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FOREWORD 

This repor t ,  produced under t h e  aegis  of  t he  USAEC Division of  

Reactor Development and Technology, i s  intended t o  contain a l l  t h e  in -  

formation a cask designer needs t o  ensure t h a t  h i s  cask meets the  perfor-  

mance spec i f i ca t ions  required by t h e  appropriate Federal  regulat ions of  

the Department of Transportation and the Atomic Energy Commission (see 

Chapter I ) .  

much of t h i s  information useful  i n  t h e i r  respect ive jobs.  

Therefore, both cask designers and reviewers should f ind  

While it i s  not  possible  t o  provide an absolute  Level of s a f e t y  i n  

a11 aspects  of  cask design, t he  authors d id  s t r i v e  for consistency and 

for adherence t o  both the requirements and in t en t  of t h e  Federal regula- 

t i o n s .  In compiling the  information, t h e  authors not only made extensive 

use o f  the ava i l ab le  l i t e r a t u r e  on the  subjec-t but a l s o  had under t h e i r  

d i r ec t ion  a research and development program t h a t  was establ ished t o  pro- 

vide addi t iona l  technica l  i n f o r m t i o n .  

t h i s  program, both a t  OIWL and elsewhere, were shielding,  naaterials of  

construct ion,  f ab r i ca t ion ,  c r i t i c a l i t y ,  and heat  t r a n s f e r  under both 

normal and accident  condi t ions.  

Anong the  a reas  invest igated i n  

Some o f  the  da ta  presented here have been taken from experimental 

programs t h a t  a r e  not  y e t  completed; i n  these cases,  the  information i s  

i d e n t i f i e d  as preliminary.  However, because fu tu re  rev is ions  o f  t h i s  

document a r e  uncertain,  it w a s  f e l t  bes t  t o  provide the  reader with a 

knowledge of t he  existence o f  the  programs, a s  wel l  as a preliminary ind i -  

ca t ion  of t h e i r  r e s u l t s .  

A d r a f t  o f  t h i s  volume, ORNL-TM-24lO, "I r rad ia ted  Fuel Shipping Cask 

Design Guide," w a s  issued i n  January 11763 and sen t  t o  more than 500 peo- 

p l e  involved i n  various aspects  of packaging and t ransportat ion o f  radio- 

a c t i v e  ma te r i a l ,  Comments and suggestions,  s o l i c i t e d  from t h e  readers,  

formed the  basis f o r  many o f  t h e  changes tha t  have been incorporated i n  

t h i s  volume. 

Wm, B. C o t t r e l l ,  Director 
Nuclear Safety Information Center 
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The Nuclear Safety Information Center w a s  es tab l i shed  i n  March 1963 

a t  the  Oak Ridge National Laboratory under the  sponsorship of  the  U.S. 

Atomic Energy Commission to  serve as a f o c a l  po in t  f o r  the  co l l ec t ion ,  

s torage,  evaluation, and dissemination of  nuclear  s a fe ty  information. A 

system of  keywords is  used to index t h e  information cataloged by the  

Center. The t i t l e ,  author ,  i n s t a l l a t i o n ,  a b s t r a c t ,  and keywords for each 

document, reviewed i s  recorded on magnetic tape a t  the  c e n t r a l  computer 

f a c i l i t y  i n  Oak Ridge. 

following categories:  

The references a r e  cataloged according t o  t h e  

1 .  
2. 
3.  
4. 
5. 
6, 
7. 
8. 
9. 
IO. 
11 .  
1 2 ,  
13. 
1 IC. 
15. 

16.  
1 7 .  
1 8 .  
13 .  

General Safety Criteria 
S i t i n g  of  Nuclear F a c i l i t i e s  
Transportation and Handling of  Radioactive Mater ia ls  
Aerospace Safe ty  
Accident Analysis 
Reactor Transients ,  Kinetics,  and S t a b i l i t y  
F iss ion  Product Release, Transport ,  and &mQval 
Somxes of  Energy Release Under Accident Conditions 
Nuclear Instrumentation, Control, and Safety Systems 
E l e c t r i c a l  Power Systems 
Con i;a inmen t of  Nuc 1 e a r  Fac ili t i e s 
Plant  Safety Features 
Radiochemical Plant  Safety 
Radionuclide Release and Movement i n  t h e  Environment 
Environmental Surveys, Monitoring and Radiation Ekposure 
of  Man 
Meteorological Considerat ions 
Operational Safety and Experience 
Safety Analysis and Design Reports 
Bibliographies 

Computer programs have been developed which enable NSIC t o  ( 1  ) pro- 

duce a qua r t e r ly  indexed bibliography o f  i t s  accessions ( issued with ORNL- 
NSTC repor t  numbers), ( 2 )  operate a rout ine  program o f  Se lec t ive  Dissemi- 

nat ion of  Information (SDI) t o  ind iv idua ls  according t o  t h e i r  p a r t i c u l a r  

p r o f i l e  o f  i n t e r e s t ,  and (3)  make re t rospec t ive  searches o f  the  references 

on the  t apes .  

Other se rv ices  of  the  Center include p r inc ipa l ly  (1 ) preparat ion of  

s ta te -of - the-ar t  r epor t s  ( i  ssued with ORNL-NSIC repor t  numbers ) , ( 2 )  prepa-. 

r a t i o n  of  tine qua r t e r ly  technica l  progress review, Nuclear Safety,  
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(3) answering technica l  i nqu i r i e s  a s  time i s  ava i lab le ,  and (4 )  counsel 

and guidance on nuclear s a fe ty  problems. 

Services of  t he  NSIC a r e  ava i l ab le  without charge t o  government 

agencies,  research and educational i n s t i t u t i o n s ,  and the nuclear indus t ry .  

Under no circumstances do these serv ices  include furnishing copies of any 

documents (except N S I C  r epor t s ) ,  although a l l  documents may be examined 

a t  the  Center by qua l i f i ed  personnel.  Inqui r ies  concerning the  capa- 

b i l i t i e s  and operation o f  the  Center may be addressed t o  

J .  R ,  Buchanan, Assistant Director 
(Phone 61 5-483-861 I ,  E%. 3-7253) 
Nuclear Safety Information Center 
Oak Ridge National Laboratory 
Post Office Box P 
Oak Ridge, Tennessee 37830 
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The design o f  i r r a d i a t e d  f u e l  shipping casks i s  governed 

by regulat ions (AEC Manual, Chapter 0 5 2 9 ,  10CFR71 and 49CFR171- 
178) t h a t  impose s t r u c t u r a l  performance standards on the  cask 

by a s e r i e s  of  postulated acc idents .  This Guide i s  intended t o  

provide cask design procedures and c r i t e r i a ,  developed f rom 

extensive ana lys i s  and t e s t i n g  programs, t h a t  enable the  de- 

s igner  t o  c o r r e l a t e  the cask design with the performance of the  

cask a s  r e l i a b l y  as i f  the  cask were subjected t o  a physical  

demonstration. 

The Guide covers design a reas  o f  cask s t r u c t u r a l  i n t e g r i t y ,  

heat  t r ans fe r ,  c r i t i c a l i t y ,  shielding mater ia ls  o f  construct ion,  

and f ab r i ca t ion  techniques,  This information i s  discussed within 

the framework of  t he  AEC regula t ions ,  along with the  r a t iona le  

and the  t e s t i n g  program that supported i t s  development. 

It has been possible  t o  provide design i n f o r m t i o n  i n  the  

important a reas  r e fe r r ed  t o  i n  the  current  regula t ions .  How- 

ever,  the regulat ions a r e  cons tan t ly  undergoing nodi f ica t ion  and 

o f t en  r e in t e rp re t a t ion .  

perience w i l l  continue t o  be usefu l  in re f in ing  present ly  ava i l -  

ab le  da ta  and modifying analyses discussed i n  t h i s  Guide. 

Test programs and ac tua l  operating ex- 
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CASK DESIGNERS GUIDE 

L.  B. Shappert 

1 .  INTRODUCTION 

The domestic t ranspor ta t ion  o f  spent f u e l  elements f r o m  power reac- 

t o r s  i s  governed by regula t ions  from t h e  Department of Transportation 

(DOT) and the  U.S. A t o m i c  Energy Corrmission. The Hazardous Materials 

Regulations Board o f  the DOT has r ecen t ly  revised these  regulat ions,  

making them more general  and eliminating much o f  the  de t a i l . ’  

mary aim of t h e  regulat ions i s ,  of course, t o  pro tec t  t h e  public by 

r igorously r e s t r i c t i n g  the amount o f  r ad ia t ion  and contamination t o  

which people a r e  exposed. 

The p r i -  

The regulat ions r e fe r r ed  t o  throughout t h i s  Guide a r e  pr imari ly  

those o f  t he  USAEC2 ( r e fe r r ed  t o  a s  AECM 0529 which a r e  almost i d e n t i c a l  

t o  those published as CFR T i t l e  10 p a r t  7 1 ) ,  but  occasional ly  the  DOT 

regulat ions a r e  mentioned; a l l  a r e  s imi l a r  and, i n  general ,  compatible. 

The regula t ions  a r e  wr i t t en  i n  terms o f  performnce spec i f ica t ion  

requirements, A cask designer i s  f r e e  t o  exercise  h i s  own judgment as 

t o ,  f i rs t ,  how t o  meet these requirements and, second, how t o  prove t h a t  

he has done so .  D i f f i c u l t i e s  can a r i s e  because var ious cask designers 

place t h e i r  own (possibly inco r rec t )  i n t e rp re t a t ion  on the  regulat ions 

and may develop new methods of s t r u c t u r a l  assessment. In t h e  pas t ,  no 

document has been ava i lab le  which has attempted t o  co r re l a t e  t e s t s  with 

an a n a l y t i c a l  treatment o r  provide analysis methods t h a t  have withstood 

the  t e s t  o f  t ime. 

In 1966 t h e  Division of Reactor Development and Technology (RDT) 
requested of the  Oak Ridge National Laboratory t h a t  they develop a Guide 

good engineering standards o f  p rac t i ce  i n  the  design, fabr ica t ion ,  t e s t -  

ing,  inspect ion,  and maintenance of i r r a d i a t e d  f u e l  shipping casks.  It 

w a s  decided t h a t ,  i n i t i a l l y ,  the  information i n  t h e  Guide should apply 

t o  lead-shielded spent f u e l  casks having s t e e l  inner  and outer  s h e l l s  

s ince t h i s  type o f  cask i s  most widely used i n  the  United S ta t e s  today; 
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then, subsequently, it w a s  t o  be expanded t o  

sh ie ld ing  ma te r i a l s .  The Guide was t o  be o f  

adherence t o  it, would c o n s t i t u t e  prima f a c i e  
PI__ 

include o ther  appropriate  

such q u a l i t y  t h a t  proof of 

evidence of  s a t i s f y i n g  Uie 

performance s tandards of t he  Federal  regula t ions  a 

Guide w a s  provide de t a i l ed  engineering da ta  t o  support  i t s  provis ions,  

with j u s t i f i c a l i o n s ,  der iva t ions ,  and judgments, if necessary, t o  c l a r i f y  

the  degree of s a f e t y  and degree of conservatism intended by the  Guide. 

This would c rea t e  a framework aga ins t  which a l t e r n a t i v e  approaches, tech- 

niques, or mater ia l s  could be judged to ensure t h a t  tlie degree of  conser- 

vatism i s  cons is ten t  and t o  provide a means f o r  encouraging improvement 

i n  t h e  a r t  and i t s  incorporat ion i n t o  prac-Lice. This Guide c o n s t i t u t e s  

the Laboratory's  e f f o r t  i n  f u l f i l l i n g  tha-t commitment. 

In  addi t ion,  t h e  

A preliminary d r a f t  of  t h i s  reportL5 was widely disseminated; readers  

were asked to  review it and t o  submit t h e i r  comments ~ suggestions,  and 

recommendations for changes t o  OFDL. 

many of the changes t h a t  appear i n  t h i s  document. 

These comments formed the  bas i s  f o r  

The forinat of grouping desigi-1 subjec ts  of a spec i f i c  nature  under 

t o p i c a l  headings w a s  chosen although it has the  disadvantage t h a t  t he  

top ics  do not  follow t h e  order i n  which they appear i n  the  regulat ions;  

however, it is  s t rongly  suggested t h a t  requests  f o r  cask approvals that 

a r e  subrnitt,ed t o  t h e  AEC and t h e  D I T  follow t h e  appropriate  format and 

order  of t he  regula i ions  t o  avoid confusion. 

Methods o f  ana lys i s  suggested i n  t h e  Guide a r e  intended t o  provide 

reasonably accurate  information about cask design.  

o f  t he  ana lys i s  i s  not  known, a f a c t o r  of  safety i s  assigned to  account 

f o r  these  unce r t a in t i e s .  

acceptable ,  provri-ded the  iiiethod used can be j u s t i f i e d  on the bas i s  o f  

equivalent or improved sa fe ty  i n  t h e  r e s u l t i n g  cask. 

Where the  accuracy 

Departures from these analysis methods a r e  

The Guide contains  eigh-t chapters ,  Chapter 1 cons i s t s  o f  introduc- 

t o r y  remarks. Chapter 2 i s  concerned with t h e  s t m c t u r a l  design o f  ship-  

ping casks.  Discussions of  t he  m t e r i a l s  of  construct ion and the  methods 

of f ab r i ca t ion ,  which are in t imate ly  assoc ia ted  wi th  design, follow i n  

Chaps. 3 and 4, respec t ive ly .  

ter 6 descr ibes  the kinds of evidence t h a t  should be considered acceptable 

Chapter 5 dea l s  with heat t r a n s f e r .  Chap- 
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f o r  proving t h a t  a system conforms t o  the  c r i t i c a l i t y  requirements of 

ex i s t ing  Federal  regula t ions .  Information on shielding i s  presented i n  

Chap. ‘7 ,  and Chap. 8 provides information on uranium a s  a s t r u c t u r a l  

and shielding mater ia l .  

Early versions of t h e  regula t ions  indicated t h a t ,  f o r  ca l cu la t iona l  

purposes, t h e  impact r e su l t i ng  from t h e  30-ft  f r e e  f a l l  could be consid- 

ered equivalent t o  applying a 60 - g decelerat ing force  to the  cask for 

0.016 sec .  

t h e  regulat ions,  it is  occasional ly  used t o  ind ica te  compliance to  the 

30-ft-drop requirement, 

of  such a force w i l l  not produce damage s i m i l a r  t o  t h a t  produced by a 

30-ft  drop. 

on the  conservation of energy p r inc ip l e ,  as out l ined  i n  Chap. 2 .  

Although t h i s  spec i f i ca t ion  was rerrQved i n  l a t e r  vers ions o f  

O u r  inves t iga t ions  ind ica te  t h a t  t h e  appl ica t ion  

Danage my be b e t t e r  assessed by a n a l y t i c a l  methods based 

A t  t h e  present  time there  i s  i n s u f f i c i e n t  data  ava i l ab le  t o  p red ic t  

with confidence t h e  bes t  weld j o i n t  design f o r  a lead-shielded cask.  

l imi ted  information, based on observations o f  s t a t i c  and dynamic t e s t s  

and personal contacts  with f i r s t -hand  observers o f  cask impacts, l eads  

O W L  t o  bel ieve t h a t  some j o i n t  designs w i l l  withstand the 30-ft f r e e  

f a l l  more e f f e c t i v e l y  than o t h e r s .  Thus, t he  j o i n t  designs recommended 

i n  Chap. 2 a r e  based on what i s  considered t o  be good engineering prac- 

t i c e ,  using the i n f o r m t i o n  ava i l ab le .  

Some 

Although loss o f  shielding i s  discussed i n  Chap, 2,  the  primary haa- 

a r d  r e su l t i ng  from the 3O-ft  f r e e  f a l l  i s  a breach o f  t he  cask contain- 

ment; f o r  t h i s  reason it is  necessary t o  p ro tec t  c losures  (including 

valves ,  pressure r e l i e f  l i n e s ,  e t c . )  from impact. 

my be useful f o r  t h i s  purpose a r e  discussed i n  Sec t .  2 .8 .  

Energy absorbers t h a t  

One of t h e  major requirements o f  t he  cask ana lys i s  i s  t o  show t h a t  

the  i n t e g r i t y  o f  t he  cask s e a l  can survive t h e  impact. 

general ly  maintained by a force on the  l i d  c losure ,  which i s  secured by 

b o l t s  o r  s tuds;  and, f o r  the most part, t he  problem involves the energy 

absorption capaci ty  o f  these bolts or s tuds .  While s u f f i c i e n t  data  a r e  

not ava i l ab le  t o  permit r igorous computation o f  t he  capaci ty  of  a given 

This s e a l  is  
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s tud  o r  bolt the equations given i n  Sec t .  2 . 4  will provide conservative 

b o l t  p a t t e r n  designs f o r  c losures .  

Since t h e  primary aims of cask design a r e  to sh i e ld  and to contain 

a source o f  rad ioac t ive  mater ia l ,  the  mnateria1.s o f  construct ion (dis- 

cinssed i n  Chap, 3 )  must be capable of  performing sal;isfac-kosily when 

they are exposed t o  a wide rarige of environmental conditions as specif ied 

i n  the regulat ions.  

a s t e e l  should have adequate strengt,h, d u c t i l i t y ,  and toughness a t  camhi- 

en t  temperatures,  We have assumed t h a t  rmterial.s t h a t  require  a minirrim 

of 15 ft-1.b of energy bo break a C'narpy keyhole specimen a t  a temperature 

of -40°F will funct ion s a t i s f a c t o r i l y  under noriral operat ing condi t ions,  

as described $I-! t h e  regulat ions;  such as toughness should be siiffi.cient t o  

prevent b r i t t l e  f r ac tu re  from occurring a t  low t,enipera-tv.res I 

From the standpoint o f  use as a f ab r i ca t ion  mater ia l ,  

In cont ras t  t o  t he  high degree o f  r e l i ance  placed on steel .  she l l s  

o f  casks, the requirements f o r  steel .  used for suppor.ts, l i f t h g ,  tie- 

down, and similar noncontailvnent s t r u c t w e s  can o f t en  be relaxed.  The 

consequence of a f a i l i r e  i.n these components i s  minirrlal s ince  one mate- 

~ i . a l  f a i l u r e ,  by i t s e l f ,  general ly  would no-t be su f f i c i e f i t  t o  cause l o s s  

of cask contents o r  sh ie ld ing .  

The d.eeigner i s  f r e e  to specify- rriaterials o t h e r  than those ~ ~ c o m -  

mended; however, the  f a c t o r s  described i.:n Chap. 3 must, be accoi~.~:~ted for 

in the  cask design. To a i d  the  designer,  a l i s t  of  mater ia l s  t h a t  a r e  

acceptable f o r  radi..atj.on shielding and c r i t i c a l . i t y  cont ro l  i n  shipping 

casks i s  a l s o  provided i n  t h i s  chapter .  

The f ab r i ca t ion  and inspect ion requirements for shipping casks a re  

not  s p e c i f i c a l i y  covered by ex i s t ing  codes and s-kmdar-ds. 

ind ica tes  mj.nimim. q u a l i t y  assurance requiremiits similar to  those  recom- 

mended by the AEC and out l ined  in t h e i r  RUT standard F2-2. 

that t he  requirernents a r e  adhered to, an inspect,or, as a representa t ive  

o f  t h s  cask purchaser, wou3.d audit the  inanufactirer! s procurenien.t;, f a h r i -  

cation, inspect ion,  and. .tes.t;ing records t o  deterinltie compliance wi th  tile 

procurement spec i f i ca t ions ,  Such a system will be worth the expense in -  

curred, because o f  the posiLive assurances o f  safety and qua l i ty  o f  -tile 

Chapter I j .  

To enswe 
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f i n a l  product it w i l l  a f ford  t o  both t h e  cask purchaser and the U.S. 
Atomic Energy Commission. 

Both solar and decay heat sources a r e  considered in ca lcu la t ing  the 

m a x i m u m  temperature o f  the spent  f u e l  and cask expected under normal ship-  

ping conditions i n  Chap, s.  
t i o n  o f  t i m e ,  the  cask i s  general ly  designed for a spec i f ied  heat load 

t h a t  accounts f o r  these t w o  sources.  Since t h e  so l a r  heat  load a f f e c t s  

the  surface temperature o f  l a rge ,  massive casks more than t h e i r  i n t e rna l  

cav i ty  temperatures, surface temperature limits (general ly  180°F per COT 

and IAFA) must be c lose ly  examined. 

calculated using an average s o l a r  heat  l oad ,  

Although both o f  these loads vary a s  a func- 

Often i n t e r n a l  temperatures can be 

( see  example i n  Sec t .  sa3.1). 

The response o f  a cask t o  t h e  hypothet ical  f i r e  s t i pu la t ed  i n  the 

regulat ions i s  d i f f i c u l t  t o  evaluate accura te ly .  For example, few f i r e  

t e s t s  of  casks have been instrumented properly t o  permit t heo re t i ca l  and 

experimental comparisons t o  be made. 

thus f a r  i nd ica t e  t h a t  t e s t i n g  should be ca r r i ed  out  on a prototype cask 

r a t h e r  than a s c a l e  model i n  order  t o  obtain useful  r e s u l t s .  More re -  

cen t ly ,  it appears t h a t  t h e  furnace t e s t i n g  of a cask a t  1475°F pay not 

be equivalent t o  the  f i r e  t e s t  postulated i n  the regulat ions because of  

the  i n a b i l i t y  t o  cont ro l  t h e  emissivi ty  of t he  source t o  t h e  s t a t e d  value 

o f  0.9. In addi t ion ,  i n  an a c t u a l  t e s t  t he re  is inevi tab ly  a convection 

a s  wel l  a s  a r ad ia t ion  coupling between t h e  cask and heat source t h a t  i s  

not a l luded t o  i n  t h e  regula t ions .  Such a s i t u a t i o n  makes the  cor re la -  

Data t h a t  have been accumulated 

t i o n  o f  theory and experiment d i f f i c u l t .  

Federal  regulat ions requi re  every shipment of f i s s i l e  mater ia l  t o  

remain s u b c r i t i c a l  a t  a l l  times during normal t ranspor t ,  including load- 

ing and unloading, and under hypothet ical  accident  conditions leading t o  

t he  most r eac t ive  c red ib le  configurat ion,  

cerned with t h e  proof of adherence to  the  requirement o f  s u b c r i t i c a l i t y  

r a the r  than with the  method o f  maintaining s u b c r i t i c a l i t y .  

est o f  econoqy and p r a c t i c a l i t y ,  a shipper  should be allowed t o  exercise  

any p r a c t i c a l  cont ro ls  he des i r e s  i n  rendering a system subc r i t i ca l ;  how- 

ever ,  he must present  proof t h a t  these  cont ro ls  a r e  adequate. 

of proof considered acceptable are discussed. 

Chapter 6 i n  t he  Guide i s  con- 

In  the i n t e r -  

The types 
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Proof ~f subcri t ical~j . ty  can best  be substan-tia.l;ed by arranging the  

desired f u e l  in the  PO s t  reac t ive  c red ib le  configuration wi.t,h respect t o  

the shipping cask design. 

t ua l  cask design avai lab le  a t  the same time t h a t  reac tor  c r i t i c a l  ex- 

periments on the f u e l  are being performed, si.nce only a few addi.Lional 

experiments m u l d  be needed t o  pred ic t  t h e  degree o f  subcritical.ri.t,y t h a t  

w o d d  be a t t a ined  during shipment. When t h i s  i s  not possible ,  the  proof 

o f  s u b c r i t i c a l i t y  must depend i-~pon ca lcu la t iona l  methods. 

o f  such met,j7ods my be v e r i f i e d  by analyzing se lec ted  c r i t i c a l  experiments 

i n  which a similar f u e l  has been used. The Guide provides an  annotated 

l i s t i n g  o f  2 wide vai-iety- of  experiments that  may be used f a r  t h i s  purpose. 

Thus it mu.l.d be des i rab le  t o  have the concep- 

The accuracy 

Chapter 7 p r e s m t s  tnforrnation, i n  the form o f  a noinograph, t h a t  w i l l  

provide cask reviewers a quick and reasonably accurabe method for deter -  

rrlining whether t h e  thickness o f  the lead shielding i n  a given cask i s  

adequate f o r  a p a r t i c u l a r  purpose 

Since regulat ions specify dose r a t e s  3 f t  from the cask sw-face as 

well a s  surface dose rates, a mmograph i s  given t h a t  r e l a t e s  surrface dose 

r a t e  t o  a dose ra te  o f  10 mr/hr a t  a 1.ocation 3 f t  from the siirface as  a 

funct ion of cask di.msnsi.ons. 

1 . I  Scope 

The Guide deals  extensively with casks having s t e e l  s h e l l s  arrd lead 

shielding since casks o f  t h i s  type a rc  must camonly used, Rowver, the  

s.truc tural and shielding proper t ies  of uranium a r e  discussed i n  Chap. 8 .  

1 .2 Cask Momenclatum 

Fi.g-cre 1 . I  i s  a cutaway diagl-am o f  a spent f u e l  shipping cask showing 

the principa I components . 'These components a re  r e f e n e d  t o  throughout 

t h i s  Guide  e 

1 .3 Qual i ty  Assurance 

A manufac-tumf needs a quiality program which w i l l  ensure that the  

finished cask w i l l  prope-rly Fef lec t  -the cask owners requirements. The 
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requirements discussed i n  t h i s  Guide a r e  considered the  mininum t o  pro- 

vide assurance of  qua l i t y  con t ro l  for nost  shipping casks. 

must exercise  good judgment and adopt s t r i c t e r  measures where grea te r  

performance requirements a r e  warranted. 

The designer 

The cask manufacturer should provide h i s  own inspect ion and t e s t  

personnel and f a c i l i t i e s  t o  maintain cont ro l  o f  t h e  qua l i t y  o f  mater ia ls ,  

components, and f ab r i ca t ion  throughout the  cask construct ion.  

O R N L  D W G  68-12260 

Fig, 1 . I  . Cutaway Diagram of  a Shipping Cask Showing Its 
Pr inc ipa l  Components, 
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The purchaser 1 s inspectoi  must, v e r i f y  that, t he  manufactin-i ng q u a l i t y  

cont ro l  is  maintained and tila+, a l l  parks and work processes are  i n  accor- 

dance with the approved drawings and spec i f i ca t ions .  The inspector  must 

have the  r i g h t  to s b p  work on the  cask a t  any time when he feels t h a t  

the assurance of qUaliiY i s  being jeopardized ~ 

Material  t e s t  repor t s ,  heat treatment cha r t s ,  and o the r  documents 

serving as evidence t o  document the  e n t i r e  f ab r i ca t ion  are required t o  

be maintained i n  a Fabyi-cation Record (Sec t .  4 . I  0 )  by the  mmifac turer  

and del ivered wi th  the  cask ta the  purchaser.  The owner, o r  h i s  repre- 

sen ta t ive ,  i s  required t o  be aware o f ,  and t o  approve, a l l  such documents 

before they are placed i n  t h e  record.  This i s  t o  ensure the  ownerfs  com- 

p l e t e  awareness o f  a11 phases o f  t h e  cons t ruc t ion .  

n o t  he construed t o  r e l i e v e  t h e  cask manufacturer of h i s  r e spons ib i l i t y  

t o  conform t o  t h e  design as specified. i n  the c o n t r a c t ,  

Such approval should 

The designer w i l l  f u rn i sh  a cask design report, t o  t h e  purchaser 

which will L i s t  a l l  design assumptions, cask l imi t a t ions ,  and maintenance 

requirements. In  addi t ion,  he w i l l  submit a cask operat ions manual which 

will ind ica te  a l l  known serv ice  l i m i t s .  

1 .5' Cask ,4pprovals" 

1 ,s. 1 General. 

A shipper should f i r s t  examine the  regulations'  t o  determine i.f there  

a r e  packages tha'c have already been xpproved by the Department; o f  Trans- 

po r t a t ion  f o r  use i n  t ranspor t ing  t h e  r m t e r i a l  under considerat ion.  Such 

packages are r e fe r r ed  t o  as "spec i f ica t ion  containers  a 

if there  a r e  no speciEFcatian conta iners  t h a t  fit h i s  need, -the ship-  

per  must request  spec ia l  permission from the DDT and/or the AEC Lo sh ip  

his materi-a1 i n  an ex i s t ing  cask which has been approved; i f  none are  

ava i lab le ,  a new cask must be designed. 
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If a new cask must be designed, t h e  request f o r  approval o f  the 

regulat ing bodies should be a s  broad as possible  with regard t o  both 

present  and possible  fu tu re  conditions o f  use. 

Occasionally, a f t e r  t h e  package has been i n  use, the  ana lys i s  i s  found 

t o  have been conservative; therefore ,  i f  broader coverage, based on expe- 

r ience,  i s  des i r ab le ,  a modification t o  the  o r i g i n a l  permit may be made. 

In the event t h a t  t h e  package i s  l i k e l y  t o  be used f o r  overseas ship- 

ments, t h e  requirements of t h e  DUX4 should be considered and a request 

from the  competent au tho r i ty  ( the  U.S. Department of 'Transportation) f o r  

approval t o  ship under in t e rna t iona l  regulat ions should be sought a t  t h e  

same t i m e  t h a t  domestic approval i s  being obtained.  

1 .5.2 Type o f  Packages 

In accordance with the  philosophy on which in t e rna t iona l  shipping 

regulat ions f o r  rad ioac t ive  material a r e  based, t h e  United S ta t e s  Depart- 

ment o f  Transportation has divided radioact ive mater ia l  i n t o  Groups I-VI1 
(see Table 1 . I ) ,  depending on the  r ad io tox ic i ty  o f  the  isotope concerned, 

and has divided shipping packages i n t o  Types A and B .  Smaller a m u n t s  

o f  more tox ic  mater ia l  and l a rge r  amounts of l e s s  tox ic  m t e r i a l  my be 

shipped i n  the same type o f  package. Type A packages a r e  l imi ted  ta small 

amounts o f  radioact ive mater ia l ,  which, i f  re leased i n  the  event t h a t  a 

package i s  destroyed, would not have ca tas t rophic  consequences, Type B 

packages a r e  for shipments of somewhat l a r g e r  amounts of radioact ive mate- 

r i a l  and a r e  designed t o  contain t h e  radioact ive mater ia l  under conditions 

o f  hypothet ical  shipping acc idents .  

l a r g e r  than those spec i f ied  f o r  Type B packages must be shipped i n  pack- 

ages spec ia l ly  approved by the  USAEC and the  Department o f  Transportation. 

Quan t i t i e s  o f  rad ioac t ive  mater ia l  

Table 1 .2 should be used t o  determine t h e  group No. f o r  radioact ive 

mater ia l s  not l i s t e d  i n  Table 1 . I  , 
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Tah1.e 1 . 2 .  Transport Group Classifi.cat,i.on Table 

- 

Physical Half-Life 

days t o  l o G  years years  
Atomi  c 77-GT"moo 000 days"-- Over 106 

_I___ 

No. ----- 

1-81 Group 111 Group T I  Group 111 

82 and. above Group I Group P Group Ir3: 

Rxemptions from Speci f ica t ion  Packaging, m Marking, and II_ Labeling : 

1 .  

2. 

3 .  

I C  . 

5. 

Radioactive mater ia l s  i n  q u a n t i t i e s  not, 

i n  Table 1 .3 are exempt from s p e c i f i c a t  

and l abe l ing .  

Yackages must n o t  leak zlrider coiidit ions 

t r anspor t a t ion .  

exceeding those l i s t e d  

on packag ng, marking, 

norrrally inc ident  t o  

The contaiiment v e s s e l  must bear t h e  marking ~ T A D I O A C T I V E  

The air- waybi l l  must be mrked as IrExenipted Radioactive Mate- 

r i a l . "  Als(s ,  the  words V o  Label Required1! must appear on the  

shipping papers.  

The r ad ia t ion  dose r a t e  aL Lhe surface of  the  package must no t  

exceed 0 .s rw/hr. 

Empt,;y Packaging .. I-... 

1 ,  h p t y  packaging t h a t  has previously contained radi-oactive m t e -  

r i a l  must,  be c a r e f u l l y  cleaned i n t e r n a l l y ,  securely closed, and 

be i n  good condi t ion p r i o r  t o  shipping. 

2. The outs ide  of  t he  package m u s t  be m r k e d  w i t h  an r r W T Y f l  l a b e l  

thi-oughout t A e  United States  and an 's.Exempted Ehipty Packaging 

Xaving Contarined Radioact,i.ve Mater ia lsf1 label f o r  fore ign  ship- 

ment s * 



3. A l l  o l d  labe l ing  and m r k i n g  must be masked. 

).I. E'oyeign shj-pments are entered on t h e  a i r  waybill  a s  liE;r,empted 

Empt,y Packaging Having Contained RadioactiTre Na te r i a l s  . 

Table 1 .3 .  Exempt Quantity Package L i m i t s  

Grou~,  I 

GYOUP I T  

Group PI1 

Croup IV 

Group V or VI 

Group V I 1  

Special. form 

H 8  3 

%35u 

0.01 nc 

0 . '1 KC 

1 mnc 

1 In(: 

25 cur i e s  a t  concentration 

not  > o a s  mc/ml 

15 g 

'1 .S'.lc Isotope Package Limits 

Packages containing amunts o f  nlatesials t h a t  a re  between exempt, 

q u a n t i t i e s  and Type A packaging limits must meet Type A requirements; 

above t h i s  limit, t h e  package must meet Type B requirement,s as s e t  f o r t h  

in refs. 1 and 3 ,  T a b l e  '1 .L girves the packaging l i m i t s  as a funct ion o f  

iso-tope group % 

PIaterial  whose a c t i v i t y  exceeds the  Type 13 packaging li.rnits is ixm- 

sidered t o  be a l a r g e  s o u ~ c e ,  

be submi-kted t o  the AEC and DOT for approval.. 

Packages t h a t  contain la rge  sovr'ces milst, 



I l l  

Table 1 .).I. Lsotope Package L i m i t s  

Gi-oups and Special  Maximum Net &iiant,ity per- Package 
(in c u r i e s )  Form of  Radioactive _.-.-- _I ---.-... ___ 

Materials  A p e  A Packaging =e B Packaging 
I I__D___I - - 

Group I 

Group I1 

Group 111 

0,001 

0 .05 

3 

20 

20 

200 

Group Tv 20 200 

Special  farm of  Groups I t o  TV 20 

Group V 20 

5000 

5000 

Group V I  1000 50000 

Group V X I  1000 50000 

1 .s ,5 F i s s i l e  Materials 
_1__1____ 

1 . Packages containing not  more than 15' g of  fissi-le material. 

a r e  exemp.1; from f i s s i l e  shipping r e g u l a t b n s  e However, sizch 

mater ia l  must be packaged i n  the same manner as o the r  radio-  

nucl ides  - according t o  t h e  nmbsr o f  cu r i e s  present. 

grains o f  2 3 5 ~  i s  an exempt quantity o f  radioactive iiiatel-ial. 

The l i m i t s  o f  a2.l mater ia l s  considered to  be f i ss i le  by -the 

regula.t;ions a re  given in Table 1 +s.  

Fi f teen  

Table 1 .5. F i s s i l e  Packaging L i m i t s  f o r  Type A Packages 

Ac t iv i ty  Limit Weight L i m i t  
Nuclide (Mikkicurie ) 



1 Code of Federal. Regulat ions,  T i t l e  49, Parts 17 I -1 75, Rx3eml. 

Zegister. 33 110 1 Sk, FarL I1 (Oct  a 4, 1968).  

2 ,  Code of Federal Repdat ions,  T i i l e  Part '11 a 

3 a I, R .  Smppert,, I r r ad ia t ed  Fuel Shipping Cask Design Guide BRHL 

TM-2).!10 (Januaq 1969) 

li. ~ 

Zegulatioions f o r  the Safe Transport of  Radioactixie Mater ia l ,  I Safety 

Ser ies  No, 6, 1967 e d , ,  LAER, Vienna, 1361. 

r' 3 a R. I). Seagren, OWL Isotopes D i v i s i o n  Guide f o r  the Faekagbig of 

Radioactive Mater ia ls  for Transpclrt, ORNL-TN- 2769 ( i n  publ icat ion)  

-\L 

"T. C .  George, Agent, IIazarclous Faterial..; R e g u l a t  i-oris of ttie Departrrtent 

af Transportation including Specifications for Shippins Containers ~ 

Tariff  Noo 23, p a  133, issued h r g ,  3, 1769, 



2 . I  Inner Shell. Thickness 

The imiel- s h c l l  thickness of t h e  cask, exclusive o f  closure devices, 

should be designed as i f  i t  were an  unf i red  pressure vessel and mec:s, 

as a mini in-m,  the  mqlzirements of  l l ivision I o f  Sec t .  V U 1  o f  t h e  BmE 

b i l e r  and Prt:ssilre Vessel Code, This code r e l a t e s  s i z e ,  r a t e r i a l  o f  

construct ion,  and i n t e r n a l  and ex te rna l  pressure to t h j  ckmss . 
s i ie l l  should not  be l e s s  than 3/8 i n .  nominal th ickness .  

The inner  

Since it i s  necessary to e s t a b l i s h  a shel.1 thickness .tha'i, xi11 allow 

-the cav i iy  t o  rena in  serviceabl:: under a l l  expected in t a r i i a i  and external_ 

loads, .tile eqec'Led sewice  of  the  cask must he examined, Ikternal. loads 

wi3.3 .  be imposed from t h e  st,atj.c head of lead during pouring, the sbrink- 

age o f  lead. upoii cooling, t he  esya.nsion o f  I e a d  r e s u l t i n g  from a f i r e ,  o r  

the mverrimii of  l e a d  as a result, of  impact. 

result  o f  coolant p~essure in the cav i ty  or poss ib ly  from thermal e x p n -  

sion o f  i n t e r n a l  coniponents such as a baske t .  

btei-nal. l.oacls occur as a 

Because o f  the type o f  envirollrneat t o  which. t he  inner shell i s  ex- 

posed, the mater ia l  should be capable o f  bei:ng decon-Laminated without, 

loss o f  ser=viceabi.l.i.ty. 

cussed i n  Chap. 3 .  

Accept,a.bf_e m-tei-ia1.s o f  construct ion are d i s -  

If jl, i s  des i rab le  to  perform a more-detailed. asaa1ysi.s than i s  

afforded by Sec t .  VZLI of  t he  ASW Pressure Vessel. Code, 0:LVL TM-l3l2, 

Vol .  1, which deals with inner s h e l l s  o f  both cylindrical .  and f l a t  s ided 

casks, should be consulted.  

2 . 2  Outer S h e l l  Thickness 

A kO-in. f ree  f a l l  of  a laad-shielded cask onto a 6-in.-diarn punch 
-\L 

m y  cause f a i l u r e "  o f  the cask in one of  several. ways. The mosi obvious 

._ 

"Failure is defined as the i n a b i l i t y  of  the cask t o  neet the 

1-egula.tions . 



For hot-rolled carbon steel and stainless steel outer shells, the 

minimtun outer ahell 

of the piston is givsn by Fq. (2.a). 
stand the plznching action 

tiona given in this 

c<moesnbg outer shall! dianwbr and material ducti l i ty . )  

t J (w/s)0*71 9 

where 

t = shelltUckness,  in., 

W =I cask weight, lb,  and 

S = ultimate tmsi3.e strength of  the outer shell, ps i .  

Figure 2.1 shows a photo graph of  a section of  a s tee l  shel l  

that was damged %o the pokfb of Bnciphnt 

pact on a p-h. IBote %he partial fracture of the test  spechen. 
w e  as a result of im- 

L. 

1 FRACTURE 

INCHES 

~ ~ ~ ~ m ~ p h  of Rot-blled Steel Plate Tested a t  Its 
% m e  Ibrgp. 

1 

1 
1 8 

I 
d 

In 
8 
d 
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A consreriieiit represen-tatiori of E q .  ( 2  . I  ) i s  given i.n Fig.  2 .2. Rpa- 

t i o u  (2 .I ) m y  be used f o r  both fJ-at-sided and c y l i n d r i c a l  casks withi.:n 

c e r t a i n  k n i t s  

diarnetem g e z ~ e r  than about 30 i n . ,  Fq a ( 2  .I ) gives acceptable resuI.ts; 

f o r  diame-ters l e s s  tliaii 30 i n . ,  it map givs  nonconsemative results ~ 

U i l t l l  more d e f i n l t i v e  .tests can. be performed, it, i.s recommended that a 

f a c t o r  o f  I .3 times the a c t u a l  cask: weight be used i n  Eq.  ( 2  . I  ) wiien it 

i.s appl ied to casks ha- i r ig  d-iameters l e s s  than 30 i n .  

'Tes-ts h w e  indicated'  t h a t  f o r  cy l ind r i ca l  casks with 

?&.en Eq.  (2 .I ) is used, considerat ion shad.d be given to t he  reduc- 

t i o n  i n  jacke t  f l . e x i b i l i t y  thal; i s  caused by var ious  stm.ctu.ra1 features 

The energy reqiii-red t o  puncture the  jacket; w i l l  be reduced from t h e  value 

indica-Led by Fi-g, 2 . 2  by sisti.f.feners, 'I such as f i n s ,  t h t  a,re c l o s e r  than 

about 9 in. from the  cen te r  of the impact, a m a .  Tnfo1-m.ti.on t o  quant i ta -  

t i v z l j -  evaluate  -Lhe z f f e c t  of  l o c a l  s t i f f e n e r s  i s  n o t  presen t ly  ava i l ab le  

ORNL 0.rg 67.10564 8 

" I  

5.000 no00 100,000 100,000 

CASK WEIGHT,  W, ( 1 . b ~ )  

Pig. 2 . 2 .  Gragh t o  E s L i m % Y  Minimum OuLer Shell. Thickness foi- 
Lead-Shielded Casks, Based o n  E q .  ( 2  .I ) , 



Lead-shielded casks based on a th ree - she l l  cask w a l l  concept have 

been designed and b u i l t .  

p lus  a t h i r d  s h e l l  t h a t  i s  posit ioned approximately 2 in. ins ide  the  

outer  one; t h i s  arrangement provides f o r  t w o  separate chambers t o  contain 

the lead sh ie ld ing .  Under accident  conditions,  breaching o f  the  outer  

s h e l l  and subsequent loss o f  t he  o u t e r  lead  l aye r  would not necessar i ly  

cause the  cask t o  f a i l  t he  required t e s t s  s ince  t h e  loss of  2 i n .  o f  lead 

shielding i n  a f i r e  w i l l  l i m i t  t he  dose r a t e  increase t o  approximately a 

f a c t o r  o f  IO. 

the  e f f e c t i v e  heat input  t o  t h e  cask cav i ty .  

performed using the  three-shel led wal l  concept2 appear promising. Con- 

s iderably  more energy i s  required t o  rupture the center  s h e l l  o f  such a 

cask than would be expected, based on Eq. ( 2 . 1 ) ;  however, t h i s  equation 

my be used to  s i z e  the center  s h e l l  without disproport ionate  conservatism. 

The design provides inner  and outer  she l l s ,  

The l o s s  of lead w i l l  c rea te  an a i r  gap t h a t  w i l l  reduce 

Results o f  impact t e s t s  

A s imi la r  concept i n  which puncture o f  the outer  s h e l l  may be a l -  

A l aye r  o f  wet lowed i n  an accident is  described i n  a French repor t .3  

p l a s t e r ,  with 26% f r e e  water,  i s  poured between the lead  sh ie ld  and the 

outer  s h e l l .  If the  cask i s  involved i n  a f i r e ,  the outer  s h e l l  perfo- 

r a t e s  by v i r t u e  o f  f u s i b l e  plugs and the  p l a s t e r  d r i e s ,  forming an insu- 

l a t i n g  layer  around the  lead s h i e l d .  Results of t e s t s  ind ica te  t h a t  t he  

l aye r  o f f e r s  adequate pro tec t ion  f r o m  impact followed by a f i r e .  

Resistance t o  puncture my not  be t h e  only bas i s  on which to s e t  t h e  

outer  steel  s h e l l  thickness .  Recently, ca lcu la t ions  and t e s t s  conducted 

both here and a b r ~ a d " ~ , ~ ~  indica te  t h a t ,  a s  the outer  s t e e l  s h e l l  thick-  

ness i s  increased, t he  a m u n t  of lead  melted decreases assuming the  same 

thermal environment. The minimum ou te r  s h e l l  thickness ,  which w i l l  pro- 

vide good f i r e  pro tec t ion  ( i , e . ,  very l i t t l e  lead w i l l  mel t ) ,  i s  approxi- 

mately 2-1/2 i n .  This pro tec t ion  results a t  l e a s t  p a r t i a l l y  from the  

f a c t  t h a t  t h e  heat  capaci ty  o f  mild s t e e l  i s  approximately four  times 

t h a t  o f  l ead .  

2.2 .I Basis f o r  Equation ( 2  .I ) 

A n  experimental program w a s  i n i t i a t e d  t o  inves t iga te  the conditions 

t h a t  would lead  t o  t he  puncture o f  s tee l - jacke ted ,  lead-shield.ed casks 
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dropped from a height o f  [LO in.ly4 

The three  data  poin ts ,  which a r e  t h e  r e s u l t s  of the 86,200-113 prototype 

model t e s t ,  a r e  cor re la ted  e f f ec t ive ly  by the equation 

The r e s u l t s  a r e  summarized i n  F ig .  2.3.  

where 

E i s  the  energy (40 W, i n  i n . - l b )  and the  other  terms a r e  given 

above. 

100.0 

40.0 

... .. ... 

8.0 

2.01 

ORNL Dwg 67-10563A 

L DATA FOR 0.5 IN. PI 
ED UP TO 6.0 IN. pur 

...... ....... . . ..... 

~ 

2.0 3.0 
I .o 
0. I 0.2 0.3 0.4 0.6 0.8 ID 

TEST PLATE THICKNESS , t , ( Inches) 

Fig. 2.3.  Puncture Test Data f o r  Lead-Backed P l a t e s ,  
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Equation ( 2 . 2 )  w a s  developed from a geometrical scale-up o f  data  obtained 

using 1 : I 2  s i z e  m d e l  t e s t  da ta ;  t h a t  is ,  t e s t  specimens weighed from 3s 
t o  75 l b ,  and the  punch was 0.5 i n .  i n  diameter,  

Mater ia ls  t h a t  were jacketed with l ead  and had a broad range o f  prop- 

e r t i e s  were t e s t e d  in t h e  f la t -surface-nodel  phase o f  the  program.' 

was found t h a t  s i g n i f i c a n t l y  less energy w a s  required t o  punch through 

mater ia l s  having an ultimate elongation o f  l e s s  than 40% i n  a 1 - i n .  gage 

length than those whose elongation w a s  g rea te r  than 40%. 
gat ion l e v e l ,  the  ul t imate  t e n s i l e  s t rength  of t he  s h e l l  mater.ia1 was the  

s ign i f i can t  property of  the  m t e r i a l  and, therefore ,  w a s  used t o  co r re l a t e  

t he  da t a .  A t  impact energies near puncture energy, s ign i f i can t  deforma- 

t i ons  of  the  jacke t  were evident over an a rea  whose diameter was about 

t h ree  times t h a t  o f  the  punch diameter.  

It 

Above t h i s  elon- 

Cyl indrical  models from about 4 t o  7 i n .  i n  diameter, with a jacket  

thickness  of 0.075 i n . ,  were t e s t e d  with punches with diameters o f  0.4, 
0.5, and 0.6 i n .  

cy l ind r i ca l  model were m o r e  d i f f i c u l t  t o  puncture than those o f  f l a t  sur -  

faced (cubica l )  models o f  s imi la r  weight and s h e l l  thickness .  

some of t h e  data reported5 f o r  impacts o f  prototype cy l ind r i ca l  casks on 

6-in.-diam punches suggest tha t ,  f o r  casks with diameters less than 30 i n . ,  

with a punch diameter o f  6 i n . ,  a cy l ind r i ca l  cask s h e l l  w i l l  puncture 

m r e  readily than a cubical  cask s h e l l  o f  the  same weight, thickness,  and 

material. A l l  tests were made with the  l i n e  of ac t ion  of t he  punch being 

d i rec ted  through t h e  center  of g rav i ty .  This i s  the bas i s  f o r  recommend- 

ing t h a t  when using Eq. ( 2 . 1 )  f o r  casks with diameters of less than 30 in . ,  

t he  weight should be increased by a f a c t o r  o f  1 .3. 

