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THE DISTRIBUTION OF FISSION PRODUCT TRITIUM IN A ZIRCALOY~-
CLAD UO2 BLANKET ROD FROM PWR-1

J. H. Goode and C. M. Cox
ABSTRACT

The given Zircaloy-2-clad UO9 blanket rod had been irradiated
to 3.41% FIMA at o time~averaged lineor heat rate of 4.84 kw/fi,
with a clad temperature of 259°C, for the full life of the first core of
the Shippingport Pressurized Water Reactor, |t was destructively
examined to determine the distribution of fission product tritium. There
was apparently no loss of tritium from the rod; we found 7% of the
yield of tritium in the Zircaloy metal cladding (apparently as the
tritide) and 93% in the UO- fuel.

 INTRODUCTION

Studies are in progress at ORNL to determine the fate of triﬁﬁm that is produced
in fuel elements by ternary fission of uranium and plutorium. Previous sa‘udies,] with
stainless steel and Zircaloy~-2-clad UO2 samples from LWR fuels ond with stainless
steel~clad PUOQ--UO2 samples of LMFBR fuels, indicated that tritium diffused
through stainless steel cladding when the linear heat rating was higher than 5 kw/ft.
The clad temperature was 105 to 350°C for the < 5 kw/ft ratings and 500 to 1000°C
for the higher ratings (10 to 25 kw/ft). Thus, it is uncertain whether the primary
variable affecting tritium loss is clad temperature or the linear heat rating. {‘An

experimental Zircaloy=-2~clad fuel rod retained about 50% of the tritium af an

estimated heat rating of 5 kw/ft and a surface temperature of 125°C.

This report presents additional information on the fate of tritium; the subject of
the study was an irradiated blanket rod from the first core of the Shippingport Pres-
surized Water Reactor (PWR). This 0.410~in.~diam by 10.26~in.-long Zircaloy-2-
clad rod (Rod 10) contained 26 normal~enrichment UO2 pellets and was the norfh-

east corner rod of a total of 120 in Bundle 0320, the middle bundle in a vertical
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stack of 7 in Blanket Assembly K--IO,Q-‘3 The assembly was inserted info Blanket
Region 2 for the initial critical experiments of PWR~1 (December 18, 1957), and was
removed at the end of life of Core 1 on February 9, 1964, ofter 27,780 effective full
power hours (EFPH) of operoﬁon.4 The rod was sent to ORNL by the Westinghouse

Expended Core Facility for use in fuel reprocessing studies.

This report represents the combined efforts of individuals from several divisions
of the Oak Ridge National Laboratory. Members of Chemical Development Section B
of the Chemical Technology Division (J. H. Goode, V. C. A. Vaughen, and technicians
L. A. Byrd, G. D. Davis, and O. L. Kirkland) planned and carried out the experimental
work and the primary tritium separations. Operations Division and Metals and Ceramics
Division personnel (R. L. Lines, G. A. Moore) punctured the rod to release fission
gases and sectioned the fuel rod. Analytical Chemistry Division members (C. E. Lamb,
F. L. Layton, J. H. Moneyhun, J. E. Morton, W. T. Mullins, H. A. Parker, J. R. Sites,
R. R. Rickard, and E. |. Wyatt) performed the chemical, radiochemical, and mass
spectrometric analyses. C. M. Cox, of the Fuels Evaluation Group of the Metals and

Ceramics Division, performed the reactor and physics calculations.
PROCEDURES

The intact fuel rod was weighed, measured to determine the diametric dimensions
at 0° and 90° in the mid-plane, punctured to release fission gases, and cut into 10
segments (Fig. 1). About 3.25% of the fuel and cladding was "consumed" by the
alumina cut-off wheel. The segments were individually canned and weighed to

determine the weight of material lost during cutting (Table 1).

We leached or dissolved weighed portions of the fuel, cladding, or both (Table 2)
in a closed system, using an argon-4% hydrogen purge gas to carry vapors or gases
from the dissolver to the sampling points (Fig. 2). In-line absolute filters prevented
entrained particles from entering the gas handling equipment. Hot copper oxide
(~700°C) was used to convert hydrogen and tfritium to water, and the wafer was

sorbed onto dry Linde Type 5A molecular sieve. The water was later desorbed at



ORNL DWG 70-6598

Towmio e ts e ds e 7l s i e twi
TOPOF VA4 Z i ///////////////f//,///IJNO.ZI-?OSSEI'}.
ROD N/// 7 A o Y A A A A S A A A A S M P AT LT LT A T T T AT 0.4100 in.

