribution. This seems to contradict
the large-angle calculations for the 0.2 range 1-MeV case, where the
calculated values were low compared to experiment (see Fig. 7). The
reason for this phenomenon is not apparent.

The transmitted electron current at 10° and 20° resulting from
2.5=-MeV electrons normally incident on a O.62—g/cm2-thick aluminum
slab is given in Fig. 13. Agreement between the AWCS calculation and
experimental measurements is poor at the peak of the distribution for
both cases but is quite reasonable elsewhere. The low calculational
results shown here are somewhat consistent with the slightly low peak
values shown in Fig. 11 for the total transmitted current through the

0.62—g/cm2 slab.
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The angular distributions of the transmitted electron current
per unit solid angle for 2.5-MeV electrons normally incident on
O.Bl—g/cm2 and O.62-g/cm2-thick aluminum slabs are presented in
Fig. 14. The values calculated by the discrete ordinates methods
for the O.5l-g/cm2 case are higher than the experimental measurements
through much of the distribution, as was shown in Fig. 12. The
Monte Carlo calculations also follow this general tendency. The AWCS
results for the O.62—g/cm2 case show more reasonable agreement with
the experimental values, although the calculation is slightly low at

the forward angles.

B. Experiments of Lonergan et.al.

The experimental data presented here are taken from the work of

27

The Monte Carlo calculations were

made by Edmondson, Derrickson and Peasley* using ETRAN-J_S.5 Results

Lonergan, Jupiter, and Merkel.

are given for 4-MeV and 8-MeV electrons incident on aluminum targets.

1. L-MeV Electrons Incident on Aluminum

The electron current per unit energy per unit solid angle
transmitted at 30° from L-MeV electrons normally incident on a
l.275-g/cm2-thick aluminum slab (0.5 range) is given in Fig. 15a.
The experimental points and Monte Carlo histogram are plotted in the

usual manner, and the solid curve represents an AWCS discrete ordinates

3

calculation with I' = 10I(1.63 x 10 ~ MeV). Agreement between the

discrete ordinates results and the experimental measurements is fair,

*As mentioned in Ref. 27.
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while the agreement between the Monte Carlo values and experiment is
much better. However, in the summary of Ref. 27 it states "The number
of 4.0 MeV electrons transmitted through l.275-g/cm2—thick slabs of
Al was 25% higher in the calculation. When the calculated energy
spectra and angular distribution were renormalized to the experimental
transmission they agreed with the measured data." Since the AWCS
calculation is considerably higher than the experimental results and
the Monte Carlo values at the peak and at lower energies in the
distribution, it seems quite possible that the agreement between the
AWCS results and the Monte Carlo calculation before renormalization
might be better than that shown in Fig. 1l5a.

The angular distribution of the transmitted electron current per
unit solid angle from 4-MeV electrons normally incident on a
l.275—g/cm2-thick aluminum slab is shown in Fig. 15b. The AWCS values
are considerably higher over most of the distribution than the Monte
Carlo results and those from the experimental measurements, as would
be expected from Fig. 15b. It is interesting to note, however, that
the discrete ordinates value at 0° is very close to the experimental

point, while the Monte Carlo histogram is much lower.

2. 8<MeV Electrons Incident on Aluminum

The electron current per unit energy per unit solid angle trans-
mitted at 20° from 8-MeV electrons normally incident on a O.955-g/cm2-
thick aluminum slab (0.2 range) is given in Fig. 16a. The experimental
points, Monte Carlo histogram, and AWCS using I' = 10I are shown as in

previous figures. The discrete ordinates calculation shows excellent
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agreement with the experimental measurements over most of the energy
range. However, the calculated curve actually increases in value below
2 MeV, while the experimentally measured points continue to decrease in
magnitude. It should be noted that the Monte Carlo calculation,
although exhibiting some statistical fluctuation, also appears to
increase in the lower energy range.