In the range o f  parameters t e s t ed ,  t h e  s h e l l s  of t he  

However, 

2 . 3  Weld Design 

Welds a r e  o f t en  p a r t i c u l a r l y  vulnerable t o  se r ious  damage a s  a r e s u l t  

o f  f r e e - f a l l  accidents  and subsequent thermal exposure. 

t o  a v a r i e t y  o f  f a c t o r s .  Many a r e  located i n  areas where they a r e  subject  

t o  gross deformations. 

base metal, and they are a l m s t  always s t r e s sed  t o  a s i g n i f i c a n t  degree 

as a r e s u l t  o f  the welding processes .  Al so  many welds contain f l a w s  t h a t  

This i s  t r u e  due 

They normally do not possess t h e  d u c t i l i t y  o f  the 
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reduce t h e i r  a b i l i t y  t o  deform without rup tu re ,  

ing r e s u l t s  i n  s t r e s s  concentrations whose removal my not be p r a c t i c a l .  

The very nature of weld- 

Perhaps the  mst  vulnerable welds a r e  corner welds o r  t h e  welds jo in-  

ing the  s h e l l  to the  top and bottom heads. In the f r e e - f a l l  impact, when 

the  l i n e  of ac t ion  passes through or near the  center  of grav i ty ,  these 

welds a r e  required t o  bend or r o t a t e  through an angle o f  90". 

t he  roo t  o f  the  weld i n  tension and my r e s u l t  i n  a gross crack unless 

the  corner i s  adequately designed. 

t o  deform a l e s s e r ,  but s i g n i f i c a n t ,  amount. Generally, such deformation 

takes  the  form of  bending o f  t h e  weld and base metal over a s i g n i f i c a n t  

length; hence t h e  weld i s  not  placed i n  jeopardy t o  the  same degree as the  

corner weld. 

This places  

Other s t r u c t u r a l  welds a r e  required 

It seems 1-ogical t o  assume t h a t  any weld design which w i l l  bend t o  an 

angle o f  90" i n  a simulated dynamic inc ident  without rupture  would be ade- 

quate for a corner weld, 

tural  weld j o i n t s  a r e  not so e a s i l y  es tab l i shed .  

nonexistent,  and ORNL i s  not aware of the  f a i l u r e  of a complete penetra- 

t i o n  weld i n  a noncorner pos i t i on  as a r e s u l t  of  an impact. It i s ,  there-  

fo re ,  f e l t  t h a t  a complete penetrat ion weld i s  adequate for a l l  welds away 

from t h e  corner .  

Criteri-a f o r  t h e  adequacy o f  other  cask s t ruc-  

Test da ta  a r e  almost 

A t e s t  program i s  current ly  under way a t  Oak Ridge National Laboratory 

t o  e s t a b l i s h  which corner j o i n t  designs s a t i s f y  the requirement of non- 

rupture i n  an impact. The designs shown i n  F ig .  2 . 4 ,  backed with lead ,  

were s t ruck by a weight t h a t  was dropped from a height of 30 f t .  The i m -  

pact caused the  specimens to  bend 90". 

and 3Ol4.L s t a i n l e s s  s t e e l ,  i n  3/8-in. thicknesses ,  were t e s t e d .  

5, and 6 were found t o  be adequate f o r  both mater ia l s ,  while design 2 w a s  

adequate f o r  t h e  304L s t a i n l e s s  s t e e l  only.  

adequate because of gross f a i l u r e s .  

of t h e  t e s t s .  

Two mater ia ls ,  ASTM-A-516 s t e e l  

Designs 1 ,  

The remaining designs a r e  not 

Figure 2.5 shows the  r e s u l t s  o f  some 

It appears t h a t  there  a r e  two approaches t o  maintain the i n t e g r i t y  o f  

One approach i s  to  design a weld j o i n t  having a r e s i s t ance  welded j o i n t s .  
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O R N L -  DWG-69-8421 

1 

2 

3 

4 

5 

6 

F i g .  2.4. Corner Weld J o i n t  Tes t  Designs. 
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ORNL-DWG 69-48964 

A-516 STEEL 

504 L SlAlNLESS STEEL 

A-5i6 STEEL 

Fig. 2.5. Weld Joint Designs Tested Under a 300-lb Weight Dropped 
30 ft. 
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t o  deformation s i g n i f i c a n t l y  i n  excess o f  that possessed by the  base metal, 

t h a t  i s ,  one i n  which a l l  o r  near ly  a l l  of t he  deformation takes place i n  

the  base metal and not  the  f i l l e r  m e t a l .  

gory. 

area,  as in design 6 .  

i n  l i e u  of a f l a t  p l a t e  f o r  t he  ends o f  t he  cask. It w a s  a l s o  es tabl ished 

that grinding improved t h e  a b i l i t y  of  welds t o  undergo p l a s t i c  deformation 

without rupture .  

Designs 1 and 5 are i n  t h i s  cate-  

The second approach i s  t o  r e m v e  t h e  weld j o i n t  f r o m  the  vulnerable 

This my be done by using a formed o r  dished head 

It i s  recognized t h a t  these  t e s t s  were performed on 3/8-in. material, 

and therefore  t h e  r e s u l t s  a r e  v a l i d  only f o r  this thickness  and f o r  high- 

q u a l i t y  welding. 

s igns l ,  s, and 6) i l l u s t r a t e  t h a t  a corner weld needs t o  be ( a )  much 

s t ronger  than the  joined base metal, o r  ( b )  remved from the vulnerable 

a rea .  Design 2 i s  not recommended f o r  any mater ia l  and thickness o the r  

than 304L stainless  s t e e l  3/8 in.  th i ck  due t o  i ts  f a i l u r e  i n  A-516 s t e e l .  

The designs i n  Table 2 .1  are recommended €or  s t r u c t u r a l  b u t t  welds. 

However, it i s  f e l t  t h a t  t h e  r e s u l t s  (notably f o r  de- 

Although o ther  welds may be acceptable,  they should be examined on t h e  

basis o f  ease of f ab r i ca t ion  and a b i l i t y  t o  develop f u l l  j o i n t  s t r eng th ,  

It i s  permissible t o  use backup r ings  o r  consumable i n s e r t s  f o r  any of  

these welds. Welding p rac t i ces  required by Chap. 4 should be adhered to. 

If a weld design from Table 2.1 i s  used i n  conjunction with the in-  

spect ions required i n  Chap. 4, t h e  cask designer may use a j o i n t  e f f i -  

ciency of 85% i n  t he  design o f  the inner s h e l l  under t h e  recommendations 

o f  Sec t .  2 . 1 .  

the  designer f e e l s  j u s t i f i e d  on the b a s i s  o f  thorough inspect ion proce- 

dures .  

The j o i n t  e f f ic iency  can be increased t o  loo%, provided 

A l l  welds should be made by the processes described i n  Sect.  4.3.1 
and should be of t h e  q u a l i t y  spec i f ied  by Sects .  4.3.2 and 4.8.5. 
ing requirements shown on engineering drawings should conform t o  AWS A2.0  

welding symbo Is. 

Weld- 

The design o f  a welded j o i n t  t h a t  i s  not a part of  t h e  cask proper 

w i l l  be l e f t  t o  t h e  d i sc re t ion  of t h e  designer and should be based on good 
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engineering p r a c t i c e ,  

angular,  l a t e r a l ,  and end r e s t r a i n t s  on the w e l h e n t  when b u t t  welds a r e  

made (as described i n  Sect .  4 .3 .5) ,  p a r t i c u l a r l y  with respect  t o  m t e r i a l  

and weld metal having an ul t imate  s t r eng th  of 80,000 p s i  o r  higher and 

heavy sec t ions  o f  both low- and high-tensi le-s t rength material . ,  

t i o n  of r e s t r a i n t s  during welding m y  result i n  cracks t h a t  might not 

occur otherwise.  

Consideration should be given to the  e f f e c t s  of 

The addi-  

2.4 Cask Closure, Gasketing, and Bolting Design 

The primary functions of a cask closure a re :  ( 2 )  t o  provide access 

t o  the  cavi ty  within the  cask, and ( 2 )  t o  confine t h e  radioact ive mate- 

r i a l  within the  cask during normal conditions of t ranspor t .  

dent conditions,  some leakage o f  r ad ioac t iv i ty  i s  allowed (see Table 5.1) .  

Under acc i -  

While it i s  r e a l i s t i c  t h a t  some leakage may occur it ~ m d d  be d i f f i -  

c u l t  t o  estimate t h e  amount o f  rad ioac t ive  mater ia l  t h a t  w i l l  escape i f  

the cask s e a l  i s  breached following an accident ,  unless  encapsulated pate-  

r i a l  i s  being t ranspor ted ,  As more knowledge i s  gained about the damage 

to %he contents and the  mechanism o f  the  escape o f  radioact ive materials 

under accident condi t ions,  these  d i f f i c u l t i e s  my be resolved.  

The closure design must provide f o r  the  load-carrying capaci ty  o f  

t h e  gaskets,  r e t a in ing  s tuds or b o l t s ,  f langes,  e t c .  t o  r e s i s t  both nor- 

mal and accident  conditions s ince exposure to the  hy-pothetical 39-ft  drop, 

followed by the O,$-hr f i r e ,  c rea tes  t h e  mst d i f f i c u l t  c losure problems 

the  designer must f a c e ,  If an ana lys i s  i nd ica t e s  t h a t  quan t i t i e s  l a rge r  

than those permitted t o  escape could e x i s t  i n  t he  cav i ty  i n  a mobile form 

a f t e r  an accident ,  assurance o f  containment may have t o  be based on some 

i t e m  other  than the  gasket unless  it has been shown t h a t  t he  seal w i l l  

not l eak .  

2 .)-I. 1 Select ion and Design o f  the Gasket 

Large forces  and r e su l t i ng  d i s t o r t i o n s  t h a t  could separate  the ].id 

from the  body of the cask o r  crush t h e  gasket my o c c w  a s  a r e s i l t  o f  

the 30-f t  irripact. Under such conditions,  t h e  i n t e g r i t y  of t h e  seal 
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genera l ly  depends upon the  design of t h e  flanges; and r e t a in ing  b o l t s  or 

studs;  t h a t  is, i f  the  l i d  and cask f langes  are st i f f  ( o r  i f  t h e r e  i s  no 

r e l a t i v e  niovernent between the l i d  and t h e  cask due t o  impact) and i.f the  

gaske.t i s  located near  t he  r e t a in ing  s tuds,  t h e  s e a l  would probably rerrain 

i n t a c t .  These condi t ions can o f t e n  be m e t  by providing s a c r i f i c i a l  payts ,  

such as f i n s ,  t o  l e s sen  t h e  shock of impact and t o  d i s t r i b u t e  the  impact 

1oa.d over a r e l a t i v e l y  wide area.  Such pro tec t ion  i s  discussed i n  

sect, e 2 . a .  

Gaskets t h a t  are most appl icable  t o  use as closure seals f a l l  intx, 

severa l  bas ic  groups, as follows: 

( 1 )  elastomer gaskets ,  

( 2 )  f l a t  asbestos gaskets,  

( 3 )  jacketed gaskets  ( e  . g . ,  steel .  over asbes tos)  , 

(4) corrugated metal gaskets  w5th or without s o f t  f i l l e r ,  

(5) spiral-wound gaskets,  

(6) p l a i n  or rnachiiied f l a t  metal gaskets ,  

('0 0-ring-type meta l l ic  gaskets ,  an3 

(8) s o l i d  metal gaskets  with a sound o r  a s p e c i a l  c ross  sec t ion .  

The general  c h a r a c t e r i s t i c s  o f  each o f  these basic  groups a re  discussed 

i n  the  following paragraphs; design in fo r ra t ion  pert,ai.ning t o  some o f  the 

m-re comrron types of  gaskets  i s  given i n  Tables 3 .2a,  2.2b, and 2.3.  

When designed t o  f i t  i n  a properly designed gi.oou-e, an O-ring type 

gasket provides an exce l len t  sea l  s ince  it cannot be cnmhed i n  an impact 

or damged by cxcessive b o l t  loadings e 

used t o  advantage, but considerat ion must be given to the  rnaximum terripera- 

tme reached by the  gasket i f  the  cask becomes involved i n  the O.s-hr f i r e ,  

Meta l l ic  O-rings can be used f o r  t h i s  service but are more expensive a.nd 

require  the  nkzintenance o f  a be- t te r  sea l ing  slsrface; however , they have 

the advantage of per3forming sa-tisfactori1.y a t  higher operat ing tempera- 

t u r e s .  

Elastomer gaskets  a r e  f requent ly  
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Table 2.2a. Design Data for Different  Types o f  Gaskets" 

Mat e r ial 

m, Minimum Design 
Gasket Seating S t r e s s  
Factor  ( p s i )  

Rubber (homogeneous) 
Below '71; Shore durometer 0.50 0 
Above 75 Shore durometer 1 200 

I 
Asbe s t o  s 

1/F: i n .  thick 
F l a t  1/16 i n .  t h i ck  

1/32 i n ,  t h i c k  

2 .00 1600 
2.75 3700 
3 .so 650 0 

Carbon s t e e l  
S t a in l e s s  o r  Mone3 

S p l r o l  Wound Metal 

A s b e s t o s  F i l l e d  

2 .so 
3 00 

2300 
4500 

So f t aluminum 2 .So 2900 
Soft  copper or brass 2.75; 3700 

- 
Cor r ugot e d Jo c &e t e d 

A a b e s t o a  Flilrd 

Cord Cemented in Corrugo- 
iionc 

3 .00 4500 
3.25 s500 
3 .so 6500 

2.75 3700 Soft aluminum 
Soft  copper or brass  3 .oo 4.530 
Iron o r  s o f t  s t e e l  3.25 5500 

C o r r u g a t e d  Monel 
S ta in l e s s  s t e e l s  

3.5(1 6500 
3.75 '1600 

Sof t  aluminum 3.25 5500 
Soft copper or  brass  3.50 6.500 - 
I ron o r  s o f t  s t e e l  3.75 
Monel 3.50 8000 

I r t o l  Jacketad ,  Sta in l e s s  s t e e l s  3.75 3090 

=k=zEii - 7400 

Asbestor  Fil lrd 



Table 2.2a ( con t ' d . )  

Y, 
111, Minimum Design 

Gasket Seating S t r e s s  

Tme Material Factor ( P s i )  - 
So f t a luminwn 
Copper 

Iroii or" soft steel 
Monel 

ssrrsBsd Sta in l e s s  s t e e l s  

or Grooved 

3 ,75 
3.75 
IL .25 10,100 

' f  600 
9000 

Lead 2 .OO 1 LO0 
Soft  alimi num 4.00 8800 
Soft  copper. or brass  L.75 13,000 

Tron o r  s o f t  s t e e l  5.50 18,000 
Monel 6.00 31,800 
Stajnless s t e e l s  6 .So 20 000 

Fiat  M e t o l  

Iroil  o r  s o f t  s t e e l  
Monel 
S ta in l e s s  s t e e l s  

5 .50 18,000 
6 .OO 21,800 
6 .SO 26,000 

a 
Data taken from the  "ASPIF: Boi ler  and Pressure Vessel Code 
Sec Lion V I I 1 ,  Unfired Pressure Vessels"; from Machine Design, 
Seals  Reference IsSue, 36(14), 95 (June 11, 19h)J);  and from 
M .  F. Spotts, p .  452 i n T e s i g n  o f  Machine Zlernents, 3d e d , ,  
Prent ice  Hall9 1961. 



Tabie 2.2b.  Design Data f o r  Di f fe ren t  Types of  Gasketsa 

Y' 3 

Mininiutn 
Seating S t r e s s  

( lb / in .  of gasket ) Mat e rial 

Alwninun 

S ta in l e s s  s t e e l  
c-= Sof t  s t e e l  ( i r o n )  

Round C r o r r  act ion 

Aluminum jacket  - aluminurn cores  1500 

cores 1500 

Wropprd WIrr Core s t e e l  cores 6000 

Aliminun jacke t  - s t a i n l e s s  s t e e l  

S t a in l e s s  s t e e l  j acke t  - s t a i n l e s s  

/i) - 
1 -16-in.-OD tube x O.OI)_C-in.- 
t h i ck  w a l l  

Aluminum 
Mild s t e e l  
Jnco ne 1 
Sta in l e s s  s t e e l  

1/8-in.-OD tube x il.012-in.- 
t h i ck  wall 

Aluminum 
Inconel 
S t a in l e s s  s t e e l  

1/4-in.-OD tube x 0.012-in.- 
t h i ck  wal.l. 

S t a in l e s s  s t e e l  

350 
850 

'1 1 oc)  

1300 

a Data taken from the  9rAhME: EbiLer and Pressure Vessel Code 
Section V I I I ,  Unfired Pressure Vessels 'f ;  from Machine Design, 
Seals  Reference Issue, 36(114),95 (June 11, 1 9 6 ) ~ ) ;  and from 
PI, F. Spot t s ,  p .  1 ~ 5 2  inf jes ign of Machine Elements, 3d ed . ,  
PrentFce Hall, 1561. 
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a 
Table 2 . 3 .  Sustained Temperature Limits of Gasket Mater ia ls  

M a x i m u m  
T enip e r  a t UT e 

Mater ia l  (OF) 

Lead 

Si l icone rubber 

Co ~ r m  n bra  s s e Y 

Asbestos 

Copper 

Aluminum 

S ta in l e s s  s t e e l  type 304 
Sta in less  s t e e l  type 316 

Soft  i ron ,  low-carbon s t e e l  

S t a in l e s s  s t e e l  type 502 

Sta in l e s s  s t e e l  type 1110 

Silver 

Nickel 
b 

Monel 

S ta in less  steel type 309 

S ta in l e s s  s t e e l  type 321 

S ta in l e s s  s t e e l  type 31.~7 

Ceramic f i b e r  

h c o n e l  

b 

b 

b 

b 

b 

b 

21 2 

400 

500 

500 

600 

800 

1000 

1000 

1000 

1150 

1200 

1200 

1400 

1500 

I 600 

1600 

1600 

1 600 

2000 

a 
Data taken from I Machine Design, Seals Reference Issue,  - 36(6),19 
(June 1961.1) . 

bConsult gasket rwmifact,urer for high-tenipe~~at,ure use . 
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To maintain a f l u i d - t i g h t  j o i n t ,  it is  necessary t h a t  the p a r t s  be 

t i g h t l y  bol ted toge ther .  The i n i t i a l  b o l t  loading must be g rea t  enough 

t o  cause l o c a l  y ie ld ing  o f  t he  gasket when it contacts  t he  metal f lange 

sur faces .  

i s  ca l l ed  the  "yield 'f  value,  y o r  y f ,  of the  gasket; values of y and y' 

aye given i n  Tables 2.2a and 2.2b. 

The mininium contact, pressure necessary t o  secure a t i g h t  j o i n t  

Any internal.  f l u i d  pressure above atmospheric i n  the  cask cavity 

reduces the gasket contact  pressure.  Experience has shown t h a t  the r a t i o  

between the contact pressure and the  f l u i d  pressure,  which i s  ca l led  t h e  

gasket f a c t o r  ( m ) ,  should not be less than a c e r t a i n  value i f  tine joint 

is  t o  remain t i g h t  (see Tables '2.2a and 2.2b). 

Design equations using the  data  from Tables 2.2a and 2,2b a r e  given 

i n  Sec t ,  2.4 .2  For design data  on spec ia l  gaskets t h e  mnixfacturer 

should be consulted 

Special  gasket, c ross  sec t ions  shown i n  Table 2 . 2 b  requi re  a f i n e  

surface f i n i s h  i n  contact  with the gasket and c lose  tolerance cont ro l ,  

along with ca re fu l  assembly. 

t a i n ,  even during normal operat ion o f  the cask; thus the  sea l ing  sur- 

faces  that depend on a f i n e  f i n i s h  should be inspected of ten.  

maximum temperatire limits t h a t  are recoinmended f o r  s o l i d  metal gaskets 

i n  continuous serv ice  are given i n  Table 2 .3 .  

Such a f i n i s h  i s  not  always easy t o  main- 

The 

Hollow 0-Ring 'Type Metal l ic  Gaskets. - Under operating conditions,  

hollow meta l l ic  O-ring gaskets possess c e r t a i n  c h a r a c t e r i s t i c s  t h a t  a r e  

not  found i n  elastomer O-rings. These meta l l ic  O-rings have a na tu ra l  

r e s i l i ency  somewhat s imi la r  t o  t h a t  of elastomer types,  but without t h e i r  

t enpe ra twe  l imi t a t ions ,  and can be used i n  both f u l l y  confined and semi- 

confined gasket j o in t s .  Such O-rings are dependent upon l a rge  compres- 

s ive  forces  i n  the  flange faces  t o  c r ea t e  a s e a l  (O-rings require  approxi- 

mately 20 to  30% compression across  She small diameter t o  develop a s e a l , )  

The seal. i s  created i n  a r m n e r  similar to t h a t  experienced by an ord i -  

nary f l a t  gasket. 

Sta in l e s s  s t e e l  O-rings a r e  common; 321 s t a i n l e s s  s t e e l  i s  the  mst 

widely used. However, O-rings fabr ica ted  from other  metals, such as a h -  

m i n w n  and copper, are also ava i l ab le .  
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When designed f o r  low-temperature operat ion,  f langes,  b o l t s ,  aad 0- 

r ings  should be made o f  t he  same material. Consideration of t he  m a x i m u m  

operat ing temperature i n  an accident  determines the bas ic  O-ring mate- 

rial as follows: 

(1) -IcO t o  450"~ - s t a i n l e s s  s t e e l ,  

(2) 

(3) 

lis0 t o  800°F - Inconel, 

800 t o  1300°F - Inconel X, 

(4) above 1300°F - consul t  O-ring manufacturer. 

Meta l l ic  O-rings a r e  o f t en  used with a coat ing of s i l v e r  o r  o the r  

illaterial t o  increase sea l ing  e f fec t iveness  i n  s e a t s  which hav:: a poor 

f in i sh ,  and to  reduce t h e  p robab i l i t y  of  se iz ing  o r  ga l l i ng  when the  r ings  

are used i n  screwed c losures ,  

sur ized hollow s t a i n l e s s  s t ee l  r ing  with a s i l v e r  coating i s  used. A t  

pressures  up t o  100 psi., an unpressuri zed r ing  with medium w a l l  th ickness  

i s  used; a t  pressures  above 100 p s i ,  a pressurized r ing  with a heavy w a l l  

i s  used. 

l i q u i d s ,  

For vacuums and low pressures ,  an unpres- 

Coatings a r e  necessary f o r  rings t h a t  s e a l  gases o r  v o l a t i l e  

Gaskets used f o r  gases, vacuums, and low-viscosity l i q u i d s  such as water 

require  a coat ing o r  p l a t ing ,  depending upon the  maximum design tempera- 

t u r e  : 

(1 ) -430 t o  1300°F - s i l v e r  p l a t ing ,  

( 2 )  above 1300°F - consul t  O-ring mnufac turer ,  

(3) i n  the  event t ha t  s i l v e r  i s  not compatible with f l u i d  - consul t  

O-ring manufactwer , 

The thickness  o f  .the w a l l  of t h e  tubing used to f o r m  these  O-rings 

provides t h e  necessary res i s tance  t o  t h e  compression tha t  c r ea t e s  t h e  

in i t i a l .  s ea l ;  the  required thickness  depends a g r e a t  d e a l  upon the nature  

o f  t he  mateyial  t o  be confined, 

t o  s e a l  and car1 be confined with thin-walled r ings .  Gases requi re  a 

coated heavy-wall r i ng .  

loads 

Highly viscous l i q u i d s  are the  e a s i e s t  

The heavy-walled r ings  can support heavier f lange 

consequently they provide t i g h t e r  s e a l s .  
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Care should be exercised during assembly t o  ensure t'mt t h e  f inished 

surfaces  and the O-ring a r e  not marred o r  scratched. 

2.4.2 Design f o r  Bolts o r  Studs t o  Retain Cask Lid 

Closures should withstand expected decelerat,ing forces  r e su l t i ng  

Prom an impact without producing s t r e s s e s  ( i n  t h e  closure fas ten ings)  

t h a t  exceed the  y ie ld  s t rength  o r  50% of the  ul t imate  s t r eng th .  Mhere 

t h i s  recormendation cannot be met, then t h e  bolt,s o r  s tuds should be de- 

signed t o  absorb a l l  the k ine t i c  energy o f  the  cask closure and contents 

a t  the impact ve loc i ty  (general ly  assumed t o  be 30 mph re su l t i ng  from the  

30-f t  d rop) .  

may be found i n  r e f ,  3 .  

Estimates o f  the  energy absorption c a p a b i l i t i e s  of 'bolts 

The expected forces  experienced by casks protected by crash frames 

a r e  o f t e n  amenable t o  calculat ion;  Ln o ther  cases,  t h e  deforrriation and 

displacements observed i n  model t e s t i n g  should provide a basis for. e s t i -  

mating decelerat ion forces .  

In the  development o f  a design f o r  bo l t ing  the  cask lid, f o u r  forces  

must be considered. They are :  

F 

the cask under impact conditions,  E' 

gasket, F 

j o i n t  under se rv ice  condi t ions,  Foe 

( 1  ) t h e  fo rce  due t o  i n t e r n a l  p re s swe ,  

( 2 )  the  force due t o  t h e  decelerat ion of t he  l i d  and t h e  contents of 

(3)  the  force required t o  s ea t  t h e  
P9 

W J  
and (4) t h e  force on the gasket required t o  maintain a tight 

sg 

The force on E? cy l ind r i ca l  cask l i d  dim t;o t h e  i n t e r n a l  pressure i n  

the cask i s  

where 

p = t h e  d i f f e r e n t i a l  pressure ex i s t ing  across  t h e  gasket,  p s i ,  

d = -the mean diameter o f  t h e  gasket,  in. 
U 0 

( 2 . 3 )  

If a cask i s  end-loaded and shipped hor izonta l ly ,  the  c lcsure  f o ~  the  

l i d  may be slib.jected t o  a force caused by the  impact o f  t he  cask contents 

aga ins t  t he  l i d  when -the t ransport ing vehicle  comes to a sudden s t o p .  



The force  due t o  t h e  dece lera t ion  of the  cask I.id p lus  t h e  contents  o f  

t he  cask can be ca lcu la ted  from 

F = 2 N  (W -+ W c ) ,  
W g J  

(2.4) 

where 

w = t he  weight of  t he  cask l i d ,  l b ,  

W t h e  weight o f  the  contents  of t he  cask, l b ,  

N 

8 

C 

= the  mean number of g ' s  t o  which the  l i d  and contents  of the  - g 
cask a r e  subjected upon impact. A method for accura te ly  

obtaining t h i s  numbe-e i s  not  ava i l ab le  a t  present ,  but  g 

loadings experimentally measwed a t  po in ts  on seve ra l  cask 

models a r e  discussed i n  Sec t .  2,8; est imates  o f  N 

made by employing a conservation of energy approach sug- 

gested i n  t h i s  and Sec t .  3 . 1 .  

t o  account far t h e  dynamic loadjng.  

- 

m a y  be 
g 

The f a c t o r  2 i s  an attempt 

For a c y l i n d r i c a l  lid, the  force required Lo make the  gasket maLeria.1 

flow in to  the i r r e g u l a r i t i e s  o f  the f lange faces  and s e a t  i s  given by 

where 

b = the  e f f ec t ive  gasket sea t ing  width, i n .  (This value my be 

obtained from "ASME Boiler  and Pressure Vessel Code Section 

V I 1 1  - Unfired Pressure Vessels") ,  

y = the minimim design sea t ing  s t r e s s ,  l b / in .2  ( see  Table 2.2a), 

y' = t h e  miniillurn design s p e c i f i c  load, l b / in .  ( see  Table 2.2b). 

For c y l i n d r i c a l  cask l i d s ,  the force  required on a f l a t  gasket, t o  

maintain a t i g h t  j o i n t  under se rv ice  condi t ions i s  given by 

Foc = nbd mp, 
g 

where 

m = the  gasket f ac to r  (see Table 2.2a). 



Note that Foc my not  be s u f f i c i e n t  t o  r a i n t a i n  a t i g h t  j o i n t  under acc i -  

dent conditions i n  a l i q u i d - f i l l e d  cask s ince  the dynamic pressure of the 

l i q u i d  under those conditions may be much g rea t e r  Ymn the s t a t i c  pressure,  

Proper design requires  t h a t  F be equal t o ,  o r  greater  than, F * oc Sg' 

however, care  must be exercised t o  avoid overloading the gasket,  p r t i c u -  

lar ly  i n  designing large-diameter f langes o r  even r e l a t i v e l y  sinall ones 

f o r  high-pressure se rv i ce .  

gasket o r  yielding o f  t he  f lange,  o r  bo tn .  

Overloading can r e s u l t  i n  crushing of t he  

To avoid t h i s ,  F should not 
OC 

exceed 2 F a 

SR 

After t h e  gasket has been se lec ted ,  the  

ca lcu la ted  from Eq. ( 2 . 7 ) :  

where 

s -- the b o l t  y i e l d  s t r e s s  a t  operating 
a 

minimum bo It a rea ,  Am9 i s  

Y 

temperatures, psi. 

(2 * ' 7 )  

l i s h e d .  

1 .  

2. 

3.  

L. 

After A has been chosen, t he  a c t u a l  'uolting r a t t e r n  may be estab- 
IT1 

One simple procedure f o r  c y l i n d r i c a l  l i d s  i s  a s  follows: 

Allow one b o l t  f o r  each inch of  diameter of t h e  l i d  f lange ,  

If t h e  r e su l t i ng  number i s  not already a multiple o f  four ,  

use the next l a rge r  number t h a t  i s  a niiiltiple o€ f o u r .  

Divide the  Pinirnum b o l t  a r ea ,  A by the number o f  bo l t s  

detemined i n  s t ep  1; t h i s  gives the  required area per b o l t  

based on the  r o o t  diameter o f  t h e  b o l t .  

Se lec t  t h e  bo l t  s i z e .  Because o f  t he  danger of' overs t ressing 

sm11 bo l t s ,  a 1/2-in.-diam 'oolt is considered the rrllinimum 

s i z e  t o  be used. The shank d i a m t e r  should be no grea te r  than 

the  root, diameter o f  t h e  thread .  

considered i n  se lec  ti.ng the  material o f  construct ion,  

Apply Eq. ( 2 . 8 )  t o  determine whether the r e su l t i ng  ' D o l t  spacing 

i s  close enough t o  maintain adequate u n i t  pressixe on t h e  gasket 

between the hlt holes. '  

m' 

liripact s t rength  snould be 
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Maximum b o l t  spacing = [6t/(m -+ 0.5)] + ?a , 
where 

a = the  major diameter of t h e  b o l t s ,  i n . ,  

t := t h e  thickness  of the l i d  flafige, i n , ,  

m = t he  gasket fac-Lor. 

5'. In an ana lys i s  o f  deformation and fracLure o f  s t e e l  b o l t s ,  

French engineers considered both p l a s t i c  defomat,iort and 

b r i t t l e  f rac ture . '  

ou ts ide  o f  b o l t s  iundergo considerable p l a s t i c  deformation 

while t h e  center  frac-Lures, they  concliided t h a t  i t  i s  

b e t t e r  t o  employ a l a rge  number of small b o l t s ,  r a t h e r  

than a small number o f  l a r g e  b o l t s ,  Lo maximize t h e i r  

t o  t a l  energy absorption c a p a b i l i t i e s .  However, t h e  t o t a l  

b o l t  a r ea  should not  be less than determined i n  s t e p  2 

above. 

Since, under high s - t ra in  rates,  the 

Other bo l t ing  arrangements can be e a s i l y  designed; however, they should 

be based on p r a c t i c a l  considerat ions such as those suggested i n  step 5, 
subjec-t on1)- t o  -the requirements f o r  .the minimum total bolt area and 

maxirnum spacing . 
A .torque wrench should be used i n  bo l t ing  khe cask l i d .  A n  approxi- 

mate r e l a t ionsh ip  between t h e  torque appl ied to the  b o l t  or nut  and the 

force  induced i n  the  b o l t  o r  s tud f o r  unlubricated condi t ions i s  given 

by EQ. ( 2 . 9 ) : 7  

T .= 0.2aF, (2.9) 

where 

T = torque, i n . - lb ,  

a = t h e  major d i -amter  o f  the b o l t ,  i.n. 

P = t he  induced Porce, lb. 

The torque  required t o  seal the gasket when a l l  loadings a r e  con- 

s idered i s  calculated. by Eq j. ( 2  .I  0) : 



(2 .lo> 

where 

NB = the number of  blts required. 

2 .k.3 Cask Closure Design 

A schematic drawing of a shipping cask, which i s  typical of those 

designed for transporting radioactive materials, is shown in Fig. 1 . 1 .  

Such designs have been impact tested*~' i n  the closure region; results 

indicate that movement of the cask closure relative to the body occurs 
f'requently, destroying the seal (aee Fig. 2 . 6 ) .  



A practical .  so lu t ion  t o  t h e  r e l a t i v e  mvement problem f o r  t h i s  

design, as w e l l  a s  f o r  o ther  designs,  i s  t o  buf fer  t h e  vulnerable 

impact a reas  with energy-absorbing par ts  and t o  l i m i t  movement by the  

control. of annular clearance between the  l i d  and the cask. 

adequate clearance must be provided f o r  ease o f  opera t ion .  

a closure,  protected by the energy-absorbing f j n s  i s  shown i n  Fig.  2 . 7 .  

However, 

For  example, 

ORNL DWG 68-10549-B 

PUNCTURE HESlSTlNG P L A T E  r 

SCREW TYPE 
SAFETY HEAD 

LID 

/?- CASK LID \ 

RETAINING 
NUTS - 

= = _  - - _  ~ FINS 

-.CIRCUMFERENTIAL 
ENERGY ABSORBING 
BARS AND SPACERS 

HEAT TRANSFER FINS 

Fig .  2 . 7 .  Model Shipping Cask Protected by Energy Absorbing F ins ,  
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Figure 2.9 shows a closure design t h a t  i.s l e s s  vu lnerable  when ex- 

posed t o  impact than  a design wi th  plug and b o l t s .  

QRNL D W G .  68-10547111 

SH 1 ELOlN G 
PLUG BOLT 

I 

SE 

---SHIELDING PLUG 

- -OUTER SHELL 

INNER CAVITY- 

SEALING PLUG 
BOLT INNER SHELL 

Fig. 2 . 9 .  Double Plug Closui-e for Cask. 

This design i s  charac te r ized  by the separa t ion  o f  t h e  sh i e ld ing  and s e a l -  

ing  func t ions  i n t o  two similar plug-type c losu res .  it i s  expected t h a t  

t h i s  design w i l l  s u r v i v e  ai1 impact, provided tha - t  t h e  s h i e l d  plug does 

not  d i r e c t l y  contac t  (and the re fo re  a f f e c t )  t h e  seal plug i n  m- impact. 

A c losure  des ign  developed by t h e  Nat ional  Lead Corporation i s  unique 

i n  t h a t  t h e  c losure  bolts a r e  loaded i n  compression r a t h e r  .than tens ion  

(see  Fig. 2 . 1 0 ) .  O f  a l l  t he  c losure  designs t e s t e d ,  it j-s f e l t  t h a t  this 

one has  the h ighes t  p r o b a b i l i t y  of r e t a i n i n g  t h e  sh i e ld ing  plug i n  posi-  

t i o n  af ter  an impact; however, t h e  problem of maintaining a leakproof s e a l  

i s  complicated by t h e  f a c t  that -the bolts are loaded i n  compression, shear ,  

and beading. 

d i f f i c u l t .  lo 

I n  additiion, removing t h e  plug a f t e r  t h e  acc ident  may prove 
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SH6LC GASKET 

Fig 2 . I  0. Closure Design Developed by National Lead Corporation e 

2,s Lif t ing  Devices 

For p q o s e s  of t h i s  Guide, Lift ing devices are defined as items 

t h a t  a r e  attached permanently to a shipping cask and serve t o  transmit 

the  e n t i r e  load t o  l i f t i n g  equipment such as a crane These devices a r e  

generally designed with the  convenience and s implici ty  that would be 

required f o r  remote handling ( e  .g., when a cask i s  handled underwater o r  

i n  a shielded c e l l ) .  

down the  cask. 

given below, 

Occasionally, l i f t i n g  devices a r e  used f o r  ty ing  

The performance standards required by AEC PIanual 0529 are  

1 .  

2 .  

3. 

If t h e  system of  l i f t i n g  devices i s  a s t ruc tu ra l  p a r t  of  

the package, the system sliaLZ be capable of  supporting 

three times the weight of the loaded. package without gen- 

e ra t ing  s t r e s s  i n  any n a t e r i a l  o f  t he  packaging i n  excess 

o f  i t s  y ie ld  s t rength.  

If t h e  system o f  l i f t i n g  devices i s  a s t r u c t u r a l  pa r t  o f  

the l i d  only, the system s h a l l  be capable o f  supporting 

three times the weight of the l i d  and any attactmerits 

without generating stress i n  any mater ia l  of  t he  lid i n  

excess o f  i t s  yield s t rength .  

If there  i s  a s t ruc tu ra l  part o f  t he  package tha t  could 

be employed t o  l i f t  the package but, does not comply with 
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I . ,  above, t h i s  p a r t  s h a l l  be secu re ly  covered o r  locked 

during Lransport t o  prevent  i t s  use f o r  t h a t  purpose. 

4. If a l i f t i n g  device i s  a s t r u c t u r a l  p a r t  of t h e  package, 

it s h a l l  be designed i n  such a manner that,  f a i l u r e  o f  

t he  device under excessive load w i l l  n o t  impaim the  con- 

tainment or sh ie ld ing  p rope r t i e s  of t h e  package. 

These requirements have been i n t e r p r e t e d  t o  mean t h a t  t h e  l i f t i n g  

device rray not  su-ffer any s i g n i f i c a n t  permanent deformation when sub- 

j ec t ed  to a fo rce  equal t o  t h r e e  t-imes the  weight of t h e  cask .  

thi.s does no t  e l imina te  devices  t h a t  may be subjected t o  l o c a l  y ie ld ing  

over  a small a r e a ,  which may be  caused by contac t  of t h e  l i f t i n g  device 

wi th  l i f t i n g  hooks, e t c  . 

However, 

Many types o f  l i f t i n g  devices  may be designed t o  meet t h e  regula-  

t i o n s  by r e ly ing  on the  "s t rength  o f  mater ia l s11  approach to  engineering 

a n a l y s i s .  Providing a f a c t o r  of s a f e t y  g r e a t e r  than a f a c t o r  of 3 ( see  

above) t o  a l low for t h e  approximate na ture  of t h i s  method r e s u l t s  i n  a 

reasonable balance between engineering e f f o r t  and conservat ive design.  

Therefore,  t h i s  i s  the d e f i n i t i o n  of  safety f a c t o r ,  as used i n  t h e  Guide. 

This approach may not  be j u s t i f i e d  i f  the l i f t i n g  device design is  

In such cases  the  designer  may- r e l y  on a more rigoyous method 

Discussions of  such methods may be found i n  

complex. 

based on e lasLic  behavior .  

r m s t  o f  t h e  bas i c  "s t rength  of materials'! textbooks.  

The fol lowing paragraphs present  a b r i e f  desc r ip t ion  of  f o u r  genera l  

l i f t i n g  device desi-gns . 
can be found i n  r e f ,  1 1 .  

The d e t a i l e d  ana lyses  of t h e s e  conf igura t ions  

Perhaps -the most common design f o r  a l i f t i n g  device i s  a pai.r o f  

sho r t  c a n t i l e v e r  beams c o m n l y  c a l l e d  t runnions ( see  F ig .  2 .I 1 ) . This 

design has the  advantage of  s i m p l i c i t y  of f a b r i c a t i o n  arid, t o  some exten t ,  

s i m p l i c i t y  of a n a l y s i s  .46 

blocks,  as suggested i n  F ig .  2 . I  1 ; t h e  base of each t runnion shou1.d be 

i n s e r t e d  i n  i t s  socket  t o  a depth of a t  l eas t  one t runnion diameter .  

Trunnions should be mounted i n  massive &ee l  
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The w e l d  between trunnion and flange should be designed f o r  minimum con- 

centrat ion o f  s t r e s ses  and should 

load capabi l i ty  of the  trunnion. 

c 

be su f f i c i en t  t o  withstand the f u l l -  

ORNL Dug 68-10530 

--i Cavi 
ity 

------ 
I ,  

I lmw Shell j 

Fig,  2 . 1 1  , Typical Cask Trunnions. 

Trunnions welded onto t h e  outer steel shell ,  a s  opposed t o  the ms- 

sive block shown i n  Fig I 2 .I 1 

i n  a 3O-ft impact. While penetration of the  outer  she l l  m y  not v io l a t e  

regula-Lions, pes se ,  a f i r e  following such an impact might r e s u l t  i n  -the 

leakage o f  lead and excessive rad ia t ion  l eve l s .  

m y  be vuinerable t o  the punching ac t ion  

Occasionally, a s t r ap  tha t  i s  attached t o  bot,h t he  s h e l l  and the f r ee  

end of  the trunnion is  used t o  minimize any flexing i n  the t r m i o n - t o -  

f lange-joint  weld a rea .  

mr.e than three t rmnion  diameters and should be designed only a f t e r  con- 

s iderat ion of  the e f f ec t s  o f  both shear a d  bending stresses. For l i f t i n g  

systems of  this type, a reasonable safesy fac tor  i s  4 .  

The length o f  the exposed trurmion should he no 

A szcond tme of common l i f t i n g  device consis ts  o f  *'earsf1 with holes  

through which hooks my be placed for. l i f t i n g .  

v e r t i c a l l y  so tha t  the weld i s  loaded en t i re ly  i n  shear (see F i g .  2 . 1 2 ) .  

Although t h i s  device has been used advantageously on lightweight casks, it 

i s  not recoTnmended f o r  models weighing more than 10,000 l b .  

The ears  a r e  of ten  placed 
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.IFTING EAR - 
Fig .  2 . 1 2 .  Typical Cask 

CASK 
LID 

* 

Li f t ing  Ears, 

- C A S K  

L i f t i n g  ears f ea tu re  s i m p l i c i t y  of f a b r i c a t i o n  and a n a l y s i s  and a m h i m u m  

r i s k  of puncture of .the s h e l l  i n  t h e  hypothe t ica l  acc iden t .  However, i f  

t he  ears a r e  p a r t i c u l a r l y  s t i f f ,  impact on the  c losure  end could. resul t ,  

i n  h igh - t ens i l e  loadings of t he  c losu re  b o l t s .  

For  t h e  design shown i n  F i g .  2 . I  2 ,  t he  th ickness  of the e a r  should 

be equal t o ,  o r  g r e a t e r  than, -the th ickness  o f  t h e  ou te r  s h e l l .  The d i -  

ameter of t h e  ho1.e i n  t h e  e a r  should be rlo more than one-half t he  width 

o f  Lhe ea r ,  and the armunt of  ma te r i a l  above t h e  hole should be equiva- 

l e n t  t o  a t  l e a s t  t h e  diameter o f  t h e  ho le .  

The length  of  t h e  po r t ion  of t h e  e a r  t h a t  is welded t o  t h e  cask 

s h e l l  should be at, l e a s t  equal  to the  po r t ion  (conta in ing  tine h o l e )  t h a t  

i s  not welded t o  t h e  cask s h e l l .  The load-carrying capac i ty  o f  t h e  weld 

between the  shell. and the  e a r  should be a t  least  t h r e e  times t h e  loaded 

cask weight; and care  must be taken no t  t o  o v e r s t r e s s  t,he metal. su.rround- 

ing  t h e  hole  under load condi t ions .  A reasonable f a c t o r  o f  s a f e t y  i s  3. 

A design that incorpora tes  many of the f ea tu res  o f  the previous two 

designs i s  t h e  m c h a n i c a l  invers ion  o f  the t runnion,  which i s  c a l l e d  a 

l i f L i n g  socket (see F i g .  2 . 1 3 ) .  A matching s l i n g  mus-t be designed for 

1i.fti.ng the cask.  
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LlFTlNG SOCKET rn 

Fig. 2.13.  Typical C-apik Lifting Socket, 

The socket-ernd-sling Uf zes the potential effects 

of a 30-ft impact roblem. Although its 
lifting capabilities are a0-t clifrieu%t -bo analyze a d  an e 
st ing IJS required, 

and complete engagement of' socrbt a d  sl- by remote means nvay be diffi- 

c u l t  to achieve. 

design des . oatee that the matdng 

If engagazmnt i s  achieved, the socket may be damaged. 
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The f o u r t h  design i s  a l i f t i n g  device t h a t  my be thought of as a 

continuous r i n g  made up of lifting e a r s  welded around t h e  'top of  the cask 

(see F i g ,  2 . l 4 ) ,  Although t h i s  des ign  is somewhat similar to t h a t  o f  

s ing le  l i f t i n g  ears, t h e  ana lys i s  i s  mre de ta i l ed . "  

safety factor o f  2 i s  considered s u f f i c i e n t .  

Therefore, a 

F i g ,  2 111. Cask Using Continuous-Ring L i f t i n g  Device. 

2 .6  Tie-Downs 

2.6.1 General Considerations 

The tie-down i s  a device def ined i n  t h e  r egu la t ions  as t h a t  po r t ion  

o f  the system which i s  r i g i d l y  a t tached  t o  t h e  cask.  The tie-down system, 

iiicLi.ding the tie-down device,  i s  used t o  maintain a con t ro l l ed  geometric 

r e l a t i o n s h i p  between a cask and the  t r anspor t ing  veh ic l e .  

a r e  usua l ly  designed t o  f ac i l i t aa t e  rapid loading and unloading of cargo.  

This Guide considers  ttne ana lys i s  o f  t he  complete tie-down system, 

Si.ich systems 
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The performance requirements f o r  tie-down devices a re  as follows : 

1 .  

2. 

3. 

"If there  is  a system o f  tie-down devices which i s  a s t ruc-  

t u r a l  p a r t  o f  t h e  cask, it s h a l l  be capable of withstanding, 

without generating s t r e s s  i n  any mater ia l  o f  t h e  cask kn 

excess of i t s  y ie ld  s t rength,  a s t a t i c  force  applied a t  the  

center  o f  g rav i ty  of t h e  package having a v e r t i c a l  component 

of two times the  weight o f  t h e  cask, with i t s  contents, a 

horizontal  component along the d i rec t ion  i n  which t.he vehi- 

c l e  t r ave l s  o f  t en  times the  weight of  the  cask with i t s  

contents,  and a horizontal  component i n  the transverse direc-  

t i o n  of f i v e  times the  weight o f  t h e  cask with i t s  coiztents. 

"Also i f  there  i s  a s t r u c t u r a l  part of  t he  cask which could 

be employed t o  t i e  t he  package down and which does nod com- 

p l y  with t h e  above paragraph, tha t  p r t  shall be securely 

covered or locked during t ransport  i n  such a .manner as t o  

prevent i t s  use f o r  t h a t  purpose. 

"Each tie-down device which i s  a s t ruc tu ra l  pa r t  of the  

package s h a l l  be so designed t h a t  failure o f  the  device 

under excessive load would not i m p a i r  t he  a b i l i t y  o f  the 

device t o  meet other  requirements of the  regulations e 

Since the prevention o f  local ized yielding i n  sma l l  areas  due to contact 

s t r e s ses  i s  v i r t u a l l y  impossible under normal usage, these requirements 

a r e  interpreted to  mean tha t  the tie-down must be ab le  t o  withstand the  

prescribed loading without suffer ing any s igni f icant  permanent deform- 

t i on .  

The designer of ten has control  over the  e n t i r e  tie-down system u n t i l  

the  system i s  ready t o  be attached t o  the vehic le ,  

must rely upon other  personnel t o  perform the  attachment operation prop- 

e r l y .  This necessi ty  o f  depending on others  can cause s igni f icant  prob- 

lems s ince it i s  important t o  m i n t a i n  control  o f  the cask-vehicle system 

and thus avoid possible l o s s  o f  cargo o r  vehicle i n s t a b i l i t y .  

the  designer should make every e f f o r t  to  eliminate f i e l d  judgment by per- 

sonnel securing the  cask onto the t ransport  vehic le ,  

A t  t h i s  point,  he 

Accordingly, 



The Savannah River P lan t ,  i n  consider ing the design and a n a l y s i s  of 

t h a t  po r t ion  of  t he  tie-down system which i s  not  r i g i d l y  a t t ached  t o  t h e  

casks,  c u r r e n t l y  uses  2 I g tie-down s t r e n g t h  i n  a l l  3 d i r e c t i o n s  f o r  t ruck  

t r anspor t  and 2 - g t r ansve r se ly ,  2 I g ver t ica l . ly ,  and 10 - g long i tud ina l ly  

for r a i l  t r anspor t . 45  This design philosophy i s  recommended as being r ea -  

sonable for t h e  commercial transpor L systems t h a t  are p r e s e n t l y  a v a i l a b l e .  