9/]6“\\1—1/8"] 1-1/ "] 1=/ | 1-1/8" | 1-1/8" 1-1/8" | 1-1/8"; 1-1/8" |9/16" i
10.26"

PUNCTURE
IN SPACE

Fig. 1. Sectioning Diagram, Rod 10, Bundle 0320, Blanket Assembly K-10, PWR Core 1.



Table 1. Sectioning of PWR-1 Blanket Rod (Rod 10, Bundle 0320, Assy. K-10)

Starting Weight 197.9 g
Cut Weight 191.4 g
Cutting Loss 6.5¢g
Segment HRLEL Net Our Net Crushed Cladding Fuel
Number Weight? Weightb Weight© Weight Weight
| 7.2195 7.24 na.” 7.21
2 20.8563 20.84 20.93
3 23.4652 23.49 23.54 11.33 55.28
4 22.1377 22.22 22.14
5 23.3708 23.37° n.a. 3.78° 19.59°
6 23.4252 23.44 n.a.
7 22.9705 22.93 n.a.
8 19.8419 19.85 n.a. 14,64 73.09
? 21.5345 21.51 n.a.
10 6.5389 6.57 n.a. 6.52
Total 191.3605 191.46

9Analytical balance at ORNL High Radiation Level Examination Laboratory
after cutting.

bthus "Dial~o-Gram" triple beam balance in hot cell at Building 4507.
cSegmenfs crushed to separate cladding from fuel.
dN01L applicable.

e, .. . .
Estimated from other weight ratios.



Toble 2. Analytical Scheme for PWR Fuel Rod

o encl@

Segment Portion of Leach Analyzed

Number  Segment Treatment Ne.  Solution  Off~Gas  Mol. Sieve

1, 10 All Leached, 12M  L-1 X X X
HNO4

2,3 4 Cladding  Leached, 12ZM L-2 X X X
HNO3

2,3 4 Cladding® Dissolved, L-5, X X X
Zirflex® L-7,

-8

2, 3, 4 Fuel Leached, 12& L-3 X X X
HNO3

6, 7, All Leached, 12M  L-4 X X X

8 9 HNO,

6, 7, b

8 9 Cladding™ Dissolved, L-6 X X X
Zirflex©

5 All Archive Sample - - - -

o'Anclyzed for uranium, plutonium, 3H2,, 85Kr, gamma-emitting fission products as
applicable.

Random 1 to 2-g samples of sidewall ciadding.

6 M NH,F-=1 M NH,NO,.

4 43
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Fig. 2. Sample Points for Heavy Elements, Tritium, and Fission Products in PWR Blanket Rod.



500-600°C, under vacuum, and collected in a cold trap ot liquid nitrogen
temperatures, using established i’echnﬁquesa]'s The ice was dissolved in a standard
POPOP-PPO scintillation liquid for tritium counting in a Packard Tri-Carb scin-
tillation spectrometer. Large (approximately 300 cm3) gas samples were taken from
the gas holder, mixed with hydrogen carrier, and oxidized with hot copper oxide;
the resulting water was concentrated by sorption onte moleculor sieve, This water
was also desorbed and counted for tritium. Small (5 cma) aliquots of gas were
analyzed for 85Kr in a gamma spectrometer, os was the melecular sieve prior fo

desorption of the water.

The end plugs, cladding segments from which the fuel had been mechanically
removed, the broken fuel fragments, and complete segments were leached and/or

dissolved in boiling 12 M HNO,. Aliquots of the solutions were purified by

3
distillation, and the tritium content of the distillate was determined by counting
in a liquid scintillation specirometer. Selected segments of the Zircaloy-2 cladding

were dissolved in 6 M NH F--1 M NH4N03 (Zirflex solution) to release tritium

4
and hydrogen contained within the metal; both the solutions and the off-gases were
analyzed for tritium. Finally, portions of the cladding that had been leached in

12M HNO3 were heated fo release contained gases; these gases were anclyzed by

mass spectrometry,

Material balances, based on actual weights and analyses of solutions for uranium,

plutonium, ond fission products, were made and compared with the calculated guantities.
RESULTS

