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NOMENCLATURE

a;  dimensionless coefficients in the entrainment equation
b measure of the jet width
c concentration
Cys Cp specific heat at constant volume and at constant pressure, respectively
Ch drag coefficient
¢ cos 6;
Co cos @

D mass dif fusivity
e shorthand notation for (r/p,) C¢Cy + (r/p ;)50
E entrainment rate
i body force
Fp drag force
Fr Froude number, ub/[(p_ ~ po) roglpo], dimensionless
Fry, focal ’Froude number, u';,l e, —p,,) bglee]. dimensionless
g acceleration of gravity, 32.174 ft/sec”
g gravity vector, gk
i,j, k unit vectors parallel to the x, y, z axes, respectively
by iy unit vectors parallel to the s, r, ¢ axes, respectively
[ similarity integral, — f"(ufu,,) (00 u'v' ful,)[or] d(/b)
k thermal conductivity
p pressure
* difference between local pressure and hydrostatic pressure
q [satrdr — 1J4E* — 1/4 lim ¢?¥'?)
r radial distance from jet center line
o5 jet half-width; distance from center line to point at which u/u, = 0.5
R velocity ratio, u_fu,
Ry, R-sinf;-cos0,
s streamnwise coordinate, distance along the jet axis
i sin 8;
S sin ¢
t temperature
T stratification parameter, (p_ — po )/[-7o(dp_[dz)]
u component of velocity parallel to i

Uy, u=sin @ ( ~cos §,
v component of velocity paraliel to i,
v vector velocity, uig + vi, +wiy

¥ volume flow rate, mr2u

w component of velocity parallel to iy

X Cartesian coordinate, horizontal and perpendicular to free stream

¥y Cartesian coordinate, horizontal and parallel to free stream
Cartesian coordinate, posiiive vertically up

z
B thermal coefficient of volumetric expansion, --(1/pg) (ap/az)p



vi

¥ concentiation coefficient of volumetric expansion, —(1/po) (9p/dc),

€15 €p eddy diffusivities for momenturm and heat, respectively
g, angle between the projection of i; onto the x, y plane and the x axis
a, angle between i; and the x, y plane
A spreading ratio between density and velocity profiles
v kinematic viscosity

P density
01 radius of curvature, (d0 /ds)™’
p2  radius of curvature, (d6, /ds)™*
T time
¢ azimuthal angle
b dissipation function

C ) at diffuser outlet,s = 0
( I at jet center line, v = 0
( )n  tophatvalue
( ) free stream value
(e at end of flow establishment zone

() average with respect to time
( )Y  fluctuating component

ACH) (-0,



ANALYSIS OF ROUND, TURBULENT, BUOYANT JETS
DISCHARGED TO FLOWING STRATIFIED AMBIENTS

E. A. Hirst

ABSTRACT

Modern steam clectric power plants discharge approximately 1.5 to 2 kWhr of waste heat for every
kWhr of electrical energy produced. Usually this heat is discharged to an adjacent water body in
“once-through™ cooling which increases the water temperature near the outfall. Since aquatic
organisims tend to be temperature-sensitive, these thermal additions modify the local aguatic
environient, .

In order to assess the ecological consequences of waste heat discharge one must first know the
physical changes (temperature, velocity, salinity) induced by these discharges. It is with this latter
aspect, prediction of physical properties, that the current work is primarily concerned.

A new integral method is devised to predict the development of a momentum jet discharged to an
infinite ambient throngh a single circular submerged diffuser. Thejet is subjected to buoyancy forces,
ambient cross flows, ambient turbulence, and ambient density stratification and will, in general, follow
a three-dimensional path,

This method differs from existing methods in several ways. First, the new method is'applicable to
a much wider range ot flows. For example, the new method can handle flows for which the
{rajectories are three-dimensional, whereas existing methods are limited to jets with two-dimensional
paths. ‘

Second, the method is based on an integration of the basic partial ditferential equations written in
a new “‘natural” coordinate system. Deriving the integral equations from these busic equations reveals
certain terms involving the turbulence and radius of curvature which do not appear in the older
methods.

Third, a new entrainment function has been postulated. This function includes the effects of
internal turbulence, buoyancy, and cross flow. This new equation contains four coefficients, only one
of which must be determined empirically by fitting the predictions to the data.

The theoretical predictions have been compared with data for 100 ditferent flows, and the
agreement between theory and experiment is good. This is especially significant since the method has
been used to predict a wide range of flows with all the entrainment coefticients kept constant.

Finally, the new method is used to assess the physical consequences of thermal discharges trom a
hypothetical power plant. This example shows how the new mecthod can be used to help design

optimal discharge systems.

1. INTRODUCTION

This work is concerned with the behavior of momen-
tum jets discharged to an infinite ambient through a
single circular submerged diffuser subjected to buoy-
ancy forces, ambient cross flows, ambient turbulence,
and ambient density stratification. The primary objec-
tives of this work are to: (1) derive the basic equations
(mass, momentum, energy, and concentration} gov-
erning the development of jets with three-dimensional
trajectories using a new “‘natural” coordinate system
which moves with the center line of the jet; and (2)
develop a simple integral method solution to these
basic equations. This latter effort involves the formu-
lation of a generalized entrainment function which
accounts for all the effects listed above. Results
obtained with' the integral method are compared with
data from about 100 different jet and plume experi-
ments covering a wide range of the variables. The
agreement between theory and experiment is good.

This research is motivated by a concern with the
ecological consequences of thermal effluents from
steam-electric power plants.* Modern power plants
discharge approximately 1.5 to 2 times as much thermal
enbrgy (waste heat) as electrical energy is produced.
Usually this heat is discharged to an adjacent water
body in “once-through™ cooling which increases the
water temperature near the outfall. Aquatic organisms
tend to be temperature-sensitive; hence these thermal
additions can modify the local ecosystem.

As part of the power plant site selection process one
must assess the ecological consequences of the thermal
discharges. If the ecological impact is unacceptable,
then alternative means of waste heat discharge can be
employed, for example, cooling towers.

*However, the theory developed here is general enough to be
applicable to other problems of current interest, for example,
brine effluents from desalination plants and smokestack plumes.



In order to predict the ecological impact of such
thermal additions one must first predict the physical
changes (temperature, salinity, velocity) due to the
thermal discharges. It is with this latter aspect -
theoretical predictions of physical properties — that the
current work is concerned.

The waste heat can be discharged to the receiving
water body in many ways, for example, single sub-
merged diffuser, multiport submerged diffuser, or sur-
face jet. This study is limited to a consideration of
discharge through a single circular submerged diffuser.
In addition, the theoretical development assumes that
the receiving water body is infinite in extent, and this
excludes the influences of shoreline, bottom topog
raphy, and the air/water interface. Extensions of this
research will remove some of these limitations.

The engineering model developed here can be coupled
with biological models (which predict organism be-
havior given their time-temperature history) to produce
an integrated model capable of predicting certain
ecological consequences of waste heat discharge
through a single submerged diffuser given the con-
ditions at the diffuser exit and the ambient conditions.

Chapter 2 reviews previous experimental and theo-
retical efforts related to buoyant jets. A large body of
experimental data exists for flows in which the trajec-
tory of the jet remains in a single plane. Data for flows
with three-dimensional trajectories are nonexistent,
Similarly, several theoretical methods exist for the
prediction of single-plane trajectory jets. But none of
these methods are capable of predicting the growth and
development of jets with three-dimensional trajectories.
The method developed here is concerned with buoyant
jets whose trajectories are not confined to a single
plane, an extension and logical outgrowth of previous
efforts.

In Chap. 3 the basic partial differential equations
governing the development of a buoyant jet are derived
in a new ‘“natural” coordinate system which moves
with the jet center line. The resulting equations and
boundary conditions are extremely complicated. There-
tore, the equations are simplified by assuming the flow
to be axisymmetric and then integrating these equations
over a cross section of the jet. This yields a set of
“integral” equations with the steamwise coordinate as
the single independent variable.

Chapter 4 develops the solution to these integral
equations. In order to achieve closure, velocity and
density profiles and an entrainment function must be
assumed. Gaussian profiles are used. A generalized
entrainment function is formulated which includes the
effects of internal turbulence, buoyancy, and cross

flow. This new entrainment function contains four
coefficients, only one of which must be determined
empirically by fitting predictions to the data.

The theoretical predictions are compared with data
for 100 different flows. The agreement between theory
and experiment is good, which is especially significant
since the method has been used to predict a wide range
of flows with all the entrainment coefficients kept
constant.

The method developed in Chaps. 3 and 4 is capable of
predicting the temperature and velocity fields in buoy-
ant jets discharged at arbitrary angles to flowing
stratified ambients. In Chap. 5 this method is used to
study the thermal discharge from a hypothetical
1000-MW(e) power plant sited on the Gulf of Cali-
fornia. Jet trajectories and temperature fields are
computed for 24 different discharge configurations.
These cases include two flow-rate—temperature-dif-
ference combinations and various initial jet orienta-
tions for jets discharged to both quiescent and flowing
ambients. The results of these computations are dis-
cussed in terms of jet location, dilution, and size of the
mixing zone. Ways in which this method can be used to
develop optimal thermal discharge systems are de-
scribed.

The last chapter discusses the significance and limita-
tions of the present method. The possibilities for future
research are also described.

2. HISTORICAL BACKGROUND

Two excellent reviews of subinerged jet theory and
experiment have been published by Silberman and
Stefan' and Baumgartner and Trent.” Therefore we
shall discuss only those aspects of jet flow applicable to
the study reported in Chaps. 3,4, and 5.

Jet flows can be divided into several classes according
to the trajectory of the jet center line:

Class 1. Straight line trajectories
a. simple momentum jets
b. momentum jets discharged to a coflowing
stream
c. vertically discharged buoyant jets and
plumes*

Class 2. Single plane trajectories
a. buoyant jets discharged at arbitrary angles
to the vertical

*High Froude number flows are usually referred to as jets,
low Froude number flows are called plumes, and intermediate
flows are called buoyant jets or forced plumes.



b. nonbuoyant jets discharged to a cross flow

¢. buoyant jets discharged in the plane formed
by the cross-tlow vector and the gravity
force (wp Lg X u )

Class 3. Three-dimensional trajectories
a. buoyant jets discharged at arbitrary angles
to a free stream

For all three classes the jet passes through several
regimes as it -moves from the outfall through the
arobient. The three regimes commonly considered are
(see Fig. 1):

1. Zone of flow establishment, in which the velocity
and turbulence profiles undergo a transition from their
mnternal flow shapes to a free turbulent flow condition.
It is in this region that mixing begins with the ambient
fluid. Here the flow is strongly intluenced by the outfall
conditions and only slightly influenced by ambient
conditions. «

2. Zowne of established flow begins when turbulent
mixing has reached the jet center line. [n this region the
profiles have assumed their free turbulent shapes and
the jet dynamics are governed by the jet’s momentum
and buoyancy and the free-stream conditions, but not
by the initial outfall conditions.

3. Field zone, in which the jet momentum is depleted
and the jet fluid is convected and diffused by the
ambient cuirents and ambient turbulence.

In what follows we shall be primarily concerned with
region 2, the zone of established flow. The zone of flow
establishment is short (10 to 20 ry) relative to the zone
of established. flow, and by the time the ftuid has
reached the - field zone the concentration and
temperature excess are small celative to their values in
region 2.
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Fig. 1. Flow regimes for buoyant jets.

