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MICROSPHERE HANDLING TECHNIQUES 

F. J .  Furman, J. T. Meador,' and J. D. Sease 

ABSTRACT 

Devices and techniques f o r  remotely t ransfer r ing ,  
s tor ing,  c lass i fying,  blending, and inspecting 150- t o  
850-p-diam microspheres were developed. Pa r t i c l e s  are  
t ransferred both pneumatically and by gravi ty  and 
routed by air-operated valves. 
i n to  the t r ans fe r  system. 
s ize  and shape. 
matic s t i r r i n g  and small batches by concurrent pouring 
a t  a precise r a t i o .  
both automatic and manual op t i ca l  methods. 

Storage hoppers feed 
Classif icat ion i s  by both 

Large batches are  blended by pneu- 

Par t ic le  s ize  i s  inspected by 

INTRODUCTION 

The f u e l  f o r  high-temperature gas-cooled reactors  i s  coated micro- 

spheres of thorium and uranium oxide or  carbide.2,3 

f o r  these reactors  contains 233U, which i s  highly radioactive and 

requires remote handling.4 

recycle fue l ,  automated devices are  needed t o  t ransfer ,  c lass i fy ,  blend, 

and inspect the fuelmicrospheres.  

ment o f  such devices fo r  a remotely operated p i l o t  plant t h a t  w i l l  fab- 

r i c a t e  HTGR fuel. 

The recycle f u e l  

In  the remote processing and coating of the  

This report  describes the develop- 

Although these devices were aimed toward a specif ic  

'Qn loan from Reactor Division. 

2W. 0. Harms, "Carbon-Coated Carbide Pa r t i c l e s  f o r  Nuclear Fuels," 
pp. 290-313 i n  Modern Ceramics - Some Principles  and Concepts, ed. by 
J. E. Hove and W. C. Riley, Wiley, New York, 1965. 

3R. E. Pahler, "Coated Par t ic le  Fuels f o r  Civi l ian Gas-Cooled 
Reactors," p. 1 i n  Ceramic Matrix Fuels Containing Coated Par t ic les ,  
Proceedings of a Symposium held a t  Bat te l le  Memorial I n s t i t u t e ,  
November 5 aqd 6, 1962, TID-7654 (1963). 

'E. D. Arnold, "Radiation Hazards of Recycle 233U-Thorium Fuels, I '  

pp. 253-284 i n  Proceedings of t he  Thorium Fuel Cycle Symposium, 
Gatlinburg, Tennessee, December 5-7, 1962, TID-7650 ( J u l y  1963). 
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end, the  ideas can be u t i l i z e d  where automated handling of microspheres 

or b a l l  bearings i s  required. 

DEVEIDPMENT C R I T E R I A  

The objective of t he  project  i s  the  coating of the  fueled micro- 

c;plieres with multiple layers  of pyrolyt ic  carbon and possibly s i l i con  

carbide t o  r e t a i n  f i s s i o n  products during i r r ad ia t ion .  5 , 6  The flow- 

sheet, depicted i n  Fig. 1, l i s t s  the  various pa r t i c l e  handling s teps  

required i n  the processing of the coated-particle Typical prop- 

e r t i e s  of the p a r t i c l e s  and coatings are  shown i n  Table 1. 

The change i n  diameter and densi ty  of the  pa r t i c l e s  a s  they  move 

through the process requires considerable f l e x i b i l i t y  i n  the handling 

equipment. Some t y p i c a l  oxide microspheres coated with both low- and 

high-density pyrolyt ic  carbon are  shown i n  Fig. 2. The pa r t i c l e s  are  

hamdled i n  batches with small s ize  var ia t ions  (< 100 p) t o  minimize 

segregation and packing during t r ans fe r .  

densi ty  pyrolyt ic  carbon are  quite f r a g i l e  and must be handled very 

gent ly  t o  avoid damage t o  the coating. 

The pa r t i c l e s  coated with low- 

Remote processing required the  development of automated equipment 

t h a t  i s  simple, highly r e l i ab le ,  and e a s i l y  maintainable. For the  p i l o t  

plant ,  our development w a s  d i rected toward process equipment t h a t  could 

be scaled up t o  f u l l  production f a c i l i t i e s .  The processing requirement 

w a s  10 &/day of bare pa r t i c l e s .  

pa r t i c l e s  contains approximately 12,000 pa r t i c l e s  per gram. 