Zircaloy~2 and U02 Material Balonce

The overall material balance indicated that a 3.25% weight loss {approx. 1.0 g
of Zircaloy=2 and 5.5 g UOZ) occurred during sectioning of the rod with a cut-off
saw (Table 1). We accounted for 99.4% of the U02 and Zircaloy tubing from
Segments #2, 3, 4, 6, 7, 8, and 9 (Appendix A) and 99.6% of the fuel and cladding
for the entire rod (Appendix B),



Burnup

The nitric acid leach solutions, containing fuel and fission products, were

analyzed for uranium and ]37Cs (Table 3).

Table 3. Uranium and ]37Cs in Rod 10, Bundle 0320

Leach Volume Uranium ]37C$
No. (ml) mg/ml mg dom/ml dpm
] 98 0.022 2.2 7.86x10° 7.8 x 10°
2 100 0.639 63.9  1.68x 105 1.68x 10
3 25  190.0 47,500.0  3.93x10'0  9.825x 10'2
4 250 259.0 64750.0  5.21x10'0 13.025x 10'2
Total 112,316.1 22.87 x 1012

We then calculated the amount of ]37Cs in the entire rod:

1,123 x 10° mg U

0.881 = 127.47 g UO, in L-1, -2, -3, -4.
152.06 g UO
13 137 2 3 _—
2.287 x 10"~ dpm Cs x 9747 g U02 = 2728 x 10" dpm Cs in rod

(See Appendix C).

The fuel burnup, based on the ]37Cs activity, was calculated. The fuel pin,
containing 0.357~in.~diam solid UO2 pellets (10.08 g/cm3) operated through four
seed loadings, as summarized in Toble 4. The burnup calculation assumed the
idealized operating history shown in Fig. 3, used the fission yields in Table 5, and
used spectrum-averaged neutron cross-sections that were determined by a previously
described fechnique.8 The fuel burnup was calculated as 7.67 x 1020 fissions/cm
or 3.41% FIMA. The corresponding fuel isotopic and tritium concentrations, along

with average heat rates at various stages of the fuel pin lifetime, are given in Table 6.



Table 4. Operating History of Shippingport Core 14

Seed | Seed 2 Seed 3 Seed 4
Date of full power startup 12-23-57 5-7-60 10-24-61  1-20-63
Date of shutdown 11-2-59 8-16~61 11-26-62 2-9-64
Equivalent full power days 241.9 329.2 305.4 281.0

Table 5. Fission Yields for Thermal Neutrons

atoms/ fission

Fissionable

Isotope ! 37C56 Tri ﬁum7
235 0.062 0.00013
236y (0,062)° (0.00013)
238y (0,062) (0.00013)
239Np (0.065) (0.0002)
237py 0.0656 0,00023
240p, (0.0656) (0.00023)
241p, 0,0646 (0.00023)

a . : .
Values in parentheses are rough estimates,
but gross errors should not significantly affect
the results, as indicated in Table 8.
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Table 6. Summary of Calculoted Operating Conditions and Isotopic
Concentrations for Shippingport Fuel Rod 0320-10¢

Exposure Period

Initial Seed April 1,
Starfup 1 2 3 4 1970
Average heat rate, kw/ft 0.37 5.07 4,61 4,59 4,58 -
Concertrations, atoms/cm
UO, x 10-24
235y 174 4.28-5 6.57-6 1.15-6 2.33-7 2.33-7
236, 0 1.88-5 2.35-5 2.36-5 2.31-5 2.31-5
74 0 1,68-8 2.15-8 2.16-8 2,12-8 ~0
238, 2.426-2  2.41-2 2.39-2 2.37-2 2.35-2 2.35-2
239, 0 1.61-8 1.60-8 1.58-8 1.57-8 ~0
257 \p 0 2.32-6 2.29~6 2.27-6 2.26-6 ~0
254 0 6.29-5 6.87-5 6.84-5 6,785 7.01-5
2405, 0 2.11-5 4.23-5 4.84-5 5.00-5 5.00-5
241y, 0 410-6 1.18-5 1.45-5 1.52-5 1,10-5
137 0 1.16-5 2.51-5 3.70-5 4.75-5 4.12-5
3 0 3.02-8 7.19-8 1.10-7 1.42-7 1.00-7
FPPC 0 1.85-4  3.99-4 5.91-4 7.67-4 7.67-4
% FIMA 0 0.82  1.77 263 3.41 3.4

“Based on ]37Cs dcfﬁvigy = 1,7965 x ]OH dpm/g UO, on April 1, 1970, and a UO»
density of 10.18 g/cm®.

by 7e4=1.7x 1074 ete.