2.1 Class 1 Flows

Simple momentum jets {F'r = o) have been studied
extensively during the past 40 years as a classic example
of nonisotropic free turbulence. The experimental work
of Albertson et al.® showed that the mean velocity
profile is very nearly Gaussian, that is, '

2,.2
= a-16r°[x
ulu,, =e /
or

ufu,, ze-r’[p? ¢}
where b = x/+/76 is a measure of the jet width.
Albertson also showed that the center line velocity

decayed ag
u"} /110 = ]2,4"0 /.’C (2)

beyond the zone of flow establishment, which was
found to be 12.4r in length. The rate at which ambient
fluid is entrained into the jet, £, was shown to be

E=0.05Tu,,b . ‘ (3)

In recent years the work of Albertson has been
significantly extended by Sami et al.,* Becker et al.,’
and Wygnanski et al.® Sami conducted a detailed
investigation of the mean and turbulent flow tields
within the region of flow establishment. Wygnanski
made similar measurernents in the fully developed flow
region. ‘ ,

Becker investigated the concentration field in a simple
momentum jet. The profiles of concentration (or any
other scalar property) are also Gaussian but slightly
tlatter than are the velocity profiles:

C/CIII = (346 1. 6)‘2/2\?2
or

cley, =e AR )
where XA ( =+/76/61.6 = 1.11 for a simple momentum
jet) is a measure of the relative spreading of the
concentration and velocity profiles. Also, the center
line concentration decays somewhat more rapidly than

does the center line velocity, that is,

Cplen =108 rg/x . (5)



Forstall and Shapiro” and Landis and Shapiro®
investigated the mechanics of nonbuoyant turbulent
jets discharged to a coflowing ambient. The free stream
tends to narrow the jet and delay the onset of the fully
developed flow rtegion. However, the center line
velocity and concentration in the established flow
region decay with x7', as they do for simple
moimentum jets,

Reviews of theoretical analyses for simple momentum
jets and jets in a coflowing stream can be found in
Hinze® and Abramovich.'®

The woik of Rouse et al.’! on vertical plumes was
concerned with the velocity and temperature fields
above a point heat source. Their measurements showed
that the velocity and temperature profiles for these low
Froude number flows were also Gaussian:
=e—96r%x?

uf Ui

or

ufu,, =e ot (6)

mn

where b = x/+/96 at low Froude numbers, and
AtfAr, = o107 x?
or

AtfAt,, =~ A (7)

Because
App=o=1.16
and
Npp = o = 111, 3)

scalar properties diffuse more rapidly relative to the
velocity for low Fr flows than for high Fr flows.

Rouse’s measurements also showed that the center
line velocity decayed as x—1/3 and the center line
temperature decayed as x~5/3 rather than as x—!.
Abraham!? suggested that, for low Fr flows, the
entrainment rate is

E =0.085u,,b . 9)

A comparison with Eq. (3) shows that the entrainment
is higher for plumes than for jets. Abraham!3 also
showed that the zone of flow establishment becomes
shorter with decreasing Fr.

Abraham'? and Frankel and Cumming'® measured
the center line concentration in vertical buoyant jets
discharged with various Froude numbers, It is difficult
to draw conclusions from their raw data because each
data point represents a different flow, at a different Fr.
However, Frankel and Cumming made enough
measurements to permit cross-plotting the data, from
which curves of ¢, /c,, vs zfr, for particular Fr were
obtained. These curves indicate that the concentration
at any height (z/r,) increases with increasing Fr. This is
probably due to the higher entrainment rate for low
Froude number flows.

Several investigators have studied the discharge of
vertical plumes to a stratified ambient, in which the
free-stream density decreases with increasing height. For
such a stably stratified ambient the buoyant jet will
only reach a certain height, determined by its initial
Froude number and the degree of stratification.
Experimental height of rise data for vertical buoyant
jets were given by Hart,'® Crawford and Leonard,'”
Abraham and Eysink,'® Fox,'? and Fan.?°

Several theories exist for the prediction of vertically
discharged buoyant jets, all of which are based on the
integrated equations of motion. The methods of Rouse
et al.,' ! Priestley and Ball,2! and Schmidt*? involve a
solution to the integral conservation equations of
vertical momentum, mechanical energy, and diffusion

(energy):

4 [ rut dr tf ré.ega’r, (10)
dz\.}J, o Po

L
A YT an

d = . dp. [T
71;(]; iuApdr> Ej; redr . (12)

The shear stress integral in Eq. (11) is assumed to be
similar and known. The velocity and density difference
profiles are taken to be cither Gaussian or “top-hat.”
See Fig. 2 for a comparison of the two profile shapes.
The theoretical results are identical regardless of which
profile shape is used, provided that
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Fig. 2. Velocity and density difference profile shapes.

/AL o+ 1
;\th = e >

5 (13)
and
ap=~2ag (14)
where |
vy =agy wyy by and B = agqu, b, (L5) -

and ugp = /2 is the average jet velocity and by, =
+/2b is a characteristic jet width.*

Morton et al.?? also solved this problem using the
integral method. However, they dropped the mechan-
ical energy equation and used instead the integral form
of mass conservation:

;;j:(f rudr) =f.
2\Jy

In order to evaluate the integrals they used the top-hat
profiles, with the entrainment function:

(16)

E=auby,

with ¢ = /2(0.085), the value appropriate for plumes.

Fox'? developed an interesting and valuable method
for determining plume developnient in a stratified or
uniform ambient. Using the integral equations for
conservation of mass, momentum, mechanical energy,

*Since the methods of Rouse, Priestley, and Schimidt do not
use the conscrvation of mass equation they do not have to make
any assumptions concerning entrainment.

and energy and Gaussian profiles for the velocity and
density, he derived an entrainment equation:
E=(ay ¥as[Fru,,b . (17
where Frjis the local Froude number. This entrainment
function is a generalization of Morton’s formufation.
According to Fox:
....the enfrainment relationship did not require any
external specification other than the assumption of similar-
ity common to all plume theories, and the added assump-
tion of a similarly distributed ('v"). Actually, the entrain-
ment  relationship is the result of requiring the four
differential equations in the three dependent variables to be
consistent . ... .

With Eq. (17) the entrainment coef?icient increases
for decreasing Fr , which is in agreement with experi-
mental observations. Also, for stratified flows Fr
becomes negative as the plume rises above its equilibri-
um height. Thus £ may become negative, and this
provides theoretical solutions which are physically more
realistic than ones obtained with a constant entrain-
ment coefficient.

The mechanical energy integral equation is used again
in Chap. 4 to derive an entrainment function for
buoyant jets discharged with arbitrary initial orienta-
tion.

2.2 Buoyant Jets Discharged at Arbitrary
Angles to the Vertical

Nonvertical buoyant jets discharged to a utitorm
quiescent ambient bave been experimentally studied by
Cederwall** (cited in Abraham'”), Bosanquet et al.,**
Frankel and Cumming,'® Anwar,”® and Fan.??

Cedarwall * measured the center line location and
concentration for various horizontally discharged jets.
Unfortunately, each data point was obtained with
different initial counditions, making it difficult to draw
conclusions - from his data. Frankel and Cumming
measured the center line concentration for buoyant jets
discharged at angles of O, 15, 30, 45, and 90° to the
horizontal. Their concentration’ data were replotted (as
explained previously) to provide plots of ¢, /c, vsz/r,
for several values of initial Fr and angle.

Bosanguet measured trajectories for buoyant jets
discharged horizontally and at 45° to the horizontal.
Fau obtained center line trajectory data for several jets
discharged at various angles to uniform and stratified
ambients.

Anwar, in what is probably the most complete study
of this kind, measured both center line trajectory and
concentration for four horizontally discharged jets with



different initial Fr. In addition, center line trajectory
data were given for four buoyant jets discharged at
~30° 1o the horizontal.

These measurements show that as Fr decreases the jet
begins to turn upward rore rapidly. This is because the
initial momentum is less significant at low Fr than at
higher values. At a particular height the concentration
decreases with increasing Froude number for horizon-
tally discharged jets. This follows from the fact that a
higher Fr jet travels a greater distance to reach a given
height than does a more buoyant jet.

As the discharge angle is increased toward the vertical,
the trend changes, until the jets behave much like
vertically discharged jets, that is, the concentration
increases with increasing Fr.

Abraham,?” Bosanquet et al. 2% Fan,?° and Anwar?®®
developed methods for the prediction of buoyant
jets discharged to a quiescent medium. Abraham used
the vertical and horizontal momentum equations and
the concentration (energy) equations (see Fig. 3a):

[ wen) - [3

- rue” dr sin 8 = —rgdr,

ds ’o z 0 Po g (18)
a4 /'w ru? drcosf,] =0 19
s J, cos 0, , (19)
d i Apdr) = 20
ai\J, rudpdr) =0. (20)

Gaussian profiles were used for the density difference
and velocity profiles, and b and X were specified as
empirical functions of s and 6,. The three differential
equations were then solved for w,,, Ap, ,andd, as
functions of 5. x and z were determined from s and 4§,
as
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Fig. 3. Coordinate systems for class 2 jets.

x:fos cos 8, ds ,
z=f0s sin 8, ds . 21)

The methods of Bosanquet, Fan, and Anwar are quite
similar. They also solved Egs. (18) to (20), but rather
than specify b and X\ a priori, they used the integral

continuity equation {16) with £ =uu,, b. Fan suggested
a = (.082 using Gaussian profiles to evaluate the
integrals.

2.3 Nonbuoyant Jets Discharged
to a Cross Flow

Nonbuoyant jets discharged to a cross flow have been
investigated experimentally by Gordier,?® Keffer and
Baines,?® Pratte and Baines,?° Platten and Keffer,3!
Margason,®? and by various authors at a NASA
Symposium.??

Gordier measured the trajectories for several jets
issuing normal to a free stream with different velocity
ratios R =u_fu,, . Gordier's measurements of the center
line velocity decay show that the larger R is the more
rapidly the velocity decays towards the free-stream
value. The total and static pressure traverses obtained
by Gordier show quite clearly the characteristic horse-
shoe shape for a jet discharged to a cross flow.

Abramovich!® explained that the jet cross section
develops a horseshoe shape because the free siream
deflects the low-speed fluid at the edge of the jet more
than the fluid near the center line. This progressively
deforms the shape of the cross section, as shown in Fig.
4.

Keffer and Baines also studied jets discharging normal
to the free streamn. Unfortunately, their measurements
only cover the first 20 to 30r, of the jet’s develop-
ment. Therefore, these data are less useful than are
Gordier’s, which extend to about 100 #,. On the basis
of mean flow and turbulence measurements, Keffer and
Baines concluded that these jet flows display similarity,
that is, the profiles at various s stations are identical
when plotted with appropriate coordinates. This is an
important observation since the assumption of similari-
ty is made in all integral method analyses of such flows.
Their data also show that the zone of flow establish-
ment decreases in length with increasing R.

Platten and Keffer measured the trajectories for jets
issuing at various angles to the free stream, ranging from
0, = —45 10 +45°. (8, = O corresponds fo a jet issuing
normal to the free stream; see Fig. 3b.) Margason also
measured trajectories for jets issuing at various angles
(—90° <8, <+30°).



Several methods exist for the prediction of nonbuoy-
ant jets discharged to a free stream. The method of
Platten and Keffer®® is typical. They considered the
jntegral conservation equations of mass (16), x momen-
tura, and y momentum:

4 (fmuzrdr cos 91> =0, (22)
ds 0
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Tig. 4. Cross-sectional patterns for a nonbuoyant jet dis-

charged to a cross flow, from Abramovich.1?

d = ) ) N .
A R rdrsindy] =u k. (23)

Platten and Keffer used top-hat profiles and suggested,
for the entrainment function:

Eﬁzalbth (H[h Um sin 01)
taybu_(sindy - sin 910) .24

According to them:

The first terrmn accounts for the entrainment due to
ordinary turbulent mixing which occurs because of a
difference of relative velocity. The second is an approxi-
mate function introduced to account for the vortex shear
inflow.

The two legs of the horseshoe shown in Fig. 4 are the
counter-rotating vortices which give rise to the second
teom in the entrainment function. ¢y and a, are the
entrainment parameters, supposedly constant. Unfor-
tunately, agreement between their theory and their
experimental data could be obtained only by adjusting
both constants for each particular flow; the constants
ranged over a factor of about 3. Thus, one must view
this method as a correlation technique rather than a
predictive tool.

2.4 Buoyant Jets Discharged to a Cross Flow

Buoyaut jets discharged vertically to a horizontal
cross flow have been extensively studied for many years
because of the interest in plume rise and dispersion
from smokestacks. Briggs®® provides an excellent re-
view of the experimenial data and methods for calcu-
lating plume rise. '

The methods of Fan®® and Hoult et al®5:2% are
studied here because they represent two of the mére
sophisticated plume rise theories,

Fan’s method is similar to his prediction technique
for buoyant jets discharged to a quiescent medium. He
again solved the integral conservation equations for
mass (16), energy (20), horizontal momentum, and
vertical momentum:

d%(f w*rdr cos 02> Tl t Fpysinf, ,  (25)
S\Jo

ﬂ(f uzrdrsinﬂll)
ds WA

*—f &rgdrm Fpeosd, . {26)
} o Po . !



