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ABSTRACT

The study of the properties of the eigenvalues of random matrices
as related to the energy levels was initiated by Wigner and pursued

vigorously by a number of physicists (Statistical Theories of Spectra,

ed. by C. E. Porter, Academic Press, 1965). In high energy regions it
is impossible in practice to determine exactly all the energy levels;
thus one is interested only in the statistical properties of the energy
levels in these regions.

In 1955 Wigner [Amn. of Math. 62 (1955) 548-564 ] showed that the

asymptotic distribution of the eigenvalues of a symmetric random matrix
whose elements take the values +1 and -1 with probabilities % and 1
respectively and whose diagonal elements are identically equal to zero
is a simicircle distribution. In this paper we prove a conjecture made

by Wigner [Ann. of Math. €7 (1958) 323-326], indicating the validity of

the semicircle limit distribution for more general ensembles. In fact
we prove the following theorem.

let X = be a random matrix such that:

» D
X301, 52
(1) Xij = in a.8.;

(i1) {Xij’ i < j} is independent;

(iii) EXij = 0;
. 2 2 . .
(1v) BX;5 =07, 1 £ J;
(V) E|Xij'k5 Ck <C°’ k = 1,2,030 .

Denote by‘Wn(x) the empirical distribution functions of the eigenvalues

of X/20 ./n.



vi

Theorem:
Wn(x) -+ W(x) a.s. as n—~ », where W is the absolutely continuous
distribution function with semicircle density

w) = | 20, Iy

IA
—

0 ) |x| >1 .

This result is stronger than (1) Wigner's conjecture, (2) Grenander's

result [Probabilities on Algebraic Structures, Wiley, 1963], and may be

compared with the result by Arnold [J. Math. Anal. Appl. 20 (1967) 262-

2687,
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1. INTRODUCTION

The impetus for this paper comes mainly from work done in recent
years by a number of physicists on a statistical theory of spectra. The
book by M. L. Mehta [10] and the collection of reprints edited by C. E.
Porter [lh] are excellent references for this work. The discussion in
section 1.1 ig an attempt to present a rationale for such investigations.
Our interpretation of linear operators as used in guantum mechanics is

based largely on the book by T. F. Jordan [8].

1.1 Statistical Theory of Spectra

In quantum mechanics knowledge of the wvalue of measurable quanti-~
ties of a system is expressed in terms of probabilities. A state of the
system specifies these probabilities. Measurable quantities are repre-
sented by self-adjoint linear operators on a separable Hilbert space.
The only possible values of the measurable quantities are those in the
spectrum of the self-adjoint operator which represents the measurable
quantity.

Experience indicates that energy is represented by the Hamiltonian
operator. We are interested in the point spectrum of the Hamiltonian,
which is its set of eigenvalues. The eigenvalues, E, of the Hamiltonian

operator, H, which are real since H is self-adjoint, are those values of



energy for which some state of the system specifies a probability of one
that the energy is exactly equal to E [8]. This is expressed in the

schrodinger time-independent equation,
(1.1.1) Iy - By,

where | is an eigenvector associated with E.

In ordinary statistical mechanics renunciation of exact knowledge
of the state of a system is made and only properties of averages are con-
sidered. An exact knowledge of the laws governing the system is assumed
known; it is the impossibility in practice of observing the state of the
system in all its detail that leads to the consideration of properties
of averages.

An analogous situation exists with respect to the Hamiltonian opera-
tor. It is possible to choose an orthonormal basis for the separable
Hilbert space in such a way that the matrix representation of the Hamil-
tonian with respect to this basis is in a form with blocks (finite dimen-
sional square matrices) along the diagonal and zeros elsewhere (see [10]).
Fach block corresponds uniquely to each set of values of a certain set of
varameters. These parameters are variables which may be used to describe
certain aspects of the system, whatever state it may be in. We are inter-
ested in the eigenvalues of the very large blocks. There are two aiffi-
culties. TFirst, we do not know the Hamiltonian and, second, even if we
did, it would be far too complicated to attempt to solve it. These dif-
ficulties lead to a renunciation of an exact knowledge of the system
itself i.e., of the Hamiltonian. The basic statistical hypothesis is

this: the statistical behavior of energy levels in a simple sequence
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(a simple sequence is one whose levels all have the same set of values

of the parameters mentioned above) is identical with the behavior of the
eigenvalues of a random matrix. It is desirable, due to our ignorance

of the system, that the statistical properties of the eigenvalues be
independent of as many of the properties of the distributions of the ele-
ments of the matrices as possible. At best the elements of these matrices
are random variables whose distributions are restricted only by the gen-

eral symmetry properties we might impose on the ensemble of operators.

1.2 Outline of Contents

There are three basic parts. Chapter TIII contains the combinatorial
arguments which are essential for the proofs of the theorems in the sec-
ond part, Chapters IV, V, and VI. These chapters all deal with the asymp-
totic distribution of the empirical distribution function of the eigen-
values of a symmetric random matrix from the points of view of weakening
the conditions placed on the distribution of the elements of the matrix
and of strengthening the mode of convergence of the empirical distribu-
tion functions. The last part, Chapter VII, discusses results of the
same type, i.e. asymptotic distributions of the empirical distribution
function of the eigenvalues of random matrices, for the Gaussian ortho-

gonal ensemble [10], a Toeplitz ensemble [5], and a Wishart ensemble.

2. NOTATION, DEFINITIONS AND PRELIMINARIES

2.1 Random Matrices
let (0,7,P) denote a probability space, i.e., I is a nonempty abstract

set, 7 is a o-algebra of subsets of , and P is a probability measure on J;



and let (Rn,Bn) be the measurable space where R is n-dimensional Fuclid-
ean space and Bn is the Borel g-algebra of subsets of Rn.

A mapping X : Q -+ R is called a random vector if {w e Q : X(w) e B}

e 4 for all B ¢ Bn. When n 1, X is called a random variable.

A mapping A : Q x R -~ R is called a random operator if Alw)[x] is
for every x ¢ Rn a random vector. A random operator A is said to be
linear if A(w) [, + BXEJ = a Alw) [le + B Alw) [X2J for every w e Q,
X5 X5 € Rn and o, B ¢ Rl.
A linear random operator defined by the n x n matrix

) n

(2.1.1) A = (a i,j":l

i3

where the aij are random variables is called a random matrix. Thus, a

random matrix is a linear random operator on Q x Rn to Rn'
Throughout the paper all random gquantities will be assumed to be

defined on some fixed probability space (Q,7,P).

2.2 Continuity of Ordered Eigenvalues
It is established in this section that ordered eigenvalues of sym-
metric random matrices are indeed random variables.
The following lemms is needed. Denocte by’ki(A), i=1,...,n, the
eigenvalues of any (n x n) matrix A.
Temma 2.2.1: Let A be an (n x n) matrix and suppose ¢ > O is given. Then

there exists a & > 0 such that for any matrix D = (4,.) " such that

ij371i,3=1
n
ixjfl }dij] < %, there exists a permutation ¢ of {1,2,...,n} for which
3=
/ y s
(2.2.1) ‘xi(A) Ac(i) (AD)] <e, i =1,...,n .

A proof of this lemma may be found in Ostrowski [13].



Denote by Kl(A) < XQ(A) <oou< xn(A) the ordered eigenvalues of any
(n x n) Hermitian matrix A.
Corollary: The ordered eigenvalues kl’k?""’kn are continuous functions
of the elements of the Hermitian matrix A - (aij).
Proof: The proof is by contradiction. Iet A = (aij) be given. By the
above lemme it is known that for a given ¢ > 0 there exists a » > 0 such
that for any A' - (aij') such that igjxl |aij - ai’j' < & one has for a

suitable permutation, o, of {1,2,...,n},

(2.2.2) lxi(A) - Ao(d) (A")] < e

ofi

for i =1,...,n. Assume lxi(A) - xi(A')] > e; to be definite assume
\i t 1 >
)\i(A )y > )\i(A). Then xl(A) << )\i(A) < Ai(A ) <o.o< xn(A ). With each
kj(A), j=1,...,1, is associated Kd(j)<A ) such that
- ' t ' S
|xj(A) x0<j)(A Y| < e. Rut only kl(A ),...,xi_l(A ) are available for

this purpose since xi(Af) - xi(A) > ¢ and hence xi(A') - kj(A) > e,

U}

j=1,...,1. Thus, one must conclude [xi(A) - xi(A')l <z, 1= 1,..0,n0.

This completes the proof.
n

et A = (a..) be a random matrix such that a..

e /) e . = 8. . A.85.
ij’i,j=1 ij Ji

(referred to as symmetric random matrix), and denote by xl(A) < KQ(A)
<ewo= kn(A) its ordered eigenvalues. Then by the above corollary the
ordered eigenvalues xi(A) are random variables since they are continuous

functions of random variables.