“FPP = total fission product pairs,



12

For convenience, the sources of the tritium existing on April 1, 1970, are summarized

in Table 7.

Table 7. Calculated Sources of Tritium Present on April 1, 1970

Fissionable Isotope Fraction of Total Tritium

235U 0.100

28y 3x 107

238U 0.017

239\p 9x 107

239PU 0.723

249, 2.2x 1074
24]F‘u 0.160

The burnups in the mirror image bundle (Bundle 0202, Blanket Assembly J-11)
were first estimated to average 6.97 x 1020 ﬁssions/cm:;,2 although a later document
reported the average burnup as 5.7 x 1020 Fissions/cnr13.9 The other rods in the
mirror image Bundle 0202 had burnups ranging from 4.9 to 7.5 x 1020 Fissions/cm:;.,9
Stachew reported that the ratio of fissions of 239Pu to fissions of 235U in some of
the high-burnup blanket rods at the end of the third seed (21,035 EFPH) was slightly
greater than 3:];3 our calculations indicated a ratio of 2.2:1 at the end of the third
seed life and 3.0:1 at the end of the fourth for rod 10 in Bundle 0320. We expect
that these calculations provide a good estimate although firm data are not available

on other rods examined after the fourth seed.

Fission Product Concentrations

There appears to be only slight differences between the top and bottom halves

of the rod, as indicated by radiochemical analyses (Table 8).
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Table 8. Radiochemical Anolysis of Tep and Bottom Halves of PWR Blanket Rod

Fission Product Top Holf of Rod Bottom Half of Rod

Py o 3.06 x 10° cpm/mg U 3.17 x 10° cpm/mg U
3 1,12 x 108 dom/mg U 1,08 x 10° dpm/mg U
10, 1.94 x 107 dpm/mg U 1.87 x 107 dpm/mg U
1¥7c, 2.07 x 10° dpm/mg U 2.01 x 10% dpm/mg U
]44Ce 1.88 x 107 dpm/mg U 1.61 x 107 dpm/mg U
154, 5.42 x 107 dpm/mg U 5.44 x 10’ dpm/mg U

Linear Heat Rating

Lynqm” examined rods from o similar blanket assembly (F-5) at the end of the
second refueling (Seed 3). He repcried rno microstructural changes in the uo, from
a rod colculated to have experienced peak heat ratings, during operation of Core 1,
of 333,000 Bru/hr-f12 ' or about 10.3 kw/fi. The lifetime average heat rating
for the given bundle was reported o be 155,000 Btu/hr—:’?fz, 10 or about 5 kw/ft.
Rubin and Lynam calculated that the peak center temperature of the pellets in the
high~rated rod was 1440°C and that the pellet surface temperoture was 400"C¢,212

Westinghouse'’s best estimate of the surface temperature of the cladding was 531°F

(277°C), with an average of 520°F (271°Q).

The rod we examined was from o bundle hoving slightly lower temperatures.””
Based on o total operation of 1157.5 equivalent full power days and an energy
release of 200 Mev/fission, the time averaged linear heat rate of rod 10 is 4.84 kw/ft,
corresponding to a cladding surface heot flux of 154,000 B‘lru/hr-nfi'za By comparison
with Toble 6, this is seen to be representative of the heat rate throughout the pin
lifetime; however, short periods of higher power con be expected due to seed changes
and control rod positioning. Using the time-overaged heat rate, the fuel center

temperature was calculated as 660°C.  This calculotien was made with the PROFIL



14

cod«s:]3 assuming a cladding surface temperature of 259°C and using the Asamoto

14 . .
et al. correlation for uo, thermal conductivity. The fuel surface temperature

was calculated as 350°C.