F, is a drag force which accounts for the variation in
pressure field around the jet due to the interaction
between the jet and the free stream. [y is written in
terms of a drag coefficient Cp, as

Fp=Cputsin® 6, v2b . 27

Fan used Gaussian profiles for the velocity and density
difference variations. Including the effects of the free
stream changes the velocity profile:

u=Au, o7 /o +u_cosfl, , (28)

where Av,, =u,

q — U costy.

Fan assumed that the entrainment rate is proportional
to the vector difference between the local jet center line
velocity and the free-stream velocity:

£E=ablu, —u_|=abfu_? sin® 0, + (Au, ]1/?2 . (29)

7t

The four differential equations plus values for  and
Cp permit one to compute the solution for b, Au,,,
Ap,, ,and 8, . The two geometrical equations (21) allow
prediction of x and z.

Unfortunately, Fan found that both Cp, and @ must
be adjusted for each particular tlow. The values of a
were nearly constant (g 2 0.4), but the constant chosen
differed significantly from the value (¢ = 0.082) which
Fan nsed to predict the development of buoyant jets
discharged to a quiescent ambient. Values for Cp
ranged from 0.1 to 1.7. Thus, this method suffers from
the same deficiency as does the Platten and Keffer
method. The two “‘constants” are not constant at altl!

The method of Hoult et al. used the integral
conservation equations of inass (16), energy (20),
streamwise momentum, and tangential momentum:

—d*<f uzrdr>=u cosf, E
ds A =

r—f ADr,gd;’ sinf, , (30)
-0 pO
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Note that the momentum equations used by Hoult
do not contain the drag force terms included by Fan.

(However, aside from the F'j, terms, the two sets of
momentum equations are equivalent.) Hoult et al. used
top-hat profiles and the following entrainment func-
tion:

E=ayb,,luy —u.cosly|+asb,y, u.sind, . (32)

According to them:

There are basically two entrainment mechanisms: one is
due to the difference between the plume velocity and
wind velocity component parallel to the plume and the
other to the wind velocity component normal to the
plume.

The two entrainment coefficients were assumed con-
stant. However, the values suggested are somewhat
different in the two references cited; 2, = 6.12 and a,
ranges from 0.6 to 0.9. In a more recent report,®” the
values selected are ¢, =0.11 and 2, =0.60.

Even though the methods of Fan and Hoult use the
same basic differential equations they differ substan-
tially in their entrainment function and in the use of
drag force terms. Hoult et al. eschew the £, terms
because they feel that the drag force is important only
in the first few nozzle diameters downstream of the
outfall. Both methods contain two adjustable constants.

Extensive field measurements of power plant plumes
have been conducted by Thomas et al.>¥»3Y at several
Tennessee Valley Authority plants. Bringfelt’® made
similar measurements at industrial chimneys in Sweden.

Laboratory expetriments on buoyant jets discharged
to a cross flow were performed by Fan?? and Hewett et
al.*! Fan measured plume trajectories and center line
concentrations at four different Fr and four different
R. His experiments were conducted in a water tank
with a uniform free stream of homogeneous density.

Hewett, working with a wind tunnel, measured plume
trajectories and center line temperature decay for very
low Fr plumes discharged to stratified flowing am-
bients.

2.5 Summary

There exists a large body of experimental data for
class 1 and class 2 jet flows. However, with the
exception of the simple momentuin jet and the simple
plume very few velocity and density profiles normal to
the jet axis have been measured. Turbulence measure-
ments are even more scanty.

For most of the class 1 flows both the center line
velocity and density difference (or equivalent scalar
property) have been measured. Unfortunately, this has
been the exception rather than the rule for class 2



flows. The flows of Aonwar,
notable exceptions.

Data for class 3 flows are completely nonexistent.
Thus, there are several gaps in our experimental
knowledge concerning these free turbulent shear flows.

Several theoretical methods exist for the prediction of
clags 1 and class 2 flows. These methods are based on
the integral conservation equations, derived by consid-
ering a control volume infinitesimally thick in the
streamwise direction and of finite extent normal to the
jet axis. The velocity and density difference profiles are
assumed to be similar. The methods either use the
continuity equation in which case the entrainment
function must be specified or they use the mechanical
energy integral equation for which the turbulent shear
stress integral must be specified. With the exception of
a protolype method developed by Telford,*? no
methods make explicit mention of the turbulence.

The purposes of the work described in the following
chapters are to: (1) derive the basic partial differential
equations for a class 3 jet; (2) develop an integral
method based on these equations; and (3) use this
method to predict the physical effects of thermal
discharges from power plants. The integral equations
developed from these basic partial differential equations
contain terms which do not appear in previous integral
methods. A generalized entrainment tunction is formu-
lated, based on the work of Fox’® and Hoult,>® which
adequately predicts class 1 and class 2 jets and should
also provide reasonable predictions for class 3 flows.

Fan, and Hewett are

3. DERIVATION OF THE INTEGRAL EQUATIONS
3.1 The Basic Equations

The problem considered here involves the dynamics
of a buoyant jet discharged from a round diffuser or
pipe. The jet density may differ from the ambient
density because of temperature and/or salinity dif-
ferences. The motion of the jet is determined by: the
initial conditions at the diffuser exit (velocity, buoy-
anicy, outlet orientation, diffuser radius), the buoyancy
force, and the ambient velocity, turbulence levels, and
density stratification.

The basic equations governing the dynamics of the jet
as it moves through the ambient are:

1. conservation of mass,

2. conservation of energy,

3. conservation of salt (or other scalar component),
4

. conservation of momentum (three scalar equations).

These six equations are sufficient to solve for the
pressure, three velocity components, temperature, and
salinity. These equations, written in general vector
form, ape:*3-44

ap

5+ V(pv) =0, (33)
o I N £ )

5=+ v(Vr) = o J(kvt,)+cv<1> - ( ) Vv), (B4
dc e
5oy (Ve) = V(D V) (35)
g¥+ Ly g2 —vx(v><vj)~~fp LEvry. (36

For our problem, the following simplifying assumptions
can be made:

1. steady flow, in the mean,

2. fully turbulent flow; molecular diffusion i3 ne-

glected,

3. incompressible flow; the density variation appears
only in the buoyancy term (Boussinesq approxi-
mation) of the momentum equation,

4. constant fluid properties,

5. small Eckert number (flow velocity); f(rictional
heating is neglected in the energy equation.

With these assumptions Egs. (33) through* (36)

become:
V=0, ‘ a7
vi(V)=0, (38)
v(Ve)=0, | (39)

:}va —vX(TX¥)=

— VQ + oF (40)
po
The pressure gradient term in Eq. (40) can be written.
as

Vp=p gtip*,

where p_g is the hydrostatic pressure gradient, due
solely to the weight of the ambient fluid, and Vp* is the
difference between the local and hydrostatic pressure
gradignts. ~



The body force term in Eq. (40) is due to the weight
of the jet fluid, that is,

pF =pg.
Combining the above two expressions yields
~VptpF=(p ~p_)yg Vp*. (41)
An equation of state for p can be derived by

expanding p(t, ¢) in a double Taylor series about the
reference density pg:

p=po [1 -8~ te)—r(c—co)l, (42)
where
g Po <a’>p ’
S AT
Po dc ['
Then
O Pezp.— D)t Yew— o). (43)
Po

This equation of state (43) is used to determine the
local density from a solution to Eqgs. (38) and (39).
With Eq. (41), the momentum equation (40) becomes

Vv v X (VX v)=u3’—gv-l—
Po

Vp*.
Pop

(44)

] =

In order to solve Egs. (37) to (39) and (44) an
appropriate coordinate system must be defined in
which to express these equations.

In general, the jet center line will follow a three-
dimensional trajectory because the jet momentum
vector, buoyancy force, and cross-flow vector may all
point in different directions. The most suitable co-
ordinate system for this kind of problem is a “natural”
system which moves with the jet center line. Figure 5
shows the coordinate system used in this analysis. The
system is fully described in Appendix A.

In Appendix B the governing equations (37) to (39)
and (44) are written in terms of this new coordinate
system. The result is a set of six nonlinear coupled
partial differential equations with three independent
variables , F, ¢. Because these equations are
immensely difficult to solve we shall make certain

— 8§
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Fig. 5. Natural coordinate system for buoyant jet analysis.

physically reasonable assumptions which will allow us
to obtain solutions,

We first assume the flow to be axisymmetric, that is,
w = 0, 8/d¢ = 0. For simple momentum jets and
buoyant jets discharged vertically up into a quiescent
ambient, the motion is indeed axisymmetric. For more
general cases the flow may not be axisymmetric. In
particular, for jets in a cross flow the flnid tends to roll
up into two counterrotating parallel vortices;' ®:2® see
Fig. 4. In spite of this evidence we shall see (in Chap. 4)
that reasonable predictions can be obtained with this
assumption. The asyrometry can probably be ignored
because the governing equations are (later in this
chapter) integrated over the jet’s cross section, and this
effectively averages out the asymmetry. We shall also
neglect the nonhydrostatic pressure gradient.

These axisymmetric equations are derived in Ap-
pendix C. First, the complete momentum equations are
written in the s (parallel to the jet axis), z (parallel to
the buoyancy force), and y (paraliel to the free-stream)
directions. Then, these equations and the continuity,
energy, and concentration equations are integrated with
respect to ¢ to yield another set of six differential
equations. However, this new set of equations contains
only s and r as independent variables.

Since these equations do not explicitly include the
effects of turbulence, they are rewritten in terms of
average and fluctuating components.

The flow in a buoyant turbulent jet is of the
boundary layer type; that is, gradients in the streamwise
(s) direction are much smaller than are gradients in the
normal (r) direction and @ > V. Ilnvoking the usual



boundary layer approximations*®
tions considerably.

These equations, (C-17) to (C-22), while considerably
simpler than those of Appendix B, are still not easy to
solve. Several groups (particularly at the Los Alamos
Scientific Laboratory and the National Center for
Atmospheric Research) have developed computer tech-
niques for solving similar ftuid mechanics problems.
However, the solutions require large investments in
computer time and programming effort. Therefore, we
have elected to reduce the complexity of these equa-
tions by one more order.

simplifies the equa-

3.2 Integral Equations

Equations (C-17) to (C-22) are formally integrated in
the radial direction from the jet axis to infinity. The
resulting set of ordinary differential equations contains
s as the single independent variable,

Derivation of these “integral” equations involves no
new assumptions. However, the process of integration,
which implies an average, wipes out some of the
information content of the partial differential equa-
tions. This missing information is implicitly reintro-
duced by the entrainment function and velocity,
temperature, and concentration profiles which must be
specified in order to achieve closure.

The final equations are:

continuity equation:

d = N
——— iTF = e 1 12 = ]—41' S
s ma) - m(m)=s @
energy equation:
d| f=- dr..
7 J; U <r - >rer ——ﬂa—— i ur dr
— lim <r77> , (46)
Jreo
concentration equation:
(e )
i il —c, | rdr
ds[f(‘) " \L
= R .
= A irdr — lim (rv ¢ ) , {47
AN y—rw
s momentum equation:
js <\j;w i ra”r) p“" Py dr S,
+Eu, 8y €, — lim <nTv’“) (48)
f-vroo
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k momentum equation:
g}<f i rdt) S, - f P rdrg
T\ C
- lim <ru v> S, —q =2,
poen 02
j momentum equation:
g;(fmﬁzr dr) S, Cy = Eu., (ru > S, C,
0
§; S,
;i_il) . (50

Cy Gy
q( 01 P2

(49)

- lim

Froo

i momentur equation:*

d{ r=_, . 5,C C1 S,
. irdr) Oy Oy = L

ds <—’:) v r> A ( o1 02

- lim ;ﬁ”’?) C, G, (51)
Frm
where

- 1 L

— L T ' 2,2

q j; aerdr 4}; 4r]~1£r‘1’ <r v>

Equations (49) and (50) can be simplified by using
Eq. (48). The reduced equations are

b,
ds

_ EuwC 1
qCy

; (52)

8, _f, [Co. ~ P)ipo] rdrgC;

EU«,S; Sg
ds q ’

(53)

These equations contain several terms which do not
appear in the equations used by other investigators.
Some of the new teris involve the ambient turbulence,
for example, hm (ru v"), and others appear in g (the
Jast two terms in ). The turbulence terms are zero for
jets discharged to nonturbulent ambients, and  the
additional terms in ¢ are important only for jets
discharged to a cross flow in the region near the origin
where the curvature is large.