The angular distribution of the transmitted electron current per
unit solid angle for 8-MeV electrons normally incident on a O.955-g/cm2-
thick aluminum slab is presented in Fig. 16b. The distribution from
the discrete ordinates calculation is in excellent agreement with the
experimental points at the higher angles, but is does not exhibit a
low-angle peak as the experimental distribution does. The low-angle
peak in Fig. 16b. is in sharp contrast to the high experimental value

at 0° shown in Fig. 15b.



75

VII. COMPARISON WITH A THEORETICAL CAICULATION
FOR AN INCIDENT ELECTRON SPECTRUM

A. Transmitted Electron Spectra

Because of the lack of experimental data, it was not possible to pre-
sent a comparison between calculated and experimental results for the
case of an electron energy spectrum incident on a slab. Using the Monte
Carlo code ETRAN of Berger and Seltzer,5 Scotth8 calculated the trans-
mitted electron current per unit energy for the case of a specific
electron energy spectrum normally incident on aluminum slabs, and this
theoretical calculation has been compared with results obtained with
ANISN. The incident electron energy distribution used in the calcu-
lations is a representation of the spectrum resulting from thermal-

35,49

neutron capture in 2 This spectrum extends to electron energies
of the order of 10 MeV and is shown explicitly in Fig. 17 (taken from
Ref. 48). The transmitted electron current was calculated by the con-
tinuous slowing-down version of ANISN from Eq. (16). Inelastic col-
lisions with atomic electrons involving an energy transfer greater than
I' were represented by the Mller cross section, Eq. (19). Those with
an energy transfer less than I' were approximated by a continuous slowing-
down term. The I' value used for this calculation was 100 I, or 0.0163
MeV. The ANISN calculation used 21 electron energy groups down to 0.15
MeV and 320 spatial intervals for l.O—g/cm? thickness. The ETRAN re-
sults for an aluminum slab O.5-g/cm2 thick are shown in Fig. 18 as a

histogram and the ANISN results are shown as plotted points. A similar

comparison is given in Fig. 18 for an aluminum slab l.O-g/cm2 thick.



76

10° ;
L
"~
[ &
-
[ )
107 b
=
> S
=
5 10 o
8
o o
13
QO
~
(7]
c
g °
(& ]
o -3
2 10 e
®
10°*% o
L3
1079
0 2 q 6 8 10 12

ELECTRON ENERGY (MeV)

Fig. 17. BEnergy distribution of the incidﬁgt electron current per
unit energy per incident electron used by Scott as a source.



-1
(o]
10 10
5 5
f"“t_ ° ANISN
L ~——— ETRAN 1
2 O 2
| [ ]
_2 -
o 10 - 107t ——
@
w —
N. ® A\ J
§ s 5
E hd L
} °
3 '_1
™ - [ ]
103 . 10-2 = .
5 ? 5
° Le
2 t=1.0 g/cm2 2 ——— +=0.5 g/cm?
[
104 10-3
o} 1 2 3 4 5 6 7 o] 1 2 3 4 5

ELECTRON ENERGY (MeV)

Fig. 18. Transmitted electron current per unit energy per incident

electron for a specific energ
O.5O-g/cm2—thick and l.O-g/cm

E

ELECTRON ENERGY {(MeV)

spectrum (Fig. 17) normally incident on

-thick aluminum slabs.

Ll



78

In both plots the ETRAN and ANISN results are in reasonable agreement,
although the ANISN results are a little high in the 2- to L4-MeV range

for the l.O-g/cm2 case.