85Kr Content of Rod 10, Bundle 0320

The rod was punctured in a high vacuum apparatus above the pellet column by
laser and the released gas was analyzed for 85Kr, 3H, and mass distribution by
mass spectrometry. The total volume of released gas was 1.232 cc.]5 Mass analysis

showed the following composition;

131

H 7% A 1% Xe 7%
2 132

He 43 co, <1 Xe 23

H20 4 Xe 37 ]34Xe 26

N, +CO 5 Ke 2 136, 44

o, ]

The puncture gas contained a total of 1.85 x 10" dpm of 85Kr, representing a release
of 0.16% of the 1.16 x 1012 dpm found in the rod (Table 9). By comparison, Lynam
reported fission gas releases of 0.26 to 0.93% in the blanket rodsn” We actually
accounted for 88% of the calculated yield of 85Kr for Rod 10, Bundle 0320 (Appendix
C), but recovered slightly more than the calculated yield for the mirror image rod.
We did not count the molecular sieve traps used during the leaches of the end plugs
and the unfueled cladding; however, based on the ratio of dpm 85Kr per mg U in the

rod, the quantity of 85Kr would be insignificant.

Tritium in Cladding

Samples of leached cladding were heated to 1400°C in o high vacuum apparatus
to release gases contained within the metal. A known "spike" of deuterium in neon
was added to determine the degree of recovery of sample after mass spectrometer

analysis for H2, D2, and T2. The average analyses were:]é']7
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Table 9. Release of 85Kr From Rod 10

Volume 85Kr
Sample® (m) TomTm T ToraTdom % Total Released”
L~1 Off-gas 4,600 <8.5x10° <3.91x 107 <0.01
L-2 Off-gas 4900  1.34x10°  6.57 x 10° 0.06
L-3 Off-gas 16,500  2.18x 107 3.60 x 10" 31.03
L-3 Mol. Sieve _ . 2,23 % 10° 0.19
L-4 Off-gas 17,000 273x 107 4.65x 10" 40,09
L-4 Mol. Sieve - - 1.24% 100 0.11
L-5 Off-gas 9,500  3.59x 10°  3.41 x 10 0.29
L-6 Off-gas 6,500  5.40x 10%  3.51 x 10° 0.03
Puncture Gas 1232 1.50x 107 1.85x 10° 0.16
8.34x 10'] 71.96°

%See Table 2 for identification of leaches (L-).

Remaining fraction in undissolved Segment #5 and cutting losses. The fotal
quantity of IKr was calculated to be:

11 85 152.06 g UOp _ 12 85, .
8.34x 10 " dpm T Kr x 157479 UOy 1.16 x 10"~ dpm ~Kr in rod.
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Cladding

Segment T2' H.’Z’
Numbers ppm ppm
2,3 4 <0.02 64-130
6,7,8 9 <0.02 9

These analyses for segments 2, 3, and 4 generally confirm those of Westinghouse for
the hydrogen content of the cladding; their analyses ranged from 52 to 93 ppm after

4 -
Seed 4. The tritium content was foo low to be measured by mass spectrometry.

We dissolved four samples of Zircaloy~2 cladding in Zirflex Reagent, é M
NH4F--—] M NH4
HNO3 and one had not been leached. Two samples (L-5 and L-4) were dissolved

NO3, Three of these samples had been leached with 12 M

in the hot cell using the usual apparatus shown in Fig. 2, and two (L-7 and L-8)
were removed from the hot cell and dissolved in the laboratory. In the laboratory,
we used two gas bubbler-scrubbers containing 1 N H2504 to remove ammonia from
the gas stream, and a dry-ice~cooled cold trap was used to remove the water vapor.
The scrubbers were inserted between the reflux condenser and the copper oxide unit.

All solutions and gases were analyzed for tritium after each dissolution (Table 10).

Table 10. Tritium Content of Zircaloy-2 Cladding

Sample 3H2, dpm x 10"8 3H
Leach from Weight, 2
No. Segment No. g Solution Scrubbers Mol. Sieve Gas dpm/g Zr-2
5% 2,34 1.35 0.32 none 6.15 0.02 4.81 x 10°
-6° 2,34 2.10 0.68 none  11.00 0.01 5.48 x 10°
-7 2,34 .46 0.36 0.01 3.64  <0.01 2.75x 10°
1-8° 234 1.02 0.33  <0.0] 323 <0.01 3.49 x 10°

OILemched with nitric acid.