Equations (45) to (48), (52), and (53) form the basis
for the integral method developed in the next chapter.
The boundary counditions for these equations specify
values for the integrals on the left-hand sides of Egs.
(45)to (48)and 6, and A, ats =0,

*The i momentwn equation is included here only for com-
pleteness. It can be derived from the other three momentum
equations; that is, the four momentum equations are linearly
dependent.



The Cartesian coordinates (x, ¥, z) of the center line
can be expressed in terms of 5, 8, and 8, as follows:

s
x=j; C, Cyds,

s
y:j;SlCst,

z:_/O‘SSzds.

These geometrical constraints are analogous to £gs.
(21) developed for a class 2 flow.

Equation (45) is a statement of the conservation of
mass, The rate of change in mass flux through any cross
section of the jet miust be equal to the influx from
outside the jet, that is, the entrainment. The entrain-
ment, £, is a strong function of the turbulence levels
within the jet. However, in most integral method
solutions (including this one) the turbulence is not
explicitly considered. So the entrainment function is
assumed to depend on mean flow quantities. The
development of an accurate and general entrainment
function is a difficult but essential task. This is
discussed in Chap. 4.

Equations {46) and (47) are statements of the
conservation of energy (temperature) and conservation
of salt (concentration). The conservation equation for
any scalar quantity is identical to these equations. The
rate of change of flux of a scalar past a cross section of
the jet is equal to the inflow (with the entrained fluid)
of the ambient concentration of the scalar and the
inflow due to turbulence at the edge of the jet.

Equation (48) is a momentum balance in a direction
parallel to the local jet axis. The flux of momentum
through the cross section is equal to the buoyancy force
on that section and the circumferential momentum
inflow due to entrainment and the ambient Reynolds
stresses.

Equation (52) shows how changes in 0, depend on
the orientation of the jet and the free-stream velocity,
u... The cross flow tends to turn the jet in the yp
direction. This turning effect is most pronounced when
the jet is perpendicular to the free stream. Note that for
6, =90° Eq. (52) implies that d0 , /ds is infinite. This is
a reflection of the fact that, for 8, near 90°, 0, is
undefined, When 6, is close to 90°, Eq. (52) is not
used.

Equation (53) shows how changes in ¢, depend on
the buoyancy force and the free stream. The influence
of buoyancy is greatest when the jet is horizontal and
decreases as the jet approaches the vertical.

(54).

12

3.3 Summary

In this chapter and the Appendices the basic differ-
ential equations governing the development of a mo-
mentum jet have been derived in a new, natural
coordinate system which moves with the jet center line.
The resulting equations and boundary conditions are
extremely complicated.

Therefore, the equations have been simplified by
assuining the flow to be axisymmetric and then
integrating the governing equations over a cross section
of the jet (perpendicular to i). The final ordinary
differential equations (45) to (50) form the basis for
the integral method solution developed in the next
chapter. The assumptions implicit in the derivation of
these integral equations are restated:

1. the flow is steady, in the mean,

2. the flow is fully turbulent; molecular diffusion is
neglected,

3. the fluid is assumed incompiessible; density vari-
ations are included only in the buoyancy terms,

4. all other fluid properties are assumed constant,

5. fluid velocities are assumed low enough so that
frictional heating can be neglected,

6. the pressure variation is assumed to be purely
hydrostatic,

7. changes in density are assumed to be small enough
so that the linear equation of state (43) is valid,

8. the flow within the jet is assumed to be axisym-
metric,

9. the flow within the jet is assumed to be of
boundary layer type and the boundary layer
approximations are valid,

10. the jet is discharged to an ambient fluid of infinite

extent.

4, INTEGRAL METHOD SOLUTION
4.1 Velocity and Density Difference Profiles

The ordinary differential equations (45) to (48), (52),
and (53) and the algebraic equation of state (43) form
the basis for the integral method solution developed
here. For the remainder of this report the free-stream
turbulence terms in all equations are neglected because
laboratory data showing the influence of ambient
turbulence levels on jet development are nonexistent. In
order to solve this system of equations, the velocity,
temperature, concentration, and density profiles normal



to the jet axis must be specified. Existing integral
methods assume that these profiles are similar, that is,
the shape of the profile {when plotted in appropriate
coordinates) is invariant with s, the streamwise coor-
dinate. The two most popular profile shapes are the
Gaussian and the top-hat, shown in Fig. 2.

For class 3 flows the Gaussian velocity and density
{(temperature and concentration) difference profiles are

_ 2,2
= Au,, e tu,

Fop_=lp, e~ (55)

where

Aty =ty — Uy,

The corresponding top-hat profiles are
T=uy,r<by ,
=0,r > blh ,
b-”pm = Apth s < xz‘hbl,‘h ’

= 0,7 > Nepbyyy (56)
where Ap,, and uy, are the “average” density dif-
ference and velocity at any s station and b, is a char-
acteristic jet width.

Theoretical predictions using either set of profiles are
identical, provided that Egs. (13) and (14) are observed.
Equating the integral mass flux, momentum flux, and
energy flux yields the following relations between the
top-hat parameters and the Gaussian parameters:

1. ,
Uy = i(,um tUiy),

bip =V2b,

2
Doy =537 Aoy (57)

The predictions provided by this new method will
ultimately be used to help assess the ecological conse-
quences of thermal discharges from power plants. Here
the interest is in the center line temperature and
temperature field, as well as the jet trajectory. Hence,
for our purposes it is algebraically easier to use the
Gaussian profiles.

Using the Gaussian profiles of Eq. (§5) in Egs. (45) to
(48), (52), and (53) yields the following system of
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ordinary differential equations: ™

d(v¥b*y _ .
21'5< 2 >"h’

(58)

d | Aty BAN? (: + Dy \
ds B 12 }\?, + 1)
ir_[(v*p?
e2). o
d | Ac,, b*A? Ay,
e - Upg T og—)
ds 2 A2+l

de., [ vEb? .
= o . 100
ds < 2 > (60)
d (V*Z bzk s Ap,, b* 2 ¢ ‘
G\ B - RSN, (61)
dby _Lu Cy -
“(%""' (ZC2> ’ (62)
do, .~ (Dpw/ps) (B 2) N°gCy - Eu S, S, . 63)
ds q
where
vE=u, tug,
G =-}i(bz vk L E?Y . N

The solution to these six equations yields values of
Uy, by s €m» 0,01, and 0, as functions of 5. Equations
(54) give x, y, and z in terms of s, 8, ,and 9, .

These integral equations can be nondimensionalized
by nowmalizing all the variables on the jet properties at
the diffuser outlet, that is, u,, r,, £,, ¢,, and p,,.
Writing the equations in this form introduces three
nondimensional parameters, R, Fr, and 7. R indicates
the importance of the free-stream velocity relative to
the initial jet velocity, Fr is a measure of the relative
importance of the buoyancy and inertia forces, and 7 is
the stratification parameter and indicates the impor-
tance of the ambient density variation.

*\/Tl‘b is taken to be the outer cdge of the jet for the
integrals involving u, ,; for example,

2 432
j‘”urdr;—.f""Aume"r 1%y ar -i-fr,ﬁb Uiy r dr .
¢ [



4.2 Generalized Entrainment Functions

In order to achieve closure in Egs. (58) to (63), an
entrainment function must be specified for the right-
hand side of Eq. (58). The entrainment is a key
determinant of the growth and development of buoyant
jets.

The entrainment (ingestion) of free-stream fluid is
largely determined by the turbulence structure imside
the jet, particularly near the edge. The edge of a free
shear flow is a highly irregular time-dependent surface
which separates the jet from the free-stream fluid. This
irregularity is clearly shown by intermittency measure-
ments which indicate the fraction of time that the fluid
flowing past a certain point is turbulent. The intermit-
tency decreases from 1.0 at the jet center to 0.0 for
large radii. Corrsin and Kistler®® suggest that the
entrainment of free-stream fluid takes place across a
thin “superlayer” at the edge of the turbulent jet.

Unfortunately, ignorance concerning the turbulence
structure makes it difficult to develop a suitable
entrainment function based on the turbulence structure
of buoyant jets. Therefore, it has been common
practice to formulate entrainment equations using the
mean flow variables (u,,,, uy,, Ho,,,, b).

The entrainment function should depend on the
following factors:

1. local mean flow conditions within the jet, «,, and b,
2. local buoyancy within the jet, Fr, ,
3. velocity ratio, R,

4. initial jet orientation, 8, , and 8,
5

. ambient turbulence.*

The entrainment function used by Morton et al.2® and
Fan?® E = au,,b, for the prediction of buoyant jets
discharged to a quiescent medium includes only the
local mean flow conditions; that is, the influence of
conditions 2 to 4 is neglected.

The entrainment function derived by Fox'® for
vertically discharged buoyant jets to a quiescent medi-
um,

E={a; tay/Fry)u,b,

includes conditions 1 and 2, an improvement over
Morton’s entrainment hypothesis.

*The effect of ambient turbulence on entrainment is not
considered here, again because of the lack of pertinent data.
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Platten and Keffer’s’' function, developed for non-
buoyant jets discharged to a cross flow,*

E=aybluy, —upaltaybu (5,0, ~8; ;Crp),(64)

includes conditions 1, 3, and 4. Hoult’s®5 entrain-
ment function, developed for buoyant jets discharged
to a cross flow,

E=a,blu,, —uy,| +asbu N1-(S, G2, (65)
also includes conditions 1, 3, and 4.

Our study of existing prediction methods reveals that
no single entrainment function accounts for all the
factors believed to be important.

The method used by Fox !° to derive an entrain-
ment function for vertically discharged buoyant jets
can be applied to more general flows. The mechanical
energy integral equation is derived by multiplying the
streamwise momentum equation (C-20) by # and inte-
grating across the jet. The resulting equation is:

4 f 7 rdr =::2f —p""w’aﬂra’rg&
ds o Js Po
+ Euy,? — 2 f 8 ) e (66)
o or

The shear stress integral in Eq. (66) is assumed to be
similar so that it scales as (for jets discharged to a
quiescent medium):

[ . %fy;&) dr=Tu,’b (67)
0

where / is the similarity integral.
Substitution of the Gaussian profiles and Eq. (67)
into Eq. (66) yields, for R = 0,

It can be shown that

d d d .
um2 Zi}(umbz) = 2um 5,}@4"12])2)_ Eg(unl3b2) . (69)

*To facilitate comparisons the entrainment functions dis-
cussed here have been generalized for class 3 flows and
converted to Gaussian form.



Substituting Eq. (58) into the left-hand side of Eq.
(69) and Egs. (61) and (68) into the right-hand side
of {69) yields an expression for the entrainment
function, for flows with R = 0,

- a-
E =&11 +ﬁ~2~ Sz>u,,,b , (70)
\ L
where
ay = 6f
and
3
R L T
4y = -3y
ayu,, b represents the entrainment due to the intermal

jet turbulence. @, is the entrainment coefficient in
Morton’s®*? or Fan’s®® entrainment function, £ =
ayuy,b. Experimental data® indicate that, for non-
buoyant jets,

a, =0.057.

The second term in this new entrainment function,
a,S,u,,b[Fr, , represents the incremental entrainment
due to the buoyancy force. For large Froude numbers
this term is negligible, but for small Froude numbers it
can be significant. With A = 1.11 (large Fr), a, = 0.8,
with A = 1.16.(small Fr), a, = 0.97. Since this second
term is significant only for low Frouwde numbers ‘it
seems reasonable to fix a, as

a, =0.97. 710

This new entrainment function satisfies three of the
five necessary conditions listed previously. Attempts to
derive an entrainment function, using this method, for
jets discharged to a cross flow (R # () failed to yield
reasonable results, probably because the assumption of
similar shear stress profiles is quite incorrect for R # 0.

However, the new entrainment function (70) can be
combined with either Eq. (64) or Eq. (65) to provide a
generalized entrainment function which satisfies all four
conditions.

Thus, a combination of Eg. (70) and the Hoult
function yields

= <31 +

d, ‘
f:;; Sy ) bluy, - Uyl

+<a3+%52>ub

1 = (S1Ca 72)
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Similarly, combining Eq. (70) and the Platten and
Keffer function yields

E=(al +

+<a3 +%S2>umb(51(72 ~81,Ca,) - (73)

a,
ﬁz— S2> bl — 1) 41

These two entrainment functions, both of which
contain four coetficients, appear to satisfy the condi-
tions listed earlier. The method used to systematically
determine these constants is explained in the next
section, where values for the ¢; are given.