2.3 Modes of Convergence
Three types of convergence of a sequence of random variables are
considered in this paper: convergence in law, convergence in probabil-

ity, and convergence almost surely. Let X be a random variable and let



(x )

n-1 be an infinite sequence of random variables; let F and F denote

the distribution functions of Xn and X respectively.

The sequence (Xn}ﬂil is said to converge in law to X as n - », writ-
ten Xn 4 Xasn- o, if Fn(x) - F(x) as n - » at all points of continuity
of F.

The sequence {Xn} ®. is said to converge in probability to X as

n=1

n -+ «, written Xn £ X as n - «, 1f for any given ¢ > O,

(2.3.1) P(IXn - Xl >e)-0 asn - .

The sequence {Xn} ” is said to converge a.s. to X as n -~ «, written

n=1

Xn -+ Xa.s. asn— o, 1f

(2.3.2) P({w : lim Xh(w) = Xw)}) =1
oo
The following implication structure exists among these modes of con-
vergence: Xn ~ X a.s. as n -+ o implies Xn -~ X as n -~ « implies Xn;é X

as n — oo,

2.4t Empirical Distribution Function
Let {Xl,Xg,...,Xn) be a set of random variables. For any B ¢ 7, let

IB denote the indicator function of B,

1 ifwe B
(2.-.1) T(w) =
Oif w ¢ B .

The empirical distribution function of {Xl,X ..,Xn} is a mapping

22"

Fn : Rl x Q- [0,1] defined by



n

1
(2.h.2) F (x)(w) == » I (w) .
n n .7 [Xie (~e0,x) ]
Iet A = (a..). " be a random Hermitian matrix. Tet
n ij7i,j=1

kl(An) <X, (An) SeeeSny (An) denote the a.s. real ordered random eigen-
values of A . Denote by W the empirical distribution function of {xl(An),
xP(An),...,xn(An)}. The basic question examined in this paper is (for any

X € Rl): how does Wn(x) behave as n - »9

2.5 Bome Lemmas
In this section are listed some lemmas which will be used below.
Given a random variable X and a sequence of random variables {Xn}ﬁil’
let Fn and F denote the distribution functions of Xn and X respectively.
Furthermore, let

(2.5.1) o = IP X dw(x)

k
and Ueon * I X an(x)

Ry

define the kth moment of the distribution functions F and ¥ respectively,
if they exist.

Lemma 2.5.1: If, for k > ko arbitrary but fixed, the sequence ak)n - ak
finite, then these sequences converge for every value of k, and if the
sequence {ak}gzl uniquely determines ¥, then Fn(x) - F(x) as n » » at all

points of continuity of F.

A proof of this lemma may be found in Loeve [9].



For any infinite sequence of sets, {An}ﬁil’ A € 4, define

. o [oo)
(2.5.2) lim sup A = N u A
n-—+ o m=1 n=m

Lemma 2.5.2: Xn-~ O a.s. asn - if and only if for all « -~ O

(2.5.3) P(lim sup (v : ‘Xh(w>‘ >e} -0
n — o
A proof of this lemma may be found in Chung [3].
lemma 2.5.3: (Borel-Cantelli) If nzl P(An) < w, then P(limﬁsip An) - 0.
A proof of this may be found in Ioeve [9].
Let Wn be the empirical distribution function of {Xl’X2’°"’Xn}' TLet

W be a distribution function which is uniquely determined by its sequence

of moments, {ak}gfl' Ilet us define

I
s
b

o
=
=
py
o)
B

(2.5.4) M (o)

il
B
™
W
~~
€
~—r

. P P
Lemma 2,5.%: If Mk,n >0y asn -~ for all k = 1,2,..., then wn(x) > W(x)

as n —~ =, at all points of continuity of W.

Proof: The following result is used to establish the lemma.: Xh £ X as

n - o if and only if every subsequence {Xn.} contains a subsequence which
converges a.s. to X. lLet {ni} be any subs;quence of the positive integers.
Then

(2.5.5) J x5 W (x) £ [ < aw (x)
R i R



for all k = 1,2,... . By the diagonal procedure it is possible to select

a subsequence {ni} of (ni} such that
k k
(2.5.6) j X AW, (x) - f X dW(x) a.s.
R i R

for all k = 1,2,... . Then by Lemma 2

(2.5.7) Wn,(x) - W(x) a.s.
i
The above quoted result then gives wn(x) 24 W(x) as n - » at all points of

continuity of W. This completes the proof.

5. COMBINATORIAL ARGUMENTS

The following combinatorial lemmas are of central importance in the
proofs of the 1limit theorems to follow. They are slight extensions of
results given by Wigner [17].

Denote by Ak,n’ k>1, n>1, the class of all finite sequences
f:{1,2,...,k +1} - {1,2,...,n}. Any ordered pair of positive integers,
(i,3), will be called a step. The step (j,i) will be called the reverse

step of (i,J). With each f ¢ Ay

is associated a sequence 8o {1,2,
2

.+,k) - {all steps} defined as follows: g.(v) = (£(v), £(v+1)),
1 <v < k. The sequence gf will'be called the sequence of steps associ~

ated with f. The cardinality of any set A will be denoted by #A. Let

(3.1) Dp = (f(1), 2 <1<kl ¢ £(1) ¢ {£(1),...,f(i-1)}} ,

and let df = #Df + 1. By definition, f has b different members if and



10
only if d, =b. Iet #(i,j)f denote

(5.2) 4(g,(v) ~ (£(v), £(wil)), 1< v <k : £v) - 1, £(w1) = 3] .

For 1 <y <k, gf(v) = (f({v), f£(v+1l)) is called a free step if and only
if £(v+1) ¢ {f(1),...,f(v)} and a repetitive step if and only if f£{v+1)

e (£F(1),...,F(v)). Iet

(5.3) P (gpv), 1<

A
<
IA

k : gf(v) is free} ,

A\
<
A

Rp = {gp(v), 1< v <kt g (V) is repetitive]

Tt is immediate that

(3.4) #Fp + #Rf =k

and #F, = #[gf(v), 1<v<k: gf(v) ig free}

= #{F(v+l), 1 <v <k : £(vi1) £ {£(1),...,f(V)}]

= #HFML), 2 < v <kl 2 £(v) ¢ (£(1),...,f(v-1)}]}

(3.5) #F = 4D, =4, - 1 .

lerma 5.1: Let f e A Dbe such that if (i,3) € {gf(l),gf(E),...,gf(k)},
J

then #(i,j)f + #(j,i)f >2. Then d_, < [%] + 1.

f
Proof: ILet f e Ak,n satisfy the conditions of the lemma. If f(i)

e {(f(v), 2 < Vv <k+l : £(v) £ (F(1),...,£(v-1)}} then (£f(i-1), £(i)) is
a free step. The condition of the lemma implies at least one step among
gf(i),...,gf(k) must equal (f(i-1), £(i)) or (£f(i), f£(i-1)) (no step
among gf(l),...,gf(i—Q) equals (f(i-1), £(i)) or (£(i), £(i-1)) since

£(1) ¢ {£(i),...,£(i-1)}). Any such occurrence, say (f(4-1), £(£)), must
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be repetitive since £(£) ¢ {f£(1),...,f(£~1)}. Hence with each free step

is associated a repetitive step which is equal to the free step or its
reverse. This implies #Ff < #Rf, since all free steps are different. This,
with (1), implies #F, < [%]. Hence, by (3.9), do - 1 = #Ff < [g], or
df < [%} + 1. This completes the proof of Iemma 3.1.

Temma 5.2: Let f e A n be such that:

k,

(1) 1 (1,3) ¢ (8p(1), 8o(2),...,8,(K)), then £(1,5), + #(3,1)

[ Y
<3

2
(i1) £(4) = £(#+1) for some £, 1L < 4 < k .

Then d. < [gJ .

Proof: 1If if is constant one is through. Assume f is not constant. If
f(4) = £(4+1) for some £, 1 < 4 < k, a new sequence of steps may be formed
from gf(l), gf(Q),...,gf(k) by omitting all those steps equal to (£f(4),
£(£+1)) (there will be two or more such steps, by condition (i)). The
sequence of steps thus formed 1s associated with a sequence h : {1,2,
ceayi) - {1,2,...,n), 2 <1 < k-1, (a lower bound of 2 since f is not con-
stant) which satisfies condition (i) and which is such that dh = df.

. This completes

foe

Lemma 5.1 then gives d

v

w

- i1y, k-2 -7
erd S F ) 1S 0g

the proof of Iemma 3.2.