The mst c o m n l y  used tie-down i s  t h e  one i n  which the  cask i s  

r i g i d l y  fas tened  t o  the  veh ic l e  during normal opera t ing  condi t ions  and 

i s  expected t o  remain wi th  t h e  veh ic l e  under acc ident  cond i t ions .  

genera l ,  such tie-downs have proved adequate f o r  shipments i n  t h e  p a s t .  

I n  

If a cask i s  surrounded by a shock-absorbing bu f fe r ,  t h e  tie-downs 

may be designed as a weak l i n k .  

design of .tile HAP0 1B cask s e r i e s ,  

t h i s  cask i s  designed t o  reduce t h e  dece le ra t ion  t o  which t h e  cask w i l l  

be sub jec t ,  t h e  tie-downs a r e  designed t o  break with a severe shock ( a t  

about 1 2  g ) ,  a l lowing both t h e  cask and the  b u f f e r  -to r o l l  free;  t h i s  i s  

intended 'to reduce t h e  chance of  t he  cask being crushed by tlie c o l l i d i n g  

r a i l c a r s .  Tine buffered  cask wi th  i t s  tie-down i s  shown i n  Fig. 2.15; t he  

cask i- tself  i s  discussed i n  Sec t .  2 . 8 .  

This  philosophy w a s  employed in t h e  

Since t l e  b u f f e r  t h a t  i s  a t t ached  t o  

- 

I n  genera l ,  casks t h a t  have been designed f o r  shipment on a s p e c i a l  

veh ic l e  can have t h e i r  tie-down systems designed t o  provide t h e  necessary 

s t r e n g t h  and energy absorpt ion c a p a b i l i t y .  This i s  more d i f f i c u l t  t o  

provide i n  t h e  case  of smaller  casks t h a t  a r e  t ranspor ted  by a v a r i e t y  of 

co rmn  c a r r i e r s .  

The American Natj.onal Standards I n s t i t u t e  (ANSI) subcommittee 

N 14-2 eqoects t o  publ i sh ,  i n  t h e  near  f u t u r e ,  a compendium of tie-down 

methods t h a t  a r e  i n  use today. I n  add i t ion ,  t h e  Oak Ridge Na-tional Labo- 

r a t o r y  i s  consider ing var ious  methods f o r  t h e  a n a l y s i s  of  corrrmn tie-down 

designs under t h e  prescr ibed  s t a t i c  loading.  

A computer program to perform ana lyses  o f  tie-down under s t a t i c  load- 

ing  conditi.ons has  been developed by the Sandia Corporation and i s  d i s -  

cussed i n  r e f ,  1 2 .  

ment o n l y ,  

This program cons iders  t h e  s l i d i n g  mode o f  d i sp lace-  



Franklin I n s t i t u t e  has developed a method of tie-down analysis  t h a t  

i s  based on ideal ized dynamic conditions.  

useful f o r  comparing materials used i n  tie-down systems .I3 

Their method i s  primarily 

.. .......... .................... L. -..16f, 6 ; "  1 6 0  6," 
............... 42 n b io ............................... ~~~ 

PLAN 

R 1, 2-li2 I". .... 

....... __ .............. 
... ....................... 

---2 ft 3 in. 
....... __ ................ i - . . - a . _ _ _ -  

....................... ... -22 .............. 

F i g .  2.15. Ti.e-Down of the HA;POIB Buffered Cask t o  Railroad Car. 

2 .6.2 Tie -Down Methods 

Spent f u e l  c a r r i e r s  weighing l e s s  than 10,000 lb may be readily 

transported by truck o r  ra i l .  

some means must be provided t o  l imi t  the  f loo r  loading to l e s s  than SO0 

lb/ft".  

Acceptable tie-downs f o r  casks i n  t h i s  category a r e  shown i n  Figs. 2 .16 

and. 2 . I  7 .  The bottoms o f  these casks m e  often held i n  place by wooden 

chocks tha t  a r e  nai led t o  t h e  f l o o r  o f  the vehic le .  Routine inspection 

should ensure tha t  these chocks a r e  adequate and provide reasonable sup- 

port  during t r a n s i t .  Members o f  the tie-down system a r e  usually cables 

o r  chains; however, i n  ce r t a in  cases, s o l i d  s t e e l  s t r u t s  have been used 

t o  obtain a fully r i g i d  system (see  Fig .  2 . 1 8 ) .  

Lf t h e  cask weighs greater  than 500 l b ,  

A skid o r  load spreader under the  cask w i l l  serve t h i s  purLpose. 

Cables a r e  preferred 



over chains because of  t h e i r  e l a s t i c  behavior beyond "yield Lpoint'J load- 

ing (a desirable charac te r i s t ic  not avai lable  i n  cha ins) .  Recommended 

cables consis t  o f  5/8-in. (mi.nj.mum) plow s t e e l  wire rope fastened t o  

i t s e l f  Wi.th at, l e a s t  three Crosby clamps a t  e i the r  end (see F ig ,  2 . I  ' 7 ) .  

ORNL-DWG 64-5'131R2 

CARRIER BED 
OR SKID 2H 

A .  Four-Way Tie-Dawn far Heavy Containers. 

B. A Bnjket Hitch Tie-Down for Light Containers. 

F i g .  2 . I  6. "i.Jo 'Uypical T i e - k w n  Systems. 

Shipment, by r a i l  o r  barge appears t o  be the  bes t  method f o r  t rans-  

porting casks t3ia-t weigh nore than 50,000 lb;  however, r a i l  transport, i s  

much more prevalent.  

f o r  the spec i f ic  cask and vrhi.cle. 

Tie-downs f o r  siich heavy casks are often designed 

9 satXLe, with s t e e l  bolddown s t r aps  



athched tq of bl%s (see Fig .  2.191, m y  surmunt the skid. The 

Sect. 2.6.3. 

ORNL PHOTO No. 52994A I 

F ig .  2.17. A Zbwt?-l@q Tie-Bm on a 7-Ton Cask. 
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2.6.3 Methods of Analysis 

Tie-down systems may be analyzed by using approximate methods of 

engineering ana lys i s .  

compared with s t r a i n  gage measurements; nevertheless, tie-down systems 

designed by using these methods have proved t o  be adequate. 

publication o f  design equations with derivations may be found in re f  a 3e. 

These methods w i l l  not y ie ld  exact r e s u l t s  a s  

A recent 

Qymamic loadings, such as might occur i n  an accident,  are  not  easy 

t o  analyze. The behavior o f  a system o f  e l a s t i c /p l a s t i c  elements under 

dynamic loading condition has been under study f o r  a number o f  years by 

various workers. Recent work i s  based on dividing the  s t ructure  in to  a 

number o f  f i n i t e  elements and then using the  proper descr ipt ive differen- 

t i a l  equations, converted t o  f i n i t e  difference equations, to car ry  out  a 

solut ion using numerical in tegra t ion .  

be found elsewhere.'" 

r e f .  15. 

A discussion o f  t h i s  technique may 

A d i r e c t  appl icat ion of t h i s  method i s  found i n  

2 . 7  Effects  of a 30-ft Impact on Lead Shielding 

Lead shielding can be l o s t  i n  an impact i n  two ways: ( 1  ) A n  outer  

surface of t h e  cask can be f l a t t ened ,  thereby causing the lead t o  s h i f t  

t o  other  areas; thus l e s s  shielding would remain i n  the  area of the impact. 

( 2 )  

o f  t he  cask, creat ing a void space. This sect ion presents ana ly t ica l  pro- 

cedures and t e s t  r e s u l t s  that w i l l  allow the  cask designer t o  estimate the  

extent of  t h e  loss o f  shielding which occurs i n  e i t h e r  o f  these two ways. 

If an end impact occurs, lead mvement may occur at, t he  opposite end 

In  analyzing the behavior o f  cask systems under impact conditions,  

two relat ionships  will be helpful  i n  estimating deformt ions  and g load- 

ings . 
constant deceleration ra te ;  i n  t h i s  instance,  t he  - g loading can be calcu- 

la ted  by dividing the drop height by the  stopping dis tance.  

- 
The first i s  t h a t  for a constant impact force,  which implies a 

When the  

force  is a l i n e a r  function o f  the displacement, o r  stopping distance,  the 

- g loading i s  twice the  drop height divided by the stopping d is tance ,  These 

methods w i l l  give minimum estimates of  - g loading and are ,  therefore,  not 

conservative. They do, however, provide reasonable estimates used i n  

predicting damage. 



2.7.1 Material Prope r t i e s  I-act Conditions 
____^._.....I. 

The k i n e t i c  energy of a cask during an impact must be d i s s i p a t e d  

e i - t h e i m  in the cask o r  i t s  e:livironment. Since r egu la t ions  s t i p u l a t e  .that 

the impact siirface must be unyiekdii7.g 

be absorbed by e las t ic  and i n e l a s t i c  d e f o r m t i o n  o f  r a t e r i a l .  that my or 

may not be a p a r t  of  the cask .  The p r o p e r t i e s  of  the mater ia l  under dy- 

nainic condi t ions  miist , ,  t herefore ,  be lcnown ri.n o rde r  to evalua te  the 

e f f e c t  of impact on -the cask.  

esseriCi.ally all. tile energy must 

For s tee l ,  t e s t s  i nd ica t e  that, a t  s . tmin r a t e s  expecked i n  a 3O--ft 

inpact the dynamic yield po in t  is  o n l y  s l i g h t l y  g r e a t e r  .Li.ian the  s t a t i c  

yield point, .lG 

s t r e s s  be used to determine i n e l a s t i c  deforniations i n  s t e e l  components 

o f  the cask.  

I-t i s ,  theyefore recommendad t h a t  -the s t a t i c  f ie ld  p o i n t  

The behavior of lead  under impact, condi t ions  has been studied by a 

nutiber o f  workers; however, since the dym-mic p r o p e r t i e s  of l ead  are af-  

f ec t ed  by stl-ain rate,  impur i t ies  i n  the lead, and o t h e r  variables, r e -  

sults do not  o f t en  ag ree .  

s t a t i c  conditi.i:ms are given. i.n Table 2 .4. l7 
The mechanical p r o p e r t i e s  de t emined  under 

Table 2 . b .  Mechanical Pi-operties of  Cast J,ead 

Modulus of  elas t i c i t y  

Poisson ' s  r a t i o  

Tensi le  s t r eng th  

$ uJ.t,i.mt,e elongat ion 

B r i n e l l  hardness No. 

2 x IO6 

O.LcO t o  0.45 

2300-2800 p s i  

App-OX. 33% 

4.0-6.0 

S t r a i n  rate a f fec ts  the  re1st;Lonshi-p between stress and s t r a i n .  li? 

p r i n c i p l e  once t h e  r e l a t i o n s h i p  between t hese  p r o p e r t i e s  i s  known, t h e  

ciarage suffered i n  any giver1 impact may be predic ted  by using nethods uf 
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continuum mechanics In prac t ice ,  closed-form solut ions t o  the impact 

problem are few; and r e su l t s ,  using r e a l i s t i c  physical  m d e l s  and mea- 

sured dynamic proper t ies ,  have been l e s s  than satis€ac-tory. 

Accepting t h e  l imi ta t ions  of  l e s s  rigorous methods, dynamic behavior 

can be re la ted  t o  a pseudo material property ca l led  the  rfdynamPc flow 

pTessure.” 

displace a unit volume of  material.; dimensions are in . - lb/ in .3  o r  p s i ,  

The dynamic f l o w  pressure r e l a t e s  t he  absorbed energy d i r e c t l y  t o  the  

f i n a l  displacemnt  without resor t ing t o  laborious numerical methods + 

Results of the  few problems analyzed using the  dynamic flow pressure con- 

cept have been acceptable when applied t o  composite s t ruc tures  and excel- 

l e n t  when applied t o  honlogeneous bodies. Two ex-znrples of t h i s  form o f  

analys is  a s  applied t o  composite s t ruc tures  a re  discussed i n  Sects .  2 . 7 . 2  

and 2 . 7 . 3 .  

This pressure i s  defined as the energy t h a t  i s  necessary t o  

The dynamic flow pressure o f  comDn plumber’s lead, as measured by 

J .  H. Vincent,’” w a s  found t o  be between 3’700 and 18,850 ps i ;  the  magni- 

tude of t h i s  range was a t t r i bu ted  t o  var ia t ions  i n  the  c r y s t a l  s i ze  o r  

or ientat ion,  and possibly t o  mater ia l  impuri t ies .  

found tha t ,  i n  t e s t ing  lead spheres, the relat ionship between impact en- 

ergy and displaced volume o f  the  sphere was a s t r a igh t  l i n e  i n  the range 

o f  ve loc i t i e s  invest igated.  

p l a t e s ,  Clarke“” presents  a nondimensional s t r a i n  f ac to r  a s  a function of 

impact veloci ty;  this fac to r  may be readi ly  converted t o  a dynamic LTOW 

pressure of  8500 p s i  by using h i s  def in i t ion  of average radial. s t r a i n .  

However, assuming a Brine l l  hardness No. of L . 0 ,  the dynamic flow pres- 

3we (based on very l o w  s t r a i n  r a t e s )  has been calculated t o  be 5900 p s i .  

J, F.  Andre~nrs”~ Y ‘’ 

I n  a study of impact of spheres on r i g i d  

These data indicate  tha t  lead %ends t o  resist deformation under dy- 

namic conditions more than under equivalent s t a t i c  conditions and tha t  

t he  energy required t o  displace 1 i n . “  of lead i s  about two t o  three 

times the s t a t i c  compressive yield s t rength,  as s t a t ed  i n  r e f .  2 2 .  Th i s  

conclusion i s  i n  agreement with information presented i n  refs.  8 and 2 3 9  

where penetration t e s t s  using cy l ind r i ca l  punches a re  reported; r e su l t s  

i nd ica t e  a value of 10,300 p s i  f o r  t he  dynamic flow pressure.  



Froin the  above data it i s  c lear  that, thi, dynamic flow pressure o f  

lead depends upon t e s t  specimen configuration, s t r a i n  ra te ,  and method 

o f  cor re la t ion .  

appcars t o  be 239th reasanable and conservative w i t h  regard to  e s t i m t i n g  

shield d e f o r m t i o n ;  therefore it i s  recommended for ca lcu la t iona l  pur- 

poses imless the designers can j u s t i f y  a higher value.  

p s i  appears to be reasonable f o r  t he  purpose o f  e s t i m t i n g  m11aim7m ds- 

c e l e m  t ion  loading. 

However, f o r  engineering purposes, a val-ue of SOOO p s i  

A value of 10,000 

2.7.3 I Arnalysis of a Horizontal-,@.is Impact o f  a Cylindrical  Cask 
Without Fins --_.-I_I 

When cylind.:r:ical casks b ~ i t k  f l a t  end pla.Les and no ex terna l  energy 

absorbers a r e  dropped i n  such a rramer that; t h e i r  longi t tzdtnal  axes a r e  

horizontal ,  they will absorb ener.;li- upon impact nainly i n  three  ways: 

( 1  ) by deformation of  the end p la tes ,  ( 2 )  mvement o f  lead, and ( 3 )  

deformation o f  t h e  cy l indr ica l  outer  s h e l l .  

of  en.erFj is  absorbed i n  bending the  steel. shell. a t  the point  o f  impcl 

and i s ,  therefore,  neglected i n  t h i s  analysts. 

A r e l a t i v e l y  siilall amunt  

Assuming the cask t o  be a long cylinder without ai1 i n t e r n a l  ca-vi.ty, 

the  energy absorbed i n  the defoi-ination of the s t e e l  ends and. of the lead 

rray be calclllated from Eqs [ 2 . I  1 ( a ) ]  and [ 2 . I  1 (b ) ]  , respect ively.  

2 1 E~ = R t LT ( e  - s i n  2 0 )  e s  ( 2  . I  l a )  

1 
(2.11b) 

2 
Epb = R LsPb ( e  - s i n  2 0 )  , 

where 

E = energy absorbed i n  the lead o r  steel- ends, in.-lb, 

H. = the outer  radium, i n . ,  

I, := the  cylinder length,  i n . ,  

te = thickness of the s t e e l  end p l a t e ,  i n . ,  

o = the  dynamic flow s t r e s s  i n  s t e e l ,  1b/ins2 

= the  dynamic f low stress i n  lead,  1b/ ine2 

S 

OPb 

8 -- t h e  aiig1.e defined i n  F ig .  2 .20 ,  deg, , o r  radians ~ 
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Fig.  2 . 2 0 .  End View o f  t h e  Deformation i n  a Steel-Encased Sol id  
Lead Cylinder a 

Assuming uniform s t r a i n ,  the energy absorbed by the  deformation o f  

the outer  s h e l l  of the cask  (due t o  mvement o f  l ead ) ,  Eos, may be 

estimated from 

E = Rt LT [ s i n  a ( 2  - cos 0 )  - 0 1 ,  ( 2 . 1 2 )  os s s  

where 

R = the  outer  shell. radius,  i n . ,  

tS = the  outer  s h e l l  thickness, i n . ,  

L = the length o f  t he  s h e l l ,  i n s 7  

os = the  dynamic f l o w  stress o f  t h e  she l l ,  p s i .  

Combining and rearranging E q s .  [2 .11(a) ] ,  [2 .11(b) ] ,  and ( 2 . 1 2 )  l eads  t o  

EQ. (%,13) :  
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where 

W = cask weight lb, 

H = drop height, i n . ,  

F ( 9 )  = s i n  e ( 2  - cos 0 )  - 3 .  
2 

Quat ion  ( 2 . 1 3 )  i s  based on 'the assumptions .Miat the y i e ld  point 

s t r e s s  of the s t e e l  end piece i s  t h e  same as t h a t  o f  t he  s h e l l  arid t h a t  

the end pieces a r e  of equal thickness.  

In  order t o  use Qs. [2 ,11 (a ) ] ,  [2 .11(b)] ,  and ( 2 . 1 2 ) ,  the  angle 0 

and .the cask geometry iflust be known. 

Pig.  2 .21 ,  which i s  based on E q .  ( 2 . 1 3 ) .  

represented by the outer  s h e l l  f l a t t en ing ,  d ,  m y  be calculated by d = 

R(l - cos 8 ) .  

'The angle 0 may be determined from 

The maximum l o s s  of shielding 

Example. - A 1 .3-ton cask, shown schematically i n  Fig.  3 .22 ,  m s  

dropped 1s and 29 f t  i n  a horizontal  a t t i t u d e .  

t i on  produced a f t e r  the f i rs t  drop only a re  reported in r e f .  s .  
Eq. ( 2  . l3) ,  the expected deformation i s  predicted and compared with the  

ac tua l  results I 

Results of  the deform- 

Using 

The geometry and propert ies  o f  t he  mater.i.als o f  t he  cask are given 

below: 

W = 2600 lb, 

H = 180 i n . ,  

= 0.31 i n . ,  ?3 

R = 9.0 i n , ,  

L = 36.0 in . ,  

os = ~ c , ~ I O O  p s i ,  

te = 0.5 i n , ,  

o = 5000 p s i ,  
Pb 
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F i g .  2 . 2 2 ,  1 .3-T0n Test Cask. 

Computing the parameters 

-9 

3.70, and = 0.09319. t mos 
S 

f7-l in. 

CASK COVER 

AND I N S E R T  

From F i g .  2 . 2 1 ,  the a:rig'be 8 i s  predicted t o  be 18', and the m a x i m u m  reduc- 

t i o n  i n  shielding, d, i s  (9 i n , )  [ l  - c o s ( 1 8 ' ) ]  = 0.405 i n .  

The t e s t  data in r e f .  5 ind ica te  t h a t  the average width of the de- 

veloped f l a t  is  3.53 i n . ,  for which the average half  angle i s  11 '19 '  . 
The maximurn width was determined to be 5 . 2 5  i n . ,  f o r  which the half angle 

i s  16"5'/' ( i . e a 9  very near the predicted angle of  1 8 " ) .  

The approximate d i s t r i b u t i o n  o f  absorbed energies for t h i s  drop, 

based on FQS. [ 2 . 1 1 ( a ) ] ,  [ 2 , 1 1 ( b ) ] ,  ( 2 . 1 2 1 ,  and ( 2 . 1 3 ) ,  is: 

Cask P a r t  Energy Absorbed (g) 

Lead. 76 

Shell 1 3  

End p l a t e s  11 

These values are in good agreement with those o f  the  detailed. a n a l y s i s  

based 01-1 b r i t t l e  coating a d  s t r a i n  gage measurements present,ed i n  ref. 5. 
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2.7.3 Analysis o f  an Ehd Impact o f  a Cylindrical  Cask Having 
Nonbuffered Ends 

An end drop o f  a cask i n  which the lead i s  not bonded t o  t h e  s t e e l  

s h e l l  w i l l  cause the  lead t o  s e t t l e ,  thus creat ing a void i n  the end 

opposite the  point o f  impact. An analysis  of such an impact,, based on 

the energy absorbed by the lead  (as a r e s u l t  o f  i t s  deformation) and by 

the outer  s t e e l  s h e l l  (as a r e s u l t  o f  i ts  circumferential  strain from 

in t e rna l  lead pressure) ’has been naadea2:” 

The change i n  the lead volume i n  an irrpict my be e s t i m t e d  from 

Eq.  ( 2 . 1 4 ) :  

For negl igible  changes i n  the ou te r  radius of  lead, 13, and the i.nner 

radius o f  lead, r, the  change i n  the height of the lead column, AH, i s  

OV ( 2  . IS)  n(R2 - r2r AH = 

Combining Eqs  . ( 2  . I  4) and ( 2  .Is) yields  

(2.16) 

A s  noted before, Eq.  ( 2  . I  6) i s  based on an unbonded lead condition 

since ne i ther  the support provided by the  s t e e l  she l l s  nor the poss ib i l i t y  

o f  collapse of the  inner s h e l l  by buckling i s  taken in to  account. 

Example. - A m d e l  shipping cask (F ig .  2 . 2 3 )  w a s  designed and b u i l t  

Care w a s  taken t o  

The cask was 

t o  inves t iga te  the  movement o f  lead i n  an end impact. 

prevent t he  lead from becoming bonded to t he  s t e e l  s h e l l s .  

dropped 30 f t  onto i t s  bottom end. 

f 0 llows : 

Pert inent  data  o f  t he  cask a r e  as 

W = 163 l b ,  

H = 30 ft or 360 in., 

R = 2.248 i n . ,  

r = 1 .3125 i n . ,  



ts -- 0.20 i n . ,  

"S 

OPb 

= 4S,OOO p s i  

= 5000 p s i .  

ORNL DtjG 67-128CSRI 

LEAD FILL HOLE PLUG 
- .. . . . . . . . . . . . . . . . . . . . . . . . (TYPl 

LEAD FILL HOLE---- 

; 

F i g  I 2.23. 
Shipping Cask (HNPF) , 

ORNL-Constructed 1 :7 ,s Model of H a l l a m  Six-Element 

The change i n  the height of the  lead colunln ins ide  the weldmeiat  can 

be estimated f r o m  E q ,  (2 .16)  as follows: 

(2.25 ( 1  6 3 )  (360)  
AH = m2.2512 - (1 .3l)2] [ (0.20) (45',000) + (2,25)(5000)] 

= 0.62 in ,  

Experimental data indicated t h a t  the height of lead a c t u a l l y  chmged 

0.7 in . ,  which i s  i n  reasonable agreement with the height predicted above. 

2.8 Shock Absorbing Structures 

Often it i s  des i rab le  t o  pro tec t  a cask from d i r e c t  impact by s i n -  

1-omding it with a shock-absorbing struct,un-e " In an ami dent the struc- 

tu re  w i l l  defm-m and absorb energy t h a t  might otherwise cause damage i n  

the cask i t s e l f  01- t o  the  contained spent fuel, It i s  p a r t i c u l a r l y  irnpor- 

t a n t  t o  pro tec t  cask cloosur-es from deformt ion  (see Sect .  2.4.3) , 



2.8.1 Fins 
7 

Several types o f  protect ive s t ruc tu res  have been designed and b u i l t ,  

Probably the  simplest and l e a s t  expensive o f  these a r e  f i n s  t h a t  a r e  

welded d i r e c t l y  onto t h e  cask. 

but t h e i r  usefulness as sbock absorbers should not  be overlooked. 

Fins a r e  of ten  necessary f o r  heat removal, 

Analytical  techniques f o r  predicting the amount o f  energy that, can 

be absorbed during the  deformation o f  f i n s  of various configurations have 

not been fully developed; however, i f  the f i n s  are pre-bent i n  such a 

manner t h a t  t h e i r  movement i n  an accident can be predicted wi th  cord i -  

dence, the energy tha t  they absorb can be e s t i m t e d  by t r ea t ing  each f i n  

as a p l a s t i c  hinge. 

than tha t  absorbed by a s t r a i g h t  f i n .  Accordingly, f o r  a s t e e l -  o r  

uranium-shielded cask it my not be desirable  t o  use pre-bent f i n s .  

ever, i n  the  case of lead-shielded casks, the  m r e  r i g i d  s t r a i g h t  f i n s  

The energy absorbed by a pre-bent f i n  w i l l  be less 

How- 

could r e s u l t  i n  damage t o  the shielding.  

A s  a p a r t  o f  a l a rge r  study program, a model uranium-shielded cask 

weighing 372 l b  wits b u i l t  with l/L-in.-thick f i n s  extending approxirately 

1 i n .  above the  closure.  

The protect ion afforded by fins is i l l u s t r a t e d  i n  Fig. 2.2b. 

This cask was dropped 30 f t  onto an edge.” 

Two accelerometers were placed - one on the  top and one on t h e  bottom 

of the  cavi ty  - a t  an angle normal t o  t he  impact surface.  Both reg is te red  

a force o f  approximately 1100 - g ‘ s ;  t h e  peak l a s t e d  for approximately 0.001 

see . 
The closure (see Fig.  2 . 8 )  was apparently wel l  protected s ince no 

dimensional changes to  the  l i d  and i t s  r a t i n g  parts were observed after 

the impact. 

The f u l l - s i z e  demonstration file1 element shipping cask, designed 

with protect ive f i n s ,  was a l so  drop t e s t ed  from 30 fta onto a top edge.‘* 

It was equipped wi th  both elastomer and s t a i n l e s s  steel  gaskets.  

cav i ty  was pressurized t o  approximately 16.5’ p s i  before the drop; no evi-  

dence o f  leakage a f t e r  t h e  drop w a s  noted. 

The 
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b 

Fig. 2.24. &del Uranim-Sh$elcled Cask After 30-fi Drop. 
(Courtesy of Union Carbide Corp., Faduoah P b t )  

2 ,% .2 Toroidal Splell-TYpe Energy Absorbers 

The amount of energy that can be absorbed by fins is dependent on 

the orientation of fins relative to direction of cask impact,. Shell 

s t m t w e d ,  such as  the s e p n t e d  toreidal ring shown in Fig. 2.25, can 
be designed to circumvent t h i s  problem. This ring is designed not 0- 

to protect the caak closure i n  an end &rop but w i l l  also operate properly 

regardless of the angle a t  which the caak impacts on a horimntal susface. 

Protective devices of this dmign are being tested a t  the University 

of Tennessee. Results have shown that sruch rings caa suppQ the energy 
absorption capabilities necessary t o  miriain seal integrity ar#l permit 

closltre after a 30-ft impact for  cask weights of i n t e r e ~ t . " ~ ~ ~ ~  This 
work is being pursued further i n  an bttteqpt to  accumulate engineering 

c 
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data t h a t  w i l l  permit the design o f  a to ro ida l  r ing  o f  predictable energy 

absorption capacity as would be required i n  a spec i f ic  use.  

data indicate  t h a t ,  f o r  s t r a i g h t  c i r cu la r  cylinders of xild s t e e l ,  the  

energy a,bsorption cha rac t e r i s t i c s  i n  a crushing impact a r e  correlated by 

Es. ( 2 . 1 7 ) .  

Preliminary 

A2 s t"L 
E =:- y [ A  + 0 . l L  -I , 

R R 

whe r e 

E is  t h e  energy absorbed i n  in . - lb ,  

S is the uniaxial y i e ld  s t rength o f  t he  s t e e l  i n  psi., 
Y 
t i s  the cylinder thickness i n  in . ,  

L i s  the  cylinder length i n  in., 

R i s  the  mean radius o f  the  cylinder., i n .  , 
A i s  the  deformation shown i n  F ig .  2 . 2 6  i n  in. 

ORNL 

r CASK - LID 
CASK LID RING WELD7 \- 

QRQlDAL ElNG 
NERGY ASSORBE 

CASK BODY 

:R 

~ S H ,  ELDl NG 

Fig.  2.25, Toroidal-Ring Ehergy Absorber. 
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P i g .  2 .26 .  Def in i t i ons  o f  T e r m s  Used j-11 EQ, (2 .1 ' ( ) .  

2 .R .3 Protec t ive  Buffers 

An example o f  a c rash  frame, designed t o  p ro tec t  a cask which, pe r  

se, would not  meet s p e c i f i c a t i o n s  mith regard  t o  the  30-ft-drop i s  shown 

in Fig .  2 . 2 7 .  This c ra sh  frame was analyzed by means of a p l a s t i c  hinge 

technique. 2 E  

The v a l i d i t y  of  t h e  amlysis  was confirmed by t h e  r e s u l t s  from sev- 

eral .  m d c l  t es t  drops; t hese  resul.ts ind ica ted  t h a t  t h e  f o m e  loading 

t o  t he  cask and conten ts  car1 be est imated wi th  a reasonable degree of  

accui-acy . 27 
The B r i t i s h  have t e s t e d  a m o d  and s t e e l  c rash  frame design used to 

34 protect heavy lead-shielded i so tope  casks .  The hardwood ti?ermal sh ie ld ,  

s a t i s f a c t o r i l y  t e s t e d  i n  a 0 .s-hr petrolewrr! fire, w a s  designed with enough 

mechanical s t r e n g t h  t o  maintain i t s  fire pro tec t ion  f o r  casks weighing up 

t o  10 toils even i f  t h e  cask a n d  s h i e l d  were sub jcc t  t a  t he  30 - f t  regula-  

t o r y  drop before  being exposed tD the f i r e .  

A vehicle-cask system can be designed i n  such a manner t h a t  a con- 

s ide rab le  arnount o f  t h e  impact energy i s  absorbed i n  t h e  deformiLion of 

material. l oca t ed  ex te rna l  t o  t h e  cask .  Such a system w a s  designed by 

the  Westinghouse E l e c t r i c  CorpoPat,i.on t o  p r o t e c t  t h e i r  75-ton Yankee 
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spent f u e l  shipping cask (see Fig. 2 . 2 8 ) .  

absorbing s t ruc ture ,  based on an e a r l y  version o f  the regulations,  is  

given in ref .  28. 

Their analysis o f  t h i s  shock 

Fig. 2 . 2 7 .  Crash Frame Designed f o r  an Ekisting Cask, 

h o t h e r ,  more elaborate,  protect ive bm"fer, which can be considered 

sinply as an extension o f  the cask, was designed t o  protect  several  d i f -  

f e r e n t  s i ze  isotope shipping casks, t h e  heaviest o f  which weighs 40,000 

lb.23 The protect ive s t ruc ture  (see Fig, 2 . ? 3 ) ,  weighs 3~,000 lb and is 

made o f  concentric s t e e l  s h e l l s  t h a t  surround the lead-shielded cask m d  

are held i n  place by rubber shock zbsorbers. This buffer i s  designed t o  

reduce the impact force on the surface of -the cask t~ 50 - g when the cask- 

buffer combination i s  dropped i n  any or ien ta t ion  on a so l id  surface from 
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a height of 30 f t .  Since mst of the kinetic energy of the system is 

dissipated by the shock-absorbing device, the uniform surface loading 

on the cask can be specified and controlled. 

ORNL PHOTO 93319A 

Fig. 2.28. External Crash Frame Mounted on a Railroad Car. 
(courtesy of Westinghouse Electric Corporation) 

In order to t e s t  the adequacy of the design and t o  make a comp2ete 

analysis of the buffering system, an *ct testing program of mdel 

,buffered casks was undertaken at the University of Texas .30 A 0.25- 
scale model of the HAP0 cask-buffer combination was bui l t .  

An analysis of the scaling laws indicates that  the deceleration 

received by the cask inside the buffer should be inversely proportional 

t o  the scale factor. Since the HAP0 erystem was designed t o  reduce the 

decelsration of the cask to 50 g on impact from a 30-ft f a l l ,  a decel- 

eration of 200 g was expected for  the 0.2S-scale models when they were 

dropped from the same height. 

buffer t o  absorb the impact energy: 

alumhum honeycomb material. 

Two types of makerial were used i n  the 

rubber, and a specially designed 

The aluminum honeycolrib was evaluated I 

I 



because its properties are less susceptible t o  temperature changes and 

because this material can be used .t;O design smaller buffers with the 

same energy-absorbing capabilities as those using rubber shock absorbers. 

-- 

Fig. 2.29. HARI 1B Cask and Buffer Shield. 

An acceleration, velocity, and displacemnt record of the rubber 

buffer mdel is shown in Fig. 2 40. 
cask received in t h i s  drop ma 224 8; however, the %rmoth peak" value 

was about 200 g, which is in  excellent agreement with the predicted 

value. 

The naucimum deceleration of  the 

A similar record f o r  an a l e -  honeycomb buffer mdel is shown in 
Fig. 2.31, 
peak" value was considerably less than 200 g. 

The cask received a peak deceleration of 300 g; the tfsmoth 

T h i s  is certainly within 
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acceptable limits and, i f  required, the honeycomb could be redesigned i n  

such a manner t h a t  the "averagedff impact r e s u l t s  w i l l  agree more close1.y 

with the spec i f ica t ions .  

ORNL-DWG 63-5217Rl 
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F i g .  2.30. Acceleration, Velocity, and Displacement, 
30-ft End Drop o f  a Rubber B d f e r  Model. 

3 

Record f o r  

2.8 .IC Character is t ics  of Aluminum Honeycomb 

Energy absorption characteri .st ics of aliuninum honeycomb were studied 

This material  has cross-laminated cor- a t  the  University o f  Texas, 31,32 

rugations and i s  made i n  various f o i l  thicknesses, corrugation heights,  

and lamination p a t t e r n s .  S t ress -s t ra in  curves f o r  a spec i f ic  honeycomb 

under s t a t i c  loading and impact v e l o c i t i e s  of  50 and 100 f p s  a r e  shown i n  

Figs .  2 . 3 2 ,  2.33, and 2.3)c. When t h e  honeycomb i s  compressed t o  about 

20% o f  i t s  i n i t i a l  thickness (see P ig .  2 .31  ) , it becomes almost solid; 
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therefore,  fu r the r  compression i s  a t t a inab le  only a t  high loadings,  

energy absorption capabi l i ty  o f  such a system i s  e s sen t i a l ly  i r r eve r s ib l e .  

The cha rac t e r i s t i c s  o f  the honeycomb under s ta t ic  and impact conditions 

are summarized i n  Table 2.5. 
under s t a t i c  loading than under impact loading. 

energy t h a t  this pa r t i cu la r  material  can absorb under an impact load i s  

The 

Note tha t  the honeycomb i s  s l i g h t l y  stronger 

The maximum munt of 
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5 50 250 

4 40 200 

3 30 150 

2 20 100 

1 10 50 

0 0  0 

-10 

‘300 g 

DI 

‘. 
- \  
‘Y 
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2 

2.5 5.0 7.5 10.0 12.5 11 

TIME (msec) 

I 

Fig.  2.31 . Acceleration, Velocity, and Displacement Record f o r  
30-ft  End Drop o f  an Aluminum Honeycomb Buffer Model.. 
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TO 75% STRAIN 
AVERAGE S I R E S S  2 SAMPLES 798 psi 
AVERAGE ENERGY DISSIPATED 600 in. Ib/in.3 

L _ _ _ _ _ i _ _ l _ _ _ i I - . L  
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Fig .  2 .32 .  S t a t i c  Stress-Strain Curves for PR-A-O Type Aluminum 
Honeycomb. 
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F i g .  2.33. Dynamic Stress-Strain Culves for PR-A-O Type Aluminum 
Honeycomb Impacted a t  50 fps. 
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2.314. Dynamic S t ress -St ra in  Curves f o r  PR-A-0 Type Alumipum 
Honeycomb Impacted a t  100 f p s .  

Table 2 .s. Energy Dissipat ion and Average S t r e s s  o f  Aluminum 
Honeycomb 

Impact Velocity Average S t r e s s  Energy Dissipated S t r a i n  
Materia 1 (fps  1 ( P s i )  ( i n .  -Ib/in,  ") (% 1 
_. 

PR-A-0 o ( s t a t i c )  798 600 75 

PR-A-0 50 71 3 535 '7 5 

2.8.5 The Army-AEC Vehicle h p a c t  Studies  

Three vehicle  impact t e s t s ,  sponsored by the USUC and the Depart- 

ment of  t h e  Army, have been car r ied  out  i n  order  t o  determine the  e f f e c t s  

o f  an accident  on the  t o t a l  t ranspor t  ~ y s t e m . ~ " ~ * '  The object ive o f  this 
study w a s  "to provide a r e a l i s t i c  understanding of t h e  dynamics of t rans-  

por ta t ion  accidents  ' . . . , , I 1  p a r t i c u l a r l y  with regard t o  vehicle ,  
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cargo, and tie-downs. 

p l a t e  was used as t h e  'Iimmovable o b j e c t "  i n t o  which t h e  veh ic l e s  were 

dr iven a t  v e l o c i t i e s  varying f r o m  4 t o  141 mph. 

revealed t h a t  the  b a r r i e r  d id  n o t  move during any of -the tes ts .  

A massive 'barr ier  wi th  a f r o n t  sur face  of armor 

High-speed photography 

One o f  t h e  mast s igni f icant ,  results of t h e  s tudy  was t h e  proof t h a t  

t he  f i f t h  wheel i s  a weak l i n k  i n  a t r a c t o r - t r a i l e r  system; however, if 

t h i s  wheel i s  re inforced ,  l a r g e  f r a c t i o n s  of t h e  t o t a l  energy of t h e  

tyansport  system (up t o  100%) may be d i s s i p a t e d  i n  t h e  veh ic l e  without 

s e r ious ly  involving t h e  cask O Y  tie-downs. 

LMF cask was r i g i d l y  t i e d  down t o  a f l a t b e d  t r a i l e r  ( see  F i g .  2 .18);  t h e  

f i f t h  wheel w a s  re inforced ,  and the  t r a c t o r - t r a i l e r  was driven,  by remote 

means, i n t o  t h e  b a r r i e r  a t  28.5 mph. Results showed t h a t ,  even though 

t h e  cab was completely deml.i.shed and the t r a i l e r  frame w a s  bent ,  t he  

cask r e m i n e d  upr ight  and undamaged on t h e  t ra i le r .  Although methods o f  

ca l cu la t ing  f o r c e  inpu t s  t o  a cask i n  an  acc ident  r e m i n  somewhat crude, 

these  tests leave l i t t l e  doubt as t o  t h e  energy absorp t ion  c a p a b i l i t i e s  

of  t h e  veh ic l e  i n  a front-end impact. 

p red ic t ions  o f  the energy absorp t ion  c a p a b i l i t i e s  of complex s t r u c t u r e s  

become ava i l ab le ,  such t e s t s  w i l l  have t o  be considered as the  b e s t  method 

for determining t h e  amount o f  i m p a c t  p ro t ec t ion  that i s  af forded  t o  the  

cask by a v e h i c l e .  

For  example, Du Pont l s  15-ton 

Un t i l  methods f o r  making reasonable 

2 .9 Test ing Requirements 

Because o f  t h e  uncer ta i -n t ies  and inherent  approximations i n  engirieer- 

ine; designs,  compliance wt th  r egu la t ions  must, sometimes be d e m n s t r a t e d  

by subjec t ing  t h e  cask t o  a s e r i e s  of t e s t s  r a t h e r  than r e ly ing  e n t i r e l y  

on a n a l y t i c a l  t reatment  II A dec is ion  t o  t e s t  will be a f f e c t e d  p r imar i ly  

by t h e  purpose of t h e  cask and the  d e s i g n e r ' s  knowledge o f  t h e  app l i ca -  

b i l i t y  o f  a n a l y t i c a l  t reatments  to  h i s  p a r t i c u l a r  design.  A compilation 

o f  cask t e s t  r e s u l t s  i s  i n  p repa ra t ion  by t h e  ANSI N14-i  Subcommittee; 

t h i s  compilation can assist des igners  i n  deciding if  t e s t i n g  i s  d e s i r a b l e .  

Cask t es t s  would appear to c o n s t i t u t e  complete proof o f  a design; 

bu t ,  i n  f a c t  t hey  do n o t .  

e r a l l y  under condi t ions  t h a t  t h e  des igner  f ee l s  a r e  most damaging. 

Only a l i m i t e d  number o f  t e s t s  a r e  made, gen- 

This 
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f a c t ,  however, i n  no way lessens the importance o f  cask t e s t i n g .  Tests 

can of ten be va lmble  t o  more than one designer; and, as  addi t iona l  de- 

f i n i t i v e  tes t s  a r e  made, ana ly t i ca l  techniques can be improved u n t i l  

t e s t  r e s u l t s  can be predicted with a known degree o f  accuracy. 

2 . 9  . I  Hypothetical Accident Conditions 

Designers usual ly  consider subjecting a cask (prototype o r  sca le  

model) t o  t e s t s  t h a t  involve an impact o r  a f i r e .  

dent conditions given i n  AECM 0529 Armex 2 a r e  noted below: 

The hypothetical  acci-  

1 ,  Free Drop - "A f r e e  drop through a distance o f  3'3 f t  onto a 

f l a t ,  e s sen t i a l ly  unyielding, horizontal  surface,  s t r i k ing  

the  surface i n  a posi t ion f o r  which maximum damage i s  ex- 

pected." 

a t  l e a s t  t en  times the  mass of the cask. 

For ac tua l  tests,  t he  mass o f  t h e  t a rge t  shoiuld be 

2. Puncture - "A f r e e  drop through a distance of 40 i n .  s t r i k -  

ing  i n  a posi t ion maximum davage i s  expected, the top end 

o f  a v e r t i c a l  cy l indr ica l  mild s t e e l  bar mounted on an essen- 

t i a l l y  unyielding horizontal  surface.  The bar s h a l l  be 6 i n .  

i n  diameter, with the top horizontal  and i t s  edge rounded to 

a radius o f  not more than I /4 i n . ,  and of  such a length as 

t o  cause maximum damge t o  the  package, but not l e s s  than 

R i n .  long. 

The long axis  of the  bar s h a l l  be normal to t h e  package 

surface.  

3. Thermal - fWxposure t o  a thermal t e s t  in which the  heat in -  

put to  the  package is  not l e s s  than t h a t  which would r e s u l t  

from exposure o f  the whole package t o  a rad ia t ion  environ- 

ment o f  1475°F f o r  30 min with an eniissivity coef f ic ien t  o f  

0.9, assuming the surfaces o f  t he  package have an absorption 

coef f ic ien t  of 0 .8 .  The package s h a l l  not be cooled a r t i f i -  

c i a l l y  un t i l  3 hr  a f t e r  the t e s t  period unless it can be shown 

t h a t  t he  temperature on the  inside o f  t he  package has begun 

t o  f a l l  i n  l e s s  than 3 hr. 



14. Wat,er Immersion (packages containing f i s s i l e  ma te r i a l  on ly)  - 

I'immersion i n  water t o  t h e  ex ten t  t h a t  a l l  po r t ions  of t,he 

package t o  be tesbed a r e  under a t  l e a s t  3 f t  o f  water f o r  

a per iod  o f  no t  l e s s  than  8 h r . "  

These condi t ions  a r e  t o  be app l i ed  t o  a cask,  e i t h e r  by c a l c u l a t -  

i o n a l  methods o r  by t e s t ,  i n  t he  sequence l i s t e d .  A s  a r e s u l t ,  t h e  r e -  

duct ion i n  sh ie ld ing  should not  be s u f f i c i e n t  t o  increase  t h e  ex te rna l  

r a d i a t i o n  dose ra te  t o  more than  1000 mr/hr ( o r  equiva len t )  a t  1 m from 

the e x t e r n a l  sur face  o f  t he  cask.  The cask w i l l  no t  r e l e a s e  any rad io-  

a c t i v e  ma te r i a l  except gases or contaminated coolant, ( see  Table 5 . I  ), and 

the  material i n  the cask w i l l  remain s u b c r i t i c a l .  

Both prototype and s c a l e  model casks have been used i n  t e s t i n g  pro- 

grams. However, t he  f i r e  t e s t  should be performed on a prototype cask 

because t h e  response o f  the  f u l l - s c a l e  cask would be d i f f i c u l t  t o  p r e d i c t ,  

based on t e s t  r e s u l t s  of a model. 

One cask t h a t  has r e c e n t l y  been subjected t o  a r a t h e r  complete t e s t -  

ing program w a s  b u i l t  by Union Carbide Corporation, Paducah Plan t ,  using 

laminated uranium f o r  sh i e ld ing ,  Tes t s  were made t o  s tudy  t h e  s t r u c t u r a l  

c a p a b i l i t i e s  of  a uranium-shielded cask.  A d e t a i l e d  desc r ip t ion  of ihese 

tests, t h e i r  ob jec t ives ,  and t h e  r e s u l t i n g  da ta  and conclusions,  repor ted  

i n  r e f .  2jJ, i s  recommended as a guide t o  t e s t i n g  procedures.  

The quest ion of ins t r imenta t ion  o f  t he  t e s t  specimens f r equen t ly  

a r i s e s .  To d a t e ,  s t r a i n  gages, accelerometers ,  and b r i t t l e  lacquer  

have been used on casks subjected t o  iuipact, while thermocouples, hea t -  

s e n s i t i v e  p a i n t  or t h e r m  s t i c k s  a r e  most f requent ly  used i n  connection 

with f i r e  t e s t i n g .  

no sa t i s f ac - to ry  method i s  ava i l ab le  t o  t r a n s l a t e  such information i n t o  

expected cask damage. 

obtained from buffered cask bes ts  i n  which t h e  cask i t s e l f  ( i . e . ,  t h e  

sh i e ld ing  and c a v i t y )  dece le ra t e s  uniforrnly; such da ta  a r e  discussed i n  

Sec t s .  2 .8 .1  arid 2 .8 .3 .  

Alt'nough the  impact da t a  are i n t e r e s t i n g ,  f r equen t ly  

The most use fu l  accelerometer readings have been 
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2 .9.2 Normal Operating Conditions 

Normal operating conditions, presented in Annex 1 of  AECM 0529, a r e  

given below. 

mine i t s  e f f ec t  on the cask. 

Each o f  the conditions i s  t o  be applied separately t o  deter-  

Heat - Direct sunl ight  a t  an ambient temperature o f  130°F i n  

s t i l l  a i r ,  
- 

Cold - An ambient temperature of' -40°F i n  s t i l l  a i r  and shade. 

Pressure - Atmospheric pressure o f  0.5 times standard atmo- 

spheric pressure.  

Vibration - Vibration normally incident to t ransport .  

Water Spray - A w a t e r  spray s u f f i c i e n t l y  heavy t o  keep the  

en t i r e  exposed surface of the package except the  bottom 

continuously we% during a period o f  30 minutes. 

Free Drop - Between 1-1/2 and 2-1/2 hours a f t e r  t he  conclusion 

o f  the  water spray t e s t ,  a f r e e  drop through the distance speci- 

f i e d  below onto a f l a t  e s sen t i a l ly  unyielding horizontal  surface, 

s t r i k ing  the surface in a posi t ion f o r  which rr iaximum damage i s  

expected, 

Free F a l l  Distance 

Package Weight (pounds) 

Less than 1 0 , O O r )  

10,000 t o  20,000 

20,oc;o t o  30,000 

More than 30,000 

Distance ( f e e t )  

4 
3 
2 

1 

Corner Drop - A f r e e  drop onto each corner of the package i n  

succession o r  i n  the  case OP a cy l indr ica l  package, onto each 

quarter  of each r i m ,  f r o m  a height of 1 f o o t  onto a f l a t  essen- 

t i a l l y  unyielding horizontal  surface.  This tes t  appl ies  only 

t o  packages which a re  constructed primarily o f  wood or fiber- 

board, and do not exceed 110 pounds gross weight, and t o  a l l  

F i s s i l e  Class I1 packagings. 
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8. Penet ra t ion  - Impact of t h e  hemispherical  end of a v e r t i c a l  

steel. cy l inder  1 -2/14 inches i n  diameter  and weighing 13 pounds, 

dropped from a height  of 40 inches onto the  exposed sur face  of 

the  package which i s  expected t o  be mst vulnerable  t o  puncture.  