4.3 Comparison with Experiments

One could adjust the four constants in Eq. (72) or
(73) in such a way that the predictions are, in some
sense, optimized. This “optimization” process is highly
subjective and dependent on the optimizer’s thoughts
concerning the relative importance of different flows.
Certainly this procedure is not unique; that is, different
people would produce different sets of entrainment
coefficients a;.

On the other hand, one can define these constants
using experimental data from specialized flows, which is
the method used here. For example, the only term
appearing in the entrainment function for the simple
momentum jet is the first {;) term. From the
discussion in Chap. 2, we konow thata, =0.057,s04, i3
fixed at this value for all flows. Similarly, the discussion
earlier in this chapter indicates that ¢, = 0.97 from low
Froude number data, so a, is fixed at this value for all
flows.

We also assume that the ratio of buoyancy-induced
entrainment to internal-turbulence-induced entrainment
is the same for both terms in the entrainment function.

This implies that a4/a;

= ¢, fay, which reduces Eqgs.
(72) and (73) to ~

E:(a1 + }% S2> [Blu,, ~ u;,l
+ gsuby ] :“(ST;@MSZ] , (714
a \
E“ = <ﬂl + F__~2L Sz) [blum - ulzi

tasu b(51Cy ~ S1,C2,)0] - (75)

Then, only one constant, as, must be empirically
determined.



At this point, the entrainment function for jets
discharged to a quiescent or coflowing ambient is
completely determined. Furthermore, the two entrain-
ment equations (74} and (75) are identical for these
flows:

0.97
ii};'Sg) bluy, — uyal .

Therefore, we can now compare experimental data
with theoretical predictions for these flows since the
predictions are independent of a5. Figures 618 illus-

£= <0.057 + (76)
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trate the quality of prediction* obtained with the
integral equations (58) to (63) and the entrainment
function (76) with @, and a, fixed a priori. Theory and
data are compared for 71 flows of this type; the values

of Fr, R, 8,,8,, and T for thesc flows are presented in
Table 1.

*These predictions are computed using an IBM 360/75
computer and Hamming’s modified piedictor-coirector method
(IBM Scientific Subroutine Package: HPCG) for solution of the
differential equations. The initial conditions, at the beginning of
the zone of established flow, are derived in Appendex D.

Table 1. Experimental jet flows studied

iD No. Ref. Class Fig. Fr R 9, 6, T
1101 3,5,6,10 la 6 o 0 0° 0° =
1201 8 1b 7,8 = 0.25 90 0 w
1203 8 b 7.8 = 0.46 90 0 oo
1204 8 1b 7.8 o 0.50 90 0 "
3511 18 lc 9 109 0 0 90 83.4
3512 18 ic 9 303 0 0 90 57.0
3513 18 ilc 9 534 0 0 90 71.1
3514 18 le 9 101 0 0 90 141
351s 18 lc 9 138 0 0 90 93.6
3516 18 le 9 360 ) 0 90 92.4
3517 18 Ic 9 445 0 0 90 67.6
3518 18 lc 9 506 0 0 90 92.1
3519 18 le 9 121 0 0 90 134
3521 20 ic 9 2450 0 0 90 87.5
3522 20 le 9 5618 0 0 90 339
3523 20 1lc 9 648 0 0 90 205
3531 19 1le 9 86500 0 0 90 2123
3532 19 lc 9 8450 0 0 90 2062
3533 19 lc 9 139000 0 0 90 2020
3534 19 1lc 9 182000 0 0 90 885
3535 19 ic 9 188000 0 0 90 893
3536 19 lc 9 154000 0 0 90 168
3537 19 le 9 46200 0 0 90 150
3538 19 le 9 2590 0 0 90 885
3539 19 e 9 11550 0 0 90 282
3541 17 le 9 20.6 0 0 90 527
3542 17 ic 9 19.0 0 0 90 896
3543 17 lc 9 17.0 0 0 90 694
3544 17 ic 9 16.8 0 0 90 1236
3545 17 1c 9 14.4 0 0 90 208
3546 17 le 9 13.2 0 0 90 1416
3548 17 lc 9 12.6 0 0 90 1586
3550 17 Ic 9 12.6 0 0 90 1825
3551 17 lc 9 126 0 0 20 1667
3552 17 lc 9 11.5 0 0 90 2038
3553 17 le 9 11.2 0 0 90 2118
355§ 17 lc 9 10.8 0 0 90 2587
3556 17 1c 9 10.6 0 0 90 2918
3557 17 Ic 9 10.5 0 0 90 3222
3558 17 lc 9 10.6 0 0 90 3685
3559 17 Ic 9 11.0 0 0 90 4968
3560 17 Ic 9 11.8 0 0 90 4884
3561 17 lc 9 11.8 0 0 90 6287
3563 17 e 9 13.3 0 0 90 7845



Table 1 (continued)
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ID No. Ref. Class Fig. Fr R 6, a, s
3001 20 2a 10 8712 0 0 0 w
3002 20 2a 10 33800 9. 0 0 =
3003 20 2a 10 3578 0 0 0 o0
3004 20 2a 11 2178 0 0 0 -
3006 20 2a 11 416 0 0 0 @
13251 26 2a 12,13 3200 0 0 o
3252 26 2a 12,13 720 0 0 0 o=
3253 26 2a 12,13 1286 0 0 0 o
3254 26 2a 12,13 2420 0 0 0 o
3101 15 2a 14 500 0O 0 0 o
3102 15 2a 14 200 0 0 0 o
3103 15 2a 14 450 0 0 0 =
3104 15 2a 14 800 0 0 0 o
3109 15 2a 15 500 0 0 30 =
3110 15 2a 15 200 0 0 30 v
3111 15 2a 15 450 0 0 30 o0
3112 15 2a 15 800 0 0 30 -
3117 15 2a 16 500 G 0 90 oo
3118 15 2a 16 200 0 0 90 o
3119 15 2a 16 450 0 0 90 =
3120 15 2a 16 800 0 0 90 -
3501 20 2a 17 1352 0 0 0. 2454
3502 20 2a 17 3200 0 0 0 10997
3505 20 2a 17 7200 0 0 0 1030
3507 20 2a 18 338 0 0 2.8 227
3508 20 2a 18 800 0 0 39.1 214
3509 20 2a 18 2601 0 0 45 423
2004 31 i) 19 = 0.25 45 0 =
2006 31 2b 19 o0 025 15 0 o
2008 31 2b 19 w 0.25 15 0 o
2010 31 2b 20 oo 0.167 45 0 e
2012 31 2b 20 e 0.167  -15 0 o
2014 31 2b 20 o0 0.167 15 0 o
2016 31 2b 20 w 0.167 45 0 oo
2017 31 2b 21 oo 0.125 45 0 o
2019 31 2b 21 = 0.125 15 0 o
2021 31 2b 21 = 0.125 15 0 o
2023 31 2b 21 o0 D125 45 0 e
2051 28 2b 22 o 0.4 0 0 o
2052 28 2b 22 w 0.25 0 0 o
2053 28 2b 22 o 0.167 0 0 o
2054 28 2b 22 o 0.125 0 0 o0
2055 28 2b 22 o 0.076 0 0 =
2056 28 2b 22 e 0.065 0 0 =
4001 20 2 23,24 170 0.25 90 90 e
4002 20 2c 23,24 170 0.125 90 90 o
4003 20 2¢ 25,26,29 800 0.25 90 90 o
4004 20 2c 25,26 800 0.125 20 90 o
4005 20 2¢ 25,26 683 0083 90 90 o
4007 20 2c 27,28,29 3200 0.25 90 90 o
4008 20 2¢ 27,28 3200 0.125 90 90 w
4009 20 2¢ 27,28 3200 0.083 90 90 w
4010 20 2¢ 27,28,29 3200 0.063 90 90 o
4021 41 2¢ 30 246 0535 90 90 35500
4023 41 2¢ 30 22.7 0.496 90 90 2469
4025 41 2 31 20.1 0.50 90 90 o0
4027 41 2c 31 172 054 90 90 oo
4028 41 2¢ 32 225 0493 90 90 1127
4034 41 2¢ 32 226 0486 90 90 3559




Figure 6 presents the center line temperature and
velocity decay for a simple momentum jet. The
experimental data are obtained from the works of
Albertson et al.,? Abramovich,'® Becker et al.,* and
Wygnanski and Fiedler.® The predictions are excellent,
which is not surprising since the value for a; used here
is obtained from these experiments.

Measurements show that for this flow the jet half-
width grows linearly with x, that is, ry 5 = K-x, with K
ranging from 0.085 to 0.097. The predictions give K =
0.095, which is within the range of experimental values.

Figures 7 and 8 show the center line velocity and
temperature decay and the jet half-width for three
nonbuoyant jets discharged to a coflowing stream
studied by Landis and Shapiro.® The predicted and
experimental velocity and temperature decay rates are
in good agreement. However, the predictions are shifted
to the right relative to the data, which suggests that the
starting length correlation proposed by Abramovich'®
(see Appendix D) may overestimate the starting length.
Also, the predicted half-width values are somewhat less
than the experimental values for ry .

Figure 9 shows the maximum height of rise data and
theoretical predictions for 40 buoyant jets discharged
vertically upward into stably stratified ambients. The
experimental data are due to Crawford and Leonard,'”
Abraham and Eysink,'® Fox,'? and Fan.2® The theory
is quite good, although it tends to slightly underpredict
the experimental data. To demonstrate the importance
of the a,/Fr;, term in the entrainment function,
predictions with 2, = 0.0 are shown for some flows.
Clearly, incorporation of this buoyancy-dependent term
improves the accuracy of the predictions.

Figures 10—18 show predictions for buoyant jets
discharged at various angles into uniform, quiescent
ambients. Comparisons between Fan’s’® center line
trajectory data and our predictions are shown in Figs.
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Fig. 6. Center line temperature and velocily decay for the
simple momentum jet.
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Fig. 7. (@) Center line velocity decay for nonbuoyant jets
discharged to a coflowing stream; (b) center line temperature
decay for nonbucyant jets discharged to a coflowing stream.
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10 and 11. The predictions lag behind the data,
suggesting that a higher entrainment coefficient is
needed. Predictions obtained with @, = 0.082 (the value
Fan suggested) provide excellent agreement with the
experimental trajectories for these flows; see Fig. 11.
Unfortunately, using @, = 0.82 worsens the predictions
for many other flows. So, for all other computations
presented here,a; = 0.057, as indicated earlier.

Figures 12 and 13 illustrate the predictions for four
buoyant jets discharged horizontally to a quiescent
medium studied by Anwar.?® The center line trajectory
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Fig. 9. Maximum height of rise for vertical plumes discharged
to stratified ambients, (#) 2, = 0.97; () a3 = 0.0.
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Fig. 10. Trajectories for horizontally discharged buoyant jets
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predictions are quite good. The center line concentra-
tion predictions are also good, but they tend to decay
faster than the actual concentration.
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Fig. 11. Trajectories for horizontally discharged buoyant jets
(data from ref. 20). (2) o, = 0.057; (b) @, = 0.082.
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Figures 1416 show comparisons between the center
line concentration measurements of Frankel and
Cumming'® and the predictions for jets discharged at
three different angles to the horizontal. In general, the
predictions are quite accurate.

Figures 17 and 18 show center line trajectories for
several buoyant jets discharged at various angles to
stably stratified ambients studied by Fan.?® As with
Fan’s data for jets discharged to a uniform ambient
(Figs. 10 and 11), these predictions lag behind the data.
Nevertheless, the predicted height-of-rise values are in
close agreement with Fan’s measurements.
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Fig. 13. Center line concentration decay for the horizontally
discharged buoyant jets shown in Fig. 12.
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Fig. 14. Center line concentration decay for buoyant jets
discharged with 0, = 0 (data from ref. 15).
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Fig. 15. Center ling concentration decay for buoyant jets
discharged with 6, = 30° (data from ref. 15).
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Fig. 16. Center line concentration decay for buoyant jets
discharged with 6, = 90° (data from ref. 15).
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The above results indicate that good agreement
between theory and experiment can be obtained with
the entrainment coefficients determined a priori and
held constaat.

Turning our attention now to flows for which R 0
or §,C, # 1, we find that one constant, a5, remains to
be determined. This constant has been evaluated for
both entrainment equations, {74) and (75), by calculat-
ing jet trajectories for several flows and adjusting the
value of as to provide a good fit. This method is
somewhat subjective, in that the user’s eye is used to
decide when the best value has been reached.