For c l a r i t y  the  pa r t i c l e  handling equipment reported here i s  

A t y p i c a l  batch of 250-p-diam uncoated 

divided i n t o  three  categories:  t r ans fe r  and storage,  c l a s s i f i c a t i o n  ad. 

blending, and inspection. The t r ans fe r  and storage sect ion covers 

5J. T. Meador, S. E. Bolt, and F. C.  Davis, Status  and Progress 
Report for Thorium Fuel Cycle Development Dec. 31, 1966, ORNL-4275, 
pp. 57-81. 

6F. J. Furman, J .  D. Sease, e t  -- a l . ,  Status  and Progress Report for 
- Thorium Fuel Cycle Development 1967-1968, ORNL-4429, pp. 70-83. 

7 A .  L. Lotts and R. G. Wymer, Economics and Technology of HTGR Fuel 
- Recycle, OWL-TM-2377 (October 1968). 

. 
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MICROSPHERE 

PRODUCTION 

TRANSFER 

SCREENING 17--’ 
SHAPE SEPARATION 

INSPECTION 

1 

I COATING 1 
4 

t 
I 

c 

SCREENING 

INSPECTION 

BATCH BLENDING 

LOADER-BLENDER 

BATCH BLENDING 

Fig. 1. Par t i c l e  Handling Flowsheet. 

Table 1. Propert ies  of Fuel Microspheres During Processing 

Part  i c  l e  Densitv Thickness _. 
Mat e r i a  1 

Oxide microsphere 10.0 150400 
Low-density pyrolyt ic  carbon 1.0 50 250-700 
Si l icon  carbide 3.2 20 290-740 

370420 40 High-density pyrolyt ic  carbon 1.9 
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Fig. 2. Pyrolytic -Carbon-Coated Oxide Microspheres. loox. 

t r ans fe r  l i nes ,  p a r t i c l e  feeding and dispensing devices, and storage 

hoppers. The c l a s s i f i ca t ion  and blending sect ion covers screening, 

shape separating, and two types of blending. The inspection sect ion 

covers sampling and s i ze  determination. 

TRANSFER AND STORAGE 

For high production r a t e  or, i n  our case, highly radioactive mate- 

r ia l ,  it i s  most important t o  eliminate physical  handling of the mater ia l  

by operators. Thus, methods t o  t r ans fe r  mater ia l  over preselected routes 

by automatic equipment have been developed. 

t r a n s f e r  are  pneumatic and g rav i ty  l i nes  extending from one operation or 

storage hopper t o  another. Associated with the t r a n s f e r  l i n e s  and oper- 

a t ions  a re  various forms of p a r t i c l e  feeder devices, l i n e  connections, 

and l i n e  d iver te rs .  An i n t e g r a l  pa r t  of the automatic t r ans fe r  system 

i s  the  storage hoppers. 

The p r inc ipa l  means of 
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Feeding Pa r t i c l e s  

I n  p a r t i c l e  handling, feeding cha rac t e r i s t i c s  required range from 

feeding one p a r t i c l e  a t  a time f o r  inspection t o  feeding i n  a broad 

monolayer f o r  monitoring alpha rad ia t ion  emitted from contamination i n  

the  coating. Devices having feed r a t e s  from 1 t o  2 p a r t i c l e s  per second 

t o  1 kg/min were developed. 

I n  our i n i t i a l  development work, we found the  V-trough v ibra tory  

feeder most valuable. 

requirements. A s  shown i n  Fig. 3 ,  it cons is t s  of a hopper o r  funnel 

emptying i n t o  a tube leading t o  the  V-trough. 

It could be adapted t o  a v a r i e t y  of feeding 

This V-trough i s  mounted 

ORNL-DWG 68-4327i 

Fig. 3. V-Trough Vibratory Feeder. 

on a v ibra tor .  Since the  tube i s  attached t o  the  v ibra t ing  base, par- 

t i c l e s  w i l l  not bridge as long as the  tube diameter i s  at l e a s t  four  t o  

f ive  times t h a t  of t he  l a rges t  p a r t i c l e  being handled. 