N

Lemma 3.3: Let k be even, say k = 2v, ILet f ¢ AQv 0 be such that:
2

(i> if (i)J) € {gf(l))gf(e))"')gf(g\’)}} then #<i)3)f + #(J)i)f __>_ 2,
(i1) £(1) = £(ov+l);

(iii) df =y o+ 1,

1f (i:J> e {gf(l>,gf(2>,---,gf(2\)>}, then #(i)j)f = l, :&<J’i>f o= l.

Proof: Iet f ¢ A satisfy conditions (i), (ii), and (iii) of the lemma.

2Vv,n

(For n > v + 1 such an f is easily constructed. For example, let f(1) = 1,



i2

£(2) =2, £(v) = v, £(vil) =V + 1, £(v2) = v,...,f(ev) = 2, £(2v+l) =1.)
Lemma | shows d, <V + 1. By lemma 8§ one must have f(v) £ £(v+1),

1 < g <2v. Equation (3.5) holds:

(3.6) #F, = 4D, =d, - 1 - v .

Consider the first step gf(l) = (£(1), £(2)). 1If £(1) £ (£(3),...,
f(2v-1)}, then by condition (i) the last step must be the reverse of the
first since (1) ¢ (f(2),...,£(2v)). On the other hand, if f(1) ¢ {f(3),
...,f(2v-1} the following argument applies. Let £, 3 < £ < 2v-1 be the
least integer such that f(4) = f(1). Assume f£(4-1) £ £(2). Condition
(1) implies the repetitive step gf(z—l) = (£(2~1), £(1)) must be matched
by at least one further occurrence among gf(ﬁ),...,gf(Qv) of & step equal
to (£(g-1), £(1)) or (£(1), £(£-1)), these occurrences being repetitive
steps, since no free step equals (f(£-1), £(1)) or (£(1), f£(£-1)); which
is so because: (1) the first step does not since f(£-1) £ £(2); (2) no
step among gf(E),...,gf(E-E) involves an f£(1); and (3) any further free
step among gf(ﬁ),...,gf(Qv), say (f(i-1), £(i)), could not have (i)

= £(1) or f(i) = f£(¢-1) because in either case £(i) e {f(1),...,f(i-1)}.
For each free step there is an occurrence in the sequence of steps of a
repetitive step equal to the free step itself or its reverse, by condi-
tion (i). Since there are v different free steps one must have at least
2y steps in the sequence equaling these or their reverses. This is apart
from the 2 or more repetitive steps equaling (f(£4-1), £(1)) or (£(1),
£(4-1)), since no free step equals either. Altogether one would need at
least 2v + 2 steps; but only 2v are available. Hence one must have

£(£-1) = £(2). Thus the reverse of the first step occurs.
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Now define a sequence h : {1,2,...,2v + 1} - {1,2,...,n] as follows:

(3-7) h(l) = f(;}), h(P) - f(i))"')h(i) B f(i+l>y'°';

h(ov) = £(2v+l) = (1), h(2v+l) = F(2).

Associated with h is the sequence of steps gh(l) = (F(2), £(3))
B,(2) = (£5), 2()),.enrg (2v-1) = (2(2v), £(1)), g, (%) = (£1), £(2)).
Tt is immediate that h satisfies conditions (i), (ii), and (iii) of the
lemma. The above argument shows that the reverse of gh(l) = (£(2), £(3))
occurs among gh(2) = (£(3), f(h)),...,gh(Ev) = (£(1),£(2)). Continuing
in the same manner one concludes if (i,j) ¢ {gf(l),gf(Q),...,gf(Bv)},
then (j,i) ¢ {gf(l),gf(E),...,gf(Ev)}. Since there are v different free
steps and 2v steps altogether, one must have #(i,j)f =1, #(j,i)f -1
for each (i,j) € {gf(l),gf(z),...,gf(2u)}. This completes the proof of
Lemma 5.3.
Lerma 3.4: Let k be odd, say k = 2v + 1. Let T ¢ A2v+l,n be such that:
(i) if (i,3) {gf(l),gf(Q),...,gf(2v+l)}, then #(1,3), + #(j,i)f > 2;
(i1) £(1) = £(ev+2) .

Then d, < v = [%] .

f
Proof: Let f ¢ A satisfy conditions (i) and (ii) of the lemma.
—— 2v+l,n
TLemma 3.1 shows df < v + 1. Assume df =v + 1, Then by Iemma 3.2,
£(4) # £f(£+1), L <& < 2v + 1. There are #Fp = #Dp = dp - 1 = v differ-

ent free steps. For each free step there is a repetitive step equal to
the free step itself or its reverse. This occupies 2v of the 2v + 1
steps associated with f. By condition (i) the remaining step must equal

one of the free steps or its reverse. In other words, #(i,j)f+#(j,i)f;f2
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for all (i,j) ¢ {gf(l),...,gf(2v+l)} except one, say (k,4), for which
#0k,2) 0 + #(2,K) 0 = 3.

All possibilities are now considered. First consider the case
#(k,z)f = 3. (The case #(ﬂ,k)f -~ 3 is the same.) With f is associated
a sequence of steps gf(l),...,gf(r),...,gf(s),...,gf(t),...,gf(2v+l),
where gf(r) = gf(s) = gf(t) - (k,4) and s - r >2, t - 5 > 2. Ilet g%(i)
denote the reverse of gf(i). From the sequence of steps gf(l), gf(g),
...,gf(2v+l) form a sequence of steps associated with a sequence
n: {1,2,...,2v-1) - {1,2,...,n} in the following manner:

(3.8)

g, (1) = gp(t1) = (£,7(642)) = (n(1),8(2))

g, (2) = gp(t+2) = (£(t+2),£(t+3)) = (0(2),h(3))

g, ((2vrl)-t) = gg(av+l) = (£(avil),£(Pv+2))
= (n((2v+1)-t),n((2v+1)- (t-1)))
g, ((2v+1)-(8-1)) = g.(1) = (£(1),£(2))

= (h((2vi1)~(£-1)),h{(2v+1)- (t-2)))

g, ((2v+1)-(t-141)) = go(r-1) = (£(r-1),k)
=(h((2v+1)- (t=-r+1)),n((2v+1)- (t-7)))

g, ((2vil)-(t-r)) = g%(s-1) = (k,T(s-1))
= (h{(2v+1)-(t-r)),h{(2v+1)~ (t-r-1)))

g, ((2v+1)-(t-r-1)) = g%(s-2) = (£(s-1),£(s-2))

= (n((2v+1l)~ (t-r-1)),h((2v+1)~ (t~r-2)))
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gh((2v+l)—(t—s+2)) = g?(r+1) = (£(r+2),4)
= (h{(2v+1)- (t-s+2) ) ,h((2v+1)- (t~s+1)))
g, ((Pvi1)- (t-511)) - go(s41) = (£,7(s42))

= (h((2v+1)- (t-5+1)),b((2v+1)- (t=5)))

g, ((2v11)-1) = g (t-2) = (£(t-2),f(t-1)) = (h((2v11)-1),h((2v+1)-3))

g, ((2v+1)-3) = go(t-1) = (£(b-1),k)  (n((2v+1)-5),n(2v+1)-2))

The steps associated with h are gf(l),...,gf(r—l),g¥(r+l),...,gg(s-l),
gf(s+l),...,gf(t~l),gf(t+l),...,gf(2v+l), in other words, the same as
those associated with f except all steps equaling (k,£) have been dropped
and some of the steps associated with f have been reversed. Tt is easily
seen that if (i,jJ) ¢ {gh(l),...,gh(Qv—Z)}, then #(i,j)h + #(j,i)h - 2,
and dh = df = v + 1. But Lemma 5.1 shows 4

contradietion, that d

L S Ve One must conclude, by

gV

The other possibility is #(k,z)f w2, #(z,k)f =1 (or, what is the
same thing, #(k,ﬁ)f =1, #(Z,k)f = 2) for which an argument similar to
the above may be given. The details are not given here. This completes

the proof of Lemma 3.4.

Wigner's Combinatorial Theorem

Iet B be the set of all £ ¢ A such that:
2v,n 2v,n

(1) if (i,3) = {gf(l),gf(z),...,gf(gv)}, then
#(i:J)f + #(j;i)f,E 2;
(i1) £(1) = £(ev+l);

(111) do = v + 1.
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Then

2v) | v+1 v+l
(3.9) #B2v,n © ST R +o(m” 7).