Twao important conclusions emerge from this “optimi-
zation” procedure. First, Eq. (74) provides much better
predictions than does Eq. (75). Second, changing ¢
from its optimum value improves the predictions for
some flows but worsens the predictions for others. The
value finally selected for the entrainment equation (74)
is

as=9.0. (77)

This gives, for the entrainment function used in ail

further predictions,

. 0.97 '
L= (0.057 + F_r]: S2> Loy, — w12l

+90ubT=(8,C )] . (78)
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Fig. 18. Trajectories for buoyant jets discharged at various
angles to stratified ambients (data from ref. 20).

Predictions have been made for 32 jets discharged to a
cross flow. Comparisons between expetimental data and
theoretical predictions are shown in Figs. 19-32; see
Table 1.

The measured and predicted trajectories for several
nonbuoyant jets discharged to a cross flow are pre-
sented in Figs. 19-22. Figures 1921 show a compari-
son between predictions and trajectories measured by
Platten and Keffer’® for jets discharged at various
angles to a cross flow. The initial discharge angle varies
from 6, = —45° to +45°. Except for the high cross-flow
cases (R = 0.25), the predictions are reasonably good.
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Fig. 19. Trajectories for nonbuoyant jets discharged at
various angles to a free stream with R = 0.25 (data from ref.
31).
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Fig. 20. Trajectories for nonbuoyant jets discharged at
various angles to the free stream with R = 0.167 (data from ref.
31).



However, they tend to lag behind the actual trajec-
tories, which suggests that either a5 should be increased
or that the jet orientation at s, is not the same as at s =
0, as assumed in Appendix D.
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Fig. 21. Trajectories for nonbuoyant jets discharged at
various angles to the free stream with R = 0,125 (data from xef,
3.
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Fig. 22. Trajectories for nonbuoyant jets discharged normal
to a cross flow (data from ref. 28).

Predictions and experimental data are compaced in
Fig. 22 for several jets discharged normal to a cross
flow, with R ranging from 0.065 to 0.40. The predic-
tions for these flows, measured by Gordier,>® are quite
good.
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Fig. 23. Trajectories foi bucyant jets discharged normal to a
cioss flow with Fr = 170 (data from ref. 20).
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Fig. 24. Ceuter line concentration decay for the buoyant jets
discharged to a cioss flow shown in Fig. 23.
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Fig. 25. Trajectosies for bucyant jets discharged normal to a
cross flow {data from ref, 20).



Results for buoyant jets discharged to a cross flow are
presented in Figs. 23--32. Figures 23, 25, and 27
present comparisons between Fan’s®® trajectory meas-
urements and the integral method predictions. The
predictions are quite good. However, the theory tends
to lag behind the data for large velocity ratios and lead
slightly for smaller R.
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Fig. 26. Center line concentration decay for the buoyant jets
discharged to a cross flow shown in Fig, 25.
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Fig. 27. Trajectories for buoyant jets discharged normal to a
cross flow with Fr = 3200 (data from xef, 20).
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Fig. 28. Centerx line concentration decay for the buoyant jets
discharged to a cross flow shown in Fig. 27.
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Figures 24, 26, and 28 present compartisons between
the center line concentration measurements and pre-
dictions for the same flows. Again, the predictions are
good, although they tend to predict lower concentra-
tions than those observed.

Figure 29 shows the predicted and measured half-
widths for three of these flows. The agreement is
adequate, but the predicted values of r; 5 are consis-
tently higher than are the experimental values. This is
to be expected because of the discrepancy between the
axisymmetric Gaussian profiles used in the predictions
and the asymmetric vortex pairs cbserved.
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Figures 30--32 present comparisons between the tra-
jectories observed by Hewett and those predicted with
the integral method. Except for the flows shown in Fig.
31 these jets were discharged to stably stratified
ambjents. The trajectory predictions are quite good.
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Fig. 31. Trajectories for buoyant jets discharged normal to a
cross flow {data from ref, 41).
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4.4 Summary

A generalized integral method has been developed,
based on the equations derived in Chap. 3. This new
method is capable of predicting class 3 flows (as well as
the simpler class 1 and 2 flows}.

In order to achieve closure with this method the
integrals have been evaluated using Gaussian profiles,
and a new entrainment function has been postulated,
This new entrainment equation, an extension of work
by Fox!? and Hoult et al.?5 includes the effects of
local conditions within the jet, free-stream velocity, and
jet buoyancy. Three of the four enirainment coeffi-
cients are determined prior to comparison between
theory and experiment. One is set intuitively and two
are determined from experimental end points - the
simple momentum jet and the simple plume. Only the
fourth constant is determined by fitting the predictions
to the data.

Theoretical results have been compared with experi-
mental data for 103 class 1 and class 2 flows. As Table
1 shows, the range in experimental conditions is quite
large. The Froude number ranges from 10 to oo, the
velocity ratio varies from Q to 0.54, 8, varies from 45
to +45°, 0, varies from 0 to 90°, and the stratification
pararneter 7 ranges from 57 to oe.

In general, the quality of predictions is “good” but
not “excellent.” The quality for certain flows can be
improved by adjusting one or more of the entrainment
coefficients, but this has not been done here. The
predictions made with this new method are often no
better than those made with existing methods. How-
ever, one must remember that the entrainment coeffi-
cients have been kept constant for all the flows studied
and that this method should be capable of predicting
class 3 flows, something which previous methods
cannot do.

5. APPLICATIONS OF THE NEW METHOD

The method developed in Chaps. 3 and 4 is capable of
predicting the growth and development of buoyant jets
discharged at arbitrary angles to a flowing stratified
ambient. In this chapter we shall see how the method
can be used to predict the physical properties associated
with thermal discharges from power plants. To illustrate
the full generality of the method we shall assume that
our hypothetical power plant is sited offshore on the
continental shelf.* The effects of a cross flow and both
thermal and salinity gradients will be considered.

*See the recent article by Anderson®! ror a discussion of the
potential advantages of siting nuclear power plants in the ocean.



The physical properties of the ocean have been
measured by numerous investigators; see reports by
Sastry and Okubo,*? Thomson et al.,*® Cayot and
North,*? and Wiegel.*® The reported measurements
show the extreme variability of these properties with
both time and space. For the purposes of illustration
we shall site our power plant in the northern Gulf of
California and use the temperature and salinity gradi-
ents presented in Figs. 10 and 16 of ref. 48. Averages of
the April 1956, 1957, and 1959 dala give, for the
temperature and salinity gradients,

dr_jdz = 0.030°F/ft ,
de_fdz = 0.00085 ppt/ft *
with the surface temperature and salinity:

t =658°F,
=0

=354 .
€y 35.48 ppt
We shall assume that the power plant condenser inlet
is located 100 m (328 ft) beneath the surface of the
ocean and that the cooling water is discharged 50 m
(164 ft) beneath the surface through a single 16-ft-diam
round pipe.
With these assumptions the properties of the cooling
water as it enters the condenser are:
tip =56.1°F
¢, =35.20 ppt.

Similarly, the free-stream properties at the outfall are:

t_ =61.1°F,
24

=35,

€ 5.34 ppt,

., = 64.0523 1b/ft* , .

where the density is determined from Eq. (42) with
8=0.00012 CF)7*,

= --0.00077 (ppt )" .

*ppt = parts per thousand.
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The reference density is taken as 64.0530 Ib/ft* at
59.0°F and 35.00 ppt. These values of § and 7 agree
quite well with the experimental density measurerments

of salt water reported by Cox et al.5? and Zerbe and
Taylor.®?

/‘For a 1000-MW power plant operating at 33%
etficiency, 2000 MW are discharged to the ocean as
heated condenser cooling water. Thus

= 2000 MW = 6.8 X 10” Btu/hr .

Since Q = pe, Ar ¥ and p = 64.05 Ib/ft*, c,, =0.96 Btu
bm ' (°F)"", then

At V30X 10% it °F sec™! |

which shows that either the tlow rate, V, or the
temperature difference, Ar, can be arbitrarily adjusted.
For this example we shall consider two difterent
combinations of flow rate and temperature difference:

1. Af = 10°F. Then ¥ =3.0X 10° {t*/sec. Since V =
17r021.¢0 and r, = 8 ft, then u, = 14.9 ft/sec.

The temperature, salinity, and density of the heated
effluent as it leaves the outfall pipe are:

t,=56.1+100= 66.1°F ,
¢, F ¢y #3520 ppt |
P, = 64.0037 b/ft> from Eq. (42) .

Thus, the Froude number is:

(14.9)

Bt = &) (322 (64.0523 _ 64.0037)/64.0037 1>

Assuming the current to be 2.0 ft/sec gives, for the
velocity ratio,

R =120/149=0.134 .

2. At = 20°F. Now V = [.5 X 10° ft®/sec and u, =
7.5 ft/sec.

The temperature, salinity, and density of the heated
effluent as it leaves the outfall pipe are:

t,=76.1°F,

¢, =3520 ppt ,



Py = 63.9205 1b/ft> .

The Froude number and velocity ratio are:
Fr=106,

R=0267.

For both flow-rate—temperature-difference combina-
tions, predictions have been computed for 12 different
outfall conditions including discharge to a quiescent
and flowing ocean at various initial angles. The 24 dif-
ferent cases considered are listed in Table 2. Flows are
computed for jets discharging at 0, 45, and 90°
to the horizontal with and without cross flows. In
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addition, when R + 0, flows are computed for jets
which are discharged with 8, = 30, 0, and +30°. These
cases include a wide range of operating conditons.

Table 2 and Figs. 3336 can be used to help develop
an optimum discharge configuration for this situation.
The fifth and sixth columns in Table 2 give the volumes
of water within the jet for which the temperature
difference (above local ambient) is gieater than the
value indicated. The last column in this table lists the
temperature difference between the jet and ambient at
the water surface.

Figures 33--36 show the trajectories for 8 of the 24
configurations considered here. Figure 33 shows trajec-
tories for three jets discharged to a quiescent ocean,
with Ar = 10°F, at angles of 0, 45, and 90° to the

Table 2. Thermal dischaege configurations from a hypothetical power plant
At, = 10°F, u,, = 14.9 ft/sec, Fr = 1135, T'=29.3

VAjp=20 —n0 AL a

D No. R 0, (deg) 9, (deg) Ar=3 Vat=2 m,s.urf.

(10* ft*) (10* t3) CF)
9001 0 0 0 2.49 6.83 b
9002 0 0 45 2.15 3.94 -1.5
9003 0 0 20 2.07 3.69 0
9004 0.134 0 0 1.66 3.49 b
9005 0.134 0 45 1.57 2.79 -2.0
9006 0.134 90 90 1.56 2.74 ~1.4
9007 0.134 30 0 1.66 3.70 b
9008 0.134 -30 45 1.49 2.71 -35
9009 0.134 90 120 1.52 2.74 ~2.5
9010 0.134 30 0 1.72 3.64 b
9011 0.134 30 45 1.65 2.90 -1.9
9012 0.134 90 60 1.62 2.83 -1.5

ar, = 20°F, u,=17.5 ft/sec, Fr = 106, 7' = 79.3

1D No. R 6, (deg) 0, (deg) Var=10° Var=6° Bty surf.2

(10* ft*) (10* ft*) CF)
9013 0 0 4] 1.90 6.20 -3
9014 0 0 45 1.81 4.59 +2.0
9015 0 0 90 1.79 4.36 +4.5
9016 0.267 0 0 c 1.87 b
9017 0.267 0 45 c 1.55 b
9018 0.267 90 90 c 1.54 ~1.8
9019 0.267 -30 0 0.739 2.04 b
9020 0.267 —30 45 c 1.48 b
9021 0.267 90 120 0.727 1.77 --2.1
9022 0.267 30 0 c 2.68 b
9023 0.267 30 45 c 2.06 b
9024 0.267 90 60 ¢ 2.44 -1.0

aAtm,surf. = L surface — o, surface:

bripe jet does not reach the water surface for these cases.

CThe volume within which Ar > 10° is completely inside the potential core.



horizontal. The dashed lines on Fig. 33 indicate the
regions within which the jet center line temperature is
greater (or less) than the local ‘ambient temperature.
Because the ocean is stably stratified there is a region in
which the jet is actvally cooler than the surrounding
ocean. This figure shows that jet location and extent are
strongly dependent on the initial angle of discharge.