genera l ly  5 i n .  long. Four fac tors  con t ro l  t h e  r a t e  of feed: (1) the  

gap between t h e  entrance tube and the  base of t he  V-notch, ( 2 )  the  

The troughs were 
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amplitude of vibrat ion,  (3)  the angle of vibrat ion,  and ( 4 )  the  slope of 

the  V-notch. The tube leading in to  the V-notch i s  threaded so t h a t  

height can be adjusted. Also the  trough i s  f la t tened  below the tube so 

the  tube can be moved very close t o  the  bottom of the trough. The ampli- 

txde of vibrat ion would, of course, vary the  feed r a t e  considerably. The 

angle of v ibra t ion  was general ly  s e t  a t  t ha t  recommended by the  manu- 

fac turers  of t he  v ibra tors .  Although the  trough was usual ly  horizontal ,  

the  distance between pa r t i c l e s  and the  ve loc i ty  of the  pa r t i c l e s  coming 

from the  V-trough could be varied considerably by varying the  slope of 

the  trough and v ibra tor .  A major advantage of t h i s  type of  feeder i s  

tl-,at a single stream of pa r t i c l e s  can be obtained with ease. This type 

of pa r t i c l e  stream proves extremely useful  i n  a number of applications.  

However, the feed r a t e s  are  somewhat slow, general ly  a few pa r t i c l e s  per 

second. Higher feed r a t e s  can cause d i f f i c u l t y  i n  assuring a s ingle  

stream of pa r t i c l e s .  However, i f  t h i s  i s  not a requirement, consider- 

a t l y  higher feed r a t e s  can, of course, be obtained. 

For process control ,  a l ight-at tenuat ion electronic  pa r t i c l e  s ize  

analyzer ( see  the sect ion on Inspection) determines the  s ize  of individ-  

ua.1 pa r t i c l e s  a t  r a t e s  up t o  3000 pa r t i c l e s  per second. To feed t h i s  

irtstrument, we developed a high-speed pneumatic pa r t i c l e  s ingular izer ,  

shown i n  a cross sect ion i n  Fig. 4.  The spacing between the  j e t  tube 

arid the  del ivery tube a f f ec t s  the  del ivery r a t e  and the tendency of t he  

pa.rticle t o  clog a t  the  i n l e t  of the  del ivery tube, and it must be 

adjusted t o  s u i t  p a r t i c l e  s ize  and other  var iables .  Since the  f u e l  par- 

t i c l e s  must e x i t  one a t  a time, the i n t e r n a l  diameter of the  del ivery 

tube i s  small enough t o  keep two o r  more pa r t i c l e s  from entering abreast .  

The length of the  del ivery tube i s  correlated with pa r t i c l e  separation 

arid the  del ivery count per minute. Figure 5 r e l a t e s  t he  p a r t i c l e  

del ivery r a t e  t o  the a i r  pressure. 

Figure 6 i s  an enlargement of a 16-mm movie f i l m  taken t o  determine 

pa r t i c l e  spacing obtained with the  s ingular izer .  The peculiar shape of 

the  pa t te rn  exhibited by the  beads, v:hich a re  round, was caused by a 

combination of d i s to r t ion  by the  prismatic camera lens  and the  distance 

t raveled during the  2.5 x 10'4-sec exposure. Although the  spacing of 
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Fig. 4. Par t i c l e  Singularizer.  

ORNL DWG. 67-565  

* I IO I 

PARTICLES PER MINUTE x 1000 

Fig. 5 .  Variation with A i r  Pressure of Delivery Rate from Par t i c l e  
Singularizer.  
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t h e  pa r t i c l e s  varied considerably, the  minimum spacing distance a t  the 

face of the discharge tube i s  0.100 in .  

able fo r  the  analyzer. 
This spacing should be accept- 

When a layer  of pa r t i c l e s  i s  desired,  the  device shown i n  Fig. 7 

i s  used. 

it i n t o  the dispenser. 

within a few pa r t i c l e  diameters of the  vibrat ing p la te .  

spacing prevents the  pa r t i c l e s  from overflowing the  dispenser. 

of the  dispenser has s i x  inverted V-shaped tunnels through it. 

The pa r t i c l e s  a re  put i n t o  the  multiple hopper and flow from 

The multiple hopper ou t l e t s  are positioned t o  

This close 

One s ide 

These 

ORNL-DWG 68-(3267 

.ATE 

Fig. 7. Monolayer Feed Plate .  

tunnels a re  large a t  the  r ea r  of the block ( i . e . ,  the feed hopper s ide)  

and decrease i n  s ize  u n t i l  a t  the feed side of the  block they are  approx- 

imately f ive  t o  six times as wide as  the pa r t i c l e  diameter. 

of t h i s  dispenser is t o  r e s t r i c t  the flow of pa r t i c l e s  t o  a constant 

r a t e .  

a s l i gh t  r i s e  (approx 0.002 i n . )  i n  the  p la te  on which they are  moving. 