Proof: lLet f ¢ By, pe DY Temma 3.2, £(4) £ £(£+1), 1 < 4 < 2v. By lemma

)

5‘3) if (i7J) 2 [gf(l)ﬁ"‘,gf(g\))}) then #(iJJ)f - l) #(j)l)f = 1. A

sequence t : {1,2,...,m} - {integers} is called a type sequence if and

only if t(4) >0, 1 < 2 <m, t(1) =1, t(m) = 0, and t(g+1) - t{&)
=21, 1 <4 <m-1l. For each f ¢ B2v 0 define the type sequence

b
te : {1,2,...,2v) - {integers] as follows:

tf(z> = #{gf(i),1<i<£:gf(i) is free} - #{gf(i),l<i<z:gf(i) is repetitive).

For a given type sequence t : {1,2,...,2v} —» {integers]) one has

(3.10)

4{f e B : tf(E) = t(2), 1 <4 <2v} = n(n-1)...(n-v)

2v,n

This is so because: (1) there are n choices for f(1); (2) for 2 < i < 2y,
if (i) - t(i-1) = 1, then (£f(i-1), £(i)) is a free step and f(i) may be
any number which has not been used yet; and (3) for 2 < i < 2y, if

t(i) - t(i-1) = -1, then (f(i-1), f(i)) is a repetitive step and must be
the reverse of the step which originally led to f£(i-1) (Lemma 3.3) and
hence f(i) is completely determined. Iet Sv denote the number of type

sequences with domain {1,2,...,2v}. Then

LRSS V1

(3.11) #B = Svn(n—l)...(n—v) =8 +o(n )

2v,n

To find Sv one argues as follows. The number of type ssquences t such

that t(i) >0, 1 < i <2v-1, t(2v) == 0, i.e., no O before the last value,
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will be denocted by SQ. From such sequences one can obtain a type sequence
with domain {1,2,...,2v-2] by omitting t(1),t(2v) and subtracting 1 from

each t(i), 2 < i < 2v-1. Hence

Given a type sequence with domain {(1,2,...,2v]} let 2k be the smallest

integer such that t(2k) = O for the first time. Then &, : {(1,2,...,2k]}

~ {integers} forms a O free type sequence while t2 s {2k, ... ,2v]) =

{integers) forms an arbitrary type sequence. Hence

V Y
(3.1%) 8 = ¥ 8'8 = % 8, . S . Vv
v Xl k “v-k kol k-1 v~k

2 1,2, 00 o
These recursive equations permit the successive caleulation of the Sv'
Formally one can obtain a closed formula for them by writing

[ee]

M

t(x) = =t x .
v=0

The recursive formula (3.13) then gives

. . 2

(3.1%) t(x) = 1 + xt™(x) .

The 1 on the right hand side is necessary because (3.1%) is not valid for

v = 0. It follows that
(3.15) t(x) = (1 & (-hx)%)/ex .

Actually, the lower sign has to be taken. Tt gives
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2 v+l 2v)!
a6y s, b v Bl

And finally,

; . 2v)! 1 Vil
(3.17) #Bgv,n - ;é?%%ij? ¥ty o(n - )

This completes the proof of the theorem

Let CQk,n denote the set of all f ¢ A2k,n such that:

(1) £(1) - f(2k+1);
(i1) £(1) # £(i+1), 1 < 1 < 2k;
(iii) if (i,3) ¢ {gf(l>,gf(2),---,gf(2V)}

then #(i,j)f + #(j,i)f is even.

J \ . L -
Tet C2k denote the set of all f ¢ C2k,n such that df = Jj. By Lemma 7,
iff e C then d_ < k I KL
o < 1. -

i £ ok, n’ en d, < + 1 Thus CQk,n jgl ok, 1 and

k+1 3

# = 2 .

(5.18) ’CQK,n .Z #CEk,n

J=1

=. J _

Lemma 3.5: #Cgk, " )(#C?k 3

Proof: The relation .. determined by £ .. ¥ iff f ¢ Cgk n’ * ¢ CJ and
Sl

2k,n
(£(1),r(2), ..., f(Pk+1)} = {£%(1),f*(2),...,£%(2k+1)} is an equivalence

relation. Cgk_n is split into (Q) equivalence classes by ~, each contain-
2

ing #CE . members. Hence $CJ = (n\(#C .). This completes the proof

k,J 2Kk, 1 2k, j

T the lemma.

Using lemma 3.5, one has

k+1
(3.19) A, -z (O )(#c

)
521 J 2k, J
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1 > K41
0,177 ok, 070 0 *00 i1 ¢ AP

unsuccessful attempt to determine these numbers in a closed form was made.

Thus #Cp is determined for all n by #C

k,n
In an attempt to solve the problem the enumerations found in Table 1 were

made on a computer. It will be pointed out in the next chapter in what

context these numbers may be of interest.

k,n 2 3 L 5 6 7
3,2 1

5,5 2 20

3,k 3 60 30

3,5 L 120 120

3,6 5 200 300

b2 1

w3 | 2 8l

L4 3 250 390

4,5 . 50l 1,560 336

h,6 5 8ho 3,900 1,680

5,2 1

5,53 2 3L0

5,4 3 1,020 5,840

5,5 L 2,040 15,360 8,544

5,6 5 3,400 38,400 L2,720 5,040
6,2 1

6,3 2 1,36k

6,4 3 %,092 34,980

6,5 | 4 8,185 139,920 153,600

6,6 5 1%,6L0 349,800 768,00 214,080
6,7 & 20,460 699,600 2, 304,000 1,284,480 95,040

Table 1. Enumerations. The numbers in the body of the table are

1, 10,
R(Ch,n) = 5(5) Fhy,5) -
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L. RANDOM SIGN ENSEMBIE AND WIGNER'S CONJECTURE

4.1 Wigner's 1355 Paper

In 1995, Wigner [16] proved the result discussed below.

let A - (a..)Y . . be a random matrix such that:
n 171,31
(1) 8y5 *Bgy 8-S

(ii) (a5, < J) is independent;
(iii) P(aij ~0o) =%, 143,
P(aij iz —O) - %j) i # j,

P(ai.l =0) =1.

Tlet B denote the normalized matrix

(h.1.1) B i——'l——:An .
2C v%

Denocte by xl(Bn) < xg(Bn) <...< xn(Bn) the ordered random eigenvalues of

B and by Wn(x) the empirical distribution function of {x](Bn),xg(Bn) s
...,xn(Bn)}, i.e.,

T

Doty e (1 @

SiH

(b.1.2) Wn(x)(w) =

Then one has the following theorem.

Theorem ».1.1 (Wigner [16]): 1lim E(wn(x)) = W(x) for all x ¢ R,, where
o
W is the absolutely continuous distribution function with semi-circle

density

2%, Ixl <1

(h.1.3) wix) =
o, Ix]>1 .
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Proof: The distribution function W is uniquely determined by its moment

sequence since

® Y ® k
K -1 t.2k 2
(b.2.1) Yo~ (ik) = % —iz_;.ﬂ_ ()™ = £ J. (%)
ko &' o EH(erl) 1 2 t 1
g.J‘ eltX (l’ 2)0 ax
Ty

where Jl denotes the Bessel function of order 1 of the first kind and

0] s for k odd

k
(N.l.s) Yk_ :::J‘ X dW(X) = -

. - ’
¥ -,l;‘) ! (%"41) !

for k even

Tt is immediate that EW (x) is a distribution function in x. Thus, if it

can be esgtablished that
(h 1 6) ‘J" Xk dEW (X) -~ a8 N = o
S n k

for all k = 1,2,..., then lemma 2.5.1 will yield the desired result.
Consider the set, T, of all ordered (n-1)n/2-tuples of the numbers

+o and -o. For each <112"'"lln’125""’12n’""ln—l,n) & T define

. . . . Py \ o .
d ) ={weQ:a (=0,a,(=1i,,...,a (- i
-1,n

agg(w) = 0, agj(w) = 125,...,a2n0n) = 12n""’an~l,n’annﬁ”> ~ 0}. Then

(1 .
12,...,1n

using assumptions (i), (ii), and (iii), we have

e s, ) TR
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Nll (X)

for all points in T. One has Wn(x) = , Where Nn(x) equals the number

of eigenvalues of B less then x. Wn(x) is constant on each D, i e T;

Nn(x)i

denote these values ‘oywn(x)i =——=, 1 e T. Then, since

Q= (U Di) U N, where (U Di) N N = and P(N) = 0,
ieT ieT

(4.1.8) B, (x) = [ W (x) ap
U D

ieT

= 2 [ W (x) aF

N (x),
-y Rt
ieT n2(n—l)n7§

This shows that Ewn(x) is a discrete distribution function with jumps of

length.——YH:%757§ or multiples thereof at the eigenvalues of the 2(n—l)n/2
ne )
possible (i.e., occurrence with positive probability) values of Bn' Each