9. Compression - For packages not  exceeding 10,000 pounds i n  weight, 

a compressive load equal  t o  e i t h e r  5 t i m e s  t h e  weight o f  t he  

package o r  2 pounds per  square inch  mul t ip l i ed  by the  maximum 

hor i zon ta l  c ros s  sec t ion  of t h e  package, whichever i s  g r e a t e r .  

'The load s h a l l  be appl ied  during a per iod  of 24 hours,  uniformly 

aga ins t  t h e  top  and bottom of the  package i n  the pos i t i on  i n  

which t h e  package would normally be t r anspor t ed .  

It i s  not  always necessary to sub jec t  a spent  f u e l  shipping cask 

t o  these  normal condi t ions  of t r anspor t  i n  o rde r  t o  determine whether 

the  cask i s  adequate; c a l c u l a t i o n a l  methods o f t e n  suff i .ce ,  There a r e ,  

however, except ions.  For example, t h e  e f f e c t  o f  v i b r a t i o n  on t h e  cask 

contents  my be impossible t o  c a l c u l a t e  a n a l j t i c a l l y ;  Lhis may a l s o  be 

t r u e  o f  t h e  pene t ra t ion  requLrement (No, 8), p a r t i c u l a r l y  i f  t h e  pene- 

t r a to r  s t r i k e s  a n  exposed va lve .  Tes ts  could be used t o  reso lve  t h e  

problem I 

I n  add i t ion ,  Paragraph III.C.2. o f  AECPI 0529 r equ i r e s  the  cask, 

before i t s  i n t t i a l  shipment, t o  be t e s t e d  a t  5'0% higher  than t h e  normal 

opera-Ling pressure  ( i f  t h e  l a t t e r  exceeds 5 p i g ) .  The t e s t  should be 

c a r r i e d  o u t  wi th  t h e  cask a t  t h e  m a x i m u m  normal opera t ing  temperature; 

i f  t h i s  i s  not  poss ib l e ,  t h e  t e s t  rnay be made a t  a lower temperature but  

a t  a higher  pressure  ( s e e  ALSME Code S e c t ,  V I I I ,  Paragraph UG 99b; Stan- 

dard Hydi-ostaLic T e s t ) ,  

It i s  a l s o  w i s e  t o  demonstrate t h e  c a p a b i l i t y  o f  the  cask to d i s s i -  

p a t e  the  aiiiount, o f  heat  generated by t h e  f u e l  t o  an ambient temperatiire 

of  130°F i n  d i r e c t  sun l igh t .  A t e s t  o f  t h i s  type i s  discussed i n  Sec t .  

4.9.14. 

Often, spent  f u e l  shipping casks a r e  loaded and unloaded under water .  

If the  normal opera t ing  cask temperatures a r e  high, t he  cask may be 
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subjected t o  a thermal shock during t h i s  type o f  unloading procedure. 

This condition may be avoided by a cask designed to  permit the  cavi ty  t o  

be flushed with low-pressure steam, hot water, and f i n a l l y  cold water, 

before Lowering in to  the  loading basin.  

t o  the  cask and contents .  Although not required by the  regulations,  t he  

consequences o f  such a thermal shock should be evaluated e i the r  by t e s t -  

ing o r  some other  method. 

t h i s  treatment; v i sua l  inspection o f  such vulnerable areas should be 

made i f  t he  t e s t  i s  performed. 

This reduces the  t h e r m 1  shock 

It i s  possible that welds could crack under 

Although a rad ia t ion  at tenuat ion t e s t  i s  not required by the  regu- 

l a t i o n s ,  it i s  recommended, Dose r a t e  measurements made when the  source 

i s  first loaded in to  the  cask w i l l  suf f ice ;  however, it i s  frequently 

desirable  t o  check the effect iveness  o f  the shielding during fabr ica t ion .  

Tests o f  t h i s  nature a r e  discussed i n  Sect .  4.9.5. 

2 . I  0 Comments on Cask Shielding Material  

Its low cos t ,  high density,  and a b i l i t y  t o  be e a s i l y  fabr icated,  

even i n  odd shapes, make lead t h e  m o s t  c o m n  mater ia l  o f  construction 

used i n  the  United S ta tes  f o r  a gamma sh ie ld ,  

using lead a s  the  primary shielding mater ia l  are  severalfold.  

p le ,  lead must usuaLly be encased i n  s t e e l  fo r  fabr ica t ion ,  protection, 

and handling purposes, A L S O ,  since lead contracts  appreciably upon so l id i -  

f i c a t i o n  from the  molten s t a t e  (more than 3% by volume) care must be taken 

during the  pouring o f  l a rge  steel-encased shields  t o  prevent the introduc- 

t ion  o f  unwanted voids.  

ing o f  lead t o  s t a in l e s s  s t e e l  can a l so  contribute t o  the  formation o f  

unwanted voids.  

However, disadvantages o f  

For exam- 

In  addi t ion,  the  unsat isfactory wetting o r  bond- 

F i re  presents  a hazard t o  l ead - f i l l ed  casks.  The coef f ic ien t  of  

thermal expansion f o r  lead i s  higher than t h a t  of s t e e l ,  which i s  nor- 

mally used t o  encase the  lead (Fig.  2.35).17,95 High pressures, which 

may develop i n  the  cask during exposure t o  a f i re ,  could r e s u l t  i n  broken 

welds and subsequent loss o f  shielding.  
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TEMPLPATURE !OF) 

F i g .  2.35. 
o f  Temperature. 

Volumetric Expansion o f  Lead and S t e e l  as a Function 

The Br i - t i sh  have performed some heat  t e s t s  on small l e a d - f i l l e d ,  

s t e e l - s h e l l e d  casks36 and found t h a t  t h e  use of con-trol led voids  i n  t h e  

cask s h i e l d  t o  provide thermal e x p n s i o n  space f o r  t h e  lead  w a s  no t  

e n t i r e l y  s a t i s f a c t o r y .  Melting of t h e  l e a d  would not  always -take p lace  

around -the void area; t hus  these  a r e a s  d i d  not  prevent pressure buildup 

and t'ne I.oss of  l e a d  i n  o-ther a r e a s .  

void a f t e r  cool ing (even when no lead  was l o s t )  was not  pred.ictabLe and 

could r e s u l t  i n  a r e a s  of  inadequate sh i e ld ing .  

have ind ica ted  t h a t  a -thick s t e e l  ou te r  s h e l l  provides  a considerable  

amount o f  fTre p ro tec t ion  for the l ead  sh ie ld ing .  The s teel .  requi re -  

riients a r e  b r i e f l y  discussed a t  t h e  end o f  Sec t .  2 . 2 .  

I n  add i t ion ,  t h e  pos i t i on  o f  t he  

However, o t h e r  tests'" 

Other sh ie ld ing  ma te r i a l s  t h a t  rrlay be used t o  advantage include 

iiranium and s t e e l .  Urani.im i s  s t ruc t ,ura l ly  about  as s t rong  as s t e e l ;  



both shielding materials can r e s i s t  the consequences of an accidental  

f i r e  b e t t e r  than lead.  

quently w i l l  impart a higher shock loading t o  the cask contents when 

involved i n  a 30-ft impact unless buffering i s  supplied.  Details o f  

uyanium shielding a r e  discussed i n  Chap. 8. 

Neither mater ia l  i s  e a s i l y  deformed and conse- 

The Br i t i sh  have made a number of l a rge  casks from c a s t  i ron  or 

s t e e l  containing no lead o r  other high-density mater ia l .  T h i s  elim5- 

nates  the problem of d i f f e r e n t i a l  thermal expansion found i n  the  lead 

cask with s t e e l  s h e l l s .  The shielding does not melt when involved i n  a 

normal petroleum f i r e ,  and the extent of shielding deformtion due t o  

--act i s  reduced. In addi t ion,  fabr ica t ion  cos ts  a r e  generally lower. 

The main disadvantage of  s t e e l  casks i s  t h a t ,  f o r  an iden t i ca l  cav- 

i t y  s ize ,  a s t e e l  cask i s  la rger  and weighs considerably m r e  than a 

lead-shielded cask. This, i n  turn,  means tha t  t ransportat ion charges 

for the  cask w i l l  normally be higher.  

For a comparison o f  mechanical propert ies  o f  t yp ica l  shield m t e -  

r ials,  see Table 2 . 6 .  

2 , I  0 ~ 1 Heat Transf e r  Under Normal Conditions 

When lead-shielded casks a r e  t o  be used f o r  transporting f u e l  t ha t  

generates a la rge  arrmmt o f  hea t ,  t h e  thermal res i s tance  between t h e  lead 

and s t e e l  s h e l l s  should be as l o w  as  possible;  a i r  gaps between t,he lead 

and the  steel. s h e l l s  of  the cask cou.ld cause excessive temperatures in 

the  cask cavi ty .  To reduce the  noma1 operating temperatwe of" t he  cask 

cavi ty  and contents,  rany cask designers des i re  a metallurgical bond be- 

tween the outer  s h e l l  and t h e  lead sh ie ld .  

It; i s  possible t o  design the cask i n  such a way t h a t  a good bond 

between t h e  lead and the  outer  s h e l l  i s  not required for e f f i c i e n t  heat 

rerrasval Figure 2 -36 shows schemt ica l ly  a sectioned cask i n  which the 

f i n s  a r e  welded or brazed t o  the inside of the outer  shell."7 These f i n s  

a r e  designed t o  mve 8s the lead expands and contracts  uridep varytng heat 

loads while s t i l l  maintaining mechanical contact with the lead; they a re  

intended t o  provide a good path f o r  heat to be conducted from the  lead 

t o  t he  outer  s t e e l  s h e l l .  



Table 2.6. Phys ica l  and Chemical P rope r t i e s  o f  Some Shielding Mate r i a l s  

M i l a  S t e e l  S t a i n l e s s  
Era n i m a  - b  Lead arid I ron  Steel '  

Density,  g/cc 
lb / in ,  

Eeltirig point, " C  
O s ,  
A 

Boi l ing  po in t ,  "C 
"F 

Ultimate t e n s i l e  s t r eng th ,  p s i  

Yield s t r eng th ,  p s i  

Moddus o f  e l a s t i c i t y ,  p s i  x I O 6  

Po isson ' s  r a t i o  

Hardness, B r i n e l l  No. 

Thermal expansion, ( in . / in . -"C)  x 
Speci f ic  hea t ,  cal/g- "C 

Thermal conduct iv i ty  ( a t  100°C), 
cal/cm- sec - " C  

Btu/hr-ft-  "R 

18.9 
0.683 
1733 
2070 

3900 
7052 

6C,000-1 OO,OOOd 

25 ,OOO-Ls ,0GO' 

2 4c 
0.21 

185-385' 

6.8 to ISd 
0.028 

0 .ss 
:4.0 

11.34 
0 .b'l0 

326 
67 8 

1525 
2777 
2300 -3000 
1 180-1 380 

0.4s 
2 

k e3 
29 
0 .a31 

0.082 

19.9 

7.87 
0.28h 

1537 
2798 
3000 
5430 
95,000-1 30,oood 

60,000-1 25,C00d 

29.5 

0.29 
149-'l 70d 

11.7 

0.:7 

0.11 

26.5 

7.9 
0.29 
I 400 - 1 454 
2550 -2 650 

80,090 
30,000 -P 

0.30 

150 

1o.k 

28 

0.12 

0.039 
9.4 

a 
Unalloyed deple ted  uranium. 

bChemical l ead  ASTM B29-55. 

Type 304L, annealed.  C 

$a r i e s  w i t h  t rea tment  and a l l o y .  
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Fig 2.36. Cask Containing Interrial  Heat Transfer Fins .  

2 a 1 0 '2 Heat Transfer Under Accident Conditions 

Although the probabi l i ty  o f  a. cask being involved in a f i r e  may he 

low, an exapination of  the  consequences i s  far from academic since the 

po ten t i a l  mne ta ry  loss i s  s ign i f i can t  . 
lead expands a t  a f a s t e r  rate than s t e e l s  t h a t  norrally contain it. Con- 

sequently, moltten lead could rupture the steel. shell and flow c u t .  Cavi- 

t y  pressure would increase,  p r t i c u l - a r l y  i f  a lic-gliid coolant were present, 

which could cause the  containment t o  be v io la ted  with the attendant l o s s  

o f  coolant; fission products could ttms be dispersed, 

A s  i t s  temperature increases 

The current regulations require tha t  a cask be able  t o  withstand the 

environment of" a C1-s-hr fire a t  1475'F without exceeding t h e  prescl-?bed 

loss o f  contents or dose limits discussed i n  Sect .  Because o f  the 

mall amount of t es t  data presently avai lable ,  as well as the  impracti- 

ca l i t y  of  t e s t ing  many casks, the t a s k  of" designing i n  terms a f  the  con- 

sequences of the O.S-hr f i r e  i s  primarily a matter o f  good engineering 

j udgmnent 

Normally, t he  cask i s  designed t o  provide a path f o r  heat to flow 

from the  source t o  the cask surface.  T h i s ,  however, also r e s u l t s  in a 



path f o r  heat t o  be t ransferred from the surface o f  the  cask t o  t h e  

cavi ty .  

it, i s  desirable  t o  bui ld  a cask that would r e j e c t  heat by convection and 

not accept thermal energy by rad ia t ion .  The HAP0 cask i s  designed to do 

t h i s  by providing several  concentric s t e e l  s h e l l s  surrounding the cask t o  

a c t  as buffers  (see Fig,  2 . 2 9 ) .  Under normal conditions a i r  cools t he  

cask by flowing around the cask, then past  the cask, and f i n a l l y  out  the 

top o f  the  buffer .  In a f i r e ,  t h e  hot gases a r e  not expected t o  pass the 

few entrance ba r r i e r s ,  and the  radiant  energy o f  the flame w i l l  be in t e r -  

cepted by the  outer  surface o f  the buf fer .  

Since, i n  a f i r e ,  much o f  the energy i s  t ransferred by radiat ion,  

Since the  addition o f  a f i r e  sh ie ld  would add t o  the t o t a l  cos t  and 

s ince proper operation o f  the f i r e  shield following the 30-ft; d-rop i s  

diff icul t ,  t o  guarantee, this technique has seen l imited use. 

A second method of pyotection i s  t o  design the shield i n  two portions: 

an inner shield t o  contain lead and an outer sh ie ld  t o  contain lead o r  

wet p l a s t e r .3  

e i the r  by melting and running out holes designed i n  the outer s h e l l  ( i n  

the case o f  lead)  o r  by driving water vapor out pressure r e l i e f  valves 

( i n  the  ca3e of wet, p l a s t e r ) .  

mal buffer against  continuing radiant  energy emanating from the f i r e ,  

In  a f i r e ,  material  i n  the outer  compartment i s  sacr i f iced 

The void thus created would provide a ther -  

Casks of both types have been b u i l t ,  but t e s t ing  has been l imi ted ,  

A schemat,ic o f  the  three-shelled cask containing lead i n  the outer  compart- 

meni i s  shown i n  Fig.  2 , I  4. 

Calculat,ions made f o r  a la rge  lead-shielded cask indicate  tha t ,  i n  

the 30-min I 475"~ f i r e ,  an unrestrained (no circumferential  f i n s )  outer 

s h e l l  o f  a cask w i l l  deform by p l a s t i c  

t o  be l o w  i n  mgnitude (below the  ul.tirr;a'Le elongation a t  t he  elevated t,em- 

peratures) ,  tinus indicat ing tha t  lead w i l l  not be l o s t .  

however, account f o r  problems such as loca l  hot spots o r  r e s t r a i n t s  caused 

by, f o r  example, fins or a cask cradle,  o r  f o r  f a i l u r e s  o r  weaknesses in-  

duced a s  a r e s u l t  o f  the cask impact. In prac t ice ,  cy l indr ica l  casks a r e  

rmre l i k e l y  t o  rupture than s t r e t ch ,* l  although cubicle-shaped casks have 

gone through considerable deformat,j.on before rupturing. 42 

Such s t r a i n s  can be shown 

It does not now, 
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2 . I  1 Fuel Magazine Design 

The function o f  the  spent f u e l  shipping cask magazines (or baskets) 

i s  t o :  

1 .  Protect and contain the  f u e l  assemblies during t ransportat ion 

and handling. 

2. A s s i s t  i n  t he  d iss ipa t ion  of  decay heat .  

3 .  Control c r i t i c a l i t y .  

Since the  decay heat d i ss ipa t ion  problem i s  one o f  t he  chief f ac to r s  

i n  l imi t ing  cask capacity under normal conditions, t he  select ion o f  ther-  

mally e f f i c i e n t  materials can be an important economic f ac to r .  

2 . I  1 . I  Protection and Containment of Fuel During Transportation and 
Handling. 

The magazine serves t o  segregate each f u e l  assembly, and t o  keep 

the assemblies from abrading each o ther  while in t r a n s i t .  

Fuel assemblies from t e s t  reactors  a r e  normally shipped i n  a v e r t i -  

c a l  o r ien ta t ion ,  which i s  iden t i ca l  t o  t h e i r  o r ien ta t ion  during operation. 

With t h i s  i n  mind, the  magazines designed f o r  these assenbl ies  a re  usu- 

a l ly  readi ly  removable from the casks.  

the f u e l  i n  both the  loading or unloading pool. 

They serve a l s o  t o  sa fe ly  move 

Because of t h e i r  length, power reactor  f u e l  assemblies a re  normally 

shipped i n  a horizontal  o r ien ta t ion .  These assemblies a re  designed t o  

operate in the  v e r t i c a l  posi t ion,  however, and excessive s t r a i n  rray be 

applied t o  the  f u e l  pins  i f  i n su f f i c i en t  support i s  provided f o r  t he  

assemblies i n  the horizontal  pos i t ion .  

signed t o  provide t h i s  support a s  uniformly a s  possible over the  en t i r e  

f u e l  assembly length.  During an impact accident,  the magazines are  de- 

signed t o  l i m i t  t he  mvemnt  of each assembly and t o  prevent Load appl i -  

cat ion t o  an assembly other  than t h a t  due t o  i t s  own weight. 

The fue l  magazines must be de- 

The designer must consider the following items i n  the select ion of  

materials of construction of t he  cask magazine: 
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1 .  

2. 

3. 

4. 

5. 

Compatibi l i ty  of f u e l ,  coolan t ,  and cask c a v i t y  I r a t e r i a l s  e 

This cornpa t i b i l i t y  i n c  lude s poss ib l e  corrosion tendencies  

under cask opera t ing  condi t ions  and thermal expansion prop- 

e r t i e s  during t h e  opera t ion  and l i f e  o f  t he  equipment,. 

The most e f f i c i e n t  use o f  cask c a v i t y  space while  meeting 

t n e  requirements o f  c r i t i c a l i t y ,  thermal conduction, pro- 

t e c t i o n  o f  f u e l  elements, r a d i a t i o n  s h i e l d  capabi.lit,y, and 

s t ruc tura l .  i n t e g r i t y .  

The optimum s e l e c t i o n  of f a b r i c a t i o n  techniques and con- 

s t r u c t i o n  c o s t s .  

The p o s s i b i l i t y  of usage for a wide c l a s s  of f u e l  elements. 

The requirements f o r  handli-ng of t he  rragazine and of  i nd i -  

vi.dilal elements . 

2 "1 1 .2 DissiDation o f  Heat 

Fuel  magazines provide a s i g n i f i c a n t  path f o r  t h e  t r a n s f e r  of decay 

hea t  t o  the  cask w a l l .  Iri t he  noma1  opera t ing  condi t ion ,  t h e  magazine 

f u e l  assembly should be designed t o  provide e f f i c i - en t  f low channels f o r  

c i r cu la - t ing  coolan t .  I n  t h e  loss-of-l iquid-coolant,  condi t ion ,  t h e  maga- 

z ine s t r u c t u r e  provides  heat  conduction pa ths  froin .l;'ne hot  f u e l  elements 

t o  t h e  sh i e ld ing .  

hea t  paths  will extend d i r e c t l y  f rom -the fuel  assemblies  to t h e  sh ie ld ing ,  

making a very e f f i c i e n t  heat  removal system. 

When f ixed  (welded i n  p l a c e )  baskets  are used, t h e  

2 . I  1 .3 Control of  C r i t i c a l i t y  

One o f  t he  b e s t  methods f o r  con t ro l l i ng  c r i t i c a l i t y  i s  t o  al.loy neu- 

For tl-on absorbing material with t h e  s t r u c t u r a l  members o f  t h e  iiiagazine . 
heat dissipating purposes, the magazine structural members o f t en  range 

from 0.25 i n .  t o  0.75 i n .  i n  thickness;  such th icknesses  permit t he  use 

of  small a l l o y  percentages of ma te r i a l s  w i th  high thermal neutron c ross -  

s ec t ions  for e f f e c t i v e  con t ro l  of c r i t i c a l i t y .  



Fig. 2.37.  BMI-1 Shipping Cask with One Fuel Basket Removed. 
(Courtesy of Battelle Mem3rial Inetitute) 



Eorated s t a i n l e s s  s t e e l  has  been employed as a poison by some de- 

s igne r s .  Although it i s  an e f f e c t i v e  poison, borated s t a i n l e s s  s t e e l  has 

the  disadvantages of  high i n i t i a l  c o s t ,  d i f f i c u l t y  of  procurement, r e l a -  

t i v e l y  low thermal conduct ivi ty ,  and a h i s t o r y  o f  embrit t lement a f t e r  

welding. 

Copper, a l loyed  wi th  e i t h e r  cadmium or 23o:eon, i s  also a very  e f f ec -  

t i v e  neutron absorbing ma te r i a l  and, i n  add i t ion ,  i s  a very  good thermal 

conductor. Such a l l o y s  a r e  d i f f i c u l t  t o  f a b r i c a t e ,  however, and add con- 

sid.erably t o  t h e  magazine cos t ;  they  may a l s o  r equ i r e  cladding t o  ( 1 )  pro- 

t e c t  t h e  coolant water from copper p a r t i c l e  contamination, and ( 2 )  permit 

magazine and cask decontamination by a c i d  s o l u t i o n s .  

Geometric o r  s p a t i a l  c o n t r o l  o f  c r i t i c a l i t y  can be achieved wi th  

proper rriagazine des igns .  However, t h i s  method of c o n t r o l  may lead t o  i n -  

e f f i c i e n t  use of  cask space as compared with t h e  use of neutron absorbing 

materials. 

Table 2 . 7  i s  a l i s t  of p e r t i n e n t  da t a  descr ib ing  typical rnateria1.s 

used i n  t h e  cons t ruc t ion  o f  magazines f o r  spent  f u e l  assembly shipment. 
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2 . 1 2  Simple Beam Requirement 

When regarded as a simple beam supported a t  i t s  ends along any 

major axis, t h e  cask must be capable of  withstanding a s t a t i c  load,  nor- 

mal t o  and uniformly d i s t r i b u t e d  along i ts  length ,  equal t o  f i v e  times 

the  fu l ly  loaded cask wei.ght without generat ing stresses i n  any material 

o f  t h e  cask i n  excess of t h e  y i e l d  s t r e n g t h  of t h a t  m t e r i a l .  This por- 

t i o n  of t he  r egu la t ions  i s  usua l ly  i n t e r p r e t e d  as being appl ied  t o  the  

o u t e r  s h e l l  a lone .  

stresses t h a t  would occur around the  support  p o i n t s  are neglec ted .  

The s t r eng th  o f  the  lead  sh ie ld ing  arid t h e  l o c a l  

S t r e s ses  i n  t h e  o u t e r  s h e l l  r e s u l t i n g  from the  unj-form load can be 

det,ermined a n a l y t i c a l l y  using t h e  follorwing equation: 

MC s = -  
I '  

where 

S = t he  s t r e s s ,  l b / in .2 ,  

M = t h e  bending moment;, i n  , / lb ,  

C = one-half t he  height  o f  t he  cask i n  t h e  direct j -on of  

bending, i n  a 

I = t h e  c ross -sec t ion  moment o f  i n e r t i a ,  ( i n ,  )' , 

The bending mment i s  given by: 

( 2 . 1 8 )  

where 

SW = f i v e  t imes t h e  t o t a l  cask weight,, as requi red  i n  t h e  regula-  

t i o n s ,  and L i s  t h e  length  between suppor ts .  

The cross-sec t ion  moment of i n e r t i a ,  I, f o r  a c y l i n d r i c a l  cask ( see  

F i g .  2.38a) i s  ca l cu la t ed  from: 

(2 .20)  
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where 

rB = t h e  outside radius  o f  the  outer  s h e l l ,  i n . ,  

r,- = the  ins ide  radius o f  the outer  she l l ,  i n .  

The cross-section rriornent o f  i n e r t i a  for a f l a t  surfaced cask [see Fig.  

2.38(b)] is:  

(b,d,” - b,dl3) . I 1 := I 
1 2  

(2.21 ) 

ORNL-DWG 64-9982R1 

01 
STEEL 

JTER 
SHELL 

Fig. 2.38. Cross Section o f  t h e  Outer Shel l  o f  a Lead-Shielded ( a )  
Cylindrical  and ( b )  Flat-Surfaced Cask. 

The s t rength provided by the  lead shielding prevents l o c a l  buckling 

o f  the outer  s h e l l ;  t h i s  helps t o  ensure the v a l i d i t y  o f  the  assumptions 

which lead t o  the  use of  Eq. ( 2 . 1 8 ) .  

Casks t h a t  meet t he  uniformly loaded beam s t rength  requirement a re  

considered t o  have adequate r ig id i ty ;  however, they do not necessar i ly  

have su f f i c i en t  puncture resis tance unless the  s h e l l  thicknesses were 

calculated i n  accordance with Sect.  2 . 1 .  
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3 ,  MATERIALS 

The primary ob jec t ives  of  cask design a r e  t o  s h i e l d  and t o  conta in  

a source of r ad ioac t ive  ma te r i a l .  

cons t ruc t ion  must be such t h a t  t hese  ob jec t ives  can be c a r r i e d  ou t  under 

a number of environmental condi t ions  as spec i f i ed  i n  t h e  r egu la t ions .  

The p r o p e r t i e s  of t h e  ma te r i a l s  o f  

This chapter  provides guide l ines  f o r  s e l e c t i n g  mterials o f  construc-  

t i o n .  

given i n  t a b u l a r  form, along wi th  t h e i r  ASTM ma te r i a l  s p e c i f i c a t i o n s .  

Materials that have t h e  des i r ab le  p r o p e r t i e s  recommended below a r e  

To be acceptable ,  a mate r i a l  of cons t ruc t ion  should have adequate 

s t r eng th ,  d u c t i l i t y ,  and toughness a t  subzero (-4OoF), ambient, and e le -  

vated temperatures ,  In  add i t ion ,  factors such as c a s t ,  avai labi l i ty ,  

ease of  f a b r i c a t i o n ,  and a b i l i t y  t o  resist cor ros ion  by decontamination 

so lu t ions  (which can be ac ids  such as IDJOB), galvanic  cor ros ion  between 

ad jacent  materials, and stress cor ros ion  must be considered.  

l a t i o n  t h a t  r a t e r i a l s  of cons t ruc t ion  have adequatk toughness at, -40 "F 
i s  probably t h e  most r e s t r i c t i v e  requirement; it i s  .the one t h a t  removes 

many otherwise acceptgable materia1.s f r o m  t h e  t a b l e s  given below. Using 

A S 1 .  as a basis, materials t h a t  r equ i r e  a minimum of  1s' f t - l b  (average)  

o f  energy t o  break a Charpy keyhole specimen a t  temperatures of -)LOOF 

a re  considered adequate to  meet t h e  r egu la t ions  Such toughness should 

be s u f f i c i e n t  t o  prevent  b r i t t l e  f r a c t u r e  from occurr ing a t  low tempera- 

t u r e s .  

cu l a t ions .  The above wording a p p l i e s  to t,he ma te r i a l  used i n  the  cask 

proper and not  t h e  metals  used i n s i d e  the  inner  c a v i t y  for spacing or 

c r i t i c a l i t y  cons ide ra t iom . 

The s t i p u -  

It i s  recognized t h a t  Charpy va lues  do not  e n t e r  i n t o  design cal- 

The des igner  my spec i fy  materials otiher t han  those recommended i n  

t h i s  chapter ,  provided he considers  t h e  factors descr ibed above and t h e  

design a n a l y s i s  r e f l e c t s  these  cons idera t ions .  

A l i s t i n g  o f  s p e c i a l  r m t e r i a l s  used i n  shipping casks f o r  r a d i a t i o n  

sh ie ld ing  and c r i t i c a l i t y  c o n t r o l  i s  also provided t o  assist the des igner .  
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3.1 Plate  

Recommended carbon, low a l loy ,  and s t a i n l e s s  s t e e l  p l a t e  specifica- 

t i o n s  a r e  l i s t e d  i n  Table 3 . I  . 
d u c t i l i t y  and a r e  adequate f o r  service a t  -49°F'. 

a r e  given mandatory impact t e s t s  and a r e  spec ia l ly  manufactured f o r  low- 

temperatwe service by control  of composition, melting pract ice ,  and heat 

treatment; t l e s e  materials a r e  d i f f i c u l t  t o  procure i n  small quant i t ies  

with reasonable del ivery schedules. 

and 60, not manufactured t o  A300 requirements, have proved t o  be su f f i -  

c i e n t l y  tough a t  low temperatures t h a t  individual  impact t e s t s  o f  d i f f e r -  

en t  heats a r e  not required; t h i s  mater ia l  i s  avai lable  i n  small quant i t ies .  

A5'33, a nuclear reactor  grade s t e e l ,  is a l so  considered t o  be an acceptable 

mater ia l .  

These materials have good s t rength and 

The ASTM A300 s t e e l s  

However, the  ASDI A516 grades 55 

Several grades of aus t en i t i c  stainless s t e e l  p l a t e  conforming t o  ASTM 

Specification A240 are l i s t e d .  

has inherent cha rac t e r i s t i c s  t h a t  a r e  of ten idea l ly  su i ted  f o r  ce r t a in  por- 

t i o n s  o f  a shipping cask. 

toughness over the range of subzero t o  elevated temperatures; it also has 

excel lent  corrosion resis tance,  pa r t i cu la r ly  to  chemicals used i n  decon- 

tamination, and good forming and welding proper t ies .  The pa r t i cu la r  grades 

recommended were selected t o  provide a balance o f  a l l  the f ac to r s  imolved .  

ASTN A240 type 304 i s  suggested w-l-ess the appl icat ion requires the added 

corrosion resis tance f o r  decontamination i n  the heat-affected weld zone 

that, i s  provided by 3OU, 321 , and 34'7. 

S ta in less  s t e e l ,  although more expensive, 

T h i s  mater ia l  has good strength,  d u c t i l i t y ,  and 

Sta in less  s t e e l  clad-plate is  l i s t e d  f o r  the  s i t ua t ion  i n  which the  

designer des i res  t o  take advantage of both carbon and s t a i n l e s s  s t e e l  i n  

h i s  cask design. 

3 . 2  Pj-pes and Tubes 

Suggested carbon and s t a i n l e s s  s t e e l  pipe and Lube specif icat ions 

are shown i n  Table 3.2, These s t e e l s  have adequate res is tance t o  b r i t t l e  

f r ac tu re  a t  -40°F and, l i k e  the  p l a t e  materials,  they a re  weldable grades 

o f  moderately strong, duc t i l e  mater ia ls ,  
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Table 3 . I  . Recommended Pla te  Materials 

- 
Type of Material  A S P I  Specif icat ion and Grade 

Carboii and low alloy- s t e e l  A300, As16 a l l  grades 
~ 2 0 3  A and B 

Af;16,a grades 55 and 60 

Low a l l o y  s t e e l  

Stiainless s t e e l  

S ta in less  c lad-s tee l  

A5'33, grades A, B, and G 

A240, types 304, 304L, 321, and 347 
A2hJ.c with A300 o r  As16 base metal and 
A240 cladding 

a 
Manganese content shall. be 0.85 t o  1 .PO$. 
nomal-ized by t h e  mill and marked accordingly. 

All pla te  shal l  be 

Table 3.2. Recommended Pipe and Tube Materials 

Type o f  Material  ASTM Specif icat ion and Grad.e 

Carbon s t e e l  pipe A333, grades 1 and 6 
Sta in less  s t e e l  pipe A31 2, types 3014, 30h, 321 and 3117 
Carban s t e e l  tube A3314, grades 1 and 6 

S ta in less  s t e e l  tube A213, types 304, 3 0 U ,  321, and 347 

3.3 ~ o r g i n g s ,  F i t t i n g s ,  and l b l t i n g  

Forging, weld f i - t t ing ,  and bol t ing mater ia ls  having mechanical and 

chemical propert ies  comparable t o  o r  b e t t e r  than, those l i s t e d  f o r  p la te  

are given i n  Table 3.3. 
produced f o r  subzem temperature appl ica t ions ,  The l i s t e d  s t a i n l e s s  s t e e l s  

have good s t rength at, both -4O"F and a t  elevated temperat i res ,  

possiblc,  the  Low a l l o y  s t e e l  bol t ing should be used r a t h e r  than stainless 

steel  t o  minimize ga l l ing  o f  threads during r e m t e  assembly operations.  

The low alloy s t e e l s  selected ape s p e c i f i c a l l y  

Whenever 
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Table 3.3. Suggested Material  Specifications 
for Forgings, F i t t i ngs ,  and Bolting 

Type o f  Material  ASTPI Specification and Grade 

Low a l loy  s t e e l  forgings A350, grades L;F1 and LF2 
ASOb, c lasses  4, .)A, 5, and SA 

Sta in less  s t e e l  forgings A182, types 304, 30kL, 321 ,  and 347 
A473, types 304, 3 0 h ,  321, and 347 

LCW a l l o y  steel  f i t t i n g s  k20, grade FRLl 

S ta in less  s t e e l  f i t t i n g s  A.403, grades FJP304, 3042, 321,  and 347 

Low a l loy  s t e e l  bolt ing A320, grade L 7 ,  LIO, and L43 
Stainless  s t e e l  bol t ing AI 93, types B8, B8C, and B8T 

3 .k Welding Electrodes, Rods, and Wire 

The following f i l l e r  metal specif icat ions a r e  applicable 50 shipping 

cask fabricat ion:  

i n  a pa r t i cu la r  weld w i l l  depend upon the base metal or metals being joined 

together ,  

ASTM A316, A371 ,  B29f;, and B304, The f i l l e r  metal used 

3.5 Special TIaterials 

Lead t h a t  i s  used f o r  shielding i s  nor ra l ly  specified as ASTM B29, 

p i g  lead, chemical grade. 

sion; however, t h i s  material  is not recommended because o f  i t s  lower melt- 

ing point and the  tendency t o  form cracks, spongy areas ,  and voids. 

A 4% antimony--lead a l loy  has been used on occa- 

Uranium metal is a l so  used as a shielding mater ia l  f o r  spec ia l  

appl icat ions.  This mater ia l  i s  discussed i n  Chap. 8 .  

Materials t h a t  a r e  commonly used. f o r  c r i t i c a l i t y  control  a r e  as 

f o l l o w s :  

pure cadmium metal purchased t o  ASTTvI B440 specif icat ions,  

s t a in l e s s  steel  containing small quant i t ies  o f  na tura l  boron o r  

boron enriched i n  'OB, 
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bora1 plate ,  a uniforiii d i spers ion  of boron carb ide  c r y s t a l s  i n  

aluminum, with a cladding 8 f commercially pure ahminun  such 

as t h a t  p:roduced by Brooks and Perkins,  Inc. ,  of Ue t ro i t ,  

Michigan, 

aliminum-cadmium, copper-cadmium, and capper-boron carb ide  all.sys . 

3.6 I d e n t i f i c a t i o n  Marking and Purchase Order 
Requirements 

Information regarding i d e n t i f i c a t i o n  marking and purchase a r d e r  

requiremsnts o f  materials are  given i n  Sec t .  4.1 of t h i s  guide.  
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4. FABRICATION 

This chapter s e t s  fo r th  a general philosophy as well a s  spec i f ic  

recommendations regarding the  fabr ica t ion ,  %es ting, s.nd acceptance o f  

shipping containers for transporting radioactive rmte r i a l s ,  

of  the materials being transported makes it imperative, with regard +XI 

the safe ty  and welfare o f  the public,  that the  manufacture and the in-  

spection o f  t he  containers be i n  s t r i c t  accordance with the design draw- 

ings aad construction specif icat ions.  Further,  a qua l i ty  control  prograin 

must be car r ied  out  by the fabr ica tor ,  and an aud i t  inspection system 

maintained by the purchaser, t o  provide confidence t h a t  the f inished con- 

t a ine r  meets the contract  requirements. 

The n a t w e  

The predetermination of a l l  fabr ica t ion  and testaing requirements f o r  

tRe many s i zes ,  types,  capaci t ies ,  and intended uses of shipping casks 

i s  not possible .  Rather, t h i s  chapter cons is t s  of recommendations f o r  

the designer and purchaser t o  include i n  the specif icat ions.  The designer 

must carefu l ly  and conservatively evaluate, and se l ec t  appropriate sections 

of t h i s  chapter, or he must develop mre r e s t r i c t i v e  requirements t o  ensure 

Ynat t h e  completed shipping container W i l l  have a l l  o f  the  charac te r i s t ics  

upon which the  designer based h i s  sa fe ty  ana lys i s .  

Consideration was given t o  recommending tha t  t he  fabr ica t ion  and t e s t -  

ing comply with the  requirements of  widely used codes such a s  Sect.  111 o r  

Sect.  VI11 o f  t h e  ASME Boiler and Pressure Vessel Code. However, this ap- 

proach was judged inadequate because it does not ensure compliance with 

Federal regulations for shipping containers; a l so ,  it i s  possible t h a t  

codes developed f o r  other  equipment would not be applied and interpreted 

properly for shipping casks. It i s  recognized t h a t  some agencies o r  com- 

panies nay require an ASME Code Stamp; however, t h i s  does not re l ieve  the  

designer f rom the respons ib i l i ty  o f  es tabl ishing specif icat ions and qua l i ty  

control  requirements for the  spec i f ic  circumstances involved i n  the con- 

s t ruc t ion  and inspection o f  shipping containers.  Far example xranufactur- 

ing operations such as lead pouring, inspections for shielding in t eg r i ty  
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ing codes foj- vessels and t a n k s .  

Accordingly, t h i s  Chapter set,s f o r t h  proposed minimam q u a l i t y  assur- 

ance requirements f o r  inclusior? i n  procurement s p e c i f i c a t j o n s  . Sonie o f  

the t e s t s  are op t iona l  depending upon design cons ide ra t ions .  

The des igner  i s  expected prepare engineering drawings and spec i -  

fri.ca'c.ions t h a t  are  appropr ia te  for t h e  p a r t i c u l a r  requ-i-renents o f  the  

shipping con-talner a 

for ensuring t h a t  the shipping cask i s  designed aiid f a b r i c a t e d  i n  accord- 

ance with the reg:ilati.ons . 
a u t h o r i t y  o f  a l l  documents submitted by- the f a b r i c a t o r  through the  i n -  

spec tor  descr ibed hei-ein. The inspec to r  s h a l l  answer t o ,  and be a repre- 

sen ta t ive  o f ,  the purchaser .  The purchaser ,  through h i s  inspec tor ,  i s  

r e s p n s i b l e  f o r  aud i t ing  t h e  rrianufactwej-1 s procurement, f a b r i c a t i o n ,  aiid 

q i ia l i ty  c o n t r o l  program, The inspector $3 expected ,to v i s i t  o r  be i.:n 

res idency a t  the f a b r i c a t o r ' s  p l a n t  or any subcon t rac to r ' s  p l a n t  as may 

be required in order  t o  discharge his respons ib i1 , i t i es  . 

The purchaser shall  bear  t he  primary r e s p o n s i b i l i t y  

The purchaser* sha1.l cons t i t u t e  t h e  approval 

Conforaiance t o  the requirements of t he  con t r ac t  t s  t h e  r e spons ib i l i t y -  

o f  t he  manufacturer or f a b r i c a t o r .  

s h a l l  e s t a b l i s h  and conduct a q u a l i t y  assurance program for all procure- 

ment, f a b r i c a t i o n ,  and t e s t i n g  operat,ions d The program sha1.l be pattermed 

a f t e r  t h e  l a t e s t  r ev i s ion  of RUT F%-2 and Appendix IX of  Sec t .  I11 of 

the ASME Boiler and Pressure Vessel Code, A d e t a i l e d  q u a l i t y  c o n t r o l  

rmnual sha l l .  be submi-tted t o  t h e  purch.aser for his review and. approval 

prior t o  t h e  start of  procurement of inaterials. The f a b r i c a t o r  s h a l l  

n o t i f y  and rece ive  approval of Yne purchaser for any change i n  t h e  &A 
Program prioT t o  int roducing the change o r  devia-Lion. 

A s  p a r t  o f  t h i s  r e s p o n s i b i l i t y ,  he 

The q i ia l i ty  of  a l l  products produced under t h e  con t r ac t ,  whe thcr  manu- 

fac tured  within t h e  mariufactiirer' s p l a n t  (21- obtained from a n  ou t s ide  sup- 

p l i e r ,  shall be con t ro l l ed  a t  a l l  p o i n t s  necessary t o  asswe c o n f o r m m e  

w - i - t l  t h e  drawings and speci f k a t i o n s .  

Throughout the con t rac t ,  t h e  manufacturer s h a l l  provide competent 

qual i ty  c o n t r o l  personnel  who will perfo sm t h e  prescr ibed  inspec.t ions and 
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t e s t s .  

but i s  not l imited to, such ir,formation as m i l l  t e s t  reports ,  in-plant 

procedures arid standards, heat-treatment char ts ,  records o f  welding pro- 

cedure qua l i f ica t ion ,  welding procedures and operator qua l i f ica t ion  t e s t s ,  

a l l  approved deviations,  test  and inspection resiilts Itas drawings 

and d e t a i l s  of  a11 subcontracts correlated i n  such a mnner  tha t  the pur- 

chaser can be assured of  conformance. This record s h a l l  be delivered t o  

the  purchaser a t  the  conipletion of  t he  contract .  

In addition, he s h a l l  m i n t a i n  a Fabrication Record tha t  includes, 

L .  1 Materials 

Only materials of construction which conform to the drawings and 

specif icat ions s h a l l  be used i n  fabr ica t ion .  

4.1 .I M i l l  Test Reports and Marking 

Purchase orders  f o r  r a t e r i a l s  except ASTM Ah03 and a20 s h a l l  in- 

clude the  requirement t h a t  a c e r t i f i e d  m i l l  t e s t  report  be furnished. 

The m i l l  t e s t  report  shall include the  ASTM specif icat ion No,,  the ranu- 

f a c t u r e r ' s  name, the  heat  No., and the results o f  all chemical analysis  

and mechanical propert ies  t e s t  r e s u l t s .  

shal l  s t a t e  t h a t  t h e  manufacturer s h a l l  furnish a c e r t i f i c a t i o n  o f  con- 

formance. 

t u r e r  w i l l  provide t e s t  pieces,  the results o f  the chemical analysis  and 

the  impact tests, and the heat treatment applied t o  t he  mater ia l .  

Orders f o r  A403 welding f i t t i n g s  

Orders for A420 welding f i t t i n g s  s h a l l  s t a t e  t h a t  the  nlanufac- 

The purchase order should also s t a t e  t h a t  a l l  material  s h a l l  be 

rmrked i n  a.ccordance with the  applicable ASTM specif icat ion.  

4.1 .2 Cutting Material 

When oxyacetylene or an a r c  process i s  used f o r  cu t t ing  material ,  

all s lag  and previously m l t e n  m t e r i a l  s h a l l  be removed by mechanical 

means p r io r  t o  fur ther  fabr ica t ion  or use. 

Edges t h a t  will be exposed in t h e  f inished cask shall be rounded 

(grinding i s  permitted) t o  a radius o f  a t  l e a s t  1/8 i n ,  or chamfered ai; 

45" t o  a t  l e a s t  5/32 i n .  f l a t .  S ta in less  s t e e l  i s  t o  be cu t  only by 
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machining, abrasive cut-tirig o r  a r c  cu t t ing  wit,li inert-gas-shielding 

tungsten-arc, p l a s m  arc, o r  f l u x  i n j e c t i o n  iiiethods. The use of i r o n  

pmder as a f l u  f o r  arc cut t ing  i s  prohibi ted.  i n  instances i n  which 

cut  edges a r e  t o  be welded, the disturbed miterial. shall be remved by 

mchinin,g 01: grinding t o  eliminate all i r r e g u l a r i t i e s  and. t o  provide a 

clean, br ight ,  smo%h surface on the cu t  edge. Idhen f lux- in jec t ion  cut-  

ting i s  used, t h e  cut  surface shz1.1. be mcliined o r  ground back a t  l e a s t  

1 / 3 2  i n .  t o  remve aJ..1. contamination. 

s-beel- shall- not, be d-one witn t o o l s  that  have been used on  cal-bon s t e e l .  

Tools  and grinding wheels shall be freshly sharpened and dressed $!ire 

brushing of stain]-ess s t e e l  shall be done only with s t a i n l e s s  s t e e l  

brushes that, have not  previausly been used on raterials other. than s ta in-  

less s t e e l .  Clamps, wedges, c l i p s ,  eLc . , welded t o  (or mecha:aically fas- 

tened in contact w i t h )  stainless s t e e l  shall be mde o f  that, lrzltsrial only. 

Grinding 0%" machining of stainless 

11.1 .3 Repair of k f e c t s  i n  Materi.als - .....____I 

Minor. defects  i n  mtsr ia l  as defined Sy the appropriate ASTM speci-  

f i c a t i o n  my be repaired,  provided that the owner- approves t h e  method 

and the  extent of repa i rs .  Defective mater ia l  that, cannot be sa t i s fac to-  

r i l y  repaired s h a l l  be re jec ted .  

4.1 . h  Formj rig Materials 
I.. 

Materials my be formed t o  t h e  required shape by army process t h a t  

will not dcgyade the physical propert ies  o f  the  miter ia l  below t'mt re -  

quired by the applicat,i on.  

11 "2 Ident i f ica t ion  and Csntrol o f  Materials 

Tkie m-rking on each piece of m3terial  si7~117 be reiained u n t i l  f a b r i .  

I f  Yne material i s  cut into two o r  more parts, o r  if c a t i o n  i s  conlplete e 

the ma-?ked surface i s  to be removed, the marks sha l l  be carcfu l ly  trans- 

fe r red  p r i o r  t o  c l i t t ing .  

Thlesv it can be positively ident i f ied ,  any piece o f  it~at~erial whose 

marking i s  lost, o r  rermved must be c l a s s i f i e d  as "not f u l l y  ident i f ied ' j  
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material  and subjected t o  the t e s t s  o f  Sect .  4.8.2 before it i s  re-marked 

and used i n  fabr ica t ion .  

The manufacturer s h a l l  maintain a de ta i led  record t h a t  l ists  the  de- 

sc r ip t ion  and marking of each piece of  p a t e r i a l  used i n  the  fabr ica t ion ,  

and s h a l l  cor re la te  t h i s  information with mater ia l  t e s t  repor t s .  This 

record s h a l l  be incorporated in to  the  Fabrication Record (see Sect .  1 .IO.). 

4.3 Welding 

Production welding s h a l l  not  be undertaken u n t i l  both the welding 

procedure and t he  welders o r  welding operators have been qua l i f ied .  

such qua l i f ica t ions  must be approved by t h e  inspector .  

sure welding processes a re  not permitted.  

A l l  

Brazing and pres- 

4.3.1 Welding Processes and F i l l e r  Metals 

S ta in less  S tee l  t o  S ta in less  S tee l .  - Any arc-welding process may 

be used without including impact t e s t s  a s  a part of the  procedure qual i -  

f ica t ion  . 
Sta in less  S t e e l  t o  Carbon S tee l .  - Any arc-welding process may be 

used. The f i l l e r  metal s h a l l  be s t a i n l e s s  s t e e l  ASTN A298 o r  A371 c l a s s  

E309, o r  Inconel ASTM B295 c la s s  ENiCrFe-2 o r  ASTM I3304 c l a s s  EFNiCrFe-6 

No impact t e s t s  are required.  