This r ise holds the  pa r t i c l e s  together so t h a t  they form a dense mono- 

layer.  

The purpose 

After the  pa r t i c l e s  pass through the inverted V ' s ,  they encounter 

In  our preliminary development a s t r i p  of Scotch tape served a s  
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the  s tep  i n  the  pa r t i c l e  flow p la te .  A t y p i c a l  flow r a t e  f o r  a 6-in.-  

square monolayer p la te  was 16 cm3/min. 

considerably with the  s ize  of the  pa r t i c l e s  and the  V-notches. 

The r a t e  would, of course, vary 

For shape separation, it i s  necessary t o  feed pa r t i c l e s  i n t o  a 

p la te  a t  a s ingle  point.  A device t o  accomplish t h i s  i s  seen i n  Fig. 8. 
I t  requires vibrat ion t o  prevent blockage. A s  shown i n  t he  f igure,  the  

feeder can be adjusted t o  handle a number of different  p a r t i c l e  s izes  

and flow ra t e s .  Typical flow r a t e s  from such a feeder are  200 to 
500 g/hr. 

ORNL-OWG 68-13270 

O P E R A T I  N G CON DI T I  ON OPEN FOR CLEANOUT 

Fig. 8. Variable-Orifice Pa r t i c l e  Feeder. 

One fur ther  method of feeding pa r t i c l e s  i s  the  pinch valve. This 

cutoff valve t o  be described i n  a following section i s  pneumatically 

operated, and the  flow of pa r t i c l e s  through it can be regulated by 

pulsing it open and closed. 

Transfer Lines and Hoppers 

The t r ans fe r  l i n e s  are  of two types: g rav i ty  and pneumatic. The 

g rav i ty  l i n e s  are  3 /8 -  t o  1/2-in. -OD tubing sloped 45 O or  more. The 

pneumatic l i n e s  are  the same s izes  and can t r ans fe r  pa r t i c l e s  over a 

513-ft length and a 15-ft  r i s e  i n  elevation. 

during t r ans fe r ,  and the  pa r t i c l e s  w i l l  r e s t a r t  when the a i r  i s  again 

turned on. 

The a i r  can be stopped 
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To t r ans fe r  pa r t i c l e s  from one place t o  another, the  pa r t i c l e s  

start out i n  hoppers such as i l l u s t r a t e d  i n  Fig. 9. The pneumatic feed 

hopper i s  fed from the side a t  a tangent t o  the hopper wal l  t o  prevent 

damage t o  the pa r t i c l e s .  I n  t h i s  l i n e  a valve can be shut t o  enable 

pressurizat ion of the hopper. With pressurizat ion of the  hopper the 

pa r t i c l e s  are  conveyed through the  tube running t o  the  hopper bottom. 

Fromthe g rav i ty  feed hopper the  pa r t i c l e s  flow through an o r i f i c e  with 

a diameter approximately 6 t o  15 times the  diameter of the pa r t i c l e s .  

A pinch valve i s  sometimes placed i n  the hopper ou t l e t  l i ne  t o  more 

accurately regulate the pa r t i c l e  feed r a t e .  

Pa r t i c l e s  a l so  can be t ransferred by a j e t  made from a standard T 

tubing connection. The pa r t i c l e s  are allowed t o  flow in to  the cont ro l  

leg of the  T. 

connection, j e t t i ng  the  pa r t i c l e s  out the  other arm. The pa r t i c l e  i n l e t  

A i r  a t  approximately 20 p s i  i s  fed t o  one arm of the  

I N  LET 
L I N E  

-ION AT 
TANGENT TO 
HOPPER WALL 

PINCH VALVE 

OUTLE l  

O R N L - D W G  69-30497 

VENT AIR 

PINCH 
VALVE 

I I I  

T L E l  

GRAVITY FEED HOPPER PNEUMATIC FEED HOPPER 

Fig. 9. Hoppers. 
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leg must be pressurized or  sealed t o  prevent pa r t i c l e s  from being blown 

back up the  i n l e t .  I n  sp i t e  of the  violent  j e t t i n g  action, no damage 

occurs t o  the  pa r t i c l e s .  Even when the  pa r t i c l e s  coated with f r a g i l e  

low-density pyrolyt ic  carbon are  t ransfer red ,  only a s l i g h t  amount of 

sooting i s  seen. 