Figure 34 shows trajectories for three jets discharged
to a quiescent ocean with Ar = 20°F. The initial Froude
number is much smaller for these lows than for the jets
shown in Fig. 33. Consequently, these jets rise more
rapidly and the temperature excess is greater than for
the high Fr jets.
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Fig. 33. Trajectories for thermal jets discharged from: a
hypothetical power plant to a quiescent ocean; at, = 10°F,
Fr=1135,7=129.3.
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Fig. 34. Trajectories for thermal jets discharged from a
hypothetical power plant to a quiescent ocean; A7, = 20°F,
Fr =106, 7= 79.3.

Figures 35 and 36 show trajectories for jets dis-
charged in a vertical plane at various angles to the free
stream (6, = 60, 90, and 120°). These figures show that
the lower Fr flows (Fig. 36) are deflected more rapidly
than are the higher Fr flows (Fig. 35).

Several observations and conclusions can be drawn
from these predictions:

1. Discharge with Ar = 10°F and u, = 14.9 ft/sec
gives much smaller mixing zones (regions in which the
jet temperature is significantly higher than the ambient
temperature) than does discharge with Ar = 20°F and
u, = 7.5 fifsec. However, the larger flow rate associated
with the smaller Ar implies a higher pumping cost. In
addition, the higher velocities may adversely affect the
fish near the diffuser outfall and increase the entrain-
ment of organisms.
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Fig. 35. Trajectories for thermal jets discharged from a
hypothetical power plant to an ocean current; Af , = 10°F, Pr=
1135, 7=29.3, R = 0.134.
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Fig. 36. Trajectories for thermal jets discharged trom a
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106, 7= 79.3, R = 0.267.



2. For jets discharged to the quiescent (R = 0)
stratified ambient the mixing zone is smallest for
vertical discharge and largest for horizontal discharge.
This is because of the higher entrainment coefficient
associated with larger values of 8,. However, at a fixed
height the temperature increase is greatest due to the
vertically discharged jet; see Figs. 33 and 34. The
importance of this depends on the levels at which
various aquatic organisios live.

3. The effect of a cross flow (R # 0} is to
substantially reduce the size of the mixing zone; see
Table 2. Thus, discharge to a quiescent ambient is the
worst possible case.

4. For both temperature differences the smallest
mixing zones are obtained with jets discharged at 8, =
—30° and 8, = 45°. This suggests that jets discharged at
an oblique angle to the free stream yield the smallest
mixing zones. On the other hand, the largest mixing
zones are obtained with horizontally discharged jets.
Thus, for rapid heat dissipation the jets should be
discharged at an angle of §, = 45°.

5. Those jets discharged upstrearn at an oblique angle
to the free stream atfect the smallest total region in the
ocean. For example, Figs. 35 and 36 show that jets
9008 and 9020 have shorter trajectories than do the
other jets shown.

6. For discharge with Ar = [0°F most of the jets
reach the water surface, while for discharge with Ar =
20°F only half the jets reach the surface. Since the
atmosphere is the ultimate sink of this thermal energy it
is important to be able to predict the heat transfer rates
for the jet after it has reached the surface. The theory
discussed here cannot do this. One complicating factor
is that the jet center line temperature at the surface is
usually less than the ambient surface temperature
becanse of the stratification.

These results show that, if rapid mixing and disper-
sion of the heated effluent are desired, discharge should
be at 8; =--30° and 8, = 45° with At = 10°F. If, on
the other hand, rapid heat exchange with the atmo-
sphere is desired then the jet should be discharged
vertically up with Ar = 20°F. The relative desirability of
these two extremes depends, to a large extent, on the
ecological consequences of these discharge configura-
tions.

In an actual power plant design one would calculate
the mixing zones and trajectories for many more
configurations than we have done here. In addition one
would have to consider several different sets of ambient
conditions to find those which give the worst ecological
effects. However, the example presented here gives a
“feel” for the utility of this new integral method.
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6. SUMMARY AND RECOMMENDATIONS

The new method developed in Chaps. 3 and 4 is
unique in several ways. The basic integral equations
(45) to (50), derived in Chap. 3 and the Appendices, are
written in a general form which allows the method to
predict flows with three-dimensional trajectories (class
3 flows), as well as the flows with single plane
trajectories {class 1 and 2 flows) which other methods
can predict. Derivation of these integral equations from
the basic partial differential equations reveals new terros
involving the ambient turbulence and the radius of
cuivature which do not appear in other integral
methods. These additional terms are important for jets
discharged to a turbulent ambient and for jets dis-
charged to a cross flow in the region where the
curvature is large.

In Chap. 4, a new generalized entrainment function is
developed, based on the works of Fox' ® and Hoult et
al.>>  This new formulation includes the effects of
internal turbulence, cross flow, and buoyancy on the
entrainment rate and contains four coefficients, only
one of which is determined empirically by fitting the
predictions to the data.

The theoretical predictions are compared with data
for about 100 different flows. The agreement between
theory and experiment is quite good, which is especially
significant since the method has been used to predict a
very wide range of flows with all four entrainment
coefficients kept comnstant.

Additional experimental and theoretical work is
needed to impiove predictions of temperature piofiles
in heated discharges and to increase the generality of
this method. Some specific recornmendations follow.

6.1 Future Experimental Study

Asindicated in Chaps. 2 and 4, experimental data exist
only for class 1 and 2 flows. Experimental data for class
3 flows are needed in order to tesi the general validity
of the new integral method. The most immediate need
is for data concerning jet trajectories, center line
temperature and velocity decay, and teinperature and
velocity profiles normal to the jet axis for several class 3
flows. These data can then be used to assess the
accuracy of the new method. If the method is found
wanting then the data can be used to help develop an
improved entrainment function.

Detailed turbulence measurements have been made
only for the simple momentum jet. Because the
buoyant jet flows studied here are inherently turbu-
lent, there is a real need for experimental data
concerning the turbulent structure of flows other than
the simple inomentum jet.



In order to assess the ability of this new method to
predict jet development in a turbulent ambient some
experiments performed with jets discharged to a turbu-
lent ambient should be performed,

6.2 Future Theoretical Analyses

The entrainment function (78) used in this method
appears to work reasonably well. However, morte
accurate entrainment formulations can probably be
developed. One could relate the entrainment to an
integral measure of the turbulence intensity. Then, a
model of the turbulent kinetic energy equation could
be used to predict the development of this turbulence
parameter. This approach, which involves the use of a
differential equation rather than an algebraic equation
for the entrainment, has been explored to some extent
by Telford.*?

Another possibility is to integrate the partial differen-
tial equations (C-17) to (C-22) rather than the integral
equations. With the partial differential equations no
assumptions concerning the velocity and temperature
profiles must be made. On the other hand, the various
turbulence terms appearing in these equations must be
specified in terms of the mean-flow variables. Work of
this nature is being carried out at a few institutions on
similar problems. A search of the literature, however,
failed to rteveal any attempts to solve buoyant jet
problems using the partial differential equations.

There are several ways in which the new method
should be extended. The method is capable of pre-
dicting jet growth and development only in the zone of
established flow. The method can be extended to the
zone of flow establishment using the profiles suggested
by Albertson et al® More important, the method
should be extended to allow prediction of the jet’s
developiment aftec it has reached its ultimate height.
These extensions should be general enough to allow
predictions of the jet development before the momen-
tum is depleted (surface jet) and when the fluid moves
with the ambient (field zone).

In general, interest in thermal discharges is centered
on the biological effects rather than the physical effects
of the thermal discharge. Therefore, attempts should be
made to couple the method developed here with
“thermal-death” models. These biological models are
capable of predicting fish mortality, loss of equilibrinm,
and susceptibility to predation given the time-
temperature history of the fish. This time-temperature
histoty can be obtained from the method developed
here. Thus, the outputs from the integral method serve
as inputs to the biological model. Such an integrated
mathematical model can then be used to predict certain
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ecological consequences of thermal discharges through
single submerged diffusers.

Appendix A
THE s, , ¢ COORDINATE SYSTEM

Figure 5 shows the coordinate system used in this
analysis. x, y, z are the usual Cartesian coordinates and
i,j, k are the corresponding unit vectors. z is the vertical
coordinate and ¥ is set parallel to the ambient current.

s, r, ¢ are the coordinates in the natural system with
i, 4, i, the corresponding unit vectors. s measures the
distance along the jet axis from the origin (diffuser exit)
and i is always tangent to the center line. » measures
the distance from the jet axis in a plane perpendicular
to i; r = 0 along the axis. ¢ is the angle which
determines the orientation of r. The convention
adopted sets ¢ = 0 when i, is horizonial to the left with
¢ increasing in the clockwise direction, looking in the
direction of increasing s.

With these definitions s, #, ¢ form a right-handed
system of orthogonal curvilinear coordinates. At any
fixed s, r and ¢ are the usual cylindrical polar
coordinates.

The two coordinate systems are related to each other
by 0, and 6,. 8, measures the angle between the
projection of i, onto the x, y plane and the x axis. If
there is no cross flow then @, remains constant along
the jet axis.

8, measures the angle between i, and the x, ¥ plane
and varies in response to both buoyancy forces and the
cross flow.

The relationships among the unit vectors of the two
coordinate systems are shown schematically in Table
A-1. Two examples suffice to illustrate the use of this
table.

i, =C Cyi+ 8, Chf + 5ok
§=81Cai +(CHC, — S9S18,)iy — (SOC, +CPS, 52y -

The basic difterential equations, (37) to (39) and
(44), are written in terms of the gradient, divergence,
and curl. These vector differentinl operators can be
defined for this coordinate systém only after the scale
factors have been derived. ‘

The scale factors, i, k., and hy, are:

=OR
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Table A-1. Relationships among the unit vectors in Cartesian
and naiuxal coordinate systeras

i j k
ig C1Cy §1C Sa
. —(CoSy +89C1S2) CoCy —~ 598,82 SoC;
lo S@Sl — Cd)ClSz — (S¢C1 + C(,bS]Sz) C(DC'Z
C;=cos 0; §;=sino;
Cp = cos ¢ S¢ = sint ¢
3R where @ is any scalar. Substituting the scale factor
hy = 5;1.).*,@3 , expressions into (A-4) yields:

where R = sig + ri, is the position vector of any point in
the jet. The scale factors relate the differential distances
to the differentials of the coordinates. In general, they
vary from point to point. Ounly for the Cartesian
coordinate system are the scale factors constant. To
evaluate &, we proceed as follows:

oR di, . or ol
i) S R R A o
0s lsisasjhi)s’ T
oR . oi .

Te kT ! +O+0+ra~;-1s.

Using the relationships in Table A-1:

%isz - é’(;zl p_l, " a‘ael'; E]E :bl_l ((CHCy — 568,S,)i
—(C8S, +S6C,Sy )] ‘}515 [S6C, Cyi
+ 568, Caj + S9S,K] .

Finally,
ho=1 +r%is1~is= 1 r(%bfﬁ +:;.‘2?> 21 ¢, (A1
Similarly,

h=1, (A-2)

hy=¢ (A-3)

From page 137 of ref. 54, the gradient is:
Va = hl ?;; i h_lr % i, +%-1; z?g iy (A-4)

1 Oa, 0z, 10a.

Va ::mé;ls 51;, T ;E—)Ebl¢ (A-S)
The divergence®* of a vector a is:
Vea = 1 B(hrh(PaS)
hghhy as
d(hyha,) O(hhay)
4 sty g -
ar a9 . (A6)

where a = agi; +a,i, +a,1,. Substituting the scale factor
expressions into (A-6) yields:

I 3oy 10(ra,) 10a,

v.a =

‘1—eds r or r 3¢
B/ L TS P BN
lé[r} 1~e{ra¢ - A
The curl®*# of a vector a is
hi, R, Ry
- 3 9 9

vXas= hghhy | Os or a¢ (A-8)

Ay ha, h(pH¢

Substituting the scale factor expressions into (A-8)
yields:




These expressions for the gradient (A-5), divergence
{A-7), and curl {A-9) are used in Appendix B to derive
the goveming equations for the jet from the original
vector equations, (37) to (39) and (44).