(n-1)n/2

i ¢ T represents one of the possible 2 values of Bn on (1; denote

these values by Bn(i), 1eT. let ej,e,,.. be the set of

.s€
n2(n~l)n/2
all eigenvalues of all possible values of Bn' Then we have

. . ng(nml)n/Q .
f X dEwn(x) = Sy by e’
ne 3=1 J
1 . k..
(bk.1.9) N CSAEYE 3. trace (Bn(l))
n2 ieT
1 n n k

= Z ol X I

k . . .
=+1 ieT Jl_l Jk—l A=1

2(na—l)n/Q (2G>k 2

a. . .
3pdpn (1)
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where dypy 7 9q and ajk(l) equals the value ajk assumes on Di' Inter-
changing the order of summation and denoting by Ak 0 the class of all
b

sequences f : {1,2,...,k+1} - (1,2,...,n}, one has

(4.1.10)
k
k . 1 1
I x dEW (%) = ————— % y 0 a (i)
- 2 2.
n . $+l £eB, gin 1)n/2 16T 2.1 TLYF(L+1)
20) n~ ,
where Bk,n = {fe Ak,n : £(1) = £(k+1)}, or
k
k 1 :
x dFW_(x) = ———— = bX I a ap
J " 51 geB, ier D, 4.1 TCRIE(EHD)
(26>k nE k,n i
1 k
h.1.11 = ———— E I a
( ) £l fen PEREACOLICON
(2o)k e k,n
Since as; = 0 a.s. this becomes
k
(h.1.12) f & duw (x) = —_3 5 E 11 a
- n X1 fec £{(2)F(4+1)
k 3 0 AL
(206)" n 2

where

(4+.1.13) ck,n ={f e Bk)n : £(8) £ £(2+1), £ =1,...,k}

Two cases are now considered, k odd and k even. Note that all the
random variables aij are symmetric about O, so that all odd moments

1 + —
vanish. Iet k = 2v + 1. For f ¢ C2v+l,n one has
2v+1

m . .
z?l af(z)f(ﬂ+l) = af(i)f(i+l) I ajk a.s., for some i, where m is odd and
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the product 11 ajk involves no af(i)f(i+l) or af(i+lf(i)' Then, by inde-

pendence and symmetry,

(b.1.2h) E 2:§1 Br(g)F(s+1) = F af(?)f(i+l) Bllag =0
Thus,
(4.1.15) fo2“+l AW (x) =0 = v, . -
Now assume k = 2v. One need only consider those f ¢ C for which

2v,1n
if (1,3) € [gf(l),gf(Q),...,gf(Qv)}, then #(i,j)f + f(j,i)f is even, for

otherwise the argument of the odd case applies and the term vanishes.

Thus,
(k.1.16)
[ a6 oy 2k i £(2)£(841)
R (20)" " n feDQv,n 2=1
where D2v,n = {f e CEv,n : if (i,3) e {gf(l),gf(Q),...,gf(zv)}, then
__.Q_ Y . . . 3
“(1,J)f + #(J,l)f is even). For f ¢ DEv,n one has, by lemma 3.3
2v 2v
J_ — . o
(k.1.17) E I af(i)f(z+1) = O
z::l
Thus,
2V #D2v n
(4.1.18) [ x AEW (x) = =2 .
R 2 n
By Temma 5.1, £ ¢ D is such that d, < v + 1. Thus,

2v,n £



] ( ey -‘, J
(+.1.19) #ng’n 2 #DEv,n
J=1
where D?g n = {(f e DOv n ¢ df = J}. As with TLemms 3.5, one has
-2 ~Vy
i D j - n j
(‘ 'l“ —O) #Dg\),n (J.> (#Dg\),j) .
let
v+1
B 2v,n
(h.l.gl) fl(v,n) i-—ZRT-jin P
2 n
Y o on J
2o YD L)
L7 o Ld=L ] 2V, J
(k.1.22) fg(v,n) = 5o .
2 n
Then
2
(4.1.23) jR x= dBW (x) = £, (v,n) + £, (v,n)
n
P
Since —*= ~ 0 asn-w for j = 1,...,v, one has fe(v,n) =~ 0asn=—owo ,

By Wigner's Combinatorial Theorem

I . v+l _ 2V) v+1 V41
(4.1.2&) #ng’n 3§YG%IYT n + o(n )

Thus,
VA1
(hol.25) fl(v,n) = 5 (EV)! + gén +i
2= vr(v+1)r 27V oY
and
\ 1
(4.1.26) £1(v,n) ~ —— (22!

22\) vl (v+1)1
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as n —» », Thus,

(h.1.27) [ AW _(x) ~ — (ev)t Y,

R 7Y ) (vi1)! )

\Y

as n - o. This completes the proof of Theorem 4.1.1.

Note the equation,

#

D
2v - 2v,1
(4.1.28) ij dEWn(x) = -~——~—4--22V S

derived during the course of the proof. A knowledge of #D?v n would give
vy

the sequence of moments of the distribution function Ewn(x). As men-

tioned at the end of the Chapter 3, these numbers are determined for all

1 #DQ v+l

n by a knowledge of only Dzv,l’ oy,07 ’#ng,v+l

L.2 Wigner's 1958 Conjecture

In 1958 Wigner [18] conjectured the following result. ILet

A = (a..).". . be a random matrix such that:
n ij'i,j=1
(i) By = @y A5

(ii) {aij’ i < j} is independent;
(1ii) the distribution function of each 8y 5 is absolutely continuous
with density pij;
(iv) each 855 is symmetric;
2 2 . . )
(v) E aij =g forall 1 <i, j<n;
}k

(vi) E )aij <C foralll<i, j<m,

where Ck is independent of n.
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let B An and denote by Wn(x) the empirical distribution func-

noog

tion of {xl(Bn)’h_(Bn)’""xn(Bn>} where xl(Bn) < KE(Bn) <uun< xn(Bn) are

the ordered random eigenvalues of Bn' Under the above conditions one has

Wigner's Conjecture: Ewn(x) - W(x) as n » o for all x € R, where W (x)
is the absolutely continuous distribution function with semi~circle den-

sity

2 2.
(h.2.1) wix) = {1 A=), Il s

0 , x| >1.

Tn the next chapter we shall discuss work of Grenander [7] who
sketched a proof of convergence in probability of the empirical distribu-
tion functions to the semi-circle law. We shall also discuss the work

of Arnold [2] in this connection.

5. THE RESULTS OF GRENANDER AND ARNOLD

5.1 Convergence in Probability

Grenander [7] sketches a proof leading to the result given in this

section,
Let A = (a..)? . . be a random matrix such that:
n ij'1,3=1
(1) aij 22z aji a.s;;

ii) {a.., i < j} is independent;
1J) — 2

(iii) 253 is symmetric;

. 2 2
(iv) E 833 =03

(v) |E a§j| <C., k=1,2,..., where C, is independent of n.

k’
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Let B]‘]_ =
20 ,/n

of {Xl(Bn),xz(Bn),...,An(Bn)}, where xl(Bn) < xg(Bn) <. < xn(Bn) are the

An and denote by Wn(x) the empirical distribution function

ordered random eigenvalues of Bn.

Theorem 5.1.1 {Grenander [7]): Wn(x) £ W(x) as n —+ o for all x ¢ R , where

W is the absolutely continuous distribution function with semi-circle den-

4

sity

2 2\

T (l-—X )~) IXI < 1
(5.1.1) w(x) =

0 » fxl >1 .

Proof: Tet
(5.1.2) = K aw (x)
5.1, Mk,n = IR A fn x) .