Pinch Valve 

The pinch valve, which can be operated e i t h e r  pneumatically o r  

hydraulically,  i s  i d e a l  f o r  handling de l ica te  pa r t i c l e s .  

shown i n  Fig. 10, cons is t s  of an ex terna l ly  pressurized length of p las -  

t i c  o r  rubber tubing. When the  pressure i s  applied, the tube collapses,  

stopping the  flow of par t i c l e s .  This valve can a l so  be used t o  regulate 

the flow of  p a r t i c l e s  by pulsing the  pressure t o  the  valve; the valve i s  

opened and closed allowing an in te rmi t ten t  stream of par t i c l e s  through. 

This valve, 

O R N L - D W G  60-43266 

. ASTOM E R T I  

OPEN CLOSED 

Fig. 10. Pinch Valve. 

J RE 



The pa r t i c l e  flow r a t e  can be regulated by merely adjusting the pressure 

applied t o  the valve t o  vary the  closure of the valve. We use t h i s  type 

valve on 1/4-in.-diam tubing, although pinch valves f o r  any s ize  l i ne  

could be fabricated.  

Diverter Valve 

The d iver te r  valve, which can be used i n  any locat ion i n  the t r ans -  

f e r  l i nes ,  switches the d i rec t ion  of p a r t i c l e  flow from one l i ne  t o  

another. It has a smooth, s l i g h t l y  curved i n t e r n a l  bore i n  e i t h e r  posi-  

t i on ,  a s  shown i n  Fig. 11. A pneumatic operator moves a rack and pinion 

ORNL-DWG 69-4462 

K--INLET 

FLEX1 BLE TUBE 

CRANK 

FIXED GUIDE PINS 

OUTLET t OUTLET 2 

Fig. 11. Diverter Valve. 

attached t o  the crank. When the crank turns ,  the f l ex ib l e  tube i s  

l i f t e d  and, guided by the crank and the  fixed guide pin, moved t o  the 

other o u t l e t ,  Since the l i n e  i s  disconnected during the  operation, the 

device cannot be adjusted while pa r t i c l e s  are  flowing i n  the l i ne .  

ever, provision i s  made fo r  catching and disposing of  pa r t i c l e s  t h a t  

might escape from the l i n e  during valve operation. 

How- 

The d ive r t e r  valves 
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curren t ly  i n  use are  f o r  3/8 in .  tubing, although other s izes  can be 

f ,zbric a t  e d . 

Mult i p  l e  Conne c t  ions 

For joining two t r ans fe r  l i n e s  a Y connection i s  used. This con- 

n.ection i s  simply two incoming l ines  connected in to  the  outgoing l i n e ,  

as  shown i n  Fig. 12. When the  incoming l ines  are  l e s s  than 20" apar t ,  

no blowback up the  opposite l i n e  will occur; hence, the  Y connection 

c:an be used f o r  e i t h e r  pressurized or grav i ty  t r ans fe r .  On g rav i ty  

O R N L - D W G  68-43269 

I N  I N  

Fig. 12. 

OUT 

Transfer Line Y Connection. 

t r ans fe r  or t r ans fe r  s t a r t i ng  a s  pressurized and ending i n  g rav i ty  large 

numbers of connections can be made. To connect more than two l ines  i n t o  

a single  l i ne ,  each incoming l ine  i s  joined t o  a 1- t o  2-in. cylinder so 

t h a t  the  pa r t i c l e s  feed i n  on a tangent and s w i r l  down i n t o  a funnel 

where the  p a r t i c l e s  continue by gravi ty .  This apparatus i s  shown i n  

Fig. 13. The cylinder i s  screened off  a t  the  top  t o  provide f o r  venting 

without escape of pa r t i c l e s .  The i n l e t  l i nes  can be e i t h e r  g rav i ty  o r  

pressurized t r ans fe r  l ines .  
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OUT 

Fig. 13. Transfer Line Multiple Connection. 