Not leached with nitric acid.



17

A negligible amount of tritium was found in the sulfuric acid scrubbers and,
 since 90-95% was found os water on the molecular sieve, the results suggest that
the tritium was probably in the metal as zirconium tritide. Metallographic exam-
ination of Zircaloy cladding ot Westinghouse showed that the hydrogen was present
as hydride platelets distributed near the outer (cooler) portion of the cladding,4
The tritide-hydride apparently reacted with the water in the Zirflex reagent,
releasing T2-H2, rather than being evolved as NH3 or NT30 Greater than 80%

of the yield of ammonia from the Zircaloy was found in the scrubber, Ancther
possibility is that the tritium may have been held as a gas in the Zircaloy lattice;

however, the metallographic evidence of hydride platelets suggests that this is not

the case. Additiona! laboratory work to answer this question is indicated.

Assuming an average fritium content of 3.68 x ]08 dpm/g (L-5, L7, L-8) for
the Zircaloy, the 29.75 g of sidewall cladding would contain 1.13 x ]0]0 dpm of
tritium. (The two end plugs, on the basis of total tritium per unit area of interior
surface, would contain only about 2 x 307 dpm.) This quantity of fritium is
equivalent to about 17 parts per billicn by weight, thus confirming the mass spectro-

meter analyses.

Tritium in the UO,

Leach solutions 1 through 4 were analyzed for tritium, other fission products,
and uranium and plutonium (Table 11). The dissolved fuel, as a whole, contained
1.10 x 106 dpm/mg U. Thus, we recovered 1,237 x ]O” dpm of 3H2 from 127.49 g
of UO2 in L-1 through L-4, or a total of 1.483 x ]O” dpm from all of the fuel in

the rod.

Tritium in Puncture Gas

After determination of the 85Kr content, we analyzed 0.546 cc of the puncture
gas for tritium, and found 7.53 x 104 dpm. The total volume, 1.232 cc, therefore
contained 1.70 x 105 dpm, or about 0.001% of the tritium in the rod.
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Table 11. Tritium Content of UQ,, Fuel

2
3, . . 3, «a
Leach  Vol,, H2 in Solution, Othet H2, U, 3H2,
No. ml dpm 3 dpm ¥ Y mg dpm/mg U
] 98 2.10 x IO6 0.37 x 106 2.2 1.12 x 106
2 100 5.16 x ]07 0.02 x 107 63.9 8.11 x ]05
10 10 4 6
3 250 5.32x 10 0.02x 10 4.75x 10 1.12x 10
4 250 698x 10" 003x10'0 e47x10* 1.08x10°
Molecular sieve traps, off-gases, efc.
Overdll Tritium Distribution
Tritium distribution in the complete rod was:
Zircaloy cladding: 1.13 x 1010 dpm = 7.08%
UO,, fuel pellets: 1,483 x 10| dpm = 92.92%
Puncture gaos: 1.70 x 105 dom = <0.01%
Total 1.596 x ]0” dpm = 100%

We recovered 99.4% of the theoretical yield of tritium (Appendix C), indicating
that there was no significant loss of tritium from this blanket rod, which had operated
at a time-averaged linear heat rating of 4.84 kw/ft and a clad temperature of 259°C.

About 93% was in the UO,, fuel and 7% in the Zircaloy-2 cladding.

2
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APPENDIX A

Experimental Material Balance (Rod 10, Bundle 0320)

Starting wt. rod
Our cut wt.

Wt. end plugs

Wt. fueled tubing
Archive sample (#5)

Fuel + clad for expts.

Seg. 72,3, 4 ¥
Leached clad
UO2 wi.

U02 by anal.

UO2 Difference

197.90 g
191.46 g (1.034 factor to original rod)
-13.73 ¢
177.73 g
-23.37 g (3.78 g tubing, 19.59 g UO,)
154,36 g (Seg. #2, 3, 4, 6,7, 8, 9

66.61 g Seg. 76,7, 8, 9 ¥ 87.73 g
-17.33 g Leached clad -14.64 g
55.28 g UO2 wt. 73.09 g

-53.99 ¢ UO2 by anal. -73.48 g

1.29 g (-2.3%) UO2 difference

Total U02 found (by anal.) 127.47 g
Total cladding (by wt.) 25.97 g
Fue! + clad found 153.44 g
Fuel + clad input 154.36 g