1

By Temma 2.5.1 it will be sufficient to prove M. 2 Y = r " aw (x) as
’ v

n - o for all k = 1,2,... . This will be achieved in two steps. First

il

it will be shown that E Mk n Y 8snTeas for all k = 1,2,... . Then
J
X 2
it will be shown that B - F ~0Oasn—-o for all k = 1,2,...
(Mk,n Mk,n> r=

Tchebichev's inequality,

B0 - P o)
5 2 2 2 s

(5.1.3 P - E > e
(5.1.3) (‘Mk,n Mk,n’ ) -
. - P o .
then gives Mk,n - ka,n = 0agn o for all k = 1,2,... . This and
. P
- = s n -~ 1k = “on
EMk,n Y imply Mk,n Yy 88 0o for all k = 1,2,
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It is now shown that EMR n Yy @8 n e, Iet Ak n denote the class
2

J
of all sequences f : {1,2,...,k+1} - {1,2,...,n}. Then

n
. _ k el
(5.1.14) B = F [ W (x) = B 1%1 A (B)

= B l trace Bk
n n

k
1
i B ————ee % I a
X1 fen g1 £(e)f(e+1)
(20)k n2 k,n
S B
. B ogen_ g1 ST
(26)™ n~ ’

- - . / 3
where Bk,n = {f e Ak,n : £(1) = £{k+l)}. As in Theorem 4.1.1,two cases
are considered, k odd and k even. For exactly the reasons given in the

proof of Theorem 4.1.1 one concludes immediately that for k = 2y + 1

(5.1.5) EM2v+l,n =0 = Y2v+l '

Now let k = 2v. If fe B, _ 1is such that ther exists an (£(1),£(i+1))

’

such that #(f(i),f(i+l))f + #(f(i+l),f(i))f = 1, then by independence and

2y 2V
symmetry, E EH

L 2reye(es1) = F 2ea)e(ia) Bl Pe(e)p(ga) ¢ O Thus
L4
(5.1.6) ® 1 BoG
5.1.6 M, e 5 a ,
2v,n (20)2v VL foC 41 £(2)£(4+1)

2v,n

b

where C, = {f e Bgv,n . if (1,3) e {gf(l),gf(2),...,gf(Qv)}, then
2

#(i,j)f + #(j,i)f >2}. By lemma 3.1, dp < vil for all f ¢ C2v,n .
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Let
(5:1.7) £, (v,n) = ——sk .
5.1.7 £, (v,n) = ‘ b3 E I a
! (20)2Y n¥*L pogv Tl 221 fA)etn) 2
& 2v,n
1 o)
f,(v,n) = % E I a,, ,
2 (20)2v v+l v 21 £L)T(4+1)
f€jglc2v,n
J - . .
where CEv,n = {f e C2v,n : df = j}. Then
(5.1.8) EMQv,n = fl(v,n) - fg(v,n) .

By assumption (v) one hag

D v .
2v s #cY

(20)"Y V™ 5 2vn

(5.1.9) [£,(v,0) | <

for some constant ng < w, Or

vV 1 J'
#
Yoy 551 (j)(‘c2v,j)

(EO)EV nv+l

(5.1.10) [£,(v,n)] <

n
2)
Since —G%i ~0asn-w for j =1,...,u., one has fg(v,n) - 0as n - o,
n

Iet £ ¢ C;:fn. Then, using Lemma 3.3 one has
2v o
4 J —
=1
Hence
#C\H—l
(5.1.12) £, (v,n) L2V, D

+
22v nv 1



By Wigner's Combinatorial Theorem

vll
(5.1.13) fl(v’n) . (2v)1 . gén )
277 vi(uel)r 2V ¥t
Hence
2v ) !
(5.1.1%) £ (v,m) -+ (20 Vo
277 vi(v+l)! =

as n - o, Thus EMk n o Ygasn-oe for all k = 1,2,... .
2

Tt will now be shown that E(M - LMk ) - O as n ~ @ for all
k=1,2,... . For fe A2k+l,n let E(f denote E, ?1 £(1)£(i+1)

2kl Sl

e Pe(3)e(501) T B Hl £()£(i41) Tilie Pr(g)e(ge) One bas after

some manipulation

. 2 1 -
(5.1.15) E(Mk,n - EMk,n) = W fk- [B(f)]
0 £Bok41,n

where B = {f e A (Df(1) = £(k+1l); (i1) £(k+2) = £(2k+2);

2k+1,n 2k+1l,n -
(iii) if (i,3) € {gf(l),...,gf(k),gf(kﬁe),...,gf(2k+l)}, then #(i,j)f
+ é(j’i)f,f 2.}. Condition (iii) follows from the independence and sym-
metry conditions. It allows one to conclude, by arguments exactly as

those of the proof of Iemma 3.1, that df < k+1 for all f ¢ ng+l,n . By

assumption (v),

(5.1.16) [E(f)] < By <

where 6k 1s independent of n. Thus
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o, (#B )
2 _ k'Y 7T2ktl,n
6.1.17) E(Mk,n EMk,n) = (20>2k‘nk+2
Now
k+1 j
2N — 5
(5.1.28) #Bokil,n ~ 7 *Bokl,n
k+1 n
= 2 (5) (B g )
G-1 J 2k+1,J
N e e
where 82k+l,n = {f ¢ B2k+l,n P = j}. Thus
k+1 n 3
5. .o, (L)YH#B )
, 2 k j91 Y3 2k+l,n
.1.19 0 - 2
(5.1.19) EM o - BN o) S (20) 2K K2
n
)
Since HE%? - 0asn~—~o for J - 1,2,...,k+l, one has
Kt
(5.1.20) E( - E )2 - 0
- Dﬁg,n. hﬁs,n

as n -+ o». This completes the proof of Theorem 5.l1.1.

5.2 Convergence Almost Surely

Arnold [2] sketches a proof leading to the result given in this

section.
et A = (a..)? . . be a random matrix such that:
n ij7i,j=1
(1) By = 8y5 @84

(i1) {aij, i < j} is independent;

3’ i # J are identically distributed with distribution

function ¥, and the a;; are identically distributed with dis-

(1iii) the a;

tribution function G;
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(iv) B a,, = j xdF = 0, 1 £ J;

x2 ar ::02, i+ 3;

~_
<
e
~—
—
Q&
p—_g
ea}
o
i

2 2
N [ x"ac <o,

i
B a [x ar <= ;

Il

(b) Ealil ::J'xu 4G < e ,

Eaé.:IXGdF<m .
ij

Iet B = L An and denote by'wn(x) the empirical distribution function

n 20 ./n

of {Kl(Bn),)\E(Bn),...,)\n(Bn)} where )\l(Bn) <.o.o< )\n(Bn) are the

ordered random eigenvalues of Bn’ Arnold [2] then gives the

Theorem 5.2.1: Under conditions (i)-(v) and (vi)(a), wn(x) 13 W(x) as n » o

for all x ¢ R, and under conditions (i)-(v) and (vi)(b), Wn(x) ~ W(x) a.s.
as n — o for all x ¢ Rl, where W is an absolutely continuous distribution

function with semi-cirele density

’ lxlfl

(5.2.1) w(x) =
0 ’ lx] >1 .

6. ON WICNER'S CONJECTURE (1958)

6.1 Theorem

We shall prove in this section the following theorem.

n

..). . , be a random matrix such that:
ij’i,j=1

Iet A = (a
n
(1) 2y 7 aji a.s.;

(i) {aij’ i < 3} is independent;




(iii) B 2y = 0, 1L<1i, j<n;
(iv) E aij = op, 1 <i#j<n;
(v) & o |

< Mk’ 1 <i, j <n, where M is not dependent on n.

let B

. A and denote by wn (x) the empirical distribution function

20 ,/n
of {?\l(Bn),)\Q(Bn),...,)\n(Bn)}, where )\l(Bn) < )\Q(Bn) <ou }\n(Bn) are the

ordered random eigenvalues of Bn.

Theorem 6.1.1: Wn(x) - W(x) a.s. as n » » for all x ¢ R), where W is an

absolutely continuous distribution function with semi-circle density

2 2\5

E (l‘"x )2) ‘X' S 1
(6.1.1) w(x) =

0 , x>
Proof: t is to be proved that
(6.1.2) P(1lim wn(x) = W(x)) =1 .
Nn—co
Iet
(6.1.3) :jm xde(x)
T Mk,n o n

and

*® x
Yy = fﬁ X Aw(x)

0 , odd k

k!
k k., k
2 (»2—)1(§+1)!

, €ven k.

By Iemma 2.5.1, it will be sufficient to prove



\N
i

(6.1.5) P(1lim My =Y k21)-1.
Tt-co ’

This will be true if

(6.1.6) P(lim M= y,) = 1
Tl 4

for all k > 1. By the triangle inequality

(6.1.7) M - il S - mn b dme vl

and it will be sufficient to prove:

(6.1.8) (1) UmEM = vy, k> 1

(2) P(%ig (Mk’n - EMkvn) =0) =1, k>1.

For (2) it will be sufficient to prove

co

(6.1.9) 5 oEM, - BM )T <e, k>1.
n:l ) 2

This is seen as follows. The statement

(6.1.10) P(lim (M, - EM, ) = 0) = 1

is equivalent to

(6.1.11) P(lim sup {w : IMk o (@) - EM, n' >e¢ ) =0

n - o

1

for every ¢ > 0, by Lemma 2.5.2. ILet An ={w : le,n(w) - EMk,n‘ >z},

It is to be shown that P(lim sup An) = 0. Tchebichev's inequality gives

n - o
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R - B )
: .

€

(6.1.12) p(lm, - EM | >e) <

. ® 2 . @ .
This and nil E(Mk,n - EMk,n) < implies 7, P(An) < @, Then Iemma 2.5.5
(Borel-Centelli) gives P(lim sup An) - 0. Altogether, then, it will be

n - o

sufficient to prove:

(6.1.13) (i) iif EMk,n =Y k21
sy 2 2
(ii) o1 E(Mk,n - EMk’n) <ew, k>1.