Carbon S tee l  to  Carbon S tee l .  - The shielded metal-arc pPocess m y  

be used with ASTM A316 c l a s s  E8016 o r  8OlR-Cl, -C2, o r  -C3 electrodes 

without requiring impact tests as a part of the procedure qua l i f ica t ion .  

The use of other  electrodes with the  metal-arc process, or t he  use o f  

o ther  processes (e  .g . , the  i n e r t  gas-metal a r c  o r  submerged-arc processes) 

requires  three impact t e s t s  of t he  deposited weld metal; the weld must 

have an average of  1s f t - l b  o f  impact energy (Charpy keyhole) a t  -40°F 
i n  order t o  qua l i fy  as an acceptable process.  

Covered Electrodes. - Covered electrodes s h a l l  be dry when used. 

Except for 701 0-AI electrodes,  covered electrodes shall be used within 

9 hr  a f t e r  t h e i r  removal from a sealed receiving container o r  a vented 
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e l e c t r i c  oven minhained a t  150 t o  35U0F, 

electrodes shall be placed i n  a vented oven maintained a t  150 to  350°F 

fol- a t  l e a s t  8 br. If the  electrode nlanufacturer's recommendat,ions for  

drying do not allow .the above method, approval of the drying met,hd t o  

be used s h a l l  be obtained from the  purchaser. Type 7010--A1 electrodes 

s h a l l  not  be held i.n heated ovens. 

If not used within 9 h r ,  the 

The fabr ica tor  I s q u a l i t y  c o n t r o l  program sha l l  es tab l i sh  and enforce 

w1.i t,t,en procedures f o r  ( 1 ) procurement of all welding f i l l e r  metals arid 

fluxes, ( 2 )  an i d e n t i f i c a t i o n ,  storage,  and issuance sys-tern, and (3 )  

records t o  ensum t h e  use of the cor rec t  f i l l e r  r a t e r i a l .  

1.k .3.2 Qual i f ica t ion  of Welding Procedures 

Each. welding procedure t o  be used i n  construction shall be qua l i f ied  

by .the mnan-ufac.L.urer i n  accordance with S e c t ,  IX of  the AS'ME €?oiler and 

Pressure Vessel Code. In addition, t h e  test, welds sha l l  be subjected $0 

the  same noadestructive inspection methods as w i l l  be required f o r  t h e  

productioil welds.  The welds must pass t h e  NT3T acceptance c r i t e r i a  estab- 

l i shed  f o r  t h e  production weIda i n  o ~ d e ~  t o  be acceptable,  A copy o f  t h e  

procedure qi ia l i f icat ion t e s t  repor-t  and the  welding procedure shall be, 

a f t e r  approval by the Inspector, incorporated in to  the Fabrication Record e 

'The welding procedures s h a l l  include control  o f  the  width o f  any 

bead of  welding as follows. Str ing beadjrig i s  prefer red .  Weave beading 

with covered electrodes s h a l l  not r e s u l t  i.n a weld bead with a width 

greater  than : 

( 1 )  six times the  dianieter o f  the elackrode core wire f o r  70xx 

and 8cJx.x electrodes;  

( 2 )  three times t'ne diameter of the  electrode core wire f o r  300 

se r i e s  stainless steel,. e lectrodes;  

( 3 )  three times the diameter o f  the core wire f o r  Inconel f i l l e r  

metal. 

Wash passes o r  remelting to  improve the  surface appearance i s  not 

permitted. 
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4.3.3 Q u a l i f i c a t i o n  o f  Welders and Welding Operators 

Performance q u a l i f i c a t i o n  o f  welders and welding operators s h a l l  

conform t o  Sec t .  I X  of t h e  ASME Boiler and Pressure Vessel Code and the  

NDT t e s t s  defined i n  Sect .  4.3.2 of t h i s  r e p o r t .  

mance q u a l i f i c a t i o n  t e s t  repor t  s h a l l  be, a f t e r  approval by the Inspector, 

incorporated i n t o  the Fabrication Record. 

A copy o f  the perfor- 

A t e s t  conducted by one manufacturer s h a l l  not q u a l i t y  a welder t o  

do work f o r  any other  manufacturer. 

4.3.4 Lowest Permissible Temperatures for Welding 

Preheat temperatures s h a l l  be i n  accordance with the weld procedures. 

However, vJhen t h e  temperature of t h e  base metal i s  lower than 60"E', t h e  

area t o  be welded s h a l l  be preheated until it i s  warm t o  the hand. A l l  

surfaces s h a l l  be dry  and protected from r a i n ,  snow, and high winds. 

4.3.5; F i t t i n g  and Alignment 

Edges t o  be welded s h a l l  be uniform and f r e e  of a l l  foreign mater ia l .  

P a r t s  t o  be welded s h a l l  be f i t t e d ,  aligned, and retained i n  posi t ion dur- 

ing the welding operation such t h a t  a t  the  point, o f  welding the root face 

s h a l l  n o t  be o f f s e t  by nore than 1/16 i n . ,  o r  one-eighth o f  the nominal 

thickness of the mater ia l ,  whichever i s  smaller.  J o i n t s  s h a l l  be held 

adequately by su i tab le  clamps o r  s u f f i c i e n t  tack welds, and a welding se- 

quence s h a l l  be u t i l i z e d  t o  a t t a i n  t h e  complete j o i n t  spacing and a l ign-  

ment, Tack welds s h a l l  be f r e e  o f  cracks o r  o ther  d i scont inui t ies  and 

must be completely fused in to ,  and form a homogeneous p a r t  o f ,  the  root  

weld layer i f  they a r e  not removed as the welding progresses.  

The edges o f  b u t t  j o i n t s  s h a l l  be held during welding i n  such a man- 

ner  t h a t  the  tolerances s t a t e d  i n  Sect .  4.3.7 a r e  not exceeded i n  the 

completed j o i n t .  

4.3.6 Cleaning of Surfaces t o  Be Welded 

Surfaces t o  be welded s h a l l  be clean and f r e e  of foreign mater ia l  

such as grease, o i l ,  lubr icants ,  and marking p a i n t s ,  f o r  a dis tance of 
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a t  least 3 i n .  from t h e  welding edge. When weld metal  i s  to be deposi ted 

over a previously welded sur face ,  any s l a g  s h a l l  be removed. 

14.3. i J o i n t s  - Alignment Tolerances 

After welding, t he  o f f s e t  s h a l l  not  exceed 1/16 i n .  o r  one-eighth 

of  Lhe nominal th ickness  of the p a r t  a t  t h e  j o i n t ,  whichever i s  sma l l e r ,  

Weld t a p e r  i n  excess of  t h i s  amount i s  not, permit ted unless  d e t a i l e d  on 

t h e  engineering design drawj ng, 

14.3.8 Finished J o i n t s  

J o i n t s  s h a l l  have complete pene t r a t ion  and s h a l l  be f r e e  from cracks ,  

severe undercuts,  over laps ,  abrupt  r idges  o r  v a l l e y s ,  F i . l l e t  welds  s h a l l  

have: complete fus ion  a t  t h e  root, of the  f i l . l e t .  To ensure t h a t  t h e  weld 

grooves a r e  comple-tely f i l l e d  so t h a t  t h e  sur face  of  t he  weld metal at, any 

poi.nt does not  f a l l  below t h e  s i r f a c e  o f  t he  ad jo in ing  p a r t ,  weld metal may 

be b u i l t  up as a reinforcement on each s i d e  o f  t h e  joint. The th ickness  o f  

t h i s  reinforcement on each side s h a l l  no t  exceed t h e  following dimensions: 

Thickness of P a r t  ( i n . )  

< - 1/2 

> 1/2 < 1 

- 

Maximum Thickness 
of Reinforcement ( i n .  ) 

3/32 

> I  3/16 

)I. .3 .9 Miscellaneous II Welding _I llequirements 1-1 

The reverse  s i d e  of double-welded b u t t  j o i n t s  s h a l l  be prepared by 

chipping, gr inding,  o r  melting o u t ,  so t h a t  sound metal  i s  secured a t  

the r o o t  of -the weld before f i l l e r  metal i.s appl ied  from the  rsverse 

s ide.  This  requirement is not  intended to apply to any process  o f  weld- 

ing by which propcr fus ion  a d  penet ra t ion  are  otherwise obtained and by 

which the  base o f  t h e  weld remains f r e e  from impur i t i e s .  

If the weldimg i s  stopped f o r  any reason, e x t r a  c a r e  s h a l l  be taken 

i n  r e s t a r t i n g  t h e  process .to achieve t h e  required penet ra t ion  and f u s i o n .  
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For submerged a rc  welding, chipping out  a groove i n  the  c r a t e r  i s  

recommended. 

In  instances where single-welded j o i n t s  a r e  used, par t icu lar  care 

should be taken i n  alignment t o  ensure complete penetration and fusion 

a t  the r o o t  o f  t he  weld over i t s  f u l l  length.  

In  the  case of  plug welds, a f i l l e t  around the bottom of the hole 

should be deposited f irst .  

4.3.10 Repair of  Weld Defects 

Visible defects  such as cracks, pinholes, and incomplete fusion, a s  

well  as defects  t h a t  can only be detected by prescribed examinations or 

t e s t s ,  s h a l l  be removed; then the j o i n t  s h a l l  be rewelded. 

Approval t o  make a.weld repa i r  and approval of  the  repa i r  procedure 

s h a l l  be obtained from the  purchaser p r i o r  to t h e  removal o f  metal from, 

and the  repair ing o f ,  a defective weld a rea .  

done i n  a manner conforming t o  the requirements o f  t he  purchaser 's  speci- 

f i ca t ions .  

ceptable,  s h a l l  meet the  qua l i t y  requirements f o r  the o r ig ina l  weld. 

Repair welding shall be 

The repaired weld s h a l l  be re tes ted  and, i n  order to  be ac- 

Removal o f  undercutting by reduction o f  the base metal section adja-  

cent t o  the welded seam i s  not permitted.  

4.4 Weld-Metal Cladding o f  Carbon Stee l  

k.k . I  Welding Procedure Qual i f ica t ion  Requirements 

A separate welding procedure s h a l l  be qua l i f ied  f o r  the corrosion- 

r e s i s t a n t  weld-metal overlay cladding o f  carbon-steel-base metal, i n  

accordance with Sect.  I X  o f  the  ASME Boiler and Pressure Vessel Code. 

In  addi t ion,  when any of the  changes l i s t e d  below a r e  made, the procedure 

s h a l l  be requal i f ied;  although other changes do not require  requal i f ica-  

t i o n  the  procedure specif icat ion must be corrected t o  show the  changes. 

(Note t h a t  these requirements a re  s i m i l a r  t o  those specified i n  Sect. 

I11 o f  the ASME B o i l e r  and Pressure Vessel Code, 1968 E d i t i o n .  
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For A 1 1  Welding Yrocesses: .-._ 

( 1  ) 
combination o f  welding processes .  

A change from one welding process t o  any o t h e r  welding process  o r  

( 2 )  

A-No , i n  Tab3.e Q-11 .3 of  Sec t .  PX of the Code t o  any o t h e r  A-No. ,  or 

t o  ap? a n a l y s i s  no t  l i s t r d  in t h e  t a b l e ;  however, each AIS1 type of 

A-7 o r  A-8 a n a l p i s  (Tah1.e Q-I 1 .3) r equ i r e s  sepai-ate q u a l i f i c a t i o n .  

A ch3nge i n  t h e  composjtion o f  i h e  deposi ted weld metal from one 

(3)  
q u a l i f i e d .  

The  add i t ion  of  welding p o s i t i o n s  o-ther than those already 

(1.1) A change i n  t h e  spec i f i ed  preheat ing temperature range. 

(5) 
of  25% o r  nure i n  t h e  total .  time a t  temperature.  

A change i n  the  spec i f i ed  hea t - t r ea t ing  temperature oi” an  increase  

( 6 )  
v i c e  versa e 

A change from a multipl-e weld layer t o  a sii1.gl.e weld l a y e r ,  or” 

For Shielded Metal-Arc Welding : 

( 1 )  A change i n  t h e  e l ec t rode  diameler used for the first, layer .  

( 2 )  A chaage from one E’-No. i n  Table & - I 1  .2 t o  any o t h e r  F-No. 

(notes  2 and 3 i n  Table Q-11 .2 shall. apply).  

(3)  
t i o n  of the first weld l a y e r .  

A n  increase  o f  more than 10% i n  t h e  amperage used i n  the applica- 

For Submerged-Arc Welding : 

( 1  ) 
i s  no t  requi red  f o r  a changz i n  flux par t ic le  s i z e .  

A change i n  t h e  composition o r  type o f  fl.iuc used I Hequal i f icat ion 

( 2 )  A change from single-wire t o  multiple-wire techniques.  

(3 )  
the  p o l a r i t y  o f  t h e  c u r r e n t .  

A change from ac t o  dc or f r o m  dc bo ac cumen-t,  o r  a change i n  

( L c )  The add i t ion  o r  e l imina t ion  of o s c i l l a t i o n  of  t h e  e l e c t r o d e .  



(5) A var i a t ion  o f  more than 10% i n  t r a v e l  speed. 

(6) A change i n  wire diameter. 

For Gas Tungsten-Arc Welding or Gas Metal-Arc Welding: 

(1 ) A change f rom one gas t o  another, o r  to  a mixture of gases.  

(2) A reduction o f  25% i n  the r a t e  o f  gas flow. 

(3) A change f r o m  an i n e r t  gas or a mixture of i n e r t  gases to  a shield- 

ing gas containing m r e  than 2% o f  an ac t ive  gas ( e .g . ,  oxygen o r  hydro- 

gen) * 

(4) A change from single-wire t o  multiple-wire techniques. 

(5) 
po la r i ty  of t h e  cur ren t .  

A change from ac t o  dc o r  f rom dc t o  ac current ,  o r  a change i n  the  

(6) The addi t ion o r  elimination o f  o s c i l l a t i o n  of the  electrode.  

(7) A va r i a t ion  o f  w r e  than 10% i n  t r a v e l  speed. 

(8) A change i n  wire diameter. 

The procedure qua l i f ica t ion  shall be made on a t e s t  p la te  simulating 

the  conditions to  be used i n  production, except t h a t  t he  t e s t  p l a t e  may 

be thinner .  However, the thickness of the p l a t e  s h a l l  not be l e s s  than 

e i t h e r  3/14 i n .  or t he  thickness of t h e  fabr ica t ion  material ,  whichever 

i s  l e s s .  

l e n t  t o  t h a t  t o  be applied t o  the pa r t s ,  except t ha t  the t o t a l  time a t  

temperature may be achieved during one heating cyc le ,  

The postweld heat treatment o f  the t e s t  p l a t e  s h a l l  be equiva- 

The weld overlay surface s h a l l  be examined using a l i qu id  penetrant 

i n  accordance with Sect .  4.8.5’. Following t h i s  examination, the t e s t  

p la te  s h a l l  be sectioned to  make four side-bend t e s t  specimens, two paral-  

l e l  and two perpendicular t o  t h e  d i rec t ion  o f  welding, 

s h a l l  have dimensions iden t i ca l  t o  those of the guided side-bend specimens 

noted i n  Sect.  I X  o f  t he  ASME Boiler and Pressure Vessel Code. They s h a l l  

be bent i n  a t e s t  j i g  and s h a l l  meet the acceptance requirements of Sect .  

I X ,  except t h a t  t he  m a x i m u m  allowable defect  i n  the  cladding s h a l l  be 

1/16 i n ,  In  addition, a chemical analysis  s h a l l  be obtained from the 

These specimens 



o v ~ r l a y  a t  a depth from the surface of a t  l e a s t  0.020 i n ,  

analysis  obtained sha7.1 be within the range o f  analysis given i n  the 

procedure s p e c i f k a t i o n  e 

The chemical. 

h .4.2 Perfommice Î Q i n l i f i c a t i o n  Test  

Welders and weldirng operators shall be qua l i f ied  f o r  working with 

rnetri.1- plate  having 3 thickness that i s  e i t h e r  not, l e s s  than 3/4 i n .  o r  

i s  equal t o  that o f  t h e  mLerial t o  be used i n  fabr ica t ion ,  whichever i s  

thinner,  i n  accordance with the  requirements o f  a quali f ied  weld-metal 

overlay cladding procedure spec i f ica t ion  I 

The e s s e n t i a l  var iables  of paragraph &-22 of  Sect.  IX of the ASME 

Railer and Pressure Vessel Code shall apply, 

subjected to  .the penetrant and beEd t e s t s  as noted i n  Sect,, 1t.4.1, except 

that, the  chemical analysis  need no t  be made. 

t o r  who qual.ifi.es the procedure i s  autoimtical ly  qua l i f ied .  

The t e s t  p l a t e  s h a l l  be 

Any welder o r  welding opera- 

k "5 Joining In tegra l ly  Clad Q T  Weld-Metal-Overlay 
Clad Material  

Each welding procediire used f o r  joinjng; c lad mt$rial  s h a l l  LE qual i -  

f ied by the mandacturer i n  accordance with Sec ts .  VI11 and IX of  the ASME 

Boiler and Pressu re  Vessel Code. A separate welding procedure (and qua l i -  

f i c a t i o n )  i s  requit-ed f o r  welds t h a t  j o i n  clad mater ia l  t o  a u s t e n i t i c  

s ta in less  st ,eel .  'Pest welds s h a l l  be heat t r e a t e d  if the  fabricated mte- 

r i a l  i s  t o  be heat t r e a t e d ,  

The perfor.mance qua l i f ica t ion  of welders t o  j o i n  clad materials s h a l l  

conform t o  Sects .  VI11 and 1'X o f  the ASME b i l e ~  and Pressure Vessel Code. 

Performance t e s t s ,  using clad material ,  should be made by a welder before 

he i s  permitted t o  weld base m e t a l ,  chdd-ing, o r  t i e  composite joi-nt ,  

L.6 Postweld Heat Treakment 

Any postweld heat treatment proceduse s h a l l  be documented, submitted 

t o  the cask owner f o r  review and approval, and made a p a t  o f  the  Fabrica- 

t i o n  Record. 



4 . 7  Lead Pouring 

Lead pouring s h a l l  be done i n  a s ingle ,  continuous operation unless 

an a l t e rna t ive  method i s  developed and proven by a t e s t  which w i l l  ensure 

no high, l o c a l  radiat ion a t  lead in te r faces  resu l t ing  from multiple pours. 

The manufacturer s h a l l  prepare a de ta i led  lead-pouring procedure 

t h a t  w i l l  provide in fo rmt ion  concerning the  grade and pur i ty  of the lead; 

the grade of any t inning compounds, a descr ipt ion of t he  heating, pouring, 

and cooling f a c i l i t i e s  (including sketches); the sequence o f  operations; 

a precleaning o r  pretinning procedure ( i f  used); the  method and speed of 

pouring; preheating and control led cooliiig methods; temperature control  

requirements and measurements; and d e t a i l s  o f  pouring and vent connections. 

After approval by t h e  Inspector, the  lead pouring s h a l l  be performed 

i n  accordance with the procedure, and a copy o f  the lead pouring procedure 

shall be incorporated in to  the Fabrication Record. 

4.8 Inspection 

4.8.1 Access f o r  Inspector 

The Inspector s h a l l  be permitted f r e e  access, a t  a l l  times while 

work on the fabr ica t ion  i s  being performed, t o  all p a r t s  of t h e  manufac- 

t u r e r ' s  shop concerned with the  fabricat ion;  a l so ,  he s h a l l  have access t o  

t he  f a c i l i t i e s  o f  those supplying rmter ia l s ,  subassemblies, o r  labor  t o  

the  manufacturer. The manufacturer s h a l l  keep the Inspector informed o f  

t he  progress o f  t he  work, and s h a l l  no t i fy  him reasonably i n  advance of 

any required t e s t s  or inspections.  

l4.8.2 Inspection of  Material  

The Inspector s h a l l  assure himself t h a t  a l l  Inaterials used comply i n  

a l l  respects with the material  requirements given i n  Sec t .  4 , I  , 

When A S P I  A1403 o r  At20 material  i s  t o  be used, the  manufacturer s h a l l  

make c e r t i f i e d  m i l l  t e s t  reports  o r  c e r t i f i c a t i o n  o f  compliance records 

avai lable  t o  the Inspector p r io r  t o  the  use o f  t he  material .  The Inspector 

s h a l l  s a t i s f y  himself t h a t  the material  complies with the specif icat ions 
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and i s  proper ly  marked arid c o r r e l a t e d  wi th  t h e  m i l l  t e s t  r e p o r t s .  

copy of  all. approved t e s t  r e p o r t s  and c e r t i f i c a t i o n s  s h a l l  be i:ncorpo- 

r a t e d  intB t h e  Fabricati.on Record, 

A 

If  a ques t ion  regarding t h e  i d e n t i t y  o r  adequacy o f  t h e  r a t e r i a l  

a r i s e s ,  t he  f a b r i c a t o r  s h a l l  perform chemical ana lys i s  and mechanical 

tests -to v e r i f y  t h a t  the  mater ia l  complies wi th  the  app l i cab le  s p e c i f i -  

ca t ion .  

if approved, such records sha l l  become a p a r t  of  t he  Fabr ica t ion  Record. 

Reports of such tes ts  shall .  be reviewed by t h e  Inspec tor  and, 

All materials t o  be used i n  f a b r i c a t i n g  a cask s h a l l  be inspected 

f o r  t h e  purpose o f  de t ec t ing ,  as fa r  as i s  poss ib l e ,  de fec t s  t h a t  would 

a f f e c t  t h e  adequacy of -the f a b r i c a t i o n .  

Parti-cinlar atten.Lion should be given t o  c u t  edges and o the r  p a r t s  

of r o l l e d  p l a t e  t h a t  would d i sc lose  t h e  ex is tence  of  serious laminat ions,  

shearing c racks ,  and o t h e r  ob jec t ionable  d e f e c t s ,  

The Inspec tor  s h a l l  assure himself t h a t  the thickness  and o-ther 

dimensions of t h e  m t e r i a l  comply wi th  those spec i f i ed  on -the design 

drawings. 

4,8.3 Inspect ion of Surfaces During Fabr ica t ion  

As f a b r i c a t i o n  progresses ,  t h e  edges o f  p l a t e s ,  openings and f i t t i n g s  

shall .  be examined t o  d,etect  de fec t s ,  as w e l l  as -to determine t h a t  t h e  work 

has been proper ly  done. 

4.8.4 Dimensional Inspect ion 

The Inspector  s h a l l  sa t i s fy  himself t h a t  components conform to t h e  

pyescribed shape and meet thickness  requi renents  a f te r  forming, 

The Inspector  s h a l l  assure  himself o f  t h e  proper f i t ,  t o  -the cuma-  

t w e  of t h e  surface,  o f  appurtenances to be a t t ached  t o  curved su r faces .  

During and a f t e r  f a b r i c a t i o n ,  any necessary dimensional inspec t ions  

s h a l l  be performed to ensure t h a t  t h e  completed f a b r i c a t i o n  conforms t o  

t h e  design drawings and that mechanical p a r t s  can be phys ica l ly  assembled. 
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Any c r i t i c a l  fea ture  requiring special  inspection, such A s  t he  f l a t -  

ness o r  t he  surface f i n i s h  o f  gasket seats ,  s h a l l  be spec i f i ca l ly  indi-  

cated on the design drawings. 

a l l  such features  s h a l l  be incorporated in to  the  Fabrication Record. 

A report  o f  the  dimensional inspection of  

4.8.5 Weld Inspection 

The Inspector s h a l l  assure himself t ha t  t he  welding procedures em- 

ployed i n  the fabr ica t ion  have been qua l i f ied  under the provisions o f  

t h i s  guide. 

The Inspector s h a l l  assure  himself t h a t  only the welders and the 

welding operators who a r e  qua l i f ied  under the provisions o f  t h i s  guide 

a re  being allowed t o  fabr ica te  the weldment. 

The Inspector s h a l l  have the  r igh t ,  a t  any t i m e ,  t o  c a l l  f o r ,  and 

t o  witness, tests of the welding procedure o r  t e s t s  t o  determine the 

a b i l i t y  o f  any welder o r  welding operator .  

A l l  welds, including the heat-affected zone, s h a l l  be inspected a t  

l e a s t  twice with l i qu id  penetrants,  using procedure A-2 or B-3 of ASTM 

E-165, or with magnetic pa r t i c l e s ,  using ASTM E I C 3 .  

s h a l l  be nade on completion o f  the  r o o t  pass, then a f t e r  preparing the 

second s ide o f  welds made from two s ides  ( i f  appropr ia te ) ,  The second 

inspection s h a l l  be made after the weld i s  completed. 

s h a l l  be inspected on both surfaces a f t e r  heat treatment and/or any Da- 

chining i s  complete. Cracks, in - l ine  porosity,  o r  o ther  l i nea r  defects  

should be removed down t o  sound metal and then repaired.  

t r a n t  inspection w i l l ,  i n  most cases,  require  some grinding of the  welds. 

The f i r s t  inspection 

Finished welds 

Adequate pene- 

4.8.6 Check o f  Postweld Heat-Treatment Pract ice  

The Inspector s h a l l  s a t i s f y  himself t h a t  any postweld heat treatment 

i s  cor rec t ly  perfornied and t h a t  t he  t e q e r a t u r e  readings conform t o  t he  

requirements. A copy of the heat-treatment procedure and furnace char t s  

s h a l l  be incorporated into the Fabrication Record. 
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4 .8 .7  Inspect ion During Fabr ica t ion  

The Inspector  s h a l l  inspec t  each component, a t  such s tages  o f  con- 

s t r u c t i o n  as he deems necessary,  t o  assure  himself t h a t  f a b r i c a t i o n  i s  

being c a r r i e d  ou t  i n  accordance wi th  the design drawings. 

I n t e r i o r  sur faces  o f  enclosed chanbers s h a l l  be examined as com- 

p l e t e l y  as poss ib le  before  f i n a l  c losu re  i s  made, 

4 . 9  Test ing 

11.9.1 Shielding Chamber Leak Test  

Before any sh ie ld ing  chamber i s  f i l l e d  with sh i e ld ing  ma te r i a l ,  t h e  

This i n t e g r i t y  o f  t h e  chamber s h a l l  be demonstrated by a leak  t e s t .  

i e s t i n g  s h a l l  be performed while j o i n t s  a r e  a c c e s s i b l e  for r e p a i r  and 

before any leak  paths  can be plugged w i t h  sh ie ld ing  ma te r i a l .  

Leak t e s t s  my be performed by any procedure t h a t  can be demonstrated 

t o  have a s e n s i t i v i t y  o f  1 cm3 (STP) of  ai-r p e r  hour. 

methods a r e :  mass spectrometry,  helium l eak  de tec t ion ,  halogen l e a k  de-- 

t e c t i o n ,  vacuum ra te -of  -pressure- r i se ,  and pressur ized  soap bubble ." 

Acceptable t es t  

If leakage i s  ind ica ted ,  the l e a k s  shall. be loca t ed  and repa i red ;  

then t h e  t e s t  s h a l l  be repea ted ,  

4 . 9 . 2  Pressure Test  

After f a b r i c a t i o n  i s  cornplete, the c a v i t y  (and afiy o the r  chamber that, 

i s  pressur ized  i n  se rv i ce )  s h a l l  be subjec ted  t o  a p re s su re  tes t ,  t o  demon- 

s t ra te  s t r u c t u r a l  i n t e g r i t y .  

Fach chamber t o  be t e s t e d  s h a l l  be sepa ra t e ly  f i l l e d  with water and 

pressur ized  t o  twice t h e  m x i m u m  normal opera t ing  pressure  or 40 ps ig ,  

whichever i s  the  g r e a t e r .  

No evidence of leakage or mechanical deformation s h a l l  be noted during 

t h i s  per iod .  

This pressure s h a l l  be rmintained f o r  10 min. 

For t h e  purposes o f  t h i s  tes t ,  gaske ts  o the r  than se rv ice  gaskets  

my be used,  

- -  
"See Secl;. 5 of  t h e  ASME Railer and Pressure  Vessel Code ( i n  d r a f t  form). 
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If the  cask i s  designed f o r  t o t a l  containment during a f i r e  and 

does not have a r e l i e f  device, t h e  t e s t  pressure must a t  least be equal 

t o  t h a t  an t ic ipa ted  under the accident conditions.  

b.9.3 Leak Test 

After t he  pressure t e s t  i s  complete, t he  cask s h a l l  be assembled 

with a service gasket, and the  cavi ty  s h a l l  be subjected t o  a leak t e s t ,  

The cavi ty  s h a l l  be pressurized t o  1 -1 /2  times the niaximum normal 

operating pressure or 7-1/2 psig,  whichever i s  greater ,  with a gaseous 

mixture containing a t  least 10% o f  a t e s t  gas t o  which t h e  leak detector  

i s  sens i t i ve .  Testing may be done by using a helium mass spectrometer 

or a halogen leak detector  if the  t e s t ing  procedure has been demnstrated 

t o  have a s e n s i t i v i t y  equivalent t o  1 cm3 (STP) o f  a i r  per hour a t  the 

d i f f e r e n t i a l  pressure used i n  the  t e s t .  

c a l  j o i n t s  s h a l l  be surveyed. 

A l l  accessible  welded and mechani- 

Any indicat ion o f  leakage s h a l l  require repa i r  aad re tes t ing  of the 

cask. 

L .9 .4 Heat-Transfer Acceptance Test 

If heat t r ans fe r  calculat ions ind ica te  a cask surface temperature 

i s  180°F o r  g rea te r  under design heat loads and normal conditions of 

t ransport ,  a heat t ransfer  t e s t  s h a l l  be performed before the cask i s  

accepted by the purchaser, 

r i a l  bonding, a i r  gaps, e t c . ,  and be u s e f d  i n  providing ac tua l  data on 

i t s  thermal performance. 

Such a t e s t  will provide information on mate- 

The heat source provided i n  the  cask cavi ty  f o r  use i n  the the t e s t  

s h a l l  be equal t o ,  o r  greater  than, 25% of t h e  design heat load o f  the  

cask. Temperatures s h a l l  be measured and recorded a t  a m i n i m u m  o f  three 

points  each on the  inner and the outer  cask s h e l l s .  

temperature should be measured a t  points  ( ins ide  t h e  cavi ty)  t h a t  could 

In addition, the 

come i n  contact w i t h  the  f u e l  ( e . g . ,  nuclear-poison divider  p l a t e s ) ,  
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Measured temperatures t h a t  d i f f e r  by m r e  than  10% from -those c a l -  

culat,ed f o r  t h e  test; hea t  load must be reconci led .  

tests,  along wi th  t h e  o r i g i n a l  temperature records,  s h a l l  becom a p a r t  

of t h e  Fabr ica t ion  R.ecord . 

A r epor t  of  these  

The Inspector  s h a l l  wi tness  a l l  h e a t - t r a n s f e r  t e s t s  and shall s ign  

t h e  o r i g i n a l  temperature record .  

4.9.5 Shielding I n t e g r i t y  'Test 

P r i o r  t o  t h e  i n i t i a l  use of a cask f o r  shipping i r r a d i a t e d  m t e r i a l s ,  

t h e  i n t e g r i t y  of  t h e  sh i e ld ing  of  the cask s h a l l  be demonstrated. The 

cask sha l l  be loaded wi th  the  material. f o r  which it i s  designed (or  an  

equ iva len t ) ,  i n so fa r  as i s  p r a c t i c a l ,  and t h e  e n t i r e  o u t e r  sur face  s h a l l  

be surveyed f o r  r a d i a t i o n  i n  excess of t h e  a1 lowable l i m i t s ,  

G m m a  Scanning and Probing, - Inspect ion by garrlma scanning and prob- 

ing t o  determine t h e  soundness of t h e  lead  i s  an op t iona l  t e s t .  This 

t e s t  is a q u a l i t y  c o n t r o l  opera t ion  o f t e n  s p e c i f i e d  t o  inc rease  the  proba- 

b i l i t y  t h a t  t h e  cask will comply wi th  the  r a d i a t i o n  requirements when it 

i s  loaded wi th  the  material t o  be shipped.. When the  tes t ,  i s  included i n  

the  con t r ac t ,  t h e  reqnirements a r e  as given below. 

The manufacturer shall prepare a gamma probe procedure, which in -  

c ludes inforrriation concerning : (1  ) t he  e l e c t r o n i c  equipiiient , ( 2  ) t he  

r a d i a t i o n  murce  and s t rength ,  (3)  the  c a l i b r a t i o n  s tandards f o r  both 

scanning and probing, (4) t h e  g r i d  p a t t e r n ,  (5) Lhe s c i n t i l l a t i o n  c r y s t a l  

s i z e ,  ( 6 )  t h e  pos i t i on tng  equipment, ( 7 )  t h e  method o f  reading and record-  

ing t h e  r a d i a t i o n  de tec ted ,  ( 8 )  t h e  measuring technique, and (9) t h e  ac-  

ceptance requirements.  

the  Inspec tor  p r i o r  t o  i t s  app l i ca t ion ,  and he s h a l l  be n o t i f i e d  so t h a t  

he my a u d i t  the inspec t ion  i f  he d e s i r e s .  The procedure and a l l  t he  

r e s u l t s  s h a l l  be md.e a p a r t  of -the Fabr i ca t ion  Record, 

The procedure t h a t  i s  used s h a l l  be acceptable  t o  
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14.10 Fabrication Record 

The manufacturer s h a l l  maintain current ly ,  i n  the Fabrication Record, 

documents indicat ing compliance with t h i s  guide. 

should include, but is  not l imited t o ,  t he  following i t e m s :  

The Fabrication Record 

A material  record specifying (a )  product form and heat number, 

(b)  cor re la t ion  o f  pa r t  and tes t  repor t ,  and ( c )  cask compo- 

nent name o r  pa r t  number. 

Marked drawings or annotated b i l l s  of material  may be neces- 

sary t o  s a t i s f y  t h i s  requirement. 

Material  t e s t  reports  or other evidence o f  acceptab i l i ty  f o r  

each piece o f  material, i n  compliance with the s t ipu la t ions  

l i s t e d  i n  Chap. 3 .  

Welding procedure, procedure qua l i f ica t ion ,  welder performance 

records, and lead pouring procedure. 

Reports o f  a l l  inspections and t e s t s ,  including l i qu id  pene- 

t r a n t  examinations; dimensional inspections;  pressure and 

leak t e s t s ;  heat  t r ans fe r ,  shielding, and lead bonding integ- 

r i t y  t e s t s .  Radiographs s h a l l  be included if radiographic 

inspection is performed. 

Reports o f  any required check analyses, c l ea r ly  ident i f ied  

with t h e  material  they represent .  

Furnace temperature char t s  i n  cases where heat treatment i s  

performed. 

Any deviation, f o r  any reason from t h i s  guide. 

l*As-builtff drawings i f ,  for any reason, t he  fabr ica t ion  process 

deviates s ign i f icant ly  from the design drawings and the  l a t t e r  

drawings do not present a c l ea r  and correct  descr ipt ion of the 

construction of  the cask or show proper s izes  o f  materials and 

locat ion and geometries o f  welds. 
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The Fabr i ca t ion  Record shall be assembled by t h e  manufacturer and 

s h a l l  be kept  cu r ren t  a t  a l l  tirtes. 

t h e  Record and, a t  r egu la r  i n t e r v a l s ,  s h a l l  a s su re  himself that ,  it i s  

cornplete and c o r r e c t .  

f i e d  by the  mmnufacturer. 

he records t h e  da t e s  of h i s  v i s i t s  t o  t h e  manufacturing plant,,  s t a t u s  

of work a t  those  times, no ta t ions  o f  ma te r i a l s  accepted,  no ta t ions  of  

inspec t ions  witnessed, d i f f i c u l t i e s  encountered i n  f a b r i c a t i o n ,  devia- 

t i o n s  from des ign  d e t a i l s  and s p e c i f i c a t i o n ,  and a chronologica l  record 

of t h e  progress  of  t h e  work. On completion of t h e  job ,  t h e  I n s p e c t o r ' s  

l o g  s h a l l  be incorporated i n t o  t h e  Fabr i ca t ion  Record. 

The Inspec tor  s h a l l  have access  t o  

Any d e f i c i e n c i e s  found sha1.l promptly be r e c t i -  

The ln spec to r  s h a l l  maintain a l o g  i n  which 

On completion of  f a b r i c a t i o n  arid t e s t i n g ,  t h e  Fabr i ca t ion  Record 

The s h a l l  b e  reviewed by the  manufacturer and then  by the Inspec tor .  

m n u f a c t u r e r  s h a l l  c e r t i f y  t o  t h e  purchaser ,  i n  wr i t i ng ,  t h a t  t h e  f a b r i -  

c a t i o n  i.s (with noted except ions)  i n  complete conformity wi th  t h e  contract , .  



5 .  HEAT TRANSFER 

5.1 Introduction 

A l l  shipping casks should be evaluated t o  determine t h e i r  tempera- 

t u re  responses i n  thermal environments under normal and accident condi- 

t i ons .  Specif ical ly ,  the  temperatures t h a t  should be determined are  

the m a x i m u m  cask surface temperature and the  maximum fue l  element tem- 

perature under normal conditions, t he  temperature d is t r ibu t ion  through 

the  shield,  and the maxirnum f u e l  element temperature under accident 

conditions.  

The normal ambient temperature range i s  defined i n  the regulations 

t o  be -40 t o  +130°F. There must be no re lease  of radioactive material  

f rom the containment vesse l  as a r e s u l t  o f  exposure t o  these temperatures. 

Under accident conditions the cask i s  assumed t o  experience a f i re ,  whose 

temperature i s  147s0F, f o r  0.5 hr; i n  this case, rad ioac t iv i ty  released 

from the cask must not exceed the limits given i n  Table 5.1. 

Table 5 . I  . L i m i t s  f o r  Ftadioactive Material 
Released” during F i r e  

No radioactive material ,  except gases and contaminated coolant, 

my be released from the  cask; the t o t a l  rad ioac t iv i ty  content o f  the 

coolant must not exceed e i the r  0.1% of the t o t a l  rad ioac t iv i ty  o f  the 

cask contents or the  following designated limits: 

a 
Transport Group Curies 

I 0.01 

I1 0.5 
I11 & Iv IO. 

Lne r t gas e s 1000 * 

a Specific isotopes a r e  arranged i n  t ransport  groups. The complete l ist  

i s  given i n  Table 1 . I  . 



M)T r egu la t ions  do not  spec i fy  temperatlure l i m i t a t i o n s  €or t h e  

a c t u a l  cask sur face  or f u e l ,  bu t  r equ i r e  that, t he  access ib l e  cask sur- 

face  temperature n o t  exceed 180 Ob' under normal opei>ating condi t ions .  

The MEA regu la t ions  r equ i r e  the same l i m i t a t i o n  with regard t o  tempera- 

t u r e  when t h e  shipment i s  made under l l f u l l  loadrl condi t ions .  The access i -  

b l e  cask sur face  can be changed from t h e  a c t u a l  cask sur face  by use o f  a 

personnel s h i e l d  which w o d d  permit h igher  temperatures on t h e  prime (in- 

a c c e s s i b l e )  sur face  a rea  of t h e  cask ,  However, s ince  f u e l  temperatures 

a f f e c t  f u e l  i n t e g r i t y  which, i n  tiirrn, a f f e c t s  p o t e n t i a l  contamination 

i n  t h e  event of a cask l eak ,  both f u e l  and a c t u a l  cask sur face  tempera- 

t u r e  l i m i t a t i o n s  should be considered by a des igner  f o r  h i s  s p e c i f i c  

cask and type o f  f u e l .  

For example, t he  f u e l  temperature under normal opera t ing  condi t ions  

can be r e s t r i e t e d  t o  Lhat which w a s  experienced by t h e  f u e l  during reac-  

t o r  opera t ion ,  assuming t h a t  such a temperature d id  no t  cause the  f u e l  

elements t o  rup tu re .  

a t  higher  temperatures and, i f  so,  t h e  s a f e t y  of  such opera t ing  tempera- 

t u r e s  should be inves t iga t ed  and repor ted .  

There m y  be  an economic j u s t i f i c a t i o n  for opera t ing  

Under t h e  0 .s-hr f i r e  accident  condi t ion,  f u e l  element temperatures 

w i l l  i nc rease .  

t e d  t o  a t t a i n  under acc ident  condi t ions  will depend on the  cladding,  t h e  

ma te r i a l  o f  cons t ruc t ion ,  the  cladding th ickness ,  the f u e l  ma te r i a l ,  t h e  

ma te r i a l  o f  cons t ruc t ion ,  t h e  cladding th ickness ,  the  f u e l  ma te r i a l ,  t he  

burnup, .the cool ing time, t h e  s p e c i f i c  power, the f u e l  damage caused by 

impact, e t c  . It i s  impossible t o  i n d i c a t e  p r e c i s e l y  how, o r  t o  what ex- 

t e n t ,  each i tem w i l l  a f f e c t  t h e  rxaximum permissible  f u e l  temperatures;  

however, some genera l  s ta tements  i n  t h i s  regard may be made. 

Tne maxinium temperature t h a t  t h e  f u e l  should be permit-  

The maximum temperature t h a t  t he  cladding a t t a i n s  under acc ident  con- 

d i t i o n s  should be less than t h e  temperature a t  which t h e  f u e l  rup tu res ,  

This rupture  temperature w i l l  a l s o  va ry  with t h e  i tems enumerated i n  t h e  

paragraph above arid should be calculat ,ed for each type o f  f u e l  element 

under the  accident  condi t ions  i f  t h e  cask des igner  wishes to  achieve maxi- 

mum fue l  temperatures under opera t ing  cond i t ions ,  



A new sect ion (Sect .  5.4.2) included i n  t h i s  guide describes one 

method f o r  analyzing rupture temperatures and minimum cooling times. 

I f  the f u e l  elements a r e  individual ly  contained i n  sealed canis te rs ,  

temperature l imi ta t ions  my be relaxed from those %hat otherwise would be 

considered reasonable, although canis te r  i n t e g r i t y  must be assured. 

M a x i m u m  f u e l  element terperatures ,  discussed i n  Sec t .  5.4, can be 

calculated by u t i l i z i n g  numerical methods tha t  a r e  capable o f  determining 

individual f u e l  element response under t rans ien t  conditions.  

computer codes u t i l i z i n g  such methods a r e  available"-" and have been used 

f o r  t h i s  purpose. 

best, r e su l t s  for a given problem; thus no comparison o f  the codes i s  made 

here .  

Digi ta l  

Ettch code requires considerable experience t o  obtain 

5 . 2  Heat Sources 

The temperature o f  t he  cask surface under normal operating conditions 

i s  dependent upon the heat t h a t  the cask must d i ss ipa te  t o  the environment. 

The heat stems from two sources: t he  decay heat load caused by the  radio- 

ac t ive  decay o f  isotopes within t h e  material  being shipped, and the solar 

heat load, which r e s u l t s  f rom the impir,gemnt o f  s o l a r  radiat ion on the 

surface of the cask. Although both sources change with time, var ia t ions  

i n  the  decay heat  load a re  generally ins igni f icant  during shipment. 

heat  is  usual ly  the major portion o f  the  t o t a l  heat  load t h a t  must be 

diss ipated.  

Decay 

The contribution o f  solar  radiat ion t o  t he  total cask load r a re ly  

exceeds 15% of  the  e n t i r e  amunt of heat t h a t  the cask must r e j e c t .  The 

so lar  heat load depends on the projected surface area o f  the  cask, the 

condition o f  t he  cask surface, the season o f  the  year, the hour o f  the  

day, and other  f ac to r s  enumerated i n  Sec t .  5.2.2. 

5.2.1 Decay Heat b a d  

The ammt of decay heat t h a t  i s  generated by a spent f u e l  element i s  

dependent on the time the  f u e l  element spends i n  t h e  reactor  ( i r r ad ia t ion  

time), the number of  f i s s i o n s  occurring per uni t  time i n  the  element, and 
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t h e  time t h a t  a n  element j.s allowed t o  decay before  it i s  shipped ( i  . e . ,  

cooling t i m e ) .  

design burnup with a cool ing time o f  120 days would be expected to gener- 

a t e  hea t  a t  t'ne r a t e  o f  from 4 t o  10 kw. 

A cur ren t  l i g h t  water  power r e a c t o r  f u e l  element a-t the  

One of  t h e  most recent, caLculat iona1 t o o l s  recoimnended f o r  d e t e r -  

mining decay heat  i s  a code6 i n  which experimental  data7-' have been used 

t o  cover a wide range o f  cooling pe r iods .  This codx, which was developed 

a t  Oak Ridge Nat ional  Laboratory u t i l i z e s  t h e  f i s s i o n  rate (opemt ing  

p o w r )  , i r r a d i a t i o n  t ime,  and cool ing time as input  v a r i a b l e s .  

metric representa t ion  o f  t h e  decay hea t  source t h a t  w a s  construct,ed by 

use o f  t h e  code i s  presented i n  F i g .  5 . I  , Figure 5 . 2  p re sen t s  t h e  same 

da ta ,  except t h a t  it has been r e p l o t t e d  t o  show t h e  e f f e c t s  o f  burnup and 

s p e c i f i c  power on t h e  decay h e a t .  The dal;a used i n  cons t ruc t ing  Figs. 

5.1 and 5.2 were based on t h e  decay of f i s s i o n  products  r e s u l t i n g  f r o m  

the  therim1 f i s s i o n  o f  235U, Fis s ion  product y i e l d s  'vary wi th  neutron 

energies  and the f i s s i o n a b l e  i so topes  present ;  10-1c7 however, t h e  da ta  f o r  

235U can be used f o r  ti?e thermal f i s s i o n  o f  239Pu wi th  l e s s  than 7% e r r o r  

when the cool ing time i s  l e s s  than 120 days.  

the er ror  approaches a maximum (F ig .  5 .I ),  which i s  about 33% below t h e  

a c t u a l  hea t  output  o f  239~i f i s s i o n  products ,  A t  cooling t imes g rea t e r  

than about 2000 days, t h e  hea t  output, f r o m  F ig .  5.1 becomes conserva t ive ,  

Figures  5.1 and 5.2 my be used to deteriiline Qd, the decay hea t  gen- 

A para-  

After one year  o f  cool ing,  

e r a t i o n  r a t e ,  of an  average f u e l  element by using the  information given 

i n  L i s t  1 .  Items La and 4b my be used 

L i s t ,  1 

to  calcul.at,e I t e m  3 .  

1 . 
2, Cooling t ime, days 

3 .  Reactor opera t ing  time, days 

4. ( a )  Fuel  burnup, Mwd/metric ton 

( b )  Reactor f u e l  loading,  kg 

Reactor opera t ing  power, Mw 



0
 

c
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2 4 I Q - ~  4 6 8  

4 6  

i 

A 

3 days 

IOS2 

IO' 2 4 6 8 ,8' 2 4 6 8 ,03 

Spec i f i c  Power, K w / K g  

F i g .  5.2. Ratio of Decay Heat to Power for Spent Fuel Elements. 
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Example: If a reactor  has the  design cha rac t e r i s t i c s  l i s t e d  below, 

determine t h e  decay heat o f  one average f u e l  assembly t h a t  has been a l -  

lowed t o  cool f o r  120 days,  

Reactor burnup 20,000 Nwd/metric ton fue l  

Reactor f u e l  loading b350 kg 

Operating power o f  one 
reac tor  100,000 kw 

Number of fue l  assemblies 20 

Specif ic  power = 100 000 kw = 23 kw/kg 
li%-F- 

Applying t h i s  data t o  Fig.  5.2, we obtain a value o f  6.5 x f o r  

the  decay heat/operating power r a t i o .  

t e red  from e i t h e r  the  ordinate  o r  absc issa . )  

(Note that Fig.  5.2 could be en- 

Assuming t h a t  the operating power of one average fue l  assembly i s  

1003000 kw 
20 assemblies 

= !5'000 kw/assembly, t h e  decay heat may then be computed by: 

Qd = (5000 kw/assembly)(6,5 x I O m 4 )  = 3.25 kw/assembly. 

In t h i s  example, it w a s  assumed t h a t  the f u e l  element w a s  operated 

a t  a constant spec i f ic  power t o  achieve a burnup o f  20,600 Mwd/metric 

ton.  This w i l l  not be the  case for most power reactor  f u e l  elements; t he  

f u e l  management scheme w i l l  provide a re la t ionship  between spec i f ic  power 

and burnup which must be taken into account i n  calculat ions of decay heat.  