Difference 0.92¢g

Recovery 99.40%

0.89 g (+ 1.2%)

(~0.60%)
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APPENDIX B

Experimental Material Balance

x 1,034 cutting loss = 152,06 ¢

UO,, in Seg. #2, 3, 4 53.99 g
UO, in Seg. #5 19.59 g
UO,, in Seg. t6, 7, 8, 9 73.48 g
Total UO, 147.06 ¢

Zr=2 in end plugs 13.73 g
Zr-2 in Seg. #2, 3, 4 11.33 g
Zr-2 in Seg. #5 3.78 g
Zr-2n Seg. #6, 7, 8, 9 14.64 g
Total Zr-2 43.48 g

x 1,034 cutting loss = 44,96 ¢

152.06 g U02 + 44,96 g Zr-2 = 197.02 g total found.

197.90 g
-197.02 g

Starting wt.
Calc. starting wt.
Difference

99.56%

Recovery

0.88 g (-0.44%)
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APPENDIX C

Calculated Fission Product Yields and Recoveries

Cs: From Table 6, there are 4.12 x 1019 atoms ]37Cs/cm3 present today.

4.12 x 10]9 c:foms/cm3

53 = 6.84 x ]0..5 moles ]37Cs/cm3.
6.023 x 107" atoms/mole

- L -
6.84 x 10 > moles/cm3 x 1.37 x ]02 g/mole = 9.%3% x 10 3 g ]37Cs/cm3.

9.371 x 10™° g/cm® x 9.85 x 10% mCi/g = 9.230 x 102 mCi/cm".

12

9.230 x ]02 mCi/cm3 x 2.22 x 109 dpm/mCi = 2,05 x 10~ dpm ]37Cs/cm3.

1.494 x ]0] cm3 x 2.05 x ]0]2 dpm/cm3: 3.06 x 10]3 dpm ]37Cs in rod today.
13 137
2.73 x 10 ]gpm ]3(;5 recovered . 89% recovery of calculated yield.

3.06 x 10"~ dpm Cs yield

Caleulations indicated 75% total fissions due to 239Pu and 25% due to

235U (p. 11, text). Yield of 85Kr should therefore be:
(0.75)(1.215 x 107 '% yield) + (0.25)(3.049 x 10™'% yield) = 0.09112 + 0.07622

8kr yield = 0.1673%.

From Table 6, 7.65 x 102 fissions/cm> x 1.494 cm® = 1.146 x 1022

total fissions in rod.

1.146 x 1022 fissions x 1.673 x ]03 atoms/fission = 1.917 x 1019 atoms

8 Kr formed.
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1.917 x 1017 atoms 82Kr

53 = 3.182 x ]0—5 moles 65Kr formed.
6.023 x 107" atoms/mole

3.182 x 107 moles x £.5 x 10" g/mole = 2.705 x 10 g SKr formed in rod.

2.705 x 107> g x 4.061 x 102 Ci/g = 10.98 x 107} Ci &Kr formed in rod.

2 12

1.098 Ci x 2.22 x ]0] dpm/Ci = 2.437 x 10" " dpm 85Kr formed.

2.437 x 10]2 dpm x 0.54 decay factor = 1.316 x 1012 dpm 85Kr today.

12 85
.16 1012 dpm 85Kr recovered 88% recovery of calculated yield.

1.32x 10" dpm ~ Kr formed

Tritium: From Table 6, there were

1.00 x 10]7 <:|roms/cm:3 x 1.494 x ]O1 cm3 = 1.494 x 10]8 atoms tritium

present todoy.

1.494 x ]0]8 atoms fritium

73 = 2,48 x ]0-6 moles tritium in rod.
6.023 x 107" atoms/mole

2.48 x ]0~6 moles x 3 g/mole = 7.44 x 10“‘5 g tritium present.
-6 6 . |
7.44 x 10 “gx9.73x 100 mCi/g = 7.239 x 10" mCi tritium present.

7.239 x IO] mCi x 2.22 x ]09 dpm/mCi = 1.61 x IO]0 dpm tritium in rod
on April 1, 1970.

1.60 x 10]6 dpm 3H2 recovered
] = 99.4% recovery of calculated yield,

1.61 x !O] dpm 3H2 formed
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