The proof of (i) follows.
One has, letting Ak,n denote the class of all sequence f:{1,2,...,
k+1} - {1,2,...,n},
n

k ]
£~
(o.l.l.) EMk, =E I A AW (x) =E = .Z‘ A

T @)

=B

L trace Bk
n n

k

II
—'“+1 feB L:::l

1
=
™

S2(0)£(2+1)

w

TI me———eeman 7 E H

2=1
(2o)k n2 k,n

Sr()f(s1)

where Bk,n = {f e Ak,n : £(1) = £(k+1)}. Iet fe Bk,n be such that there

exists (£(i),f(i+1)) ¢ {gf(l),gf(Q),...,gf(k)} such that #(f(i),f(ifl))f

+ #(f(i+l),f(i))f — 1. Then, by the independence and zero mean assump-
k k
sions, B/l pigyp(gen) — © Peeaye@en) ©ah fe(o)e(ea) T 00 TS
L43
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one has

1
(6.1.15) B M --————k—— 5, B n e (0)2(0eL)

(20)% n2 k,n

where C, = {f e Bk,n . if (i,3) e {gf(l),gf(Q),...,gf(k)}, then #(i,j)f

3

+ #(i,j)f >2}. Two cases are now considered, k odd and k even. Iet

k=2v +1. By Lemma 3.1, df <v + 1 forall T ¢ 02v+l a Thus
2
(6.1.16)
1 vl 2V+1
E M = N, E 0 a
2u+l,n vwé 5.1 fec d 21 T(2)f(e+1)

TTevil,n

J N . . .
where 02v+l,n = {f ¢ CQv+1,n dp = j}. By assumption (v),
v+l
(6.1.17) By af(f&)f(zﬂ)' <D, <,

£=1

for some constant Dv' Hence

v
J

D j- # Pv{l n

)

(6.1.18) BM ST h ) 4

2v+1,nl -

v
(oc
v+l

v J= &) ( ><#C)v+l J
(26)/v+l n(v+l)k

()

Since v+i) -~ 0asn~o for j=1,2,...,v+l, one has EM,

" 2v+1l,n
n - o. Now consider X = 2v. By Lemma 3.1, df < v+l for all £ 2 C

- 0 as

2u,n °
Let
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2V
1
(6.1.19) £ (v,n) = —~—— % E T a
1\ 2v v+l £(2)f(g+1) 2
(o) fec? L y)
NV,
(v,n) L 2
f (v,n by E H
2V +1
(20)7 n” fe Yo d £-1 TE()£(241)
J= =5 2v,n
Jo_ , . - N
mmrecghngf{fe %mﬂ1'df"ﬂ' Note that
(6.1.20) EMgv,n = fl(v,n) + fg(v,n)
By assumption (v),
2v
-
for some constant SV. Thus
5 zl #CEJ i,
(6.1.29) £, (v,n)] < 2
- (20)“
#
o i el )
(20)“ nv 1

n
()
Since “C%T ~0asn-wo for j =1,...,v, one has fg(v,n) -0 as n- o,

By Lemma 3.3,

2v
(6.1.23) E I
2=1

2y
ey F(a1) °°F

for all f ¢ Cv+l, . Thus
2v,n



o (#Cc 7))
(6.1.24) fl(\),l’l) = oy a:j?
(20)"" n

By Wigner's Combinatorial Theorem,

y v+l

(6.1.25) fl(v,n) Y el r— ; 3+l :

2™yt (ve)t (20)Y n
Thus

v
(6.1.26) £, (v,n) — 5 (29) ! =Y,
2V oyt ()t v
as n —» o, Altogether
7 - N (2\))! -
(6.1.27) B, 0 T “ Y,
277 vl (v+)!

as n - wo. This completes the proof of (i). The proof of (ii) follows.

2
. _ o ‘e
Consider E(Mk,n EMk,n) . Tor fe A2k+l,n let E(f) denote
k 2k+1 k 2k+1
ENI a.,. . T 8y . v~ BN a.,. . B I By .
I Tt B frwyen) B e
One has
2 1
(6.1.28) E(Mk’n - EMk,n) s © E(T)
N
(20)"" n f€B2k+l,n
~ S - . (44 ) = P(ok2):
where 32k+1,n = {f e A2k+1,n‘ (i) £(1) = £(k+1); (i1) £(x+2) = F£(2k+2);

(111) (£501),20(2), v or2p(0)) N (8p(k2), ..o gp (1), g5 (002) o,
g§(2k+1)} £ ¢, where g?(z) denotes the reverse of g.(4); (iv) E(f) = 0}.

Reasons for conditions (i) and (ii) are obvious. If condition (iii) is
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not met by f, the term in the summation corresponding to f will be zero,
by the independence assumption. Condition (iv) is trivial. Tt will now
be shown that if f ¢ B2k+1,n then d, < k. Using condition (iii), suppose,
for the sake of definiteness, that gf(s) = gf(t) for some s, 1 < s <K,
and some t, k + 2 <t < 2k+l. (The only other case to consider is when
gf(s) = g?(t) for some s, 1 < s < k, and some t, k+2 <t < 2k+1, for which
the following argument also applies.) Define a new sequence h€A2k+l,n
as follows: h(1) = f(s), h(2) = £(s+1),...,a(k-s+1) = f(k), h(k-s+2=T(1),
h(k-s+3) = £(2),...,h(k) = f(s-1),h(k+1) = f(s), h(k+2) = £(t+1), h(k+3)

= F(t+2),...,h(2k-t+2) = £(2k+1), h{Pk-t+) = £(k+3),...,h(2k+1)-F(t-1),
h(2k+2) = £(t). Tt is immediate that d, = dg. The sequence of steps as-

sociated with h is

g,(1) = (£(s),f(s+1)), ..., (k-s41) = (£(k),T(1)),
g, (k-s+2) = (£(1),£(2)),...,8,(k) = (F(s-1£(s)),
gh(k+1) = (F(s),T(t+1)) = (£(s),T(s+1)), ...,
gh(Qk—t+2) = (f(2k+l),f(k+2)),gh(Qk—t+5)

= (F(k+2),£(k+3)),...,8, (2k+l) = (£(t-1),7(t))
It is true that:

(1) h(1) = n(2k+2);

(ii) if (i:j> € [gh(l),gh(Q),.--,gh(2k+l)},

then #(j,i)f > 2.

(i) is immediate. To see (ii) one proceeds as follows. If (i,j) equals
5, (6i1) = (£(6),£(641)) or gx(kel) = (£(51),£(t)), then #(1,3) ~ #(3,1)y

> 2 since gh(l) = gh(k+l). On the other hand if (i,j) equals any other
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step among gh(l),...,gh(k),gh(k+2),...,gh(2k+l), and #(i,j)h +»#(j,i)h

then the independence assumption implies

(6.1.30)
k Ok+1 k 2k+1
S Frwea) N Pe@ea) T E Brea B Fr)en))

k 2k+1 Xk .
S E @) L e T B m@nee) B e O

contrary to the assumption that for f ¢ B

ok+1,n this term is nonzero.

Hence h must satisfy condition (ii) above. Iemma 3.} then applies, giving

d, =4 < k. Now consider

f h
2 1 K
6.1.31 E - E T e P E(f
( ) (Mk,n Mk,n) (?G\Zk nk+? 5=1 feB J (£)
e ok+1,n
J ; ] . .
where B°k+l 0 {f e B2k+l,n : df = j}. By assumption (v), one has
(6.1.%2) le()] < G, <
‘mrsmmcmwmm;%. Thus
k
¢ Lu (FB2 )
£ zz - 2 ) v J:l 2k+l,n
(6.1.3%) 'E(Mk;n EMkvn) e (QG)EK nk+e
_ v J= l ( )(#sz+l J)
(gc)Ek nk+2
Since
n
°  (3)
(6.1.34) b3 "E%E < o
n=1l n



for j - 1,2,...,k, one has, by the comparison test for series

[o2]

(6.1.35) 5
n=1

E(Mk n =~ PMy n)gl <@

which implies

0

T 2
(6.1.36) s h(Mk’n - EMk,n)

< o

which was to be proved. This completes the proof of Theorem $.1.1.