This e f f ec t  can be simulated by dividing the  f u e l  cycle i n t o  small, con- 

s tan t  power burnup s teps  and using the above method f o r  each bumup incre- 

ment. The cooling (or  decay) time f o r  each burnup s t e p  now becomes the  

time t h a t  the element remains i n  the  reactor  following the burnup s tep,  

plus  the  cooling time o u t  of  t he  reac tor .  

heats for each burnup s t ep  w i l l  y i e ld  the  desired r e s u l t .  

A simple summation o f  the  decay 

5.2.2 Solar H e a t  Load 

The r a t e  a t  which the ea r th  in te rcepts  solar energy on a surface 

normal t o  t he  sun's rays a t  a point above the e a r t h ' s  a tmsphere is  



442 Btu/hr-f t2 ,  o r  10,600 Btu/ft2-day; t h i s  va lue ,  known as the  s o l a r  

cons tan t ,  i nc reases  (decreases)  by 3.5% i n  December (June) ,  The amount 

of  so l a r  r ad ia t ion  received a t  a p i n t  on the  sur face  o f  the e a r t h  on a 

c l e a r  day when the  sun i s  a t  -the zeni th  v a r i e s ,  but  70% of t h e  s o l a r  con- 

s t a n t  value i s  gene ra l ly  considered t o  be s u f f i c i e n t l y  accura te  f o r  engi- 

neering purposes.  

Tota l  so l a r  r ad ia t ion  i s  made up of both d i r e c t  r ad ia t ion  f r o m  t h e  

sun and d i f f u s e  o r  s ca t t e r ed  s o l a r  r ad ia t ion ;  t he  lat,ter con t r ibu t ion  i s  

small. arid can be neglected when l r a x i m u n i  daytime heat ing ra-Les a r e  con- 

s ide red  

Vahies o f  t h e  solar heat  load can be ca l cu la t ed  f o r  each sur face  of 

t he  cask.  

i s  then normally added t o  the  decay heat, load -bo es t i r ra te  the  heat  t h a t  

must be r e j e c t e d  by t h e  cask ,  

The sum o f  t hese  va lues  y i e l d s  the  t o t a l  s o l a r  hea t  load,  which 

Exact va lues  as a func t ion  of l a t i t u d e ,  time o f  day, time o f  yeai-, 

tilt, of the su r face ,  e t c .  can be ca lcu la ted  by r e f e r r i n g  to standard 

hea t  t r a n s f e r  t e x t s ;  '' , '' however, rap id  es t imat ion  o f  h o u r l y  s o l a r  heat-  

ing rates on cleai. summer days on va r ious ly  o r i en ted  surfaces16 may be 

imde by re fen - ing  t o  P'ig. 5 . 3 ,  

L s ~. 
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Pig. 5.3. Incident  Solar Energy on Clear Days, Lat i tude  42"N. ( r e f ,  16)  



The curves marked N .  Vert.,  S. Vert . ,  and E .  Vert. indicate  the 

t o t a l  amunt of solar-plus-scattered radiat ion t h a t  i s  received by v e r t i -  

c a l  surfaces facing north, south, and eas t ,  respectively.  The solar en- 

ergy received by a v e r t i c a l  west w a l l  may be considered as the m i r r o r  

image of t h a t  given f o r  E .  Vert, ro ta ted  around the 1 2  :00 noon l i n e .  The 

curves marked horizontal  and normal indicate  the  solar energy received by 

a horizontal  surface and a surface t h a t  i s  always norm1 t o  the sun 's  

rays.  

Each curve, except the  one re fer r ing  t o  the normal surface, includes 

the  contribution o f  d i f fuse  radiat ion t o  the  t o t a l  heat load; the diffuse 

radiat ion for a horizontal  surface i s  separately noted i n  Fig. 5.3. 

Figure 5.4 gives the  r e l a t ive  t o t a l  da i ly  radiat ion incident on a 

horizontal  or south-facing v e r t i c a l  surface as a function o f  l a t i t ude  . IT 

Multiplication of  the  appropriate values f rom Fig.  5.4 by the  24-hr solar 

constant (1O,6OO Btu/ft"-day) and the  local mass transmittance of the 

e a r t h ' s  atmosphere (-. (I.'() gives the da i ly  incidence on a v e r t i c a l  o r  

horizontaJ- surface.  Scattered rad ia t ion  i s  not included. 
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Fig.  5,)j. Relative Total Daily Solar Radiation Incident on a 
Horizontal o r  South-Facing Ver t ica l  Surface as a Function of  Latitude. 
( r e f ,  1 7 )  



To determine the heat  load a f f e c t i n g  a given su r face ,  t he  incident; 

heat ing va lue ,  &si, given i n  F i g ,  5.3 must be mul t ip l i ed  by t h e  absorp- 

t i v i t y  ( o r  the  emi-ss ivi ty) ,  n s o l a r '  o f  t h a t  surface;  that, i s ,  Q s = Qsi 
( a  s o l a r ) ,  Values of  a a re  given i n  Table 5 - 2 .  

Note t h a t ,  f o r  most pol ished metals ,  Lhe emiss iv i ty  ( a b s o r p t i v i t y )  

of the  sur face  i s  higher  during exposure t o  s o l a r  r a d i a t i o n  than during 

e x p s u r e  t o  lower temperatures or longer-wavelength r a d i a t i o n ,  

a r e  p a i n t s  t h a t  may be app l i ed  t,o such sur faces  t o  reverse  t h e  s i t u a t i o n .  

Whi-Le zinc oxide p a i n t  has a low va lue  of emiss iv i ty  a t  s o l a r  wavelengths 

(0 .18)  but  a high emiss iv i ty  (0,95) a t  100°F. 

s ince  a sur face  t h a t  has  been f r e s h l y  painted wfth zinc oxide p a i n t  would 

absorb l i t t l e  s o l a r  r a d i a t i o n ,  yet would have a high emiss iv i ty  a t  lower 

opera t ing  temperatures .  

There 

This i s  the  i d e a l  s i t u a t i o n  

Pa in t s  t h a t  r e f l e c t  solar heat  a r e  a l s o  a v a i l a b l e .  De ta i l s  of one 

type can be found i n  the  mili tary p a i n t  s p e c i f i c a t i o n  MIL-E-46096 ( M R ) .  

However, pa in t ing  of  shipping casks i s  n o t  normally recommended because 

of  ope ra t iona l  problems such as decontamination, maintenance o f  sur faces ,  

e t c  . 

5 , 3  Ekternal  Heat Transfer 

The a n a l y t i c a l  proced1liqE:S descr ibed below TrJere developed t o  analyze 

hea t  t h a t  i s  t r a n s f e r r e d  from .the e x t e r n a l  sur face  o f  a cy l indr ica l .  cask 

and t,o account f o r  v a r i a t i o n s  i n  the  cask geometry ( i . e . ,  -the cask m y  be 

e i t h e r  f inned o r  unfinned, and may be pos i t ioned  v e r t i c a l l y  or horizon- 

t a l l y ) ,  

and i s  surrounded by e s s e n t i a l l y  s tagnant  a i r .  Heat i s  t r a n s f e r r e d  from 

the  cask sur faces  by radiatj-on and by n a t u r a l  convection Lo t h e  environ- 

ment, A t  t h e  cask surface and ambient a i r  temperatures normally encoun- 

t e r ed ,  t h e  amounts o f  hea t  t r a n s f e r r e d  by convection and radiat i .on are 

s i g n i f i c a n t  and n e i t h e r  can be neglec ted ,  

It i s  assumed t h a t  -the conta iner  i s  r e s t i n g  on I.ts shipping skid 

'The sur face  a rea  ( o f  a. t y p i c a l  c y l i n d r i c a l  cask)  that  is ava i l ab le  

f o r  r e j e c t i n g  i t s  heat, load i s  not  e a s i l y  def ined .  

t he  t o t a l  sur face  area c o n s i s t s  o f  the c y l i n d r i c a l  s i d e s  which w i l l  no t  

The major po r t ion  o f  
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Table 5.2. Emissivit ies of Various Materials 

Temperature 

Mat e r ia  1 1 00 "Fa Solara 

Metals 

Aluminum 

Polished 

Oxidized 

24-ST weathered 

Anodized (a t  100°F) 

Chromium 

Polished 

Iron 

Polished 

Cast , oxidized 

Galvanized, new 

Galvanized, d i r t y  

S t e e l  p l a t e ,  rough 

Sta in less  s t e e l  

18-8, polished 

18-8, weathered 

Paints  

Aluminized lacquer 

Cream pa in ts  

Lacquer, black 

Lampblack pa in t  

Red pa in t  

Yellow p a i n t  

O i l  pa in ts  (a11 colors )  

White (Zno) 

0.04 

0.11 

0.4 
0.94 

0 .08 

0.06 

0.63 
0.23 

0.28 

0.94 

0 . I 5  
0 .85 

.26 

0.49 

0.45 

o .46 
0 '89 

o .65 
0.75 
0.96 

I). 96 0.97 

0.96 0.74 
0.95 0.30 

0.94 
0.95 0 . I  8 

a 
See r e f s .  14 and 15;. 



be uniformly e f f e c t i v e  i n  t r a n s f e r r i n g  hea t  because a. po r t ion  o f  .the sur- 

face  may be e i t h e r  i n  contac t  with,  o r  fac ing ,  a s o l i d  sur face  ( the  vehi-  

c l e  deck) o f  indeterminate  temperature and sur face  emis s iv i ty .  

p a r t i c u l a r l y  t r u e  when the  cask i s  designed t o  be shipped wi th  i t s  major  

axis o r i en ted  ho r i zon ta l ly .  

l e c t e d  when e x t e r n a l  heat  t r a n s f e r  i s  considered, al-though under some 

circumstances they  could r e j e c t  a s ign i f icant ,  f r a c t i o n  of t h e  hea t  load .  

This  i s  

0ccasionall.y t he  ends o f  t h e  cask a r e  neg- 

A f inned sur face  on a cask i s  q u i t e  common, p a r t i c u l a r l y  f o r  casks 

capable o f  d i s s i p a t i n g  l a rge  heat  loads. 

e i t h e r  c i r cumfe ren t i a l  or l ong i tud ina l ,  depending on t h e  expented or5enta-  

t i o n  of t h e  cask d w i n g  shipping. 

The f i n s  a r e  designed t o  be 

5.3.1 Heat, Removal f r o m  a Cask Surface 

The bas i c  equation that, descr ibes  convection and r a d i a t i o n  from a 

cask sur face  i s :  

where 

Q 

h 

A 

A 

Ts = t he  cask sur face  temperature,  OF, 

T = t h e  ambient temperature,  O F ,  

= t o t a l  hea t  t r ans fe r r ed ,  Btu/hr, 

= t h e  convective heat  t r a n s f e r  c o e f f i c i e n t ,  Btil/hr-ft"-"F, 

= t h e  e f f e c t i v e  convective sur face  area, f t 2 ,  

= t he  e f f ec t ive  r a d i a t i v e  su r face  a r e a ,  ft", 

T 

C 

C 

r 

a 
I 

F,, = t h e  gray-body shape f a c t o r .  

This  equation, which assumes a uniform cask surface temperature, can- 

riot e a s i l y  be expyessed paramet r ica l ly  owing t o  t he  d i f f e rence  i n  A and 

Ar. - - Ar = A, and Q. (5.1) can be 

s implif  ied t o  : 

C 
However, if t h e  cask i s  unfinned, A 

C 

QT = htA (Ts  - T a )  , (5.2) 



where h accounts f o r  both convection and radiat ion.  t 

The following stepwise procedures, which t r e a t  both unfinned and 

finned types of shipping container,  a r e  recommended f o r  calculating the 

heat t h a t  is  re jec ted  f rom the cask surface t o  the environment under nor- 

m a l  conditions.  

Analysis o f  an Unfinned Cask. - If the  t o t a l  heat  load o f  an un- 

finned cy l indr ica l  cask i s  known, determination o f  the external  surface 

temperature, T involves a t r ia l -and-error  solut ion o f  Eq. (5 .I ), w i t h  

QT = 62, + Qs (Qd i s  the  decay heat  and Qs i s  the  solar heat load) .  The 

procedure i s  a s  follows: 

S’ 

1 .  Compute t h e  Heat Transfer Area. - If we neglect the ends of 

an unfinned cask, the  a reas  avai lable  for the  re jec t ion  of heat by 

convection and radiat ion a r e  equal and a r e  given by: 

A = A  = A = n D L .  
C r 0 

(5.3) 

2. Assume a Cask Surface Temperature, . 
3. 

TS 

Determine the Heat Transfer Coeff ic ient ,  - McAdamsl* recommends 

the simplified dimensional equation 

a i r  under turbulent conditions) , 
( f o r  cylinders o r  plane surfaces i n  

h C (Ts - Ta) 1 / 3  , 
C 

(5.4) 

where C i s  assigned t h e  value of 0.lY f o r  v e r t i c a l  planes and cylinders,  

0.18 for horizontal  cylinders,  and 0 .22  f o r  heated p la tes  facing up. The 

value o f  hc, calculated by @. (5..!4), can be used under laminar f l o w  con- 

d i t ions  with only a s l i g h t  l o s s  of accuracy. 

It i s  convenient t o  determine an equivalent radiant  heat- t ransfer  

coef f ic ien t  so t h a t  a t o t a l  heat- t ransfer  coef f ic ien t  may be computed as 

f o l l o w s  : 

h = h  - t h  . t c  r (5.5) 



The heat, t r a n s f e r r e d  by radj-ation can be expressed by t h e  equation: 

then by s e t t i n g  m. ( 5 . 6 )  equal  t o  t h e  second term on t h e  r i g h t  s i d e  o f  

E q .  (5 .I ), the  effecbive r a d i a n t  hea t - t r ans fe r  c o e f f i c i e n t  rwy be calcu-  

l a t e d  by: 

+ 46~)~ - (Ta + 14601~1 
(5.7) - [ P s  

100 100 h = 0.173Fle ( r 

- 
If t h e  surroundings a r e  l a r g e  a s  compared w i t i n  t he  cask, then F,, may 

be approximated by E ,  the  emtssivity of  t h e  cask su r face .  After  s i b s t i -  

tu t i i ig  E f o r  F,,, the  sol-utions t o  Eq. (5 .7)  and Eq.  (5.4) a r e  p l o t t e d  i n  

F ig .  5.5 as a func t ion  o f  (Ts  - Ta)  = AT. 

- 

4. Find tine Surface Emissivi ty .  The proper  value o f  E my be 

se l ec t ed  from Table 5 . 2 .  

5. Solve Quation (5.2). Se lec t  a T t o  determine AT; then ,  with 
S 

t h e  E determined above, f i n d  h and h from F ig .  5.5. Add these  c o e f f i -  

c i e n t s ,  as i n  Eq.  (5.5), and evalimte Eq. ( 5 . 2 )  using t h e  assumed AT. 

If the Q t h a t  i s  deLerrnined i n  t h i s  manner does not  equal  Q T 
3 through 5 must be repeated assuning a d i f f e r e n t  value f o r  T . 

C 1' 

3. Qs' s t e p s  

S 

Analysis  o f  a Finned Cask. - For f inned casks,  the procedure t o  be 

used f o r  the p red ic t ion  o f  t h e  cask surface temperature i s  more involved.  

The recormended t r i a l - and-e r ro r  procedure i s  as follows: 

1 .  Compute the  Heat Transfer Area. The area f o r  convection does 

not  equal  .the a r e a  f o r  r a d i a t i o n  i n  the  case o f  f inned  casks .  For the  

cask shown i n  F ig  5.6: 

where 

D -2 cask ou te r  diameter,  f t  

n -I number of fins 

0 

f 
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= f i n  th ickness ,  f t ,  
YO 

L = cask length ,  f t ,  

-1 = f i n  e f f i c i e n c y  (see  s t e p  5 ) , 
E = f i n  he ight ,  f t ,  

Ll = fin l ength ,  f t .  

ORNL D w ~  67-ll688RI 

Fig .  5.6. Longitudinal ly  Finned Cask Oriented V e r t i c a l l y .  

For a cask with c i r cwnfe ren t i a l  f i n s  o f  rec tangular  p r o f i l e  o r i en ted  

ho r i zon ta l ly  ( see  F ig .  5.7), 

Ac = nD (1, - n y ) -t- 2n (rt - I-:) nf qC , 
0 f o  

where 

= f i n  e f f i c i ency  f o r  c i r cumfe ren t i a l  fins, 
T C  

(5.9) 

Equations (5 .8)  and (5.9) imply t h a t  t h e  effect iv-e  convection and r ad ia -  

t i o n  area i s  independent o f  f i n  spacing. Although -this i s  not  a c t u a l l y  



t r u e ,  the  e r r o r  incurred i n  neglecting t h e  spacing e f f e c t  i s  within the 

accuracy expected i n  t h i s  ca lcu la t ion .  

ORNL DWG. 67-11702 RI 

Fig.  5.7. Circumferentially Finned Cask Oriented Horizontally. 

The r a d i a t i v e  heat  t r a n s f e r  a rea  of t h e  finned cask i s  assumed to  be 

t h e  "s t r ing" area o f  t h e  cask; t h i s  i s  the a rea  of t h e  t o t a l  cask enve- 

lope, which, i r respec t ive  of t h e  type of f i n ,  can be calculated by: 

2 .  Determine t h e  Effective Emissivity. Since, for finned casks, 

the  s ides  a r e  considered cavity-type r a d i a t o r s , l g  

where 

c i s  the surface emissivi ty  o f  the  cask s h e l l  and f i n s ,  "r 

s i s  the average face-to-face dis tance between f i n s ,  and 

S i s  defined as: 

S = s + - 2 8 ,  (5.1 2) 

Typical values for E a r e  given i n  Table 5 . 2 .  r 



3.  Assume a Cask Surface Temperature, T , 

14. Determine t h e  Convective Heat Transfer  Coeff ic ien t .  Use F i g ,  5.5. 

S 

5. Calculate  the  F in  Eff ic iency as ind ica ted  i n  Step 5 f o r  Finned 

The use fu l  heat  t r a n s f e r  a r ea  i s  dependent on t h e  f i n  e f f i c i ency  Casks .  

7, which, i n  t u n ,  depends on t h e  convective hea t  t r a n s f e r  c o e f f i c i e n t .  

Figure 5.8 is  based on t h e  fol lowing two eyuabions”’ f o r  l ong i tud ina l  

f i n s  and can be used f o r  any materials of cons-truetion: 

tanh(b)  
”q =: 9 (5.13) 

where 
i--- 

b = f i n  parameter = . 8 J; , and 

k = t h e  thernial conduct iv i ty  of t he  f i n s .  

1.c 
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F 
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Lc 
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................ I 0.2 
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-I- 
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4 i 
FIN PARAMETER, b 

Fig. 5.8. Fir1 Eff ic iency  for Straight,  F ins  o f  Rectangular Cross - ,.> 

Section v s  F in  Parameter. 



Figure 5.9 can be used to determine T-I f o r  s t a i n l e s s  s t ee l  f i n s  by 

f i rs t  ca lcu la t ing  b/b and, i f  8 i s  known, then computing b. Substi tu- 

t i n g  b i n  Eq. (5 .12)  ( o r  u t i l i z i n g  Fig.  5 .8)  w i l l  y i e l d  a value f o r  q. 

ORNL Oug 6-77-9T82RI 

0 1/16 l/8 3/16 b'4 5/16 3/8 7/16 1/2 

Fig. 5.9. Graph of (Fin Parameter/Fin Length) for b n g i t u d i n a l  
Fins  o f  Rectangular P r o f i l e ,  304 S t a i n l e s s  S t e e l ,  

If circumferential  f i n s  o f  rectangular p r o f i l e  a r e  used, a correc- 

t i o n  f a c t o r ,  Ar.1, must be added t o  Eq.  (5.14) ( see  Fig.  5 . 7 0 ) ;  t h a t  i s  

qc 'q f a r ,  * 

ORNL DWG 67-9785 R I  

(5.74) 

Fig .  5.10. Reduction Term A q  f o r  Circumferential Fins o f  
Rectangular P r o f i l e  q, = '1 4- AT). 



After r̂] and/or qc has been determined, t h e  c a l c u l a t i o n s  can be com- 

p l e t ed  s ince  t h e  convective and r a d i a t i v e  hea t  t r a n s f e r  a r eas  have been 

completely determined. 

6. Solve Eq. (5 .I ) . E the  v a h e  obtained by- solving E q .  (5 .I ) 
does not  equal  Qd I- Qs, a new su r face  temperature must be chosen and 

s t e p s  3 through 6 repeated imt i l  QT = Qd + Qs. 

&ample using Heat Transfer  F q a t i o n s .  Assume t h a t  t h e  sm.€ace tem- 

The cask pe ra tu re  of a c i r cumfe ren t i a l ly  f inncd cask m u s t  be determined. 

i s  designed t o  t r anspor t  two f u e l  elernents from a r e a c t o r  whose charac tc r -  

i s t i c s  a r e  descr ibed i n  the  example o f  Sec t .  5 .2 .1 ,  Suppose that, t he  cask 

has  t h e  following c h a r a c t e r i s t i c s :  

Maberial  o f  cons t ruc t ion  ( o u t e r  s h e l l  and f i n s )  . . .  304 SS 
Outside diameter of cask,  Do ...................... 3 f'c 

Radius from cask cen te r  t o  t i p  of  f i n ,  r 

Radri.us from cask cen te r  t o  base of f i n ,  

Cask leng-tn, L .................................... 9 f t  

. . . . . . . . .  1 ,75 ft  

........ 1 .SO f t  

I, 
r 

0 

Number of  fins, nf ................................ 54 

F i n  length,  8 ..................................... 0.25 f t  (3  i n . )  

F i n  th ickness  J yo ................................. 0.0208 f t  
(0.25 i n . )  

(2 i n . )  
Approximate f i n  spacing ( cen te r  t o  c e n t e r )  . . . . . . . .  0.167 f t  

Fin  width,  L r  ..................................... 9 f t  

F i r s t ,  t h e  hea t  load,  Qd + QS, should be ca l cu la t ed .  From t,he ex- 

ample i n  Sec t .  5.2.1 f o r  f u e l  cooled 120 days,  Qd := (2  assemblies) 

(3.25 k-w/assembly) = 6.50 hi. 

The s o l a r  hea t  load ,  Qs, v a r i e s  wi th  the season, t h e  la t i t Jude ,  t h e  

Assuming t h a t  t he  cask w i l l  be t ranspor ted  a t  a l a t i t u d e  weather, e t c .  

of  L2" during t h e  simmer s o l s t i c e ,  an average heat  load can be ca l cu la t ed .  
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Because o f  the cyc l ic  nature o f  t h e  s o l a r  heat  load and the  la rge  

t h e - m l  capacity o f  spent f u e l  shipping casks, it seems reasonable t o  

average the  t o t a l  load over 24 h r .  

Integrat ing the cuwe  denoted as  "normal" i n  Fig. 5.3 gives 3445 
Btu/ft"-day; this equals I &  Btu/ft'-hr o r  42 w per square foot  o f  pro- 

jected cask surface.  

(3 f t )  (0,042 h / f t 2 )  = 1 . I  kw. 

The total s o l a r  heat load i s ,  therefore,  (3 f t )  

Proceeding s t ep  by step,  as previously indicated for a finned cask: 

= 74.3 + 276.qc ft2 

= 99 ftZ 

2 .  Determine the e f fec t ive  emissivity using EQ. (5.11), 

A value f o r  

reference.  For p a r t i a l l y  weathered s t a in l e s s  s t ee l :  

may be obtained from Table 5.2 o r  other su i tab le  

E = 2 0.5 . r 

Thus, 

and from Eq. ( 5 ' . l I ) ,  

= 0.814 . 1 
1 4 0.226 k =  

3. Assume T = 200°F. 
S 



11. Sirice T ::I I3O0F, A T  = 70"F, and, from Fig .  5.5, 
a 

j .  Fl-om Fig .  5.9, f o r  y = l / 4  i n .  and h = 0.781 , 
0 C 

I_ - 2.8 f L - '  ; 
e 

hence 

b = 2 .8  (0.25) = 0.700 . 
Using F ig .  5.8 f o r  b = 0.700, 

Y) = 0.87 . 
From t h e  cask geometry, 

r 
- *So = 0.857 , r -1.75 

L 

Prom Fig" 5.10 f o r  q = 0.87 and r /r = 0.857, 
O L  

A~ = -0.007 . 
Making t h e  co r rec t ion  f o r  c i r cumfe ren t i a l  f i n s ,  

= 0.870 - 0.00'7 = 0.863 ; 
?C 

t hus  

A = 74.3 + 276 (0.863) = 312.5 fL" 
C 

6 .  From Eq .  ( s . l ) ,  the so lu t ion  f o r  Q, y i e lds :  
1 

Q = (0 .781)(9312.~)(200 - 130) + 0.173 (0.814)(99.0)[6.6 '  - 5.9'1 T 

QT = 26,647 Btu/hr = 7.81 kw , 

Since Q T 
temperature i s  s l i g h t l y  lower than t h e  200°F value assumed. 

Ey repea t ing  s t e p s  3 through 6, a temperature of  199°F i s  

found t o  d i s s i p a t e  the r e q u i s i t e  amount of h e a t ,  

= Qd + Qs = 6 .SO + 1 . I  = 7.6 kw, t h e  cask sur face  



5.4 In te rna l  Heat Transfer 

Present regulations do not place a l i m i t  on the mximum temperature 

o f  a spent f u e l  element during t ransport .  What they do require i s  t h a t ,  

under normal conditions of t ransport ,  no radioactive rnaterial be released 

from the containment vesse l .  Under the hypothetical  accident conditions, 

some a c t i v i t y  re lease ,  up t o  specif ied limits, my be to le ra ted .  It is ,  

therefore ,  prudent t o  keep f u e l  element temperatures as Low as possible 

and, if  coolant i s  l o s t ,  below temperatures which a re  capable of causing 

cladding f a i l u r e .  

It i s  worth noting t h a t  the regulations do not require  a loss -of -  

coolant assumption; however, i f  f u e l  temperatures a r e  calculated by as- 

suming t ha t  t h e  coolant w i l l  be re ta ined under accident conditions, the  

assumption w i l l  have t o  be ful ly  j u s t i f i e d  i n  t h e  accident analysis  of  

the cask. 

The i n t e r n a l  heat t r ans fe r  analysis involves consideration o f  the  

t r ans fe r  of the  decay heat (generated in the  f u e l  elements) through the 

f u e l  cladding, the  primary coolant region, the  cask inner s h e l l ,  the bio- 

l og ica l  shield region, and the  cask outer  s h e l l .  

For calculat ions of  t h i s  type, water, the  usual Liquid coolant, i s  

of ten  considered t o  be absent since it may be d i f f i c u l t  t o  guarantee the 

retent ion o f  coolant under accident conditions and it i s  important t o  

know the  maximum temperature t h a t  w i l l  be reached under loss-of-coolant 

conditions,  

In  some cases i t  w i l l  be desirable  to enclose each f u e l  element i n  

a canis te r ,  although canned f u e l  elements of ten impose economic penal t ies .  

Such a can i s t e r  becomes the  primary l i n e  of containment, and the cask ' s  

main purpose is  then t o  shield and t ransfer  heat, and t o  provide a sec- 

ondary l i n e  of containment. 

ing the temperature difference between the f u e l  and the cask surface f o r  

a given amount o f  heat that must be transferred; however, the increased 

capabi l i ty  of  containing the radioact ive material  my o f f s e t  t h i s .  

ent ly ,  few cask designs employ t h i s  containment philosophy. 

This system has the  disadvantage o f  increas- 

Pres- 



In order  t o  i n v e s t i g a t e  the  e f f e c t s  of changing seve ra l  poss ib le  

parameters on the hea t  - t ransfer  i n s i d e  a cask caviLy, Bat te l le  Memorial 

I n s t i t u t e  ca l cu la t ed  ternpe-ratures o f  an  array of  f u e l  elements contained 

i n  a lead-shielded spent  f u e l  shipping cask.  

using t h e  hea t  t r a n s f e r  corriputer code THTC,21 which cons iders  conductive, 

convective,  and r a d i a t i v e  heat, t r a n s f e r  simultaneously and determines 

s teady-s ta te  temperature d i s t r i b u t i o n s  by a r e l axa t ion  technique.  

Their  d a t a  were developed 

The o v e r a l l  geometry upon which t h e  nodal. network w a s  based (see 

Fig. 5.11 ) w a s  def ined  as a 45'" wedge wi th  .two a d i a b a t i c  boundaries.  

This system permits  sj.rnu1taneou.s r a d i a t i v e ,  conductive,  and convective 

coupling throughout t h e  cax-ity and b i o l o g i c a l  s h i e l d .  The ex te rna l  am- 

b i en t  condi t ions  were assumed t o  be 130'F. 

a b s o r p t i v i t y  each equal. tx, 0.5, were chosen f o r  t h e  e x t e r i o r  cask s u r f a c e ,  

An emiss iv i ty  and a solar 

ORllL 

IMAGINARY P l ~ A N E S  
IN TEMPEA91URE 
CAI.CULATIONS\ 

F U E L  

Fig. 5.1 1 . Thermal Nodal Model Used as Bs is  f o r  Loss o f  
Coolant Inves t iga t ions  . 



The study for a 3 x 3 f u e l  assembly a r r ay  assumed the  following con- 

d i t ions :  

and (3)  uniform heat  generation per f u e l  rod. 

(1 ) l o s s  o f  a l l  Liquid coolants,  ( 2 )  steady-state conditions, 

Figure 5 .I I depicts  a schemt ic  &awing of  one case i n  which the  cask 

contains nine f u e l  assemblies per  cask and each assembly contains t h i r t y  

six O.ss-in.-diam f u e l  rods having a center t o  center spacing o f  0.72 in. 

A second case w a s  studied in which the number o f  f u e l  rods was in -  

creased to 144 per  f u e l  assembly; each rod had a diameter of  0 .?O i n .  and 

a center-to-center spacing of 0.40 i n .  

i s  only about 1 i n .  g rea te r  than t h a t  i n  the  f i r s t  case,  

the maximum temperature of  the  centermost f u e l  rod as a function of  l i n e a r  

heat generation in the rods i s  shown i n  Fig. 5 . 1 2 .  

The cask radius i n  t h i s  instance 

Data indicat ing 

CHNL O w  67-1 I687 R 2  

6 x 6  Fuel Rod Arroy wlth 1/4" web welded 
lo  shield mner liner 
6 x 6  Fuel Hod Arroy with 114'' web not wlded 
To Shield inMr liner 

0 6x6 Fuel Rod Arroy with 3 / 4 " w e b  welded v,,, 
Shield inner liner 
12x12 Fuel Rod A m y  rvith I14"web nct welded 

'I t o  Shield inner liner 
m b  nor W. 

- ....... .___.. ... . . . . . . . .. ..... . ._._. . _ _  ___. 

.. ..- -. .. . . . -... .-- : - t  _^_. 500 1000 1500 
Lsneor He01 Generation of on Assembly, BTU/Hr-Ft 

Fig.  5 . 1 2 .  Maximum Temperatures as a Function o f  Linear Heat 
Generation. 

Per t inent  conclusions t h a t  may be drawn from the  data are:  

1 .  A s  t h e  heat generation rate per u n i t  length increases,  the 

m a x i m u m  f u e l  rod temperature increases exponentially t o  

approximately the 0 .h3 power. 



2. Welding of t h e  basket web t o  the cask sh ie ld  inner l i n e r  (or 

inner s h e l l )  apparently does not s i g n i f i c a n t l y  a f f e c t  t h e  

maximum rod temperatures. 

3 .  Increasing the basket web thickness from 1/4 i n .  t o  3/4 i n .  

r e s u l t s  i n  a s i g n i f i c a n t  decrease i n  mximwn rod temperature; 

t h i s  decrease was about, 200°F f o r  the case analyzed. 

4. I f  the f u e l  assembly l i n e a r  heat generation r a t e  i s  constant,  

an increase i n  t h e  number o f  f u e l  rods i n  t h e  assembly (keep- 

ing the  f u e l  assembly approximately t h e  same s i z e )  does not 

s i g n i f i c a n t l y  increase the  mximum rod temperature, One of 

the reasons f o r  t h i s  i s  tha-t, as the number of rods per f u e l  

assembly increases,  the heat source per  rod decreases propor- 

t i o n a l l y .  

Note t h a t  the temperatures presented i n  Fig.  5 .I 2 a r e  equilibrium loss -  

of-coolant temperatures. T'ne time required t o  a t t a i n  these temperatures 

may vary from hours to days, depending upon the cask geometry, the heat 

capacity, and the heat load from t h e  f u e l  elements. It m y  be possible 

t o  show t h a t  correct ive ac t ion  can be taken before equilibrium tempera- 

t u r e s  can be reached; i n  such instances,  temperatures below equi-librium 

values ray  be used when the f u e l  cladding creep rupture s t rength i s  

analyzed A 

5.4.1 Calculation of Fuel Rod Temperature 

The f u e l  rod temperatures determined above (under loss o f  coolant 

conditions) were calculated by using t h e  TH'rC code. 

expected t o  give reasonably accurate data although it i s  sophis t icated 

enough to  require t h e  assis tance of a programmer knowledgeable i n  the 

code. 

This code can be 

Watson has developed an appl icable  code t h a t  i s  simple and rapid 

but assumes t h a t  heat i s  transferred by radiant  exchange only.' 

element assembly which i.s examined rust have an even number of f u e l  rods 

i n  a square a r r a y .  

The f u e l  

Input data cons is t  of the number of rods i n  each row, 



the  wal l  temperature, t h e  heat generation rate,  the  p in  emissivity, t he  

tube radius,  and configuration fac tors ;  values f o r  t he  l a t t e r  fac tors  a re  

given i n  r e f .  5. 
d i s t r ibu t ion  f o r  an 8 x 8 f u e l  pin a r r ay  i n  l e s s  than 1s sec,  using the 

IEM 7 O Y O .  The time w i l l  increase exponentially with the  number o f  rods 

i n  the f u e l  assembly. 

The code can ca lcu la te  t h e  steady-state temperatwe 

This code, generally gives conservative r e s u l t s  f o r  low l i n e a r  heat 

generation rates. 

are obtained because of the method used for calculat ing the grey body 

f a c t o r .  

by K l e ~ p e r ~ ~  and can, with a l i t t l e  e f f o r t ,  be used t o  modify InTatsonIs 

code. 

A t  high heat generation r a t e s ,  non-conservative r e s u l t s  

These f ac to r s  can b e t t e r  be calculated using the  method outlined 

4,4.2 Fuel md Fai lure  Temperatures 

The shipping cask and f u e l  element temperature calculat ions must be 

combined with a f u e l  rod f a i l u r e  ana lys i s  t o  determine whether the release 

due t o  f u e l  rod f a i l u r e s  under accident conditions i s  l e s s  than t h a t  i m -  

posed by the regulat ions.  The object ive of such an analysis  i s  t o  ascer- 

t a i n  the  amount of time a power reac tor  f u e l  element must remain i n  the 

on-s i te  spent f u e l  pool before being shipped, A s  t h i s  cooling time p r io r  

t o  shipping increases,  t h e  chance of f u e l  rod rupture (and consequent 

re lease  of rad ioac t iv i ty)  during an accident decreases. 

nomic considerations d i c t a t e  t h a t  t he  f u e l  should be shipped a s  quickly 

as possible .  

mining the  minimum cooling time tha t  i s  required f o r  shipping spent f u e l  

for a typ ica l  power reactor  f u e l  assembly. 

However, eco- 

Tne following analysis  w i l l  i l l u s t r a t e  one method f o r  deter-  

The cause o f  f u e l  rod cladding f a i l u r e  during shipment i s  l i k e l y  t o  

be overheating due t o  inadequate heat removal. A t  the  higher tempera- 

t u re s ,  i n t e rna l  gas pressure from gaseous f i s s i o n  products may cause 

s t r e s ses  tha t  exceed t h e  s t rength o f  t he  cladding mater ia l  a t  those tem- 

peratures .  The f u e l  elements can, therefore ,  be assigned a 'Iffailure 

temperature," which i s  defined a s  the temperature a t  which the  cladding 

i s  expected to rupture,  thereby exposing t h e  contained f u e l  and f i s s ion  



products t o  t h e i r  environment. This  temperature w i l l  determine the  length  

o f  time t h a t  the  discharged f u e l  must remain a t  t h e  r e a c t o r  s i t e  p r i o r  to  

shipping and w i l l  thus  a f f e c t  t h e  economics of  the f u e l  c y c l e .  

cask cannot be guaranteed t o  remain sea led  during exposure t o  the  acc ident  

condi t ions  spec i f i ed  i n  t h e  r egu la t ions ,  then  any f i s s i o n  products t h a t  

contaminate t h e  coolant  can be re leased  t o  t l ie environment; t h e  r e l e a s e  

l i m i t s  a r e  given i n  Table 5.1 . 

If the  

The temperature a t  which a f u e l  rod f a i l s  i s  dependent upon the  pres -  

sure  -that i s  generated i n s i d e  t h e  f u e l  rod; i n  t u r n ,  tlie pressure  generated 

i n s i d e  the f u e l  rod i s  dependent upon t h e  following: 

( 1  ) Amount of f i s s i o n  gases  re leased  from t h e  f u e l  during 

i r r a d i a t i o n .  

(2) I n t e r n a l  void volume which has been designed i n t o  the  

f u e l  element t o  accommodate t h e  re leased  f i s s i o n  gases .  

(3) The temperature o f  contained gas a f t e r  l i q u i d  coolant  

i s  l o s t .  T h i s  temperature i s  assumed t o  be equal  t o  

t h e  Faximum cladding tempe r a tu re  . 
(4) The d u c t i l i - t y  o f  t h e  cladding.  

This temperature can be est imated by the  following ana lys i s :  

The hoop stress i n  a long, thin-wal led cy l inder ,  such as t h e  f u e l  

rod cladding,  i s  given by: 

PD 
2 t  , g = -  

where 

P = i n t e r n a l  pressure ,  p s i a ,  

D = rod diameter,  i n . ,  

t = wall th ickness ,  i n .  

(5.19 

The i n t e r n a l  gas pressure ,  p, i n  the  f u e l  rods may be ca l cu la t ed  f r o m  the 

following equation: 



where 

P = t o t a l  gas pressure,  ps ia ,  

PI = pressure a t  T resu l t ing  from 100% re lease  o f  gases from p e l l e t s ,  
0 

f = f r ac t ion  o f  gases released from p e l l e t s  t o  plenum, 

0' 
P = i n i t i a l  f i l l  pressure a t  T 

0 

T/To = r a t i o  o f  ex is t ing  t o  base temperature, OR. 

The value o f  P' can be e s t i ~ m t e d " ~  using the per fec t  gas law 

PI 1 .45 ERTo 
V' 

where 

(5.17) 

1 .45 = t o t a l  gas generation, gm atoms/GWD, 

E = exposure, GWd/metric ton, 

R = gas l a w  constant, 

= 140.84 ps ia  - in?/gm-mole OR, 

T~ = spec i f ic  gas co l lec t ion  volume, in.3/metric ton 

The number of  mols of  f i s s ion  gas generated i n  f u e l  rods, assuming only 

s tab le  isotopes of xenon, krypton, and iodine are important, was found 

t o  be independent of specif ic  power and cooling time and dependent only 

on the t o t a l  burnup i n  the  f u e l .  

calculated without allowance f o r  t h e  volume displaced by springs, e t c  . , 
and without allowance f o r  p e l l e t  dishing on the ends. 

i s t i c  o f  the  fue l s  presently being designed. 

is assumed t o  be the  cold clean gap. 

The gas volumes shown i n  Table 5 .3  were 

They are character-  

The diametral gap volume 

The f r ac t ion  o f  f i s s ion  product gases released from the p e l l e t s ,  f ,  

contr ibutes  t o  t he  pressure buildup i n  f u e l  rod volume available f o r  gas 

accumulation. This f r ac t ion  may be e s t i m t e d  from Fig.  5.13 i n  which i s  

p lo t ted  the percent f i s s i o n  gas released vs the  l o c a l  l i nea r  heat genera- 

t i o n  rate."'  

o f  the f u e l  which has been correlated with the l o c a l  l i nea r  heat genera- 

t i on  ra te ;  t he  correlat ion appears t o  be w e l l  within required accuracy. 

T'ne re lease i s  a function of  the l o c a l  operating temperature 
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Table 5.3. Fuel Pin Gas Collection V01umes”~ 

Without D i a m e  t ra 1 Gap 

Fue 1 v in .3  metric ton 
V I  in ,3/  

BWR-65, 66 2 . I 4  532 
BWR-6‘7 3.115 7 85 

m - c y  0 344 162 

PWR-Diablo Canyon .L78 21 3 

PWR-Rancho Seco 4 93 425 
PWR-Calvert Cliffs ,706 351 

V = Volume per f u e l  pin 

With Diametral Gap 

v in .3  metric ton 
VI in.3/ 

3.24 
4.22 1065 

1.03 460 

1 ,42 65c 
1 .20 596 

The horizontal  l i n e  below approximtely 250 watts/cm i s  caused by 

gas buildup due t o  r e c o i l  nuclei  and occurs no matter w h a t  operating tem- 

perature e x i s t s  i n  the  reac tor .  

by var ia t ions  i n  the UO, p e l l e t  dens i ty  and l o c a l  temperature va r i a t ions .  

Figure 5.13 provides a reasonable estimate o f  t he  f r ac t ion  o f  gas released 

and can be used to  estimate the pressure buildup as a function o f  f u e l  

element temperature, I n f o m t i o n  found i n  re f .  32 indicates  t h a t ,  within 

the range o f  data shown, the l e v e l  of burnup o f  the  f u e l  appears to have 

no e f f ec t  on the f r ac t iona l  f i s s i o n  gas re lease .  

The spread o f  data  i s  caused primarily 

In  order f o r  the  f u e l  cladding t o  rupture, t h e  in t e rna l  pressure 

must exceed some c r i t i c a l  value.  

Zircaloy-4, and 34’7 s t a i n l e s s  s t e e l  a s  a function o f  tenqperature a r e  

given i n  Fig.  5.14. 
2 ) .  

i r r ad ia t ion  a f f e c t s  w i l l  be annealed out  a t  temperatures above 800’F. i f  

the nvt i s  less than For higher nvt  values there  is  an indication, 

as ye t  not quant i ta t ive ,  t ha t  some material propert ies  may be permanently 

a f fec ted .  

Estimates o f  t he  s t r e s s  propert ies  f o r  

(The curves f o r  Zircaloy-4 can be applied t o  Zircaloy- 

Unirradiated material propert ies  were used for these metals since 
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In order t o  pred ic t  the temperature a t  which the cladding w i l l  rup- 

ture ,  t h e  s t rength o f  t h e  cladding a t  spec i f ic  temperatures must be known 

as a function o f  i n t e r n a l  gas pressure.  

the  clad s t r e s s  produced a s  a function o f  i n t e r n a l  gas pressure {using 

Eq. (5.15)] on a graph o f  clad s t r e s s  p lo t ted  as a function o f  temperature. 

A temperature-pressure p lo t  o f  c r i t i c a l  s t rength propert ies  may be made 

from these data as demonstrated by the  so l id  l i n e s  i n  Fig.  5.15 which were 

derived from Fig. 5.14. 
r a t i o  i s  16 , )  

This can he estimated by p lo t t i ng  

(Note tha t  Fig.  5.15 appl ies  t o  rods whose D / t  

The buildup o f  pressure as a function i n  temperature was p lo t ted  as  

a dotted l i n e  i n  Fig.  sols by using E q .  (5.16).  

the  creep rupture curves i n  Fig.  5; 15 is  as follows: 

pressure re la t ionship  i n  the  f u e l  rod cladding i s  held a t  any point on the 

creep rupture curve f o r  t he  appropriate number o f  hours, the cladding w i l l  

r u p t w e .  

t h a t  t he  cladding i s  held a t  the increased temperature condition. The 

in te rsec t ion  point between the  f u e l  rod pressure curve and the  creep rup- 

ture  curve of i n t e r e s t  defines a l imi t ing  cladding temperature below which 

no rupture i s  expected t o  occur during the  time of creep rupture.  The 

cladding temperature for the  example i s  the equilibrium loss-of-coolant 

temperature. 

The in te rpre ta t ion  o f  

If t h e  temperature- 

A family o f  curves i s  presented to show t,he e f f ec t  o f  t he  time 

A t  t h i s  point Fig.  5.16 can be p lo t ted ,  which shows t h e  decay heat 

vs cladding temperature for the  conditions assumed i n  the cask cavi ty .  

If it i s  des i rab le  t h a t  no f u e l  mds  rupture under loss-of-coolant condi- 

t ions ,  then t h e  desirable  m a x i m u m  temperature l i m i t  (as determined from 

Fig,  5.15), when applied t o  F ig .  5.16 a t  the  point of ho t t e s t  center  rod, 

w i l l  ind ica te  the maximum decay heat allowed i n  t h e  cask such tha t  the  

ho t t e s t  center  rod w i l l  not exceed the  rupture temperature l i m i t .  

If a ce r t a in  number of  rods could be allowed t o  rupture (and s t i l l  

meet permissible contamination limits of t he  coolant) ,  the cooling t i m e  

o f  t he  f u e l  could be shortened t o  account fo r  the increased decay heat 

l i m i t .  

i n  evaluating the  minimum time khat t he  f irst  load of  f u e l  elements must 

be cooled p r io r  t o  shipping. 

The following example w i l l  i l l u s t r a t e  the  use o f  these curves 
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Fig. 5.16. Cladding Temperature as a Function o f  Decay Heat i n  
Cask. 

Assuming t h a t  the  UO, f u e l  elements a r e  c lad with 347 s t a i n l e s s  s t e e l  

and the  cladding has a D / t  r a t i o  of 16, Fig.  5.15 can be constructed from 

Fig.  5,14 (note how temperature points are constructed for a gas pressure 

o f  2000 p s i ) .  

Assume that t he  UO, fue l ,  o r ig ina l ly  f i l l e d  with -32-psig helium a t  

70°P, has a plenum volume of  5'20 ina3/metric ton and i s  burned t o  3O,GOO- 

Mwd/metric ton.  

a t  P mximun l i n e a r  heat generation r a t e  of 1 2  Kw per foot ,  then from 

If the base temperature i s  70°F and the f u e l  has operated 

Eq. (5J7): 
p1 = ( 1  . 4 S H 3 0 ) ( 4 ~ . ~ 4 )  = 1808 psi. 

(520) 

From F i g .  5-13 a conservative value for f = 0.24 and, from Ekq, (5.16), 



Tile curve o f  P = 0.87911 (where T i s  i n  OR) i s  a l s o  drawn i n  F ig .  5.15. 
If it i s  poss ib le  t h a t  co r rec t ive  a c t i o n ,  such as a r t i f i c i a l  cool ing,  

could take  p lace  wi th in  10 h r  a f t e r  t h e  elements reach equi l ibr ium 

temperature following a n  acc ident ,  then  t h e  h o t t e s t  rods could reach 

1290°F without any ruptures .  The t i m e  t o  reach t h i s  equi l ibr ium tempera- 

tu re  following t h e  l o  ss-of -coolant acc iden t  can va ry  from seve ra l  hours 

t o  days, depending upon t h e  hea t  load,  hea t  capac i ty  of  t h e  cask, georne- 

t r y  o f  the f u e l ,  e t c .  

Figure 5.16 shows t h e  cladding temperature as  a f imct ion of t he  

decay hea t  of  t he  f u e l  element; it can be developed i n  a mamer d iscussed  

i n  S e c t ,  5 . h -  
temperatwe due t o  the  symrnetry of  t h e  elements i n  a cask.  This f i g u r e  

i n d i c a t e s  t h e  f r a c t i o n  o f  f u e l  rods i n  the  cask t h a t  a r e  above a given 

temperature.  

Many of  t h e  f u e l  rods i n  a cask w i l l  be a t  about t h e  same 

Figure 5.17 i s  a t y p i c a l  p l o t  o f  t h e  decay hea t  i n  a f u e l  shipping 

cask as a func t ion  o f  cool ing t ime. 

s t r u c t e d  f o r  d i f f e r e n t  f u e l  element burnups o r  d i f f e r e n t  f u e l  elements 

i f  subsequent f u e l  cyc les  s i g n i f i c a n t l y  change t h i s  curve.  