B. Transmitted Photon Spectra

In addition to the electron transport calculation, the photon cur-
rent produced by bremsstrahlung was computed and transported through the
slab by solving Eq. (2) for photon transport coupled with Eq. (16) for
electrons. As indicated in Section III, this coupling introduces pho-
tons produced by electron bremsstrahlung as a source for the photon
transport equation, but electrons produced by photons are not introduced
into the electron transport equation. The photon calculation used 60
energy groups down to 0.01 MeV and a total of 339 intervals for a 50-
g/cm?-thick aluminum slab. At thick depths the primary electrons are
no longer present, and photons constitute the bulk of the dose at such
depths. Electrons are present, produced by the photons, but the photons
are dominant. The method of discrete ordinates is guite capable of
calculating the resulting photon current, even for very thick target
depths, as shown in Fig. 19. It would be very difficult to obtain
reasonable statistical accuracy in a similar calculation by a Monte

Carlo procedure.



79

109
10~
\
\
1072 \\
R
BV
N\ 2 g/(:m2
1073 K \ 20 g/cm2
‘\ “x 5Og/cm2
N XN\
\< NN
10-% N N ‘\
g ‘\‘ ‘\\\
w AN N
¥ NN
~ AN AN
§ \\ \\
E 1073 e
N N
> OO,
€ NN
s N\
5 o6 DN
R
LI VAY
ANER AV
\\\\
1077 \‘\-
“\\‘ \
LAWY
\
AN\
108 AN
AVARY
A\
A\
1078 \
R\
A\
\\
10-10 \
0 2 4 6 8 10
£ (MeV)

Fig. 19. Transmitted photon current per unit energy per incident
electron for a specific energy spectrum of electrons (Fig. 17) normally
incident on aluminum slabs of the thicknesses indicated.



80

VIII. CONCLUSIONS AND RECOMMENDATIONS

Discrete ordinates appears to be a very promising method for cal-
culating the transport of electrons in aluminum, but additional investi-
gation is required to determine the extent of its applicablility. The
results achieved for electron trangport through gold are considerably
poorer than the calculations for aluminum. It seems probable that the
difference in the results achieved is due to the difference between
heavy elements (Au) and light elements (Al). It is not known whether
the difficulty experienced with gold is due to the method of calculation
or to the cross sections employed, but it seems more likely that the
problem lies in the cross sections.

Both ANISN with continuous slowing down used to treat low-energy
transfer collisions (AWCS) and ANISN with the Mfller cross section used
to treat low-energy transfer collisions (AWMC) are capable of giving
acceptable results for aluminum. At this stage of development, AWCS
seems preferable because it requires fewer energy groups to produce con-
verged results and reqguires a shorter running time than does AWMC.

Subsequent areas of investigation should include calculations for
several nonaluminum targets in order to determine the range of applica-
bility of the method of calculation and of the current cross sections.
An attempt should then be made to develop the cross-section theories
for heavy elements in order to get agreement with the experimental re-
sults. Calculations should also be made for comparison with experimental

studies of electron bremsstrahlung.
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Calculation of electron transport by discrete ordinates could be
made more efficient by a more precise determination of the energy-group
structure required to achieve converged results for both monoenergetic
and energy-spectrum sources. The calculational procedure in ANISN
could be made more efficient for electrons by limiting the application
of the convergence criteria for a particular energy group to those
spatial intervals where the calculated electron current for that group
is significant. In addition, a weighting function might be used to re-
duce the number of energy groups required for a calculation. Weighting
functions are often used in the process of treating cross sections to
obtain a multigroup formgu and normally involve the representation of
several groups from a normal energy group structure by a single energy
group with an averaged cross section.

The averaging procedure includes weighting the cross sections in
the original group structure by some measure of their relative importance.
However, recent work on neutron transport in ironSO shows that although
significant improvement can be obtained by the selection of a good
welghting function, some problems require a specific group structure

in order to obtain precise answers.
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APPENDIX A