6.2 Comments
A 1ittle reflection will reveal that the assumption of zero means

for the diagonal elements is not necessary. For, in proving EMk n " Yx

2

as n —» « it was established that the only sequences of interest were

those f e A, for which (1) £(1) = £(kx+1) and (ii) if (i,3) ¢
b4

{gf(l),...,gf(k)}, then #(i,j)f + (j,i_)f > 2. Condition (ii) alone

implies d_ < [g] + 1. TIf one assumes, however, that (iia) if (i,j) <

f
{gf(l),...,gf(k)}, where i / j, then #(i,j)f + #<j’i)f,2 2, then condi-

tions (i) and (iia) together imply dp < [%J + 1. TFor odd k, say k:=2v+l,

one has EM

2v-Fl,n - 0 = Yo, 88 0R7 exactly as before. For even k,

say k = 2v, the only sequences of interest are those f such that d_:= v+1 .

f

If d, = v + 1, then (i) = £(i+1l) for some i is not possible, since under

conditions (i) and (iia) arguments similar to those of the proof of ILemma

3.2 would give d, < v. Thus Wigner's Combinatorial Theorem holds under

f

conditions (i), (iia), and (iii) de = Vv + 1; application of this theorem

then gives EM?v n ng as n -~ » exactly as before. Note that use of the
~V g

property of zero expectation of diagonal elements has been eliminated by



substitution of condition (iia) for condition (ii). Similar arguments
also hold for the proof that ;l BOL , - EMk,n)E < .

That the off-diagonal elements all have second moments equal to 02
is not necessary. An examination of the proof shows that it is suffi-
cient to assume that the ratio of the number of elements of the matrix
having the same second moment to the total number of elements of the matrix
approach 1 as the dimension becomes arbitrarily large.

It should be noted that Wigner's conjecture of 1958 is a special
case of Theorem 6.1.1. Wigner's conjecture is not a special case of the
theorem indicated by Arnold, for Arnold agsumes the diagonal random varia-
bles are identically distributed and the off-diagonal random variables
are identically distributed. Arnold does drop the requirements, given by
Wigner, of symmetric random variables and the existence of higher order
moments. Theorem £.1.1 is not only more general than the result conjectured
by Wigner in the sense that it deals with almost sure convergence, but it

also drops Wigner's regquirement of symmetric random variables.

7. RELATED RESULTS

7.1 The Gaussian Orthogonal Ensemble
In quantum mechanics, under certain symmetry conditions, energy is
represented by a real symmetric matrix X. If for a first observer energy
ig represented by X, then for a second observer with a rotated coordinate
system energy is represented by 0X0', where O is the orthogonal matrix
relating the axes of the observers. Descriptions based on X and 0X0O' are
completely equivalent physically. Thus if a statistical hypothesis is

made on X then it is natural to make the same statistical hypothesis on
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0X0'. The following makes this precise and characterizes the possible

statistical hypotheses,

Tet {x..]

13
bles on a probability space (,7,P). ILet

i<y i,j = 1,2,...,n be an independent set of random varia-

11 Me *1n
(7.1.1) X =
o1 oo *on
an xn2 Xnn
where x,, = X.. a.s., and let
1] J1l
(7.1.2) Yy = (vg;) = OXO'
T 0 ij ’

where O is any orthogonal matrix. Iet x = (Xll""’xln’xeg’""Xgn""’
o .0 0 0

Xnn) and Yo = (ygl,...,yln,yeg,...,ygn,...,ynn). Let {8 denote the Borel
o-algebra of subsets of the n-dimensional Euclidean space Rn' We do not
consider the case where x = 0 a.s.

This theorem seems to have been first proved in this context under
more restrietive conditions than those given here by Porter and Rosenzweig
(151.

Theorem 5:
(7.1.3) Pla ¢ B) = P(yo e B)

for all B ¢ Bn(n+l

with mean y and variance 2a2 and xij’ i < j, is normal with O and vari-

) /2 and all orthogonal O if and only if Xs4 is normal

2
ance a2, for some constants g and a~ > Q.

A proof of this may be found in Olson and Uppuluri (12].



If one assumes that X is a random matrix such that: (1) X is sym-
metric; (ii) the set of diagonal and superdiagonal elements of X form an
independent set of random variables; and (iii) the distribution of X is
invariant under orthogonal similarity transforms, then Theorem 5 allows
one to say the elements of X are normally distributed as indicated in the
theorem. The physicists call this model the Gaussian orthogonal ensemble.

For the particular Gaussian orthogonal ensemble Xii'w n{0,1) and
X,.~ n(O,%) the probability density function of the n x n symmetric ran-

ey
dom matrix X = (Xij) is given by

(7.1.4) const. exp (- tr X2) .

By using standard methods of multivariate analysis one can show that the

probability density function of the eigenvalues el,eg,...,en of X is
given by
n
. 1 2
(7.1.5) exp(-2 = ¢5) 0 e, - ¢
22 00 1 rd) i-1 oy b
2 'j::l 2

We note from this explicit form of the density function that the eigen-

values E12€pr et a8y in this case are exchangeable (for definition of

exchangeability see [6]). Mehta and Gaudin [11] exploit this property
by using the technigue of integration over alternate variables (see de
Bruijn [4]) to obtain the density function of a single eigenvalue (for

the case n = 2m) as

2m-1 5 €
) = zoeg (€) +mey o (o) IO Opy (V)Y

(7.1.6) o, (e
fad 1-0
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where

200

. 2 . 2
0 () = (29 31.p)E /2Dy o7

Then it is claimed by Mehta and Gaudin [11] that O2m(x) is asymptotically

equal to o(x), where

1 1
%(hmrxg)g, lx’ < (Mm)§

(7.1.8) o(x) =

0 s otherwise.

Indications of why this holds are also outlined in an appendix to Mehta's
book [10]. For a different approach to the convergence to the semicircle
law for a Gaussian orthogonal ensemble one may refer to Wigner [17].

For a normalized Gaussian orthogonal ensemble Theorem 6.1.1 gives
the semicircle law as the almost sure limit of the empirical distribution
function of the eigenvalues of the normalized random matrix X//2n. This,
however, does not imply the convergence of the corresponding probability

density functions mentioned above.

7.2 A Random Toeplitz Ensemble
Tt is of interest to know whether there exist random ensembles whose
empirical distribution functions of their eigenvalues converge to limiting
distributions other than Wigner's semicircle distribution. Such an ensem~
ble was recently discussed by Dubner [5]. He considered the random Toeplitz
ensemble described below.
Tet {Zk,k:O,il,...,iQm} be a set of complex valued random variables

such that:
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(i) Zy = % + 1y, where {xk,yk, k =0,1,...,2m} is an independent
set of random variables each of which has a Gaussian distribution with

mean O and variance o~ (except, Yy = 0).

2m+1 .
Let Ay 1 = (aij)i,jzl’ be a random matrix such that:

(1) 255 = 84y
(ii) For i < j, 854 " Zj—i’ 0<j-i<|

2m-1
2

]

7z 2m-+1 o
%13 7 Plomi1)- (-1 T ) L3 em

For instance, when m = 2, we have the 5 x 5 random matrix

(7.2.1) 4 z 7. 7 7

For this random Toeplitz ensemble, Dubner [5] has indicated that the
asymptotic distribution of the sequence of empirical distribution fune-

tions of the set of eigenvalues is Gaussian.

7.5 A Wishart Ensemble
In general statisticians are interested in the distribution of the
eigenvalues of a sample variance-covariance type matrix, as contrasted
to the physicists interest in the distribution of the eigenvalues of a
random matrix of the most general type. Recently, Stein considered the
1limiting distribution of the expected value of the empirical distribution

function of the eigenvalues of random matrices of the variance-covariance
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type (C. Stein's result appears in Technical Report No. 42, December 2,
1969, Department of Statistics, Stanford University).
Stein's result may be stated as follows. Tet X = (Xij) be a px n

random.matrix'such that .

(1) {Xij’ 1<1i<p, 1<j<n} is an independent set of random
variables;
(i1) E X, = 05

(iii) E Xij - 1;

) k
(iv) E[Xijl <C <= for k= 1,2,...

let B = % X X' and denote by Kl < xg <...< xp the ordered eigenvalues of

B. Denote the empirical distribution function of xl,xg,...,xn by W (x)

p,n
so that
(7.5.1) (9 w3 (g < %)
Theorem:
(7.3.2) B Wp,n(x) - FB(X)

as p » w, n = o in such a way that 2. g > 1, where F_ is the absolutely
D

&

continuous distribution function with density

s /(x-a) (b-x), B <x <D

(7.3.3) fB(x) =

0 , elsewhere

where a = [1 - Qy%*)]g and b = [1 + Q7%~)]2_
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Tt is interesting to note that when f = 1 there is a relation between

this result and Wigner's semicircle distribution. If X is a random varia-

ble with a semicircle distribution then Y = MXE has the probability density

function

1 -y
35t osvsh

0

(7.3.4) gly) =

R elsewhere
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