CLASSIFICATION AND BLENDING 

Size and shape c l a s s i f i c a t i o n  s teps  are  required i n  the  processing 

of the  microsphere fue l .  Size c l a s s i f i c a t i o n  i s  pr imari ly  performed t o  

eliminate over- and undersized p a r t i c l e s  from a batch, although various 

development operations occasionally require  s m a l l  amounts of accurately 

sized p a r t i c l e s .  Shape separation eliminates cracked, broken, o r  mis- 

shapen microspheres i n  t h e  as-received p a r t i c l e  batches and badly m i s -  

shapen p a r t i c l e s  a f t e r  coating. 

Shape Separation 

To eliminate badly misshapen p a r t i c l e s  a shape separation i s  per- 

We developed a new method using 

A previous system employed a f l a t - p l a t e  vibra-  

formed before some of our operations.  

v ibra t ion  and gravi ty .  

t o r y  feeder t h a t  was t i l t e d  s l i g h t l y  upward i n  respect t o  the  d i rec t ion  

of feeding act ion.  

t he  spher ica l  pa r t i c l e s ,  which a re  not g r e a t l y  affected by t h e  v ibra tory  

act ion,  ro l l ed  down the  p l a t e  while t he  v ibra tory  ac t ion  moved the  non- 

spher ica l  pas t i c l e s  up the  p la te .  The new system, Fig. 14, cons is t s  of 

Pa r t i c l e s  were fed onto the  middle of the  p l a t e ;  
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SLOPE 

Fig. 14. Shape Separator Without Guide R a i l .  

a f l a t - p l a t e  v ibra tory  feeder w i t h  the  p l a t e  t i l t e d  s l i g h t l y  downward i n  

respect t o  the d i rec t ion  of feeding ac t ion  and t i l t e d  a l so  90" t o  t h i s  

direct ion.  Typical t i l t s  a re  downward 1/2" and sideways 2"; however, 

these angles vary with the  type of mater ia l  being separated. Pa r t i c l e s  

a re  fed onto the p l a t e  a t  i t s  highest point.  The round pa r t i c l e s ,  which 

a re  unaffected by the vibrat ing force,  roll e s s e n t i a l l y  perpendicular t o  

the l i n e  of feed, while the nonspherical pa r t i c l e s  are  fed along the 

p l a t e  w i t h  the  degree of roundness d ic ta t ing  t h e i r  angle of feed. 

Because the p a r t i c l e s  are  separated through an angle of l e s s  than 90" 

instead of 180", the  new system i s  f a s t e r  and shows l e s s  p a r t i c l e  i n t e r -  

ference. I n  addition, higher controlled feed r a t e s  without excess 

bouncing of the p a r t i c l e s  are  permitted by the much lower v ibra tory  

l?eeding amplitude required because the p a r t i c l e s  a re  being fed e s s e n t i a l l y  

:Level o r  s l i g h t l y  downhill instead of uphi l l .  
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An advanced version of the shape separator system i s  shown i n  

Fig. 15. 

pa r t i c l e s  leaving the  feeder are  strung out along it. 
t i c l e s  away from the  feed block i n  t h i s  manner allows the nonspherical 

pa r t i c l e s  t o  vibrate  away from the main l i ne  of pa r t i c l e  flow with l e s s  

interference but with somewhat reduced feed r a t e .  

The main difference i s  a curved guide r a i l  placed so t h a t  the  

Guiding the  par- 

Figure 16 shows the r e l a t ive  portions of pa r t i c l e s  of a t y p i c a l  

microsphere sample separated without the  guide ra i l .  

a l l  pa r t i c l e s  with the  maximum-to-minimum diameter r a t i o  grea te r  than 

1 .2  and most of those with a r a t i o  greater  than 1.15 were eliminated. 

A s  the  graph shows, 

J. 
SLOPE 

ORNL-DWG 68-4 3720 

SLOPE 

V 

REJECT GOOD 

Fig. 15. Shape Separator with Guide R a i l .  
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by Separator Without Guide R a i l .  

Vibratory Screening 

O u r  process requires v ibra tory  screening t o  remove both undersize 

and oversize pa r t i c l e s .  

techniques are  used. However, for production work more e a s i l y  main- 

tained screening devices a re  required. 

t f c l e s  normal woven screens quickly became blinded. 

screens with holes etched i n  a metal p l a t e ,  minimize blinding and are  

considerably more accurate than woven wire screens. Higher vibrat ions 
or tapping reduces blinding on both types but does not eliminate it on 

e i t h e r  type. 

t i c l e s  by brushing o r  ul t rasonic  immersion. 