Appendix B

THE BASIC EQUATIONS INTERMS OF 5, r, ¢

Using the expressions for the gradient, divergence,
and cuil derived in Appendix A, Egs. (37) to (39) and
(44)become, when written in scalar form:
continuity equation, (37):

1 _@_L£+la§rv!+l§“w*)

l—eds r 8¢ rdg
vV e w 10e_ i
1 er 1 —e?%'o’ (B-1)
energy equation, (38):
u ot ot w ot
— — . "y
T eas “or rap O (82)
concentration equation, (39):
# Oc, o¢c wac_ .
Tem Vot rae O )
s momentum equation [Eq. (44)-i]:
W O wdu v 1
I —e 0s o rogp 1-—erdp
uv e _p_ —p Vp*-i,
S g8 L5 (B4
l—er po ° Po (B4)
r momentum equation [Eq. (44)+i,]:
u_dv oy wav w? N u* e
I=ed "or rop r dI-er
- Vp*-i
=L Pospc, -Ex: (BS)
Po Po
¢ momentum equation {Eq. (44)-i,]:
u dw, ow wow v, u’ 1de
e ads o rodp r 1-—erdp
— Vp*i
=P TP oy, Ll (B6)
Po Po

Equations (B-1) to (B-6) are a set of six nonlinear
coupled partial differential equations with three inde-
pendent variables - s, 7, ¢. The eight unknowns are u, v,
w, p* &, ¢ 8, and 6,. The density, p(¢, ¢), is found
from the algebraic equation of state, (43).
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Two additional kinematical conditions are required to
close the systern. These conditions arise from our
definition of the jet center line. Requiring the velocity
at r = 0 to be parallel to the center line (i.e., the center
line is a streamline) yields:

v(5,0,0)=w(s,0,0)=0. (B-7)
In addition, we require the velocity at any s station to
be a maximum or minimum at the center line:

LA R
or/ .o

This yields a system of three linear homogeneous
algebraic equations for (Bu(dr),.p, (8v[dr)..y, and
(Ow[Br),~q. Since the determinant of the coefficient
matrix is not, in general, zero, then the three partial
derivatives must be zero:

E’E =Y =W =0
or =0 or r=0 or r=0 ’

Thus, the definition of the center line as a streamline
along which the velocity is locally a maximum gives five
additional conditions, three of which can be used us
boundary conditions.*

Additional boundary conditions are:

1. Ats=0,

0. (B-8)

(B9)

u, v, w, p* ¢, ¢ specified as f;(r, ¢) ,
8,0, specified . (B-10)
2. In the circurnferential direction,

v, w,p* @) =u v,w p* t, clp+2m). (B-11)

3. In the radial direction:
a) Asr - infinity,T
Up*+0, 11, ¢
U= u.S,Cy
v > u COC) - S¢S,55),
w - - u{SPC, + CpS,;5,) .

> Con,

(B-12)

*These conditions, Egs. (B-7) and (B-9), are somewhat
arbitrary. For jets in a cross flow the actual flow pattern is
similar fo a vortex pair, in which case the appropriate kinematic
conditions are different. Since these conditions are not required
for the solution developed hexe, this point is not discussed
further.

TConuiitions (B-12) neglect possible variations of ., f.., and
Co around the jet perimeter.



b) Atr=20,
See Eqs. (B-7) and (B-9).

Appendix C

DERIVATION OF THE
AXISYMMETRIC EQUATIONS

In order to simplify the equations developed in
Appendix B, we shall assume the flow to be axisym-
metric, that is, w = 0, /8¢ = 0. Also the nonhydrostatic
pressure gradient, Vp*, is neglected.

The ¢ momentum equation, (B-6), is meaningless for
axisymmetric flow. Therefore, rather than write mo-
mentum equations in the s, », and ¢ directions, we shall
write them in the s, z, and p directions. This will give us
momentum equations parallel to the jet axis, parallel to
the buoyancy force, and parallel to the free stream.

The & momentum equation is:

k equation = (B-4)-S, + (B-5)-S¢C, + (B-6)-C¢C,,

or:
u ou ov ow
T (5 e Bisecs e Grancy)
' du ov ow -
+v ( E’S2 + S;S¢Cz +'¥ C¢(/2>
w(du . . v ow .,
p <a¢S2 Fap50C * g CM)
w oe S2 )
W oc ) — C
p (u a¢ T—% + M)S¢C2 VC¢ 2
+ (i~il—e)7 (7 VESZ + UES¢C2
ru 2 cpcy) =E=By ()
ap 72 po

Similarly, the j momentum equation is:

j equation = (B-4)-S, C, + (B-5)-(CoCy — S¢S,S7)
= (B-6)(S8C, + (95, 5,),

or:

124

ov
R ERIte +§(C¢Cl deJSsz)

[?L’
os
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d . ou
~§SY(S¢C, +C¢5152>J + V{g 5,Cs
£ (one SSS> Gy +C¢S?>]
ar¢1'¢12"ar¢)1 192

d d |

+ [a"; S1Cy + 52:; (Cq)Cl quslsz>
W (soc, + o518, ) | -2 | Lsic
’a¢)¢1 #5152 i’l—ea¢12

+ (141_17)', {— veS, Cy + ue<C¢>C1 — S¢S, S2>

—u gg <S¢>C1 + c¢sls2ﬂ =0. (C2)

Multiplying Egs. (B-1) to (B-4), (C-1), and (C-2) by (1
— e), setting w = 0 and 9/d¢ = 0, and integrating with
respect to ¢ from 0 to 2x yields (assuming that all the
dependent variables are independent of ¢):

ou 120 i
3§+~;5-r(rv)—0, (C3)
ot ot _
llg;’f‘VE—O, (C 4)
oc oc
ad 9% 5
“as Var 0, )
u, u_p.-p }
“ os or Oo 852, (C-6)
du ou T av> Cy _ P
gy e == = -7
bt o (e 53) %ot
u ,  ou 2 CVQ,Y>
(“ 35 ar> S16% (“ "D
X <C1C34%> =0. (C-8)
Py 02

For the sake of completeness the i momentum
equation is also given:*

*Only three of the four momentum equations, (C-6} to (C-9),
are independent. Any one can be derived from the other three.



du, ou TAK LS
(115;—+var) C,C, <u Sy )
X (:31.32 +9L§£> =0. (C9)
L £ £2

The above equations do not explicitly include the
effects of turbulence. It is usual, for turbulent flows, to
write the equations in terms of average and fluctuating
quantities, that is,

rEFer

where 7 is the average value of f, defined as

L
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and f.' is the fluctuating component of f. By definition,
£ = 0. Writing the dependent variables u, v, ¢, and ¢ in
terms of average and fluctuating components and

plugging these: expressions into Egs. (C-3) to (C-9)
yields:

lim

P

7- (par) .

9 130V (C-10)
os r or
o, _or_ [aw™) 16(r‘</—'f7)] )
s TVa T { 3 T a1 €11
oc  _oar_ [a@'ch Ja(rVZ')]
Lyq -1
“ as+ or as r or ’ (€12)
B, A _p.—P _w['a(ﬂ'"ﬁ) Ia(ruv)J c13
U Ve T Do 852 s (C-13)
08 ?.?f) s (~2 A §E> G
B V%) o2 29r) o,
PP [6177 1a(rﬁ)] .
= [ A S S 52
Po as r or
(=7 L?.EJE@ ]
- {u il (C-14)
_BH+V3u> S C, + (a2 @ij_ﬁ‘)
L PR 12 2 or
. v e\ =75 T
o (LR A R (] P
01 02 s o r or
7 _1£> ( G 51S2> C-15)
(u 4 or I P2/ (
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_ou, _ou\ . ., v ov

(f“a F > GG - (“2 ”2"(7>
N <S1(2 +C1Sg> - o> 1a(ru'v')] cc
£ D2 R 12

The flow in a buoyant turbulent jet is of: the
boundary layer type; that is, gradients in the streamwise
direction (s) are much smaller than in the normal
direction {r), and & > ¥. Using the boundary layer
approximations due to Prandtl*® the above equations
reduce to:

w10, e
‘ﬂ?{+vgz~%ﬂ%)> (C-18)
224y 2. 10ve) (€-19)
§ r rooor
i %?+ V%f —%fgSg - i a(rg;v ) (C-20)
(7:, ?%#V %—?) A =pmp0 Pg
. % l Eﬂ(i*uliv')S2 . (C21)
i a(’g;vy) §:C,, (C22)
(\76_;7 +“\7§Z—) C,Cy =+q* (‘S;f? + C;?)
. % a(’g‘;v') GGy, (C23)
where

Equatlons (C-17) to (C-22
u v, 5¢ 0,0, uv u* v

) are

a et of six equations for
o2

,V dn(lV(.




The turbulence quantities can be handled in different
ways,’5 the most common of which is to assume that
the “Reynolds stress” terms are simple functions of the
mean quantities, for example,

7 ou
T
VP =y
har’
where €,, and €, are the eddy viscosity for momentum

and heat, respectively, and are prescribed functions.
The boundary conditions for this problem are:

1. Ats=0,
i, v, F, ¢ specified as fi(r)
0, and 0, specified .

Asr > infinity,
Uu—-u. Sl C2 s

Ve - Efr,
where

F=d[ds {7 iir dr is the entrainment 1ate ,

t>1le.,

C~>Co .

3. At r = 0, certain boundary conditions may be
required depending on the nature of the turbulence
assumptions.

Appendix D
SPECIFICATION OF THE INITIAL CONDITIONS

Equations (58) to (63) can be used to develop
theoretical solutions for class 3 jets once appropriate
initial conditions are specified. These initial conditions
are specified at the diffuser exit, the beginning of the
zone of flow establishment (s = 0). However, the
integral equations are valid only in the region of
established flow. Therefore, we need to derive initial
conditions at the end of the zone of flow establishment
(at s,) in terms of the diffuser outfall conditions (at s =
0).

In order to account for this initial region of flow

development the length of the region, s,, must be
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b, At

e B and

defined and the appropriate values for u
Ac,,, must be specified at s,.
Abramovich!® gives an expression for the length of
this potential core for a nonbuoyant jet discharged to a
coflowing stream. Adjusting his constant so that s, /r, =

12.4 when R = 0 (from Albertson®) gives:

[

Equation (D-1) shows that the starting length increases
with increasing R, which is in accord with the observa-
tions of Shapiro and coworkers,”

Fan?® graphically defines the starting length for jets
discharged to a cross flow, based on Gordier’s?® data.
Fan’s correlation is closcly approximated by:

>

1+R 1
1-R/ 1T+1.18R"~

splr, = 12.4 (D-1)

s, fr, =124 - 28.0R . (D-2)

Combining and generalizing Eqgs. (D-1) and (D-2)
yields an expression applicable to class 3 nonbuoyant
jets:

+
Spir, =12.4 (1 Ris

1
] ~R12> T+ T1.18R];
—28.0R\1 —(S:C, . (D3)

This equation is valid only for values of R less than
about 0.5.

Abraham'® gives a starting length expression for
buoyarnt jets discharged vertically up into a quiescent
medium. This equation, a cubic, shows that the starting
length decreases from 12.4r, as the Froude number
decreases. Abraham’s equation can be approximated
by:

Splr, =124, Fr = 80,
=7.8+0.057 Fr, 10 < Fr< 80,
=4.15+0.425 Fr, 2< Fr< 10,
=0, 0<Fr<2. (b-4)

Combining Egs. (D-3) and (D-4) yields a general
siarting length equation valid for all class 3 flows:

(se/ro)D-3 (se/ro)D—4

=1£.0°055 £ 0508 D-5

Selfo 12.4 @®-5)
In order to define values of the dependent variables at

s, the following assumptions are made:



L. u,, =u, ats =s,,by definition of's,;

2. buoyancy forces are neglected in the zone of flow
establishment;

3. the influence of free stream gradients (di..fdz,
dc./dz) and free stream velocity are neglected in this
region;

. the jet orientation at s,
s =0, thatis, 8, =0,

e o

is assumed equal to that at
and # 2 = 62
4 [2]

Mass, momentum, energy, and salt balances between s =
0 and s =5, provide the following conditions:

Up Tlp s
b}l 2LLQ r 2
PR TR °
}\2 + | U +U12
Aty =g 22 ) A,
2\ Uy, T AU
0
NHl [ u, tugs
Ac,, = Q 2. ) Ac D-6
20 2)\2 uo + 7\2u12 2] ( )
(2]
These boundary conditions (D-6) are derived by

assuming that the profiles are top-hat at s = 0 and
Gaussian at s = s5,. Equations (D-5), (D-6), and the
values of 01 and 0», completely specify the necessary
boundary conditions for Egs. (58)to (63).
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