A family o f  curves coiild be  con- 

The maximum temperature o f  1290°F (determined previous ly)  when i m -  

posed on t h e  curve of  c ladding temperature v s  decay hea t  o f  t he  f u e l  e l e -  

ment (F ig .  5 .16) ,  makes it poss ib le  t o  determine the  maximum allowable 

fue l  element decay hea t  f o r  any number o f  f u e l  rod rup tu res .  An a n a l y s i s  

must be made a t  t h i s  po in t  t o  determine t h e  amount o f  a c t i v i t y  t h a t  would 

be re leased  from a given nurnber o f  ruptured f u e l  rods .  The ob jec t ive ,  o f  

course,  i s  t o  a s c e r t a i n  the  number o f  f u e l  rods  that can rupture  and s t i l l  

in su re  adherence t o  t h e  r e l ease  l i m i t s  i n  t he  r egu la t ions  i n  the  event 

t h a t  the  cask should l e a k .  The requirement of no f a i l u r e s  due t o  high 

temperatures i n d i c a t e s  a mximum decay hea t  load of  12 .s b~ (F ig .  5 . I  6 ) .  

This can be expressed i n  terms of a minimum cool ing time ( I 3 2  days) by 

using F ig .  5 . 1 7 .  I f  t h e  a c t i v i t y  r e l e a s e  a n a l y s i s  permit ted one- th i rd  

o f  t h e  fue l  rods t o  rup ture ,  t h e  decay hea t  could be allowed t o  increase  

t o  13.7 kw (according to Fig .  5 .16) ,  which i s  equiva len t  t o  105 days 

cool ing t i m e  (F ig .  5 . I  7 )  . 



The numbers presented in F i g s ,  5 . I  6 and 5 . I  ‘7 are a r b i t r a r y  and f o r  

i l l u s t r a t i v e  purposes only. 

1 I 1 
16 

c 14 
3 
X 

I- 
4 w 12 
I 

v 

?i 
0 
w 

IC 
a 

a 

I 

I I I 
1 I I 

80 100. 

T 

Fig .  5.17. Fuel  
Shutdown. 

Decay Heat as a Function o f  Time After Reactor 



160 

5.5 Fire  Analysis 

Ln the ana lys i s  of t rans ien t  heat t ransfer ,  many methods are avai l -  

able  for ob"taining approximate temperature d i s t r i b u t i o n s  through the use 

o f  mathematical models. 

cannot account f o r  a change o f  phase (which may be handled using f i n i t e  

difference so lu t ions)  t o  three-dimensional models t h a t  can account f o r  

melting ( f o r  which sophisticated computer codes have been w r i t t e n ) .  The 

following paragraphs present a br ie f  survey of methods t h a t  have yielded 

acceptable r e s u l t s  i n  analyzing the response of a cask to  a O.s-hr f i r e .  

The f i r e  w i l l  a f f e c t :  

( 2 )  the a b i l i t y  of t h e  cask to sh ie ld  the  contents during and a f t e r  the 

f i r e ,  ( 3 )  the  cask sea l ,  and ( L )  the m b i l i t y  of the radioactive m t e -  

r i a l  i n  the cask. An analysis  of the cask involved i n  the specif ied f i r e  

must aim a t  determining whether t'ne cask ca.11 maintain i t s  shielding and 

sealing c h a r a c t e r i s t i c s .  Certainly, c r i t i . c a l i t y  must also be considered 

since t h e  f u e l  or poison p l a t e s  could change posi t ion o r  fo rm;  however, 

i n  general, high temperatures w i l l  not c rea te  a c r i t i c a l i t y  problem, 

These range from one-dimensional models t h a t  

(1  ) the styength of materials o f  construction, 

In attempting to  assess  the damage t h a t  a f i r e  i s  capable o f  i n f l i c t -  

ing on a cask, many techniques have been employed. 

of these methods i s  t o  determine: 

the cask shield as a function o f  time, ( 2 )  the i-oaximum f u e l  element tem- 

perature,  and (3) wha-t portion of the  shteld,  i f  any melts. This infor-  

mation my then be used, i n  pr inc ip le ,  t o  estimate ( 1 )  both thermal and 

mechanical s t r e s s e s  t h a t  a r e  induced i n  the ou.ter and inner s h e l l s ,  ( 2 )  

the  a b i l i t y  o f  the cask s e a l  t o  be maintained, and (3)  the  anount of 

f i s s i o n  products t h a t  may escape from the f u e l  t o  the primary coolant. 

The object ive of most 

( 1  ) the  temperature p r o f i l e  through 

The techniques of analysis  w i l l  be sore.c.rhat affected by the pecu- 

1iari.ti.es of the  cask t o  be analyzed, 

i r rad ia ted  mater ia l  was t o  be transported i n  an  insidated con"&iner and 

a one-dimensional ana lys i s  w a s  considered adequate, graphical methods 

were employed t o  calculate  the temperature p r o f i l e  through the cask as a 

function of time. These methods a r e  of ten  r e l a t i v e l y  simple, rapid,  and 

accurate .  A complete descripti-on of the  theory and method may be found 

i n  r e f s .  14 and 18 .  

Several  instances i n  which un- 
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.5. 1 Graphical Method 

The graphical technique discussed here,  known as the  SchmLdt method, 

i s  r e l a t ive ly  simple even when the  boundary conditions become complicated, 

but i s  l imited t o  temperatures below the melting point o f  the  cask mate- 

r i a l s ,  

The one-dimensional, unsteady-state equation, 36 which appl ies  t o  heat 

conduction i n  a thick-walled cylinder,  is: 

where T i s  temperature, 8 i s  time, a i s  the thermal d i f fus iv i ty ,  and r is  

the  rad ius ,  This equation may be transformed in to  the  f i n i t e  difference 

FQ. (5.19): 

To use Eq.. (5'.19), t he  w a l l s  o f  the cylinder must be subdivided in to  con- 

cent r ic  cylinders o f  constant thickness ( a r ) ,  and the temperatiire a t  the 

points  between these in te rva ls  i s  determined as a function o f  time. 

In Fiq. (5.19) the superscr ipts  indicate  the number of time incre- 

ments ( A t 3 l s )  t h a t  have elapsed; the subscr ipts  ind ica te  the  posi t ion 

through the cylinder wall; and Aq = Ar/r. 

Assuming t h a t  t he  thermal d i f f u s i v i t y  o f  the  system r e m i n s  constant 

over t he  temperature range of i n t e re s t ,  and choosing A @  o r  rAq such t h a t  

then Eq. (5 .19)  becomes 

which indicates  t h a t  the temperature a t  posi t ion n and a t  time increment 

t c 1 i s  equal t o  the ari thmetic mean o f  the temperatures at posi t ion 

n + 1 and n - 1 measured a t  time increment t .  This,  therefore ,  permits 

a stepwise calculat ion of temperature a s  a function o f  time and tempera- 

t u r e  h is tory .  
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Example. - A conta iner ,  which i s  designed to t r a n s p o r t  un i r r ad ia t ed  

f i s s i le  material ( s e e  F ig .  5.18),  w a s  b u i l t  by i n s e r t i n g  Foamglas-::- insu- 

l a t i o n  in to  a 30-gal drum. 

that, had been preheated t o  1725°F and measuring both i n s i d e  and ou t s ide  

sur face  temperatures as a func t ion  o f  time The conta iner  w a s  removed 

from t h e  furnace at the  end o f  1 hr. 

It, w a s  f i r e  t e s t e d  by p lac ing  it i n t o  an  oven 

The temperature o f  t h e  inne r  sur face  w a s  ca l cu la t ed  by the  Schmidt 

method, using the  measured o u t e r  sur face  temperature as  input  data  and 

assuming t h a t  t h e r e  were no end e f f e c t s ,  

ORNL DWG.68-872 R I  

Fig .  5 .18.  Y-12 Foamglas Insu la ted  Shipping Container.  

The i n s u l a t i o n  w a s  divided in to  six 1 - i n . - th i ck  cy l inders ;  AT, cal-  

cu la ted  f o r  each cy l inde r  (see Table s . / i ) ,  w a s  used t o  g raph ica l ly  d e t e r -  

mine t h e  temperature as a func t ion  o f  time (see  F i g ,  5 . 1 9 ) .  

- -  
"Trademark o f  P i t t sburgh  Corning Co , 
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Table 5.4. Determination of AT 

Radius, I- (in.) 
Segment No. Inner Outer Plean Ar Ay = y 

1 5 6 5.5 0,182 

3 r( 8 7 .S 0.134 
4 8 9 8.5 0.118 

5 9 10 3.5 0.105 

6 10 11 10.5 0.095 

2 6 ‘7 6.5 0 0154 
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1 611. 

The thermal d i f f u s i v i t y ,  a ,  o f  Foamglas a t  room temperat,ure i s  given 

as  0.0175 ft,2/hr. The average temperature of t h e  i n s u l a t i o n  during t h e  

f i r e  i s  i n  t h e  range of lcOO"F, and. t h e  t h e r m 1  conduct iv i ty  i s  known t o  

increase  apprec iab ly  wi th  ternpei-a-ture. 

be be 0.0278 f-t2/hr.  

E q .  (5 .20) ,  gives  a convenient va1.u~ f o r  AB: 

For these  reasons,  a was assumed 

This  number seems reasonable  and, when used i n  

AB = (rA17)~/2a = [ 1/12] '/[ (2)(0.02'78)] 

= 0.125 hr = 7.5 min. 

Equation ( 5 . 2 1  ) i s  solved g raph ica l ly  i n  Fig, 5 . I  3 .  

The ca l cu la t ed  value of t h e  inner sur face  t,emperature as a func t ion  

of time i s  compared wi th  the  measured inner  and o u k r  sur face  temperatures 

i n  F i g .  5 . 3 0 .  

i s  reasonably good although t h e  maximum ca lcu la t ed  temperature i s  about 

60°F below the measured maximum. 

account, undoubtedly cont r ibu ted  t o  t h i s  e r r o r .  

have been obtained by- decreasing .t'ne thickness  o f  -the s l a b s  (Ar), thereby 

shortening B O  and/or t r e a t i n g  t h e  package as a sphere.  

Agreement between the ca l cu la t ed  and t h e  measured r e s u l t s  

End e f f e c t s ,  which were no t  -taken i n t o  

Greater  accu.racy could 
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Fig .  5.20. Time-Temperature Curves for t he  Foamglas Container.  



5.5.2 Analog Method 

An e l e c t r i c a l  analog network f o r  a thermal ana lys i s  of a lead- 

shielded cask under fire conditions has been reported by Bonilla and 

Strupczewski.23 

shield,  a f i r e  sh ie ld  s i tua ted  inside the  lead, and both convective and 

rad ia t ive  heat t r ans fe r  a t  the outer  surface.  Their network does no t  

allow for i n t e r n a l  (decay) heat generation although it would na t  be 

d i f f i c u l t  t o  add t o  the program. 

Their analysis  can account f o r  f i n s ,  an external  f i r e  

Bonilla and Strupczewski obtained some in t e re s t ing  a l b e i t  not sur- 

pris ing,  r e su l t s  i n  t h e i r  ana lys i s  o f  a lead-shielded MTR shipping cask. 

An external  asbestos f i r e  sh ie ld  grea t ly  reduced the  cask temperatures 

resu l t ing  f r o m  the f i r e  environment t o  the  point t h a t ,  i n  the absence of 

a high wind veloci ty ,  very l i t t l e  lead melted a f t e r  a I-hr exposure; f o r  

comparison, melting o f  the lead w a s  complete a f t e r  14 min without t he  

sh ie ld .  

The use of s t e e l  t h e r m 1  shields  placed i n  the shielding cavi ty  was 

a lso  considered. 

melt and flow away through drainage holes provided i n  the  lower pa r t  of 

the cask. 

remaining port ion o f  the  lead.  

gaps, complete melting o f  the  remaining Lead required about &' min. 

I n  a f i r e ,  the lead between these s t e e l  s h e l l s  would 

The resu l t ing  voids would cons t i tu te  a thermal shield f o r  t he  

Results indicated t h a t ,  with four such 

5.5.3 Energy Balance Method 

A n  empirical method for calculat ing the inner and outer  s h e l l  tempera- 

t u re s  and t h e  amount of lead that melts i n  the specif ied 30-min f i r e  has 

been proposed by Wachtell and Langhaar . 24 
balance deduced from both theory and experiment, is e s sen t i a l ly  a one- 

dimensional analysis;  however, it does account f o r  melting i n  cask corners. 

This method, based on a heat 

This method has several  advantages. F i r s t ,  it i s  r e l a t ive ly  simple 

and rapid and does not require a computer. 

the convection of molten lead; t ha t  i s ,  vertical temperature gradients, 

found i n  ac tua l  f i r e  t e s t s  of  lead-shielded casks, a r e  calculated.  

the  superheat o f  molten lead before a l l  the  lead has melted i s  recognized 

Second, it takes into account 

Third, 



and considered,  Ekperimental results have shown that during l ead  melt- 

ing,  t h e  molten poi-tion i s  considerably h o t t e r  than  621 OF, t h e  melting 

temperature o f  l ead .  

Disadvantages o f  t h e  method a r e  t h a t  t h e  temperature g rad ien t s  

across  t h e  s h i e l d  cannot be ca l cu la t ed  as a func t ion  of time (although 

ways o f  doing t h i s  are suggested i n  r e f .  24), and t h a t  f i n s  a r e  ignored 

wi th  regard t o  hea t  t r a n s f e r  from t h e  f i r e  t o  t h e  cask.  The l a t t e r  d i s -  

advantage will probably not  pose a severe  l f m i t a t i o n  i.f t h e  cask being 

analyzed i s  a t  l e a s t  of  moderate s i z e ;  .tests tend t o  confil-m t h i s  suppo- 

s i t i o n .  If  t h e  cask is  s m a l l ,  however, and t h e  f i n  he ight  comprises an 

appyeciable f r a c t i o n  of t h e  cask r ad ius  ( e . g . ,  > 25%), neglec t  o f  the 

f i n s  could be s i g n i f i c a n t .  I n  addi t ion ,  t h e  method does not  account f o r  

a i r  gaps, f i r e  sh i e lds ,  o r  o t h e r  f e a t u r e s  tinat would s i g n i f i c a n t l y  a f f e c t  

t h e  flow o f  h e a t .  Nevertheless,  i n  a number of cases ,  t h e  method can he 

u s e f u l .  

t i o n s  a r e  tabula ted  below. 

The phys ica l  cons tan ts  t h a t  may be assumed f o r  t hese  ca l cu la -  

S ta  i n l e  s s 
S t e e l  

k = thermal conductivi-ty,  1 1  
Btu/hr-ft- "F 

= s p e c i f i c  heat  capac i ty ,  0.125 
Btu/lb-"F 

p = dens i ty ,  l h / f t 3  485 
H = l a t e n t  hea t  of  fus ion ,  

Btu/lb 

= melting temperature,  OF 
TMP 

Carbon 
S t e e l  

2.5 

0.125 

LR 7 

In these  ca l cu la t ions ,  t i m e  i s  dj-vi-ded i n t o  t h r e e  

Sol id  
Lead 

18.6 

0.0325 

687 

10.55 

62 1 

Liquid 
I,ead 

9.3 

0.038 

6.5 7 

i n t e rva l s :  -Lo t o  

tl, t, t o  t,, and t, t o  t,; t;, i s  t h e  i n i t i a l  time a t  t h e  s ta r t  of %he 

f i r e  t e s t ,  t, i s  the  time requi red  t o  start  melting of t h e  l e a d  i n  Lhe 

cen te r  of a face away frorn the  corners  of t h e  cask, t, i s  the  t i m e  re- 

quired t o  complete the  meI.ti.ng of t he  lead ,  and t, i s  the  t i m e  requi red  

t o  attai.n a temperature higher  than .the melt ing po in t  of  l e a d .  

lowing s t e p s  are required i n  order  t o  es t imate  tJhe temperatures of  t h e  

ou te r  and inner  cask s h e l l s :  

The f o l -  



Symbo 1 Description Units 

weight o f  f i n s  t o t a l  lb 

weight of  f i n s  

wF 

w' F 
lb / f t2  of ou ter  s h e l l  

w weight o f  outer  s h e l l  t o t a l  l b  

W'  

'is weight of  inner s h e l l  t o t a l  I b  

" is 

wL 

w'L  

os 

weight of outer  s h e U  l b / f t 2  o f  outer  s h e l l  
os 

weight o f  inner s h e l l  

weight o f  lead total Lb 

weight o f  Lead 

lb / f t "  of outer  s h e l l  

l b / f t 2  of outer  s h e l l  

Step 2 

The average temperature of the cask under normal operating condi- 

t ions ,  To,  must be estimated (see Sect.  5 .3) .  

shown i n  Fig.  5 .21 ,  the average surface temperature of the cask, T 

between t i m e  to and t, may be obtained. 

drawn using ?3q. (5 .22 ) : 

From To and the curve 

s-1' 
The curve i n  Fig. 5.21 w a s  

T4 = To4 + 2TO3 (TMP - To) - 2TO2 (Tm - T o ) 2  
s -1 

where T 

a r e  i n  degrees Rankine. 

i s  the  melting-point temperature of the  lead.  A l l  temperatures NP 

Step 3 

With a fire temperature of  1475°F (1Y3S0R), a flame emissivity o f  

0.9, and a cask absorption coeff ic ient  of  0.0, as required by the regula- 

t ions ,  the average heat flux between the time to and t, is  given by: 

- 
Q1 = (1935;" x 0.9 - T4 )(0.1'73 x 10-")(0.8) Btu/hr-ft" , (5.23) S-1 

The value for zl may be found f r o m  the curve shown in Fig .  5.22 if T 

is known. 
S - 1  
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To =AVERAGE TEMPERATURE OFCASK UNDER N O R M A L  OPERATING CONDITIONS. " F  

Fig .  5 . 2 1 .  Average Surface Temperature o f  t h e  Cask Between Time 
to and t,, as a Function o f  t he  Average Temperature of t h e  Cask Under 
Normal Operating Conditions.  
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of  t he  Temperature o f  t he  Surface o f  the Cask. 



Step 4 

The average temperature o f  so l id  lead i n  t h e  cask a t  time t, i s  

given by: 

- 
Q1.D - m '  = 621 *L-, 

Where D = t he  thickness o f  the lead sh ie ld  i n  inches. 

can be determined from the nomograph shorn i n  Fig. 5.23. 
The value of  TLbl 

The average temperature o f  the inner s h e l l  of the cask a t  time t, 
my be calculated from: 

&ID 
2Lk T .  = 621 - 

1s-1 (5.25) 

can be determined from the nomograph shown i n  Fig. 5.24. is-1 
The value o f  T 

Step 6 

To determine a value f o r  t,, t h e  quant i ty  of  heat absorbed per 

square foot  of cask surface a t  time t, must be calculated.  

t u r e  of  the ou te r  s h e l l  and the f i n s  must f i rs t  be calculated by using 

Eqs. [5.26(a)]  and [ 5 , 2 6 ( b ) ] .  For t h e  outer  she l l ,  

The tempera- 

where x = the  thickness o f  t he  outer  s h e l l  in inches.  

For the f in s ,  

(5.26a) 

(5.26b) 

These temperatures may e a s i l y  be found f o r  carbon and s t a in l e s s  s t e e l  

materials o f  construction by re fer r ing  t o  Figs .  5-25 through 5.28. 

the nomographs, it was assumed tha t  k f o r  carbon s t e e l  = 25 Btu/hr-ft-"F, 

and t h a t  k fo r  s t a i n l e s s  s t e e l  = 11 Btu/hr-ft-"F, 

For 
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Fig .  5.24. IGormgraph t o  Determine the  
Average Temperature of  t he  Irii-ier Shell i n  a 
Cask as a Function o f  the Thickness of t he  
Lead and the  Heat Flux.  
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Time T, as a Function o f  t he  Outer S h e l l  
Thickness and t h e  Heat Flux. 
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Average Carbon S t e e l  F in  Tenperature a t  
Time t, as a F.unction of t h e  Outer S h e l l  
Thickness and t h e  Heat Flux.  



Assuming that, W' F, WAS, Wls, and W; are the weights o f  t he  f i n s ,  outer  

she l l ,  inner s h e l l ,  and lead per  square foot  of outer  s h e l l  a rea ,  respec- 

t i ve ly ,  t h e  t o t a l  heat absorbed per square foot  a t  time t,, %-,, i s  the 

sum of  t h a t  absorbed by the parts of  the  cask. That i s ,  

H' - - w&(Tos-l - To)0 .125  
0 s-1 

= W! ( T  - T,)0.125 is is-1 

= MC AT B t u / f t 2  
"$4 P 

Then t, - i s  given by: 

'ti;.-, t, = - ,  
Q1 
- 6 . 2 7 )  

Step 7 

The t o t a l  heat absorbed by the cask a t  time t, may be calculated 

from the  equation 

Step 8 

The amount o f  lead tha t  i s  m l t e n  a t  time t, my be estirrated by 

calculat ing the heat t h a t  would be absorbed by the cask i f  a l l  the  lead 

were so l id  and each component of the  cask w a s  a t  t he  same average tempera- 

tu re  as it w a s  i n  s t ep  6 .  



and W a r e  the  t o t a l  weights o f  t h e  f i n s ,  ou te r  
If 'F, " o s J  'is, z 

s h e l l ,  inner  s h e l l ,  and lend,  respec t ive ly ,  and i f  a l l  t h e  lead  were 

s o l i d ,  t he  t o t a l  hea t  absorbed by the  cask a t  t ime t,, 

t h e  sum of t h a t  absorbed by the  parts. 

would be HT-i  
That i s ,  

%_, TdFJF(TF-l - T0)0.125 

H - - wos(Tos-i -. To )O . I  25 
0 s-1 

Thus 

- p:. *%-,. - 0 1  1-1 - HT-, 

The weight of  t h e  molten l ead  can now be ca l cu la t ed  from Eq.  (5 .29) :  

(5.29) 
- *%-1 - 0.0325) + 10.55 

L - I J  
'ML- 7621 - T 

Note t h a t  if t h e  cask were an i n f i n i t e l y  long cy l inder  o r  a semi- inf in i te  

s l ab  t h e r e  would be no mol-ten lead  a t  t i m e  t, because t h e  onset  of  m e l t -  

ing would be uniform over t h e  sur face .  F i n i t e  cask geometries t h a t  have 

edges and corners  c r e a t e  s p o t s  f o r  lead  t o  s tar t  melting quickly.  

Stez, 9 

The superheat o f  t h e  molten l e a d  has been estimated t o  be 1 . ~ . 3 ~ F  per  

The average amount of superheat o f  t h e  v e r t i c a l  inch f o r  a 1475°F f i r e  I 

superheated lead ,  T i s ,  the re fo re ,  given by 
SUP 

where h = the  v e r t i c a l  dimension o f  t h e  cask in t he  f i r e ,  



Step 10 

The surface temperature of  t h e  cask a t  time t, is  given by: 

(5.31 1 
SUP 

T =  5-2 TF-i + 

The average temperature of the outer  shell of  t h e  cask a t  time t, is: 

- I + T  (5.32 1 
os-2 Tos-l  sup ’ 

T 

were computed i n  s tep  6.  
os-1 Values of TF-l and T 

s t ep  11 

The net  heat  flux absorbed f r o m  time t, t o  t, my be calculated 

from 

Q2 = 19354(0.9) - T i - 2 ]  (0.173 x 10-8)(0.8) . [ (5.33) 

Values for a, my be obtained from the  curve shown i n  Fig.  5 .29 .  

OSNL Dwq. 67-12791 R-l 

1 ... ... . . . . . . .- 

TS.2 :SURFACE TEMPERATURE OF CASK AT TIME t 2  , OF 

15 

Fig. 5 .29 .  Net Heat Flux Absorbed f r o m  Time t, to t, as a Function 
o f  the  Surface Temperature o f  t he  Cask. 



Step 12 

'The t o t a l  amount of heat absorbed by the  cask a t  time tz, IF- 

-- 

( i . e . ,  T-2 
when the lead i s  completely melted), may be calculated f r o m  the fallowing 

equations : 

%-2 = lJF(TF-2 - T,)0.125 

= w. (621 + T - T0)0.125 
is-2 7. S SUP 

II 

% = WL(621 - ~,)0.032s 

I - i S  = WL(Tsup)O .038 

Btu. H:' 
T-2 

Step 13 

A value f o r  T2 may now be computed. 

(5.34) 

t2 = t, + (t, - t l)  . (5.35) 

Step 114 

If time t, i s  greater  tnan 0.5 hr ,  then a l l  of the lead will not be 

melted a t  the end of the 30-min f i r e  t e s t .  

of the lead t h a t  i s  melted may be computed by using Eq, (5.36). 

In t h i k  event, the quantity 



Step 15 

The temperature of  the inner shell may be calculated by assuming 

tha t  the body o f  t h e  cask i s  a t  a uniform temperature. 

absorbed per  OF by the  s t e e l  and lead i n  the  cask up t o  t he  melting 

point of lead is given by: 

The total heat 

cs = 0.125 (w + Wi, + WF) . 6 . 3 7  1 os  

P- L = 0 . 0 3 2 5 ~ ~  . (5.38) 

The heat absorbed a t  the end o f  a 0.S-hr period = Is;' T - L  + (0.5 - t l ) a , A  . 
The maximum temperature o f  the inner she l l  a f t e r  the cask has a t ta ined  

a uniform temperature may then be calculated from: 

(S .40> 

Y" 

\I \, (where H++>? - - p." o r  Tm, whichever i s  less, provided tha t  HG,6 i s  3 H'"' 

computed without superheat ) . T-2 
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Nomenclature f o r  Ehergy Balance Method 

A = effect ive external surface area o f  cask, f-t" 

C = specific heat capacity, Btu/l.b-"F 
P 

D = thickness o f  lead shield,  i n ,  

Hf = l a t en t  heat of fusion, Btu/lb 

IiF-l = heat absorbed by cask f in s  a t  time tl, Btu 

= heat absorbed per square f o o t  o f  f i n  a t  time t,, Btu/ft,' 

HFWz, = heat absorbed by cask f i n s  a t  time tz, Btu 

is-i = heat absoi-bed by inner s h e l l  o f  cask a t  time tl, Btu 

= heat absorbed by inner s h e l l  of cask a t  time tl, B t u / f t 2  

= heat absorbed by inner s h e l l  o f  cask a t  time t,, Btu 

H 

H! 1s-1 

q- = heat absorbed by lead t o  i t s  melting point, Btu/"F 

heat absorbed by lead a t  time tl, Btu HL-1 = 

Hi-, = heat absorbed by lead a t  time tl ,  Btu/ft2 

qa, = heat absorbed by melting lead, Rtu 

= heat, absorbed by soli-d lead t o  melting, Bt,u 
IILiY 

I t s  = heat absorbed by superheating lead, Btu 

I I  

I1 ' 
H 

= heat absorbed by outer s h e l l  of cask a t  time tl, Btu 

= heat absorbed by o u t e r  s h e l l  o f  cask a t  time tl, Btu/ftz 

2 heat absorbed by outer s h e l l  of cask a t  time t,, Btu 

os -1  

os -1  

os-2 

J-36 I heat absorbed by s t e e l  on cask t o  the melting p i n t  of lead, S 
Btu/ "F 

q- = total heat capacity of the cask a t  tempera.ture below melting 

point of lead, Btu/"F 

%-1 = t o t a l  heat absorbed by the cask a t  time t,, Rtu/ft" 

= t o t a l  heat absorbed by the  cask a t  time tl, Btu H." 
T- 1 



%-, = t o t a l  heat t h a t  would be absorbed by the cask i f  all the  lead 

were so l id ,  Btu 

AHT 

F- 

d' 

= heat avai lable  for melting lead a t  t i m e  t,, Btu 

= t o t a l  heat  absorbed by the  cask a t  time t,, B t u  

= heat  absorbed a t  the end of 0.5 hr, Btu 

- L  

T-2 

0 . 5  

h = v e r t i c a l  dimension of cask in fire t e s t  calculat ions,  i n .  

k = thermal conductivity, Btu/hr-ft-°F 

M = weight of cask per un i t  area of outer  s h e l l  a rea ,  lb,/ft" 

- 
Q1. = average heat f l u x  between t i m e  t, and tl, Btu/hr-ft' 

QB = average heat flux between time t, and t,, Btu/hr-ft' 
- 

To = average temperature of cask under norm1 operating conditions, 

"F 

= average Tin temperature a t  time t,, "F 
TF-l 

Tis-i 

TF-, = average surface temperature of f i n s  a t  t,, "F 

= average temperature of inner s h e l l  o f  cask a t  time t,, "F 

= rmximum temperature o f  inner s h e l l  o f  cask a t  time t2, "E' 

= average temperature o f  s o l i d  lead a t  time tl, "F 

= melting temperature of lead 

= average temperature o f  ou ter  s h e l l  o f  cask a t  time tL, "F 

= average temperature o f  o u t e r  s h e l l  of cask a t  time t,, "F 

= average surface temperature o f  cask between time to and tl, "E? 

= surface temperature o f  cask a t  time t,, "E' 

= average temperature of superheated lead, or" the increase above 

m- 2 Tis 

TL-l 

621 "F = 1081 OR TMP 

O S - 1  
T 

T os-2 

3-7. 
T 

T 

T 

s-2 

SUP 
621°F a t  time t,, "F 

to = i n i t i a l  time a t  start o f  f i r e  tes t  

t, = time required t o  s t a r t  melting lead i n  center of  cask face, hr 
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t, = time required to  coniplete melting of lead, hr 

t, ::I time required t o  a r r ive  a t  a temperature higher than the 

melting point of lead, hr  

weight of f i n s ,  l b  'F '= 

W' = weight of fins per unit of outer shell area,  l b / f t2  
F 

AT = d i f f e ren t i a l  i n  temperature, "F 

W. 

Wis = weight of inner she l l  per un i t  of outer she l l  area,  lb / f tz  

-- weight of inner she l l ,  lb 1s 

= weight of nlolten lead at; time tl, lb 

= weight o f  melted lead a t  time t,, l b  

= weight of outer she l l ,  lb 

= weight of outer she l l  per unit of outer she l l  area,  lb / f tz  

%L- 1 

W 
MIA-z 

W 

W' 
o s  

O S  

x := t'nickness o f  the o u t w  she l l ,  i n ,  

p = densihy, lb / f t "  
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5.5.4 Use o f  Digi ta l  Computers i n  Studying the Thermal Transient 
Caused by a Fi re  

In recent years,  d i g i t a l  computer programs have been wri t ten t o  pro- 

vide solut ions t o  general  and specif ic  t rans ien t  heat t r ans fe r  problems. 

The development o f  such programs has been prompted by a va r i e ty  of reasons 

such as t o  analyze heat t r ans fe r  i n  three dimensions, t o  include tempera- 

ture-dependent material  propert ies ,  and to  incorporate time-dependent 

boundary conditions.  

sponse of a cask t o  the  hypothetical  f i r e  condition. 

Such codes a r e  valuable i n  studying the  thermal re -  

The programs have ranged from those which provide numerical evalua- 

t i o n  of closed-form ana ly t ica l  solutions o f  heat-transf e r  equations t o  

those which involve d i r ec t  mathematical models of  t h e  heat- t ransfer  phe- 

nomena, Some o f  the  charac te r i s t ics  o f  computer codes tha t  a re  useful 

i n  analyzing the  response o f  a cask t o  t h e  hypothetical  f i r e  a r e  dis-  

cussed below. 

Several codes have been developed t o  obtain a solut ion t o  the  d i f -  

f e r e n t i a l  heat t r ans fe r  equations w r i t t e n  i n  f i n i t e  difference form f o r  

spec i f ic  geometries. (An excel lent  reference on the  pr inciples  used i n  

f i n i t e  difference solut ions t o  problems i n  heat t ransfer  i s  the  text by 

G .  M.  Dusenberre.25) 

described in a paper by K .  H. ‘Tleith.27 Whereas both of these programs 

a r e  aimed a t  spec i f ic  cask geometries, each has l imi ta t ions  i n  i t s  capa- 

b i l i t y  for providing de ta i led  information regarding thermal behavior. 

HOwever, each program provides a reasonably de ta i led  analysis  o f  cask 

behavior and i s  economical from the standpoint of  computer memry and 

mchine time. 

Examples of  these are the  FACP“‘ code and the code 

A second major c l a s s  o f  computer codes i s  comprised o f  those based 

on f i n i t e  element representat ion,  

examples o f  general appl icat ion codes of t h i s  type; they a re  not intended 

f o r  use on any spec i f ic  geometry, 

i n  terms of physical  coordinates t h a t  describe material  boundaries; the 

codes allow the  various mte r i a lvo lumes  t o  be divided in to  a large num- 

ber of smaller regions, thus providing the f l e x i b i l i t y  t o  model a spec i f ic  

problem. 

The SIFT-TOSS2* and TRUPIP2” codes a re  

Both codes provide f o r  computer input 
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The heat- t ransfer  equations i n  these codes a r e  used t o  describe heat 

flow i n  a medium, including the a b i l i t y  of the  medium t o  r e t a i n  heat, and 

t o  r e s i s t  heat, t r a n s f e r  i n  each individual  small volume. For each small 

time increment, a heat balance i s  calculated f o r  each elemental- volume; 

t h j s  r e s u l t s  i n  a temperature change f o r  t h a t  volume from i t s  previous 

temperatme. Solutions t o  the problem of t ransient  heat t r a n s f e r  a r e  

car r ied  out i n  a manner c lose ly  resembling t h a t  used i.n codes based on 

f i n i t e  difference representation of the  equations, 2 6 )  '' 
Severe problems of storage and machine time may r e s u l t  f r o m  using 

a very f i n e l y  divided network since such networks reduce t h e  heat capaci- 

tance o f  the individual volume elements. The method. o f  solut ion used i n  

the SIFT-TOSS and TRWP codes requires t h a t  the time increment used i n  

each heat balance be d ic ta ted  by the smallest  heat capacitance used i n  

the network. Even with present-day high-speed d i g i t a l  computers it i s  

not u n c o m n  f o r  the execution time of some analyses t o  exceed t h e  r e a l  

-time being mdeled .  

Some cask geometries may be d i f f icu l t ;  to model using codes such as 

SiFT-TOSS and TRUMP; f o r  example, SIFT-TOSS does not have a mesh genera- 

t o r  f o r  spherical  coordinates. The incorporation o f  mesh generators 

in to  codes l i k e  SIFT-TOSS and TRUMP requires  r e l a t i v e l y  large banks, 

which, i n  tu rn ,  reduce the number of elements t h a t  may- be u t i l i z e d  i r i  a 

given problem. Ln order t h a t  a layger number of elemental volumes may 

be considered, the input generator (SIFT) o f  the SIFT-TOSS code m y  be 

bypassed and only the TOSS port ion used. 

In c e r t a i n  cases of analysis ,  advantages w i l l  be found i n  %uilding" 

a specialized program from a family of subroutines incorporated i n  prob- 

lem-oriented codes such as CTNLA-3G.30 

numerical routines f o r  solut ion by d i r e c t  o r  i t e r a t i v e  methods. 

allows an almost unlimited capabi l i ty  f o r  modeling thermal t rans ien t  prob- 

lems i n  terms o f  number o f  elements considered, and a l so  requires  vas t  

amounts o f  input to describe a given problem. 

This code cons is t s  o f  a s e r i e s  of 

This 



5.6 References 

1 .  

2 .  

3 .  

4* 

5. 

6. 

‘7 . 

8 .  

3. 

I O .  

Wafety Standards f o r  the Packaging o f  Radioactive and F i s s i l e  

Materials,  AEC Manual Chapter 0529 (August 1 966, revis ion)  . 
TIFT-D (Transient Heat Transfer Program) . Originator: The General 

Elec t r ic  Company. 

NETEIAN-I1 and I11 (Network Thermal Analyzer). Originator: Applied 

Physics Laboratory, Developer: Communications S a t e l l i t e  Corp.; 

modified by Bat te l le  Memorial Laboratory. 

CIlvDA (Chrysler Improved Numerical Differencing Analyzer), 

Originator:  Space Division of the  Chrysler Corporation. 

J .  S.  Watson, Heat Transfer from Spent Reactor Fuels During Shipping: 

A Proposed Method f o r  Predicting Temperature Distribution i n  Fuel 

Bundles and Comparison with Ekperimental Data, ORNL-31r.39 (May 27, 

1953) .  

E .  D ,  Arnold, PEK)E23E - A Code f o r  Calculating Beta and Gamma Activity 

and Spectra f o r  ‘“U Fission Products, ORNL-3921 (July 1966). 

R .  W.  Peel le ,  W .  Zobel, and T .  A .  Love, lWeasurement o f  the Spectrum 

of  Short-Lived Fission Product Decay Gamma Rays Emitted from a Ro- 

t a t i n g  Fuel Belt ,  lf 

Om-2081 (September 195%); W .  A.  Zobel and T .  A .  Love, “Time and 

Ehergy Spectra of Fiss ion Product Gamma Rzys P‘leasured a t  Short TL 1 mes 

After Uranium Sample I r rad ia t ions ,  i b id  . 
J ,  F . Perkins and R ,  W ,  King, “Energy Release from the  Decay o f  

Fission Products, ‘I Nucl. Sci .  Eng . - 3(  6), (June 1358) . 
J .  0 ,  Blomeke and M, F. Todd, Uranium-23i’ Fiss ion Product Production 

as a Function o f  Thermal F l u ,  I r rad ia t ion  Time, and Decay T i m e ,  

ORNL-2127 (Aug. 19,  1957) .  

Applied Nuclear Physics Division Annual Report, 

- 

C .  A .  Anderson, Jr., Fission Product Yields f r o m  Fast (-/MeV) Neutron 

Fission of Pu-239, LA-3384 (Dec. 30, 196s). 



1 1 .  

1 2 .  

13.  

1 I.! 6 

15. 

16. 

1 7 .  

18.  

1 9 .  

20. 

2 1 .  

2 2 .  

2 3 .  

2 4 .  

Yu A .  Zysin, A ,  A .  Lbov, and L , I. Sel'chenkov, Fission-Product 

Yields and Their Mass Dis t r ibu t ion  (Consifitants Bureau, New York, 

1964) ; Russian pub l i ca t ion  i n  1963. 

- 

S .  Katcoff, "Fission-Product Yields from Neutron-Induced Fiss ion ,  

Nucleonics - 18 (1 1 ), 201 (1960).  

L .  Burr is ,  J r . ,  and I.  G .  Di l lon,  Estimation of  F i s s ion  Product 

Spectra i n  Discharged Fuel  from Fas t  Reactors,  ANL-5742 ( J u l y  1957 ) , 

Frank Krei th ,  Pri-nciples o f  Heat, Transfer ,  pp,  21 7-22'7, I n t e r n a t i o n a l  

Textbook Co , , Scranton, P a , ,  1958, 

A .  I. U r o m  and S.  M .  Marco, In t roduct ion  t o  Heat Transfer ,  2d ed . ,  

p .  68, McGraw-Hill, New York, 1951. 

F .  I. Hand, I f Insulat ion on Clear Days a t  the  Time o f  S o l s t i c e s  and 

Equinoxes for Lat i tude  42°N," Heating and Ven t i l a t ion  - 47, 92 ( Jan .  

1950); - 51, 97 (Feb. 19%).  

H .  C .  H o t t e l ,  Mark's Engineering Handbook, 6 t h  ed. ,  p .  12-114,  1958. 

W. II .  McAdams, Heat Transmission, 3d e d . ,  pp.  172-78,  McG-raw-Hill 

New Yor-k, 1954. 

C .  S .  W i l l i a m s ,  J .  Opt, SOC. Am. - 51, 564 (May 1961) .  

M .  Jacob, Heat Transfer ,  Vol. 1 ,  p .  236, Wiley, New York, 1956. 

S .  C .  Sk i rv in ,  User's Manual f o r  the  TRTC Compiiter Program, General 

E l e c t r i c  Company, Cincinnat i ,  Ohio. 

J .  D. McLendon, "Tests of a Proposed Uranium Container,I' p .  151 i n  

Simmary Report o f  AEC Symposium on Packagjng and Regulatory Standards 

f o r  Shipping Radioactive Material he ld  i n  Germantown, Md. Dee. 3-5, 
1962, TID-7651 . 
C .  F .  Uonilla and A .  L. Strupczewski, NucL. S t r u c t .  Eng. 2 (I), 

40-47 ( 1  965). 

I_ 

- 

G .  P. Wachtell and J .  W. Langhaar, F i r e  Test and Thermal Behavior o f  

a 15-ton Lead-Shielded Cask, DP-I 070 (Oct . 1966) .  



25. 

26. 

27. 

28. 

23. 

30 .  

31 * 

32. 

33 4 

34. 

35 

36 * 

G .  M .  Dusenberre, Heat Transfer Calculations by F in i t e  Differences, 

Int,ernational Textbook Company, Scranton, Pa. ,  1361 . 
W. C , Corder, Bat te l le  Memrial Lnsti tute,  FACP Code, personal 

communication. 

K. H. Veith, l'Assessment o f  t h e  Thermal Behavior o f  I r radiated 

Fuel Casks,1f pp. 306-15' i n  2nd Internat ional  Symposium on Pack- 

aging and Transportation o f  Radioactive Materials,  Octobei- 14-1 8, 

1968, COW-681 001 . 
David Bagmell, SIFT: An IBM 7090 Code f o r  Computing Heat Distribu- 

t ions,  K-1528, Oak Ridge Gaseous Diffusion Plant;  David Brigwell, 

A .  L. Edwards, TRUMP: A Computer Program for Transient and Steady 

S ta t e  Temperature Distr ibut ions i n  Multi-Dimensional Systems, UCRL- 

14754, Rev. 1 (May 1 ,  1968) .  

D. R. Lewis, J .  D .  Gaski ,  and L .  R .  Thompson, CINDA-3G, TN-AP-67- 

287, CkrgTsler Corp. Space Division,(Oct. 20, 1967) ,  

G .  W ,  Parker, Oak Ridge National Laboratory, pr ivate  comimication; 

data based on G. B .  Matheney, G .  W. Parker, and D .  H .  Walker, "ORNL - 
LOFT Fiss ion Product Support Program," (May 1969) i n  Safety Investi-  

gations,  ed. by K. A .  Deitz, IDO-17258 

J ,  P .  Hoffman and D .  H.  Coplin, The Release of Fiss ion Gases from 

Uranium Dioxide Pe l le t  Fuel, GEAP-4536 (Sept . 1 364) . 
C .  R. Woods ( ed . ) ,  Properties of Zircaloy-4 Tubing, WAPD-TM-58S 

(Dec. 1966), p .  96. 

T .  Lyman, Metals Handbook, 8th ed., Vol ,  1, American Society f o r  

Metals, Metals Park, Ohio, 1961 . 
J ,  E.  I rv in  and A .  L .  Bement, The Nature and Engineering Significance 

o f  Radiation Damage t o  Various S ta in less  S tee l  Al loys ,  BW-SA-376 

(Apri l  1966) . 
H .  S .  Carslaw and J .  C .  Jaeger, Conduction of  Beat i n  Solids, 2nd 

ed, p .  188, Oxford, 1359. 



186 

37 .  C .  W. S m i t h ,  General  E lec ty i c  Company, pe r sona l  comrrunicati.on of 

Docket 70-1 220 avai l -able  from t h e  Public bcument  room, Washington, 

n, c .  

38. 0 .  11. Kleppey, Radiant Interchange Fac to r s  f o r  Heat Transfer  i n  

P a r a l l e l  b d  Arrays, ORNL-"€4-583 (Dec. 26, 1963),  



6, CRITICALITY 

6.1 Introduction 

The c r i t i c a l i t y  evaluation problem considered here i s  mre concerned 

with the  proof o f  adherence t o  the requirement o f  s u b c r i t i c a l i t y  than it 

i s  with the method o f  maintaining s u b c r i t i c a l i t y .  

economy and p rac t i ca l i t y ,  a shipper should be allowed t o  exercise any 

p rac t i ca l  controls  he prefers  i n  rendering a system subcr i t ica l ;  however, 

he should be prepared t o  present proof t h a t  h i s  controls  are  adequate. 

This chapter deals  with the determination of  the kinds of  evidence t h a t  

should be considered as acceptable i n  proving that a system conforms t o  

the c r i t i c a l i t y  requirements o f  ex is t ing  Federal regulat ions.  

In  the i n t e r e s t s  o f  

Federal regulations require every shipment of f i s s i l e  mater ia l  t o  

remain s u b c r i t i c a l  a t  a l l  times during normal t ranspor t ,  including load- 

ing and unloading, and under hypothetical  accident conditions leading t o  

the  most reac t ive  credible  (MRC) configuration. I n  complying with these 

regulations,  shippers of i r r ad ia t ed  reactor  fue l s  normally car ry  out  a 

c r i t i c a l i t y  evaluation o f  t h e i r  casks. 

Proof of system s u b c r i t i c a l i t y  can be s a t i s f a c t o r i l y  substantiated 

with an experiment using the f u e l  i n  question, arranged i n  the  PlXC con- 

f igura t ion  with respect to  the  shipping cask design. Many times, however, 

such information i s  not avai lable  and proof o f  s u b c r i t i c a l i t y  i s  based on 

ca lcu la t iona l  methods tha t  of ten  lead to a more conservative design. 

i s ,  therefore ,  highly desirable  t o  a t  l e a s t  have the cask concept i n  mind 

when c r i t i c a l  experiments a r e  being performed t o  obtain information on the 

physics o f  a new reactor  core. 

ments may be performed t o  predict  t he  degree of  s u b c r i t i c a l i t y  expected 

during shipment. 

It 

Under such conditions, addi t ional  experi- 

6.2 Methods of Prevention o f  C r i t i c a l i t y  

The c r i t i c a l i t y  o f  a system i s  of ten  discussed i n  terms o f  an effec-  

which i s  defined a s  the r a t i o  o f  the 
ke ff  9 

t i v e  mult ipl icat ion fac tor ,  

neutron production r a t e  t o  t he  neutron loss r a t e  i n  the system. The cask- 



f u e l  system must remain s u b c r i t i c a l  so that k 

This may be accomplished by the adjustment and cont ro l  of severa l  physi- 

c a l  and nuclear var iab les  t h a t  e i t h e r  l i m i t  the neutron production r a t e  

( i . e . ,  f i s s i o n  r a t e )  o r  provide an adequate neutron loss r a t e  (capture 

p lus  leakage) . 

i s  l e s s  than uni ty .  
eff 

These var iab les  a r e  : 

1 .  Mass of f i ss ionable  mater ia l  

2 ,  Degree of moderation 

3 .  I n t e r n a l  geometry d e t a i l s  

4. Paras i t ic  poison effect iveness  

5. Geometrical shape of assembly 

6.  Reflector effect iveness  

Control. o f  the first, three var iab les  can serve t o  l i m i t  the f i s s i o n  

r a t e  e i t h e r  by l imi t ing  the  amount of f i ss ionable  mater ia l  o r  by control-  

l i n g  t h e  energy and s p a t i a l  d i s t r i b u t i o n  of tile neutrons tha t  cause f i s -  

s ion.  

an adequate neutron loss r a t e  through neutron capture, while the second, 

f i f t h ,  and s i x t h  var iables  may be control led t o  achieve the  desi-red neu- 

t ron  leakage. 

The second, t h i r d ,  and fourth facbors may be adjusted t o  provide 

6 , 2  . I  Application 

The shipment of MTR-type f u e l  from the Swedish AER2 reactor  i s  an 

example of a shipment i n  which t h e  I ~ S S  of f i s s ionable  mater ia l  w a s  the 

primary c r i t i c a l i t y  control .  

t h a t ,  under optimum conditions, 2 . 5  kg of 23sU i n  MTR-type f u e l  elements 

would be required f o r  c r i t i c a l i t y .  

designed t o  hold nine f u e l  elements. 

contained 200 g of “‘U per element, or a t o t a l  of 1 .8 kg. 

tha t  t h i s  shipment was (and would remain) s u b c r i t i c a l  by v i r t u e  of a 

l imited mass. 

Previous experiments a t  Oak Ridge had shown 

The cask for the Swedish shipment w a s  

The p a r t i c u l a r  f u e l  t o  be shipped 

It w a s  c l e a r  

Fuel asserribly geometry i s  usual ly  f ixed by the  reac tor  design and 

i s  not a l t e r e d  f o r  shipment. 

times changed t o  permit a less reac t ive  separat ion.  In  t h i s  case, one 

However, spacing between assemblies i s  some- 



should note t h a t  t h e  c r i t i c a l  experiments t h a t  a re  performed during the 

reactor  design may no longer be applicable t o  the cask-fuel assembly sys- 

tem unless they a re  performed using the geometry i n  question. A l s o ,  i f  

the f u e l  assemblies a re  placed i n  an awkward or i r regular  geometry, the 

d i f f i cu l ty  of a c r i t i c a l i t y  evaluation is  increased. 