For development work, t he  common screening 

With our highly spherical  par- 

Micromesh screens, 

Hence, arrangements must be made t o  remove blinded par- 
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To minimize the s ize  of the  equipment, both the  oversize and under- 

s ize  pa r t i c l e s  are removed by one apparatus. The screens a re  placed one 

above the  other,  as shown i n  Fig. 17, with a ba f f l e  between t o  d i r ec t  

pa r t i c l e s  passing through the  oversize screen t o  the s t a r t i n g  point on 

the  undersize screen. One disadvantage of such an arrangement i s  the  

d i f f i c u l t y  of c leaning . 
A t y p i c a l  screening flow r a t e  for 260-p par t i c l e s  of 10 g/cm3 par- 

t i c l e  densi ty  i s  10 g/min across a screen 3 in .  wide. 

on an 8-in.-long screen e f f ic ienc ies  up t o  g5$ can be obtained. 

flow r a t e s  w i l l  give higher e f f ic ienc ies .  

A t  t h i s  flow r a t e  

Slower 

ORNL-DWG 67-3134 

MICROMESH 

HORIZONTAL 

L I N E  OF ACTION 
VIBRATORY FOR 

MASS MOUNT 

SHOCK PADS 

Fig. 17. Apparatus for Vibratory Screening. 

Roller -Mike 

For accurate separation of pa r t i c l e s  i n t o  batches with pa r t i c l e  

s ize  range of as  l i t t l e  as 2 t o  3 p, a Roller-Mike' can be used. Shown 

i n  Fig. 18, it consis ts  of two hardended s t e e l  cylinders placed side by 

side with a s l i g h t  angle between them. These cylinders or r o l l e r s  are  

'Roller-Mike Company, Brooklyn, N. Y. 
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PARTICLES I N  

SLOPE DOWNWARD 
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INCREASES IN  
THIS DIRECTION 

BINS FOR CATCHING PARTICLES 

Fig. 18. Roller -Mike. 

t i l t e d  so t h a t  the  apex of the angle i s  on the  upper side.  Pa r t i c l e s  

Elre fed one a t  a time onto the  upper side of the  r o l l e r s .  A s  the  rolls 
aLre turned, p a r t i c l e s  slowly move down the r o l l s  and f a l l  between them 

on reaching a point where the  r o l l s  are  separated suf f ic ien t ly .  The 

p a r t i c l e s  are  col lected i n  separate zones beneath the  rolls. If one 

des i res  a spec i f ic  s ize  range, a batch of pa r t i c l e s  can be run through 

t;he Roller-Mike and the  pa r t i c l e s  i n  the  spec i f ic  s ize  range col lected.  

This operation can be repeated on the  batch of pa r t i c l e s  col lected i n  

the  zone of the  desired s ize  range t o  fur ther  eliminate pa r t i c l e s  out- 

side t h a t  range, Separation of large numbers of p a r t i c l e s  with the  

Roller-Mike i s  extremely laborious and i s  used only when p a r t i c l e s  a re  

:required fo r  development of other equipment. 

Blending 

We need two types of blending. One type i s  blending of similar 

.batches of p a r t i c l e s  t o  assure homogeneity i n  a large batch of  product. 

The type of blender f o r  t h i s  i s  shown i n  Fig. 19. The p a r t i c l e s  spout 

up through the  core and are  d is t r ibu ted  back t o  the  bed. The bed i s  

drained off  a t  numerous locations i n t o  the core and returned t o  the  top  

of the bed. This causes a constant mixing act ion of the  bed. 
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t 
AIR IN 

Fig. 19. Batch Blender. 

The second type of blender i s  used when pa r t i c l e s  d i f fe r ing  i n  

e i t h e r  s ize  or densi ty  a re  t o  be mixed. 

i t y ,  t he  microspheres must be blended where they  a re  t o  be used. 

vibrat ion or excessive movement of the  beds causes the  d i f f e ren t  types 

of pa r t i c l e s  t o  segregate. To prevent t h i s  segregation, the pa r t i c l e s  

are  blended by concurrent pouring i n t o  the  desired receiver.  

the  blender consis ts  of hoppers with accurately adjustable o r i f i c e s  

feeding i n t o  the  same location, as shown i n  Fig. 20. The o r i f i ce s  a re  

preadjusted by stepping motors t o  t he  correct  opening and closed by 

gates.  