DERIVATION OF THE CONTINUOUS SLOWING-DOWN TRANSPORT EQUATION

51

The derivation given here follows the method used by Rossi. The

Boltzmann transport equation for electrons is given by Eq. (11) as

L S dzc*_' (E',E,0'.0) _
P(R,E,2) + n f dE' i’ ee #(R,E',0")
E

0.V9(R,E,Q) T

E dgcinel(E ,E,01.0) .
+n aE' fdQ‘ e &(R,E',Q")
E+It
T — —
E+I! dgo_in l(E',E,S_{' .5) N .
+n f 4B’ fdQ' = = ¢(R,E',Q")
E
T — —, — -
- n o (E) #(K,E0) - n o} (E) 6(§,E0) , (34)
where
*
Oeve = Te1 t Opp
T E-1! dgcinel(E,E',s?'.@“)
Gl(E) = f dE'f ds2 AE'dQ ’
E
2
T £ dgcri l(E,E',Ez".sS')
o.(E) = dE' [ ao e
2 dE'd0

E-TI!
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The inelastic scattering is now separated into terms describing
large and small energy transfer collisions. Define

E+I

dfo, o (BLESLE) . L
T=n f ae' fdQ' 5 ¢(R,E'",Q') - nGE(E) ¢(R,E,Q) ,

E (35)

where T describes small energy transfer collisions. Add and subtract

t
- 0o EHE) o
n / aE! T ¢(R,E',0Q) ,
E
where
ds, _(E',E) s, (E',E,0'.9)
inel' "’ _ f inel*” ’ 7’
aE AEdS ’
. (E',E,0'.9) -
—fdﬂ' inel*” ’™
- dEdQ _
Then
A — —
e dgcinel(E’,E,Q'.Q) . .
T = n f S0k fdsz' e o(R,E',01)
E
T — -
-n GQ(E) ¢(R,E,Q)
F dcinel(E”E) =2 =
+n f aE! 5 ¢(R,E',Q)
E
G+ Tt
;A dcinel(E"E) = =
-n f ag! 55 o(R,E',Q) . (36)
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Now assume

2 ? —.1 o 2 1] pa—ry —
470, 1 (B E07.0) o d % e (E'HE) . 5(1-01.0)
dEdn - dE 2n

’

that is, the soft collisions involve only an energy degradation and not

an angular change. The first and last terms in Eq. (36) then cancel,

and
t
A dcinel(E"E) = -
T = n / ag! = o(R,E",0)
E
'I‘ - —
= ncg(E) ¢(R,E,Q)
1]
- ddinel(E"E) = =
T = n f 4B = ¢(R,E',Q)
E
E do, l(E,E') L.
- n f 4B —=S #(R,E,2) . (37)
E-I!
Define
do. (E')E)
inel = =
£(E',E) = =5 o(R,E',9)
©mw = E' - E, dvw = dE' , first term;
A
®w = E- E', au = ~dE' , second term.
Then I
T = n f an f(E+u,E)
o)
Iv

(38)

1
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o
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H
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=
)
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Now let
g(E',u) = f(E',E'-n)
= f(En,E)
Expanding g(E',u) in a Taylor series about E' = E while holding u con-~

stant gives

Then

so that

or

Substituting Eq

0
E',n) = E,n - [g(E",u)]
8B ) = (B) + ;ﬁ SRR
0
g(E':“) = g(E;%) +n 'gﬁ [g(E,%)] )
f(E';E"%) = f(E)E"“) +n %E' [f(E)E‘“)] »
f(E+n,E) = f£(E,E-x) + u g% [f(E,E-x)] . (39)

(39) into Eg. (38), and noting that » and % are

variables of integration so that the distinction between them may be

dropped,

I!

3
T = n fdnuaE [£(E,E-n)]

o}

Now set E' = E - u, and
Il
T = n fdmmaE [%%E—)-¢(REQ)] . (40)
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Defining the stopping power S(E) as

Il
S(E) = n fd%mg%%%@:l , (1)
(o]
or
0
s(E) = n / dE! (E-E')QgéTﬁfJ,J,—E—'l . (42)
B-T

Then substitute Eq. (41) into Eq. (40), to find
a - —_ —
T = 'a_ﬁ [.S(E) ¢(R)E)Q)] . (AB)