The gates  are  opened by a solenoid ac tua te r ,  and the  pa r t i c l e s  flow out 

a t  the  predetermined ra te .  Eddy-current meters monitor the flow. (The 

pyrolyt ic  -carbon-coated pa r t i c l e s  we use are  e l e c t r i c a l l y  conductive. ) 

Because of t h e i r  high spheric- 

Any 

Hence, 

The hoppers a re  then f i l l e d  with the  desired amount of pa r t i c l e s .  

INSPECTION 

Inspection of t he  pa r t i c l e s  f o r  s i z e  must begin with sampling. 

After a sample of the  proper s i ze  i s  obtained, t he  sample pa r t i c l e s  are 

individual ly  measured. For the  most accurate work, a split-image 
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LOADING PORT 

FILLED HOPPER 

GATE PUSH ROD 

STEPPING MOTOR FOR 
RlF lCE ADJUSTMENT 

EDDY CURRENT 
FLOW MONITOR 

Fig. 20. Pa r t i c l e  Loader-Blender 

microscope i s  used. When time i s  of the essence, a method relying on 

l i g h t  a t tenuat ion i s  employed. The l i g h t  -a t tentuat ion device i s  c a l i -  

birated by split-image techniques so the  r e s u l t s  of t he  two methods a re  

comparable . 

Sampling 

I n  sampling p a r t i c l e s  f o r  laboratory work, the  common r i f f l e  i s  

known t o  be the  most r e l i a b l e  method. However, f o r  large-scale produc- 

t i o n  work a device composed of one or more r i f f l e s  would quickly become 

-too cumbersome t o  be useful. Hence, a Vezin sampler, which takes  a 

ma11 s l i c e  out of a continuous stream of pa r t i c l e s ,  i s  used. 
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S p l i t  -Image Microscopy 

The most accurate way we have found t o  s ize  pa r t i c l e s  i s  t o  use 

split-image microscopy. 

s p l i t  i n to  two images, t ransferred through prisms, and combined t o  be 

viewed by the inspector.  The posit ioning of the  prisms determines 

whether the  images overlap or not. A difference i n  the posit ioning of 

the prisms between where the  two images coincide and where the  two 

images are i n  juxtaposit ion i s  proportional t o  the  diameter of the  

image i t s e l f .  With proper ca l ibra t ion ,  the split-image microscope can 

measure pa r t i c l e  diameter t o  an accuracy of 1 p. The mean s i ze  and s ize  

d is t r ibu t ion  of a batch of pa r t i c l e s  can be determined with t h i s  method 

by measuring approximately 50 pa r t i c l e s  from a representative sample. 

In  t h i s  method an image of the  pa r t i c l e  i s  

Light-Attenuation Sizing 

Accurate s iz ing can be obtained by l i g h t  attenuation.’  With t h i s  

method pa r t i c l e s  are passed i n  f ront  of a collimated l i g h t  beam t h a t  i s  

being received by a photo detector ,  as shown i n  Fig. 21. The pa r t i c l e  

’High Accuracy Products Corporation, Claremont , California.  
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Fig. 21. Light-Attenuation Pa r t i c l e  Size Analyzer. 
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passing i n  f ront  of the  l i g h t  beam produces a d ip  i n  the  photo-detector 

current.  

i n  ranges t h a t  have been ca l ibra ted  t o  p a r t i c l e  diameter. Such a device 

can s ize  p a r t i c l e s  i n to  10-p ranges, providing accurate determination of 

both mean p a r t i c l e  s ize  and p a r t i c l e  s ize  d is t r ibu t ion .  

This d ip  i s  then fed t o  a pulse height analyzer and counted 

SUMMARY 

Equipment has been developed t o  remotely move and process kilogram 

quant i t ies  of pa r t i c l e s .  

process l ines .  Transfer techniques a re  f l ex ib l e ,  so t h a t  with proper 

d.esign, a process can be s e t  up so t h a t  a t  any point the  p a r t i c l e s  can 

be removed or reintroduced, permitting complete manual cont ro l  i n  s p i t e  

of the  automatic nature of t he  equipment. Processes f o r  s iz ing,  elim- 

inat ing nonspherical pa r t i c l e s ,  and blending have been developed. 

A l l  the  equipment can be employed i n  automatic 
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