Equation (42) defines the relationship between the stopping power and
the differential cross section for low-energy transfer collisions. As
initially defined in Eq. (35), T represents two terms in Eq. (34). T

as defined by Eq. (43) is now substituted back into Eq. (34) to give

E 2
- - - — — O d— cz_*e(E')E,Q Q) o -
Q.v$(R,E,0) = P(R,E,Q) + n f dE'fdn' T ¢(R,E',0")
E
- n o*__(E) ¢(R,E,Q)
e—e e
s dgcinel(E’,E,Q Q) .
+1n f aE! fdﬂ’ F5 ¢(R,E',Q")
E+I!
T — — 6 — -
- n 0,(E) ¢(R,E2) + 55 [S(E) ¢(R,E,0Q)] . (44)

The low-energy transfer collisions represented by é% [s(E) ¢(§,E,Q)]
in Eq. (44) now do not produce knock-on electrons but only reduce the

energy of the incident electron.
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Equation (44) is given in Section III as Eq. (16), with S(E) de-
fined as in Eq. (42), and is the form of the transport equation solved
by AWCS (ANISN with continuous slowing down used to treat low-energy

transfer collisions).
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APPENDIX B

HIGH-FREQUENCY END-POINT CORRECTION FOR THE DIFFERENTIAL
BREMSSTRAHLUNG CROSS SECTION

The bremsstrahlung cross section of McCormick, Keiffer, and

37

Parzen, which is differential in angle and energy, was given as

Eq. (30) in Section IV. When Eq. (30) is integrated over angle, the

result may be expressed as "Eq. (3BN)" in Koch and Motz:16

22 2.2
do. = “Toakp |k - 2E E (p +p°) M o + o S
k = 13 k o) 2 2 3
T kp )3 v/ v p3 p.p
2, D 22 2
. 8k _E X (EOE2+POP ) L,k (EOE““Po) . (45)
2P Py’ R \ W S
2
5 e + 2 5 5]
P P p,
where
EE +pp-1
L = 24n o % 2 ’
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EO,E = the initial and final total energy of the electron
in a collision, in mc2 units,
PP = the initial and final momentum of the electron in
a collision, in mc units,
k = the energy of the emitted photon in mc2 units.

The bremsstrahlung cross section should have a finite value at the
high-frequency limit, but Eq. (45) gives a value which approaches O as
p - O. Fano's cross-section formula for the high-frequency limit is

given by Koch and Motz [in Eq. (II-9)] as:

32
dg. = b 7o dk Fo Po L o (Eq-2) 1 5 n o (46)
= 2 - - b
k 1377 oz -1)° ) (B+1) o 1P
O O O
where

ﬁO,B = the ratio of the initial and final electron

velocity to the velocity of light.

A high-frequency limit correction factor F is sought, therefore,

so that do [Eq- (45)]x F = do, [Eq. (46)] when p=0. The form of the

factor was chosen to be F = S SE— , so that the correction would

1l-exp(-X)
also apply near the limit, as p - O. Then

X

F=Tam(m) > P70

F=1X p=20.
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Therefore, Eq. (45) must be evaluated as p - O so the result set equal
to Eq. (46) in order to find X. First multiply Eq. (45) by the factor

X in the form X = X'E/p, and take the limit as p - O, to get

22 4.3
k= 137 k pj [3(EtL)(E__{)E

1+
1-6

0 _ .
) and pO = BOEO into

Then substitute the identities 250’2 In <
o

Eq. (46) to give

bz r" -1)(E -2
| lnz Odk»( 1 2) %+(EO )(E_-2) (18)

don = iy ——
ko g3/ K (E_-1) E,
Now set Egq. (47) equal to Eq. (48) and solve for X', noting that

2
p +l = E2, so that
o o

onZ
'—._
X =137
and
X = nZE ,
13Tp

as given in Eq. (30), Section IV. This factor was derived to assure
the correct value as p = O after integration over angle, but it does

not assure the correct limit at a specific angle.
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