Moderation as a primary c r i t i c a l i t y  control  has been used f o r  the  

shipment o f  l a rge  quant i t ies  o f  We1; however, it has not of ten  been used 

i n  the  t ransportat ion o f  reactor  f u e l  elements. 

cu l ty  of guaranteeing the  presence o r  absence of a mdera tor  i n  the cask 

i n  the event of an accident ,  Since uranium enriched t o  l e s s  than approxi- 

mately 5% i n  ‘“U requires  a moderator to make t h e  system c r i t i c a l ,  l imited 

moderation could serve as a c r i t i c a l i t y  control  parameter when the absence 

of moderation is assured. 

This i s  due t o  the d i f f i -  

Reflector e f f ec t s  a r e  not  normally used t o  control  c r i t i c a l i t y  be- 

cause systems in casks are essen t i a l ly  f u l l y  re f lec ted .  

It i s  important t o  recognize tha t  ce r t a in  thicknesses o f  Lead, s t e e l ,  

uranium, and s imilar  shielding materials can be be t t e r  neutron r e f l ec to r s  

than water alone. 

Bat te l le  Northwest ,’2 Westinghouse 33 and OEWL indicate  t h a t ,  depending on 

the geometry o f  the f u e l  considered, an increase i n  k can occur when an 

i n f i n i t e  water r e f l ec to r  i s  replaced with a water-metal combination; f o r  

lead the  increase may be 0.06 or higher. 

Some calculat ions made by Ba t t e l l e  Memorial Inst i tute ,31 

eff  

The c r i t i c a l i t y  control  technique tha t  has p rac t i ca l  appl icat ion i n  

f u e l  t ransport  i s  the  use of fixed heterogeneous poisons. 

i n  r e a c t i v i t y  can be achieved with properly fabricated casks containing 

fixed neutron absorbers. 

Large reductions 

To be e f fec t ive  as the primary c r i t i c a l i t y  control  method, both the  

presence of the  poison and the  effectiveness o f  the  poison must be guaran- 

teed. Physical and chemical processes tha t  could a l t e r  these two require- 

ments include : 

1 .  Select ive leaching of the  poison by coolants 

2 .  Melting and red is t r ibu t ion  o f  the  poison 



3.  Mechanical f racture  and red is t r ibu t ion  of the poison 

4. Loss of nloderation near a thermal-neutron-absorbing poison 

5. Failure t o  i n s t a l l  the  poison 

The decay heat from i r rad ia ted  f u e l  o r  large heat loads imposed by 

a f i r e  could melt o r  soften a poison and change i t s  geomet,ry, thereby 

reducing i t s  effectiveness.  Such undesirable e f f ec t s  nius t be considered 

when using Bora1 (B,C pa r t i c l e s  i n  aluminum), which softens below 8OO0C, 

o r  boron-impregnated polyethylene, which melts a t  about 100 " C .  

In addi t ion to b r a l  and boron polyethylene, s t a in l e s s  s t e e l  clad 

boron, boron--stainless s t e e l  a l loy ,  s ta inless-s teel-clad cadmiurn, cadmiurn- 

copper, and cadmiurn-aluminum a l loy  have been used a s  poisons, 

two materials have excellent, heat t r ans fe r  propert ies .  

The l a t b e r  

An example o f  a cask i n  which a heterogeneous f ixed poison const i -  

tuted a primary method o f  c r i t i c a l i t y  control  is  shown i n  Fig,  2 . 3 7 .  

This cask i s  capable of transporting 21.1 MTR-type f u e l  elements i n  two 

v e r t i c a l l y  stacked baskets. 

of Ebral,  

The cen t r a l  divider  p l a t e s  a r e  constructed 

Ltquid poisons are  generally considered t o  be an unsat isfactory 

method for control l ing the c r i t i c a l i t y  o f  a f u e l  shipment because o f  the 

potent ia l  leakage problem tha t  accompanies a l l  shipments, 

6 .3  Normal Conditions of Transport 

The purpose o f  a c r i t i c a l i t y  analysis  of  a cask o r  t ransport  system 

operating under normal conditions i s  t o  ident i fy  the  nuclear character is-  

t i c s  t h a t  a r e  expected t o  preva i l  during shipment and, i n  addition, t o  

provide a point o f  departure f o r  es tabl ishing the  MRC condition t h a t  might 

reasonably r e s u l t  f r o m  an accident during t ransport  (see Sect ,  6.L). Nor- 
m a l  conditions of transport  a r e  presented i n  annex 1 o f  the AEC Manual, 

Chapter 0529, and involve such environmental conditions as heat, cold, 

pressure, vibrat ion,  water spray, impact, and compression. 

A s  part o f  the  normal conditions of  t ransport ,  t he  following f ac to r s  

should be considered: 



191 

1 ,  Any differences i n  normal t ransportat ion and normal loading 

o r  unloading environments; t h a t  i s ,  f u e l  i s  occasionally 

shipped dry but loaded or unloaded under water. 

2 .  The expected configuration o f  the fuel-poison system. Is 

breakage, crumbling, o r  movement o f  the f u e l ,  poisons, o r  

supporting s t r u c t u r a l  rnaterials expected as a r e s u l t  of 

the vibrat ion sustained during t ransportat ion and/or normal 

handling procedures? 

3. The f i s s i l e  c l a s s i f i ca t ion  f o r  the shipment should be estab- 

l i shed  i n  accordance with regulatory requirements. 2-4 

4. Dropping a f u e l  element during loading and unloading. 

5 ,  Changing the  degree o f  moderation by adding f u e l  t o ,  o r  

remving it from, a cask. 

6. Struc tura l  i r r e g u l a r i t i e s  and heterogeneities t h a t  w i l l  

e x i s t  i n  the inner cavi ty  and t h a t  cannot or w i l l  not  be 

rigorously represented i n  nuclear calculat ions and other 

forms o f  c r i t i c a l i t y  evidence. 

7 .  The ac tua l  r e f l ec to r  system during t ransportat ion;  f o r  

example, 1 i n .  o f  water surrounded by 1/2 i n ,  o f  s t e e l ,  

which is ,  i n  turn,  surrounded by 9 i n ,  of l ead .  

8 .  Expected corrosion in the inner cavi ty ,  which could r e s u l t  

i n  red is t r ibu t ion  o f  the f u e l  or poisons. 

6.3 . I  The Fresh Fuel Assumption 

A c r i t i c a l i t y  ana lys i s  should be made f o r  t he  case where the f u e l  i s  

i n  the  most react ive condition i n  which it w i l l  be transported.  

r eac t iv i ty  o f  the f u e l  system continuously decreases with exposure, which 

i s  of ten the  case, the  nuclear analysis  should be based on a cask contain- 

ing f r e sh  f u e l  unless there  i s  no chance tha t  a f u l l  load of f r e sh  f u e l  

might be s tored o r  shipped in t he  cask. 

f o r  the  commercial thermal power reactors  are w d e  on t h i s  bas i s  because, 

i n  addition, the physical form and the  composition o f  f resh  f u e l  a r e  

If the 

Usually, c r i t i c a l i t y  analyses 



known r a r e  accu ra t e ly  than those of  i r r a d i a t e d  f u e l .  

the  behavior of  a f r e s h  f u e l  system may a l r eady  be ava i l ab le  from core 

design experiments and c a l c u l a t i o n s .  Moreover, the f r e s h  f u e l  asswnp- 

t i o n  could be q u i t e  r e a l i s t i c  i f  it becomes necessary t o  rermve and s h i p  

low-burnup f u e l  unexpectedly because o f  mechanical or o t h e r  problems. 

If t h e  r e a c t i v i t y  of t he  fue l  s y s t e m  inc reases  a t  any t i m e  during i r r a d i a -  

t i o n ,  however, then t h e  e f f e c t  of burnup or r e a c t i v i t y  should be considered, 

and t h e  f r e s h  f u e l  assumption may no t  be appropr i a t e .  

Also, evidence of  

6.3.2 Rurnup Ef fec t s  on Reac t iv i ty  

The shipper  may want t o  consider  f u e l  burnup so t n a t  he can sh ip  

more f u e l  i n  a given cask.  If so ,  it w i l l  be necessary t o  determine the  

exposure at, which the f u e l  system i s  most r e a c t i v e  under normal shippi-ng 

condi t ions  s ince  t h e  c r i t i c a l i t y  a n a l y s i s  may have t o  be based on t h i s  

condi t ion .  I n  any case, a minimum burnup must be determined so t h a t  a 

conservat ive value o f  k may be e s t ab l i shed .  
e f f  

Because seve ra l  key parameters are a func t ion  o f  exposure, and be- 

cause the  f u e l  exposure w i l l  probably n o t  be uniform, t h e  r e a c t i v i t y  of  

i r r a d i a t e d  f u e l  i s  more d i f f i c u l t  t o  p r e d i c t  than t h e  r e a c t i v i t y  of fresh 

f u e l .  

c a l i t y  safety a n a l y s i s  f o r  i r r a d i a t e d  f u e l :  

The following items must be considered when developing a c r i t i -  

1 . Credi t  t o  be taken f o r  burnup of t h e  f i s s i o n a b l e  mat,erial. 

2 .  Buildup of plutonium o r  233U. 

3 .  Depletion o f  burnable poisons I )  

4. Credit, t o  he taken f o r  poisoning due t o  f i s s i o n  products ,  

The main problem i n  accounting f o r  t h e  burnup of 235U i.s t h a t  the  

gradual. c o n t r o l  rod withdrawal and, i n  some cases ,  changes i n  moderator 

d e n s i t y  during exposu-re make .the a x i a l  v a r i a t i o n  of neutron flux 

t he re fo re  burnup) d i f f i c u l t  t o  p r e d i c t .  i n  a region o f  low thermal and 

high resoname,  f l u x ,  it i s  possi-ble t o  generate  mre f u e l  than i s  con- 

simed. 

buildup o f  239Pu or 23aU must be considered.  

(and 

If credj-t  i s  taken for t he  burnup of  f i s s i l e  235U a toms ,  then the  

In most ins tances ,  however, 



f i s s i o n  product production (which i s  usually not c red i ted)  w i l l  negate 

the  e f f e c t s  o f  increased r eac t iv i ty  due t o  buildup o f  239Pu or 233U. 

It i s  recommended tha t ,  unless acceptable evidence i s  provided o f  

the isotopic  abundance o f  plutonium i n  the fue l ,  a11 plutonium be con- 

sidered as 239fi , 

plutonium i s  f issi le F’LI,~ It i s  important t ha t  statements o f  f i s s i l e  

concentration i n  i r r ad ia t ed  f u e l  be supported by acceptable evidence, 

including the associated uncertainty of f i s s i l e  content and t h e  bas i s  

f o r  determining tha t  uncertainty.  

In a typ ica l  FWR reactor ,  about 70% of the  t o t a l  

P r i o r  t o  1 ?67, c r e d i t  for t he  burnup o f  235U was claimed i n  only one 

shipment of i r r ad ia t ed  fue l .  This shipment was an in-plant t r ans fe r  o f  

Yankee reactor  f u e l ,  Assuming no burnup, the  calculated keff was about 
.~ 

0.9’7 f o r  ten oxide f u e l  elements enriched t o  4 , l$  i n  235U, The calcu- 

l a t ed  keff for the  fuel ,  assuming a burnup o f  12,000 Mwd/metric ton U, 

w a s  0.80. 

Many t h e r m 1  power reactors  use a burnable poison f o r  power f l a t t e n -  

ing and r e a c t i v i t y  l i fe t ime cont ro l .  

than the f u e l ,  resu l t ing  i n  an increased r e a c t i v i t y  with burnup. 

increase i n  r e a c t i v i t y  may continue u n t i l  most o f  t h e  burnable poison i s  

depleted; then the r eac t iv i ty  w i l l  begin t o  decrease due t o  f u e l  burnup. 

Again, t he  f u e l  system may reach i t s  mximum reac t iv i ty  some time a f t e r  

reactor  s ta r tup ,  depending on the  type, amount, and locat ion o f  any burn- 

able poisons i n  the system. Init ially,  the r e a c t i v i t y  worth o f  burnable 

poison i n  power reac tors  is  usually several  percent and m y  be as large 

as Akeff = 0.1. 

o f  exposure may be d i f f i c u l t  because o f  nonuniform a x i a l  burnup as wel l  

a s  a changing flux depression i n  the poison. The problem o f  pi-edicting 

burnable poison depletion can usually be sidestepped since i t  i s  normally 

conservative f o r  a c r i t i c a l i t y  calculat ion t o  neglect any poisoning ef -  

f e c t s  due t o  burnable poisons. The rapid burnout of most poisons of ten  

leaves only a small poisoning e f f ec t  a f t e r  any appreciable burnup; thus,  

only a minor penalty i n  permissible payload m y  be incurred by neglecting 

it. 

Often, t he  poison burns out f a s t e r  

This 

Calculation o f  the poison r e a c t i v i t y  worth a s  a function 



In o rde r  t o  support  a claim of f i s s i o n  product poison worth, some 

v a l i d  t reatment  of  f i s s i o n  product poisoning i s  needed. 

periments have been performed for coinparison wi th  c a l c u l a t i o n s ,  

one such comparison6 i.ndi.cated t h a t  an  unce r t a in ty  o f  a t  l eas t  10% can 

be expected i n  the ca lcu la t ed  poisoning e f f e c t s  o f  f i s s i o n  products ,  

Very few ex- 

However, 

The e f f e c t  o f  fri.ssi.on product poisoning has been t r e a t e d  i n  d e t a i l  

a t  Oak Kdge Nat ional  Laborat,oiy.5 

f i ss i .on  product worth i n  i r r a d i a t e d  f u e l s  i s  estimated7 t o  be less  than  

Is%, using t h e  Long Fission-Product Treatment, (LFPT) . 
s u f f i c i e n t l y  detailed and e s t ab l i shed  t o  permit i t s  use as a v a l i d a t i n g  

c a l c u l a t i o n a l  method. 

vorably with LF'PT ( o r  some o t h e r  similarly e s t ab l i shed  t rea tment ) ,  i t  

should be considered a s a f e  engineering p r a c t i c e  t o  a l low credii;  f o r  

about two-thirds  of t h e  ca l cu la t ed  f i s s i o n  product r e a c t i v i t y  worth i n  

t h e  shipment o f  i r r a d i a t e d  fuel. e 

The unce r t a in ty  i n  t h e  ca l cu la t ed  

This t reatment  i s  

If a given f i s s i o n  prod.uct t reatment  compares fa- 

b c e p t  f o r  '35Xe,  about 95% of t h e  f i ss j -on  product poisoning i n  t h e r -  

mal r e a c t o r s  r e s u l t s  from f i s s i o n  products  wi th  h a l f - l i v e s  g r e a t e r  than  

about two y e a r s ,  Excluding those f i s s i o n  products  wi th  h a l f - l i v e s  of  

l e s s  than two years ,  a typical ,  f i s s i o n  product worth i n  a pressur ized  

water r eac to r  i s  about 4 t o  5% Ak f o r  a burnup of 10 t o  12,000 Mwd/metric 

ton U; f o r  a bw-nup of k0,OOO t o  60,000 l%d/metric ton  U, the worth i s  

about 6 t o  7% Ak. 

tends t o  saturate a t  very  high burnups, and the  poison worth o f  long- 

l i v e d  f i -ss ion products  i s  not  expected to exceed about 8% i n  any p r a c t i -  

c a l  power reactor. 

The f r a c t i o n a l  neutron absorp t ion  by f i s s i o n  products  

6.4 The Most, Reactive Credible Condition of Transport  

The most r e s t r i - c t i v e  c r i t i c a l i t y  requirement f o r  nuc lear  s a f e t y  i n  

shipping i.s t h a t  t h e  shipping contaimer m u s t  remain s u b c r i t i c a l  in i t s  

most r e a c t i v e  c red ib l e  conf igura t ion  ( M n C  condi t ion) ;  such a configura- 

t i o n  could r e s u l t  from a t r anspor t a t ion  acc iden t .  

c a l  s equen t i a l  acc idents  which could a f f e c t  cask r e a c t i v i t y  i s  descr ibed 

i n  the  r egu la t ions  and c o n s i s t s  e s s e n t i a l l y  o f :  ( I )  a 30-ft f r e e  f a l l  onto 

A s e r i e s  of hypothet i -  



a so l id ,  unyielding surface,  ( 2 )  a 40-in. drop onto a 6-in.-diam piston, 

(3)  exposure t o  a 1475°F f i p e  f o r  1/2-hr, and (4) immersion i n  3 f t  of 

water f o r  a t  l e a s t  e ight  hours. 

Some typ ica l  problems tha t  must be considered when determining the  

condition o f  a cask a f t e r  the  accident s e r i e s  a re  given below. 

1 .  

2 .  

3 .  

k 

5. 

6. 

The fue l ,  f ixed poisons, and moderators may become broken 

and red is t r ibu ted  into a more reac t ive  configuration. This 

i s  pa r t i cu la r ly  important f o r  i r r ad ia t ed  ceramic fue l s  with 

long expsoures and b r i t t l e  cladding. 

Optimum moderation and/or r e f l ec t ion  by water may occur in-  

s ide  and outs ide the  cask as a r e s u l t  o f  impact damage 

followed by immersion o r  loss o f  coolant. 

Loss of  coolant may cause melting o f  f u e l  and/or nuclear 

poisons, resu l t ing  i n  red is t r ibu t ion  in to  a more reac t ive  

configuration, 

and f ixed neutron absorbers with low melting temperatures 

a re  cases i n  poin t .  

I r rad ia ted  fue l s  with intense gamma heating 

Unless spec i f i ca l ly  designed t o  prevent such an occurrence, 

inleakage o f  water a f t e r  impact may r e s u l t  i n  a violent  reac- 

t i o n  with Na- o r  NaK-bonded fue l s ,  causing red is t r ibu t ion  o f  

the  f u e l  in to  a more reac t ive  configuration. 

Under ce r t a in  conditions, radioactive decay may increase reac- 

t i v i t y  while t he  f u e l  i s  i n  the cask. For example, i n  the  case 

of  thorium-bearing fue l s ,  the decay o f  233Pa t o  233U can in-  

crease the inventory o f  f iss ionable  mater ia l .  

Nuclear in te rac t ion  with f i s s i le  mater ia l  i n  neighboring casks 

should be considered, 

6 .s C r i t i c a l i t y  Evidence 

When the  normal and MRC conditions have been ident i f ied  far a par- 

t i c u l a r  f u e l  shipment, various types of c r i t i c a l i t y  evidence my be com- 

p i l ed .  If r e l a t i v e l y  small quant i t ies  o f  f i s s i l e  material  are involved, 
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it  pay only  be necessary t o  provide assurance t h a t  c e r t a i n  exemption 

l i m i t s  on t h e  fuel  system parameters w i l l  n o t  be exceeded. 

shipments wi th  h ighly  heterogeneous fuel-poison geometries and composi- 

t i o n s ,  experimental  evidence and wel l -va l ida ted  c a l c u l a t i o n a l  evidence 

may be necessary.  The purpose of t h i s  s ec t ion  i s  t o  p o i n t  o u t  the kinds 

of evidence t h a t  should be considered acceptab1.e i n  determining whether, 

and t o  what degree, a system w i l l  remain s u b c r i t i c a l  i n  t he  normal and 

MRC condi t ions;  emphasis i s  on the  a p p l i c a t i o n  to low-enriched water- 

moderated power r e a c t o r  f u e l s .  

For l a r g e r  

6.5 . I  Safe L i m i t s  

Many shipments of f i s s i l e  m t e r i a l  w i l l  be made which exceed the  

exempt q u a n t i t i e s  and yet, a r e  small enough not  t o  pose a se r ious  c r i t i -  

c a l i t y  problem. Parametric limits below which c r i t i c a l i t y  cannot OCCUT 

i n  s i n g l e  units are considered i n  va r ious  nuclear  safety guides.7-"" 

Some of  t hese  parametric limits, rmdified by a s a f e t y  f a c t o r ,  a r e  given 

i n  Table 6.1 . 

Table 6.1 , Parametric L i m i t s  f o r  Cr i t ica l i ty  
of  Single  Unitsa 

L i m i t  
Parameter 2 3 5 ~  23apu 

Mass, g 700 500 

Cylinder diameter,  ern 13.5 1 2 . 5  

Slab th ickness ,  em 4.38 3.6 

Volume, l i t e r s  5.8 5 *s 
Concentration, g / l i t e r  11 .o 7 .O 

'"u enrichment, w t  % 1 .o I 

~ .____I_--__ 

a 
This assumes t h a t  t h e  uni t  i s  i s o l a t e d  and, t he re fo re ,  has no 

i n t e r a c t i o n  wi th  o the r  f i s s i le  mat ,er ia ls .  



If any one o f  t he  limits i n  Table 6.1 and the conditions fo r  which 

it appl ies  a r e  minta ined ,  the  system cannot become c r i t i c a l  under the 

considered accident conditions. The l i m i t s  a r e  for uniform aqueous solu- 

t ions  and do not apply t o  heterogeneous systems. In addi t ion,  the l i m i t s  

a r e  only applicable when the mult ipl icat ion factor  o f  the system i n  the  

presence o f  neighboring re f lec tors ,  f iss ionable  materials,  and f iss ionable  

sources i n  l e s s  than, or equal t o ,  t he  mult ipl icat ion fac tor  o f  the system 

with an i n f i n i t e  r e f l ec to r  o f  water. 

A safe ty  standard tha t  w i l l  specify s ingle  parameter limits f o r  use 

i n  maintaining the  nuclear sa fe ty  of f iss ionable  materials i s  now i n  pub- 

l ica t ion .13  

dard ASA N6.1-1964 and i s  being prepared by Subcommittee ANS-8 of  the 

Standards Cormnittee of the  American Nuclear Society. 

of the  standard a re  expected t o  be close t o  t h e  values given i n  Table 6.1 

and, i n  addi t ion,  a r e  more comprehensive. 

This document is  intended as a revis ion o f  the  American Stan- 

The parameter limits 

6 ' 5 . 2  Calculational Evidence 

The purpose of t h i s  Guide i s  not t o  require t h a t  cer ta in  evidence be 

developed using spec i f ic  codes and cross  sections;  it i s  assumed t ha t  com- 

petent  personnel u t i l i z i n g  t h e i r  own machines, codes, and cross sections 

can produce r e l i a b l e  evidence a s  t o  the  keff o f  the system i n  question. 

However, it i s  necessary to provide a framework by which the AEC can assess  

For example, an the  confidence l e v e l  expected i n  the calculat ion o f  k 

acceptable calculat ion of the  keff o f  a f i s s i l e  assembly should have, as a 

supporting bas is ,  a t  l e a s t  one favorable comparison of the ca lcu la t iona l  

method with an experiment having a fuel-moderator - poison-reflector system 

similar  t o  the  given assembly i n  the MRC condition. If heterogeneous neu- 

t ron absorbers a r e  present i n  t h e  system to be shipped, it would be desir-  

able  t h a t  the  calculat ion be compared with an experiment having the  same 

poison material  (including basket mater ia l  such as copper, e t c . )  and ap- 

proximte ly  the same poison concentration, geometry, and associated neutron 

energy spectrum a s  the  system i n  the  MRC condition. If the presence of 

neighboring f i ss i le  assemblies i s  included i n  the  MRC condition, the 

calculational-experimental comparison should be made on a c r i t i c a l  

e f f '  
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experiment having Lhe same interspersed rrloderator and approxirrately the 

same s i ze  and edge-to-edge spacing o f  individual assemblies, 

If s imilar  experimental evidence does not ex i s t ,  two o r  more experi- 

ments should be calculated t o  bracket the parameters o f  i n t e r e s t  over a 

f a i r l y  narrow range. 

es tab l i sh  a reasonable parameter range. 

moderated power reac*mrs, the f u e l  rod diameter, water-to-uranium volume 

r a t i o ,  volume fract ion o f  webbing, and 235U enrichment o f  the  assembly o f  

i n t e r e s t  should not d i f f e r  by m r e  than about 20% from the corresponding 

parameters i n  the val idat ing c r i t i c a l  experiment. 

A cer ta in  amunt  of judgment w i l l  be required t o  

A s  a rough estimate f o r  water- 

The supporting calculat ional  comparisons should use the same assump- 

Lions, computer codes, homogenization schemes, input data preparation, 

neutron energy group s t ruc ture ,  and basic cross sect ions as the calcula- 

t i on  tha t  i s  t o  provide acceptable evidence o f  s u b c r i t i c a l i t y  during 

t rampor ta t ion .  The sophistication of  the calculat ional  technique i s  

not overly important i n  es tabl ishing the r e l i a b i l i t y  and accuracy o f  

the method over a narrow range o f  parameters e 

are  somewhat of an ar t ,  and it i s  possible fo r  a two-group diffusion 

calculat ion of  k 

port  calculat ion,  pa r t i cu la r ly  i f  t h e  parameters o f  the diffusion calcu- 

l a t ion  happen to be ta i lored  t o  the spec i f ic  probleiii a t  hand. It i s  

important, however, t ha t  any ca lcu la t iona l  technique be validated by 

comparison with experimental r e su l t s  f o r  the parameter range o f  i n t e r e s t .  

,4s an a id  i n  finding re la ted  c r i t i c a l  experiment data f o r  use i n  the 

ca l ibra t ion  o f  calculat ional  techniques, a bibliography o f  selected ref-  

erences has been prepared and i s  presented i n  the  Appendix. Each re fer -  

ence i s  accompanied by a b r i e f  description o f  the  nuclear system(s) 

invest igated,  

C r i t i c a l i t y  calculations 

t o  give be t t e r  r e s u l t s  than a ten-group S,, t rans-  
ef f 

Regardless o f  the form and quality o f  calculat ional  evidence, an 

e f f  
e r ror  analysis  tha t  indicates  the  uncertainty i n  the calculated k 

should be performed. Generally, a calculat ion w i l l  have greater  accuracy 

i f  the system being described i s  j u s t  c r i t i c a l ;  therefore,  the d e t a i l  o f  

the error analysis  should be commensurate with the proximity o f  the nu- 

c l ea r  system t o  the c r i t i c a l  condition. 



Methods o f  calculat ion have been fa i r ly  wel l  established for i so la ted  

f issi le assemblies similar t o  water-moderated thermal power reac tors .  '* J l5 

Experience has shown16-18 tha t ,  with the exercise o f  reasonable care,  it 

i s  possible t o  pred ic t  keff i n  thermal reactors  within about 1 t o  2%. 

contrast ,  accurate ca lcu la t iona l  methods and nuclear cross  sect ion data 

have not ye t  been generally established f o r  unmoderated systems. 

comparison o f  calculat ions f o r  a d i l u t e  plutonium-fueled f a s t  c r i t i c a l  

assembly o f  pa r t i cu la r ly  simple design indicated" t h a t  calculated values 

o f  keff deviated from experimental values over the range from -3.6% t o  

+2.&. 

r i e s  and by pr ivate  industry.  

i n  view o f  t he  general lack o f  experience i n  calculat ions f o r  wmmderated 

assemblies, we recommend tha t  spec ia l  a t t en t ion  be given t o  the calcula- 

t i ona l  techniques f o r  unmderated assemblies t o  ensure tha t  the r e s u l t s  

a r e  reasonably conservative. 

In 

A recent 

The calculat ions were submitted by domestic and foreign laborato- 

On the basis o f  t he  above comparison, and 

When several  casks a r e  t o  be transported i n  c lose proximity t o  each 

other ,  the  calculat ion of in te rac t ion  e f f e c t s  between neighboring assem- 

b l i e s  i s  of ten necessary. The multiple-assembly analysis  is  usually the  

source o f  a grea te r  uncertainty i n  the  calculated k than f o r  a s ingle  

i so la ted  assembly. 

t r e a t  the in te rac t ion  e f f ec t  have been developed. 

most extensively i n  the  United States  a r e  the  densi ty  analog method,"' 

the  so l id  angle ( in te rac t ion  po ten t i a l )  method,z'~22 and the  Monte Carlo 

method,23 

points of accuracy and capabi l i ty  f o r  representing geometricdlly compli- 

cated configurations; several  computer codes employing the  technique a r e  

avai lable  for c r i t i c a l i t y  calculat ions.  24-26 

rience with t h i s  method i n  the  United S t x ~ t e s , ~ ~ , ~ ~  indicates  t h a t  k 

be predicted with an uncertainty o f  about 2%, it i s  being u t i l i z e d  t o  a 

much greater  extent than ever before.  

e f f  

The three methods used 

Several ca lcu la t iona l  methods t h a t  may be used t o  

The Monte Carlo method i s  superior t o  t he  others  f r o m  the  stand- 

Although only l imited expe- 

may eff  

Considerable experience has been accumulated with the so l id  angle and 

ef f  
density analog methods, both of  which give conservative estimates of  k 

when properly used. Comparisons with data obtained by experiment"' indi-  

cate t h a t  t he  c r i t i c a l i t y  f ac to r  o f  a regular air-spaced array may be 
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ca lcu la t ed  w i t h  an  accuracy of  about 5 t o  10% using t h e  s o l i d  angle  method. 

Results o f  t h e  d e n s i t y  analog method have been v e r i f i e d  wi th  experimental  

r e s u l t s ;  and, because of  i t s  s impl i c i ty ,  v e r s a t i l i t y ,  and accuracy, t h i s  

method has  been recommended by Browngg as t h e  mst app l i cab le  one f o r  

Lransportatiori problems. It may a l s o  be used to extend the  information 

a l r eady  obtained f r o m  Monte Carlo c a l c u l a t i o n s  . 
The above-mentioned methods f o r  t r e a t i n g  i n t e r a c t i o n  e f f e c t s  have 

been evaluated i n  experiments using r egu la r  a i r -spaced a r r a y s  o f  similar 

u n i t s  containing h ighly  e r r iched  f u e l .  U n t i l  mDre experience i s  obtained,  

none o f  t he  methods should be considered as proved f o r  app l i ca t ion  t o  low- 

enriched arrays having an  in t e r spe r sed  moderator ( p a r t i c u l a r l y  a hydroge- 

nous ma te r i a l ) ;  two d i f f e r e n t  methods might be used f o r  such a n  app l i ca -  

t i o n ,  one as a check on the o t h e r ,  

In  summary, t h e  fol lowing guide l ine  i s  recommended f o r  evaluat ing t h e  

acceptabi1lt)y of c a l c u l a t i o n a l  evidence. If a c a l c u l a t i o n a l  technique has 

been properly va l ida t ed  by comparj.son wi ti? c r i t i c a l  experiments having a 

geometry and composition similar to t h e  assembly under considerat ion,  a 

calculat,i.on, using thj.s technique, f o r  t h e  system i n  t i e  MRC condi t ion 

should genera l ly  be considered as s u f f i c i e n t  evidence of  s u b c r i t i c a l i t y  for 

t he  sa fe  t r anspor t  of low-enriched, well-moderated power r e a c t o r  f u e l s  pro- 

vi-ded the  system has a k below about  0.95. (This  i s  not  a firm l i m i t  
eff 

and should be a func t ion  o f  t h e  judgment o f  t h e  a n a l y s t . )  

proximate l e v e l  o f  r e a c t i v i t y ,  ca l c i i l a t iona l  evidence should be supple- 

mented wi th  soine type o f  experimental  evidence. 

moderated systems, supplemental experimental  evidence may be des i r ab le  

even i f  t h e  ca l cu la t ion  ind ica t e s  a system k 

o f  t h e  g r e a t e r  change i n  k 

t i o n  of t h e  system. 

Above t h i s  ap- 

For high-enriched or un- 

of l e s s  than 0.95 because 
e f f  

wi th  small changes i n  s i z e ,  mass, o r  modera- 
eff 

6 .s .3 Experimental Evidence 

Two genera l  types o f  experimental  evidence are considered below: 

( 1 )  r e l a t e d  evidence, which inc ludes  r e l evan t  da t a  from s a f e t y  guides and 

a l s o  c r i t i c a l  experiments on t h e  given f u e l  under condi t ions  d i f f e r e n t  

from those expected i n  t r anspor t ,  and ( 2 )  d i r e c t  evidence, which j-ncludes 
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r e a c t i v i t y  determinations fo r  loaded casks i n  the normal and/or MRC 

conditions,  

could be considered excel lent  d i r e c t  evidence, such experiments a re  

r a re ly  performed i n  a shipping cask- environment and a r e  not included 

i n  t h i s  discussion. 

While c r i t i c a l  experiments with i r r ad ia t ed  f u e l  elements 

Related Evidence: C r i t i c a l  Ehmeriments Before I r r ad ia t ion .  - Per- 

haps the mst  convincing c r i t i c a l i t y  evidence i s  derived from c r i t i c a l  

experiments with the given f u e l  before i r r ad ia t ion .  

ment i s  of ten car r ied  out  during the  design o f  a reac tor .  

i s  pa r t i cu la r ly  useful i f  t h e  f u e l  elements can be shown to have maximum 

r e a c t i v i t y  (a t  any time during l i f e )  when they a r e  f r e sh  and unirradiated.  

The minimum number of f r e sh  f u e l  elements required for c r i t i c a l i t y  can 

then be establ ished,  If t h i s  number i s  determined for a cask-fuel system 

i n  the  MRC condition, it should be considered excel lent  c r i t i c a l i t y  evi- 

dence, Advance planning could provide data  f o r  a spec i f ic  fuel-rmderator- 

basket - poison-reflector system which would be considered excel lent  

evidence i n  establ ishing a case for s u b c r i t i c a l i t y  of  a given system. 

the  pas t ,  core design c r i t i c a l  experiments have no t  been used t o  full 

advantage i n  providing c r i t i c a l i t y  evidence f o r  fu ture  shipping and s to r -  

age sa fe ty  requirements. 

This type of experi- 

The evidence 

In 

Related Evidence: Safety Guides and C r i t i c a l i t y  Data. - The most 

read i ly  avai lable  sources o f  c r i t i c a l i t y  evidence a r e  the  nuclear sa fe ty  

guides ,Ed )  10,12,13 These systematic presentations o f  experimental c r i t i -  

c a l i t y  data a re  extremely useful  i n  estimating nuclearly safe  dimensions, 

masses, moderator-to-fuel r a t i o s ,  e t c .  f o r  a var i e ty  o f  systems. Data 

from safe ty  guides cons t i tu te  excel lent  c r i t i c a l i t y  evidence for many 

homogeneous and simple heterogeneous f u e l  systems. The safety guides 

a l so  have established some safe  nuclear parameter correlat ions which rep- 

resent  excel lent  evidence when they a re  appl icable .  

complicated systems, cautious extrapolation and interpolat ion o f  c r i t i -  

c a l i t y  data may be necessary. 

contain poison rods, f u e l  rods of several  enrichments and diameters, e t c  .; 

In  the case o f  more 

Many commercial reactor  fue l  shipments 
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f o r  these complex systems, the q u a l i t y  of c r i t i c a l i t y  evidence obtained 

from s a f e t y  guides should be judged on the bas i s  of the amount of extrapo- 

l a t i o n  o r  interpolat ion involved e 

Direct Evidence. - Direct experimental methods o f  r e a c t i v i t y  deter-  

mination represent a poten t ia l  source of excel lent  c r i t i c a l i t y  evidence, 

An advantage o f  t h i s  type of evidence i s  t h a t  the  measurements can be 

made on the system t h a t  i s  of i n t e r e s t ,  f o r  example, a loaded shipping 

cask submerged i n  water or a storage a r r a y ,  Because o f  the e f f o r t  and 

equipment usually required,  t h i s  type o f  experiment i s  normally not per- 

formed on shipping casks except when the loading procedure must be moni- 

tored. However, i f  the  confidence derived from such an experiment would 

permit a s ign i f icant ly  greater  anlount o f  f u e l  t o  be shipped than i s  ordi-  

n a r i l y  the case, the  performance o f  such an experiment on a shipping cask 

might be jusLified . 
Seveyal experimental techniques for r e a c t i v i t y  measurements have 

been discussed by Keepin."' 

shipping casks include: 

t ron  method, the Elossi-n technique, and t h e  source-jerk experiment. In  

general, the  present tcchiology o f  the  multip1icat)ion experiment i s  in-  

However, a mult ipl icat ion a.dequate f o r  the accurate predict ion of k 

experiment can serve as a useful  monitoring procedure during the loading 

of fuel intx, a shipping cask. 

Methods t h a t  a r e  most applicable to loaded 

the mult ipl icat ion measurement, the pulsed neu- 

e f f '  

The best  technique f o r  evaluating the  r e a c t i v i t y  of s u b c r i t i c a l  

moderated assemblies appears t o  be the pulsed neutron method. The prompt, 

fundamental decay cons-tant, a, can be measured qui te  accurately and, when 

normalized by a measurement a t  a known k 

culat ion of prompt neutron l i fe t ime,  can be used t o  e s t a b l i s h  a value of 

keff e f f  
mately t h i s  same accuracy can be obtained from the bassi-a method when 

it i s  applied t o  unmoderated, strongly-coupled, fast-neutron systems. 

Considerably l e s s  accuracy i s  t o  be expected from Fbssi-a measurements 

on well-moderated systems. 

been l imited i n  the  Uni-bed Sta tes ,  and i t s  l imi ta t ions  should be under- 

stood before einployiiflg i t .  

o r  supplemented with a c a l -  
e f f  

with an accuracy o f  several  percent f o r  0.9 < k < 1 .OO. Approxi- 

Experience with the source-jerk technique has 



Problems of measurement and in te rpre ta t ion  o f  data  accompny each 

of t he  d i r e c t  experimental methods. 

strong g a m - r a y  a c t i v i t y  such a s  t h a t  associated with i r rad ia ted  f u e l  

elements, one must assure himself t h a t  h i s  detector  response i s  primarily 

determined by the  neutron flux and not t he  gamma rays.  

ple ,  the  measured data (and consequently the  inferred value o f  k e f f )  w i l l  

probably vary with detector  loca t ion  and several  detectors  may be neces- 

sary t o  get  an accurate space-averaged r e s u l t .  

t i o n  must be given t o  such problems t o  obtain the accuracy mentioned above. 

For example, i n  the  presence of 

A s  another exam- 

Reasonable care and a t ten-  
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6 .'7 Bibliography of C r i t i c a l  Ekperiments 

A bibliography of selected c rFt ica1  experiments i s  presented f o r  use 

i n  val idat ing ca lcu la t iona l  methods of reactor  a n a l y s i s ,  

with a wcll-defined geometry and composition a re  included I 

ments a r e  c l a s s i f i e d  according to t h e  system parameter of major  i n t e r e s t .  

Par t icu lar  a t t e n t i o n  W ~ S  given t o  water-cooled and -moderated uraniuui 

systems o f  low enrichment s ince these make up t h e  bulk of power reactor  

f u e l  shipments . 
of the nilclear systems investigated i n  each reference.  

Only systems 

The experi- 

The bibliography i s  accompanied by a concise descr ipt ion 

AI . 

A 2 .  

A 3  6 

A.4. 

AS.  

A .  Low-Enriched UO,; Water Moderated 

P .  W .  Davison e t  a l . ,  Yankee C r i t i c a l  Experiments - Measurements 

on Lat t ices  of S t a h l e s s  S tee l  Clad S l i g h t l y  h i c h e d  Uranium 
-I_ 

Di.oxide Fuel. Rods i n  Light Water, UAEC-94 (Apri l  1953), 

P. W .  Davison e t  a l . ,  Two Region C r i t i c a l  Experiments with Water 

Moderated S l ight ly  Enriched UO, Lat t ices ,  YAEC-142 (November 1 9 5 9 ) .  

R ,  D. Zeamer e t  a l . ,  C r i t i c a l  Experii-nen.ts Performed wi th  Clustered 

and Uniform Arrays o f  Rodded Absorbers, VCAP-3269-39 (November 196S),  

3.  M. Ba1.1, A .  L .  MacKimey, and J .  H .  Pbrtenson, MARTY CriticaD. 

Experiments Summary of Lg-FJ-rriched UO, Cores Studied f o r  NMSR, 
WIW-1216 (May 1961 ) ,  

.__- 

-- -_II_ 

Qiiarterly Technical Report, SPERT Project ,  I ~ - l 7 0 3 0  (Apri l  1964) 

p . 1-10 . 
References A I ,  A 2 ,  and A 3  

C r i t i c a l  experiments were performed with s ta i n l e s  s - st eel-clad UO a 

An unclad f u e l  p e l l e t  diameter rods of 2 .7 ,  3 .7 ,  and 4.4% enrichment. 
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o f  0.300 i n .  was used. 

0.7 i n . ,  permitting (water to uranium) r a t i o s  between 2 and 1 1 ,  

density w a s  a b u t  10.2 g/cm3. 

height of 4 f t  with water re f lec ted .  

enrichment, O.L-in.-diam p e l l e t s  clad with Zircaloy 4 were used. A few 

experiments were a l so  done with 5.7g-enriched p e l l e t s  0.357 i n ,  i n  diame- 

te r .  

The square l a t t i c e  p i t ch  was i n  the  range 0.4 t o  

The oxide 

Cylindrical  configurations with an ac t ive  

In some of the  experiments a t  3.7% 

Reference l& 

Lat t ices  o f  UO, rods enriched t o  3% and 4% were investigated using 

a square p i t ch  o f  about 0.6 i n .  

resul ted i n  water t o  uranium r a t i o s  of 2 .6  and 3.6.  

s i t y  o f  about 7 . 2  g/cm3 and was clad i n  e i t h e r  s t a i n l e s s  s t e e l  o r  aluminum. 

The l a t t i c e s  were cy l indr ica l ,  with a water r e f l ec to r  and an ac t ive  fue l  

height of about s - l / 2  f t .  

An unclad f u e l  pin diameter o f  0 .k& i n .  

The f u e l  had a den- 

Reference A 5  

Uranium dioxide rods of 4.8% enrichment were studied i n  the course 

of t h e  SPEXT pro jec t .  

with s t a i n l e s s  s t e e l  and aluminum and had an oxide densi ty  o f  10 .s g/cm", 

The square l a t t i c e  p i t ch  w a s  about 0.6 i n .  

appears t o  be l e s s  than 1 .O; normoderator-to-moderator r a t i o s  of 1 .9 and 

2 . 2  were reported.  Both cy l indr ica l  and rectangular configurations were 

mde,  with an ac t ive  f u e l  length of 38.3 i n .  

The f u e l  p e l l e t s ,  0.420 i n .  i n  diameter were clad 

The water t o  uranium r a t i o  

B1 I 

B2. 

I33 - 

B. Low-Enriched Uranium Metal; Water Moderated 

W.  G .  Davey and K .  R .  Smith, Exponential Experiments with Enriched 

Uranium-Natural Water Systems, B r i t i s h  Report AERE-W/R-1788 

(October ISSS), 

H .  Kouts and R .  Sher, Experimental Studies o f  S l igh t ly  Enriched 

Uranium, Water Moderated Lat t ices ,  BNL-486 (T-I 11 ) (September 1957) , 

C .  R. Rickey, R.. C .  Lloyd, and E .  D,  Clayton, lTCr i t ica l i ty  o f  

S l igh t ly  Enriched Uranium i n  Water Moderated Lat t ices ,"  Nucl. Sei .  

Eng. - 21 ;  217 (1965). 
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B 4 .  J. K. Fox, J .  T .  Mihalczo, and I,. W.  Gi l ley ,  C r i t i c a l  bpe r imen t s  

w i t h  2.09% 235U Enriched Uranium Metal P l a t e s  i n  Water, OWL-CF-58- 

8-3, 1958. 

BS. E. E .  Johnson, " C r i t i c a l  L a t t i c e s  of U(4.98) Metal b d s  i n  Water," 

Trans.  Am. Nucl. Soc. IO, I90 (1967) .  

E. E. Johnson, r f C r i t i c a l  L a t t i c e s  o f  U(4.98) Rods i n  Water and i n  

Aqueous Boron Solution, '! Trans Am. Nucl. Soc. 11, 674 ( 1  968). 

- 

E. E .  Johnson, " C r i t i c a l i t y  o f  Uranium o f  Low Farichment, i n  Water," 

Trans,  Am. Nucl. Soc. 1 2 ,  336 (1969).  
I_ 

Reference I31 

Most o f  t h e  squa1.e p i t c h  l a t t i c e  experinient,s wi th  uraniim metal  weye 

performed a t  Harwell T.,aboratory i n  England. 

approach- to-cr i t ica l  experiments used metal rods of 0.93% enrichment with 

both aluiiinum and s t a i n l e s s  s t e e l  c ladding .  

were 0. IS and 1 .20 i n .  

corresponding t o  a water t o  uranium range of 0.59 t o  1 .94. 

c y l i n d r i c a l  conf igura t ions  wi th  an a c t i v e  fuel. l eng th  of  a b u t  30 i n .  were 

employed 

One s e r i e s  of  exponent ia l  and 

The unclad f u e l  rod diameters 

The l a t t i c e  p i t c h  va r i ed  fr.orn 0.94 to 1 .85 i n . ,  

Water r e f l e c t e d  

Reference R2 

A series o f  exponent ia l  experiments vas performed a t  RNL using 1 .0, 

1 .Is, and 3.3% eiiriched uraniuii metal.. rods c l ad  wi th  aliuninum. The unclad 

f u e l  rod diameter w a s  0.600 i n , ,  and the  a c t i v e  length  w a s  11. f t .  The t r i -  

angular  p i t c h  w a s  va r i ed  between 0.85 and 1 .31 i n .  t o  g ive  a water t o  ura- 

nium r a t i o  r a n g h g  from 1 t o  L. 
arranged With a water r e f l e c t o r .  

Cylindrical-  core  conf igura t ions  were 

Seference R3 

Approach-to-cr i t ical  and exponent ia l  experiments wi th  unclad uranium 

The m e t a l  rods o f  2.0% and 3.06% enrichment were c a r r i e d  o u t  a t  Hanford. 

t r i a n g u l a r  p i t c h  w a s  v a r i e d  from about, 0.28 t o  1 .81 i n .  for f u e l  rods whose 

diameters ranged from 0.1'75 t o  0.925 i n .  The water  t o  uranium r a t i o  varted 

from about '2 t o  1 2  ~ 

with  t h e  a c t i v e  he ight  varying f r o m  about 16 t o  32 i n .  

Water-ref lected c y l i n d r i c a l  conf igura t ions  w e r e  used, 
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Reference & 

Uranium metal p la tes  enriched t o  2.09% were studied a t  ORNL. The 

p la te  spacing var ied from 0.0 t o  s/8 i n .  

studied with group spacings o f  5 / 8  t o  1-1,'s i n .  

thick,  3-l/8 i n .  wide, and 30 i n .  long. 

from 2 ,5 t o  4.5. 
many cases .  

Groups o f  p l a t e s  were a l so  

The p l a t e  s i ze  was 1/4 i n .  

The water t o  uranium r a t i o  varied 

Rectangular geometry with a water r e f l ec to r  was used i n  

Reference BS 

Currently, c r i t i c a l  experiments with IC. 9g-enriched uranium metal 

rods a re  under way a t  ORNL, Unclad rods o f  d i f f e ren t  diameters up t o  

1 i n .  a r e  being studied i n  both t r iangular  and square p i t ch  l a t t i c e s ,  

The r e s u l t s  f o r  0.5- and 0.8-in.-diam rods a r e  ava i lab le .  

i s  expected t o  be var ied from about 0 t o  2 . 4  i n . ,  with resu l t ing  water t o  

uranium r a t i o s  o f  about 2 t o  1 2 .  Water-reflected configurations with 

ac t ive  f u e l  lengths o f  about 1 2  and 24 i n .  have been constructed i n  rec- 

tangular and cy l indr ica l  geometries. 

Lat t ice  p i t ch  

C .  Highly Ehriched Uranium 

C 1 ,  J. C ,  Hoogternp, C r i t i c a l  Masses of  Oralloy Lat t ices  Immersed i n  

Water, LA-2026 (November 1 955) , - 
C2, J ,  K. Fox, L .  W, Gilley,  and A .  D.  Callihan, C r i t i c a l  Mass Studies,  

Par t  IX, Aqueous *"U Solutions, ORNL-2367 (March lYS8), 

C 3 ,  E. B ,  Johnson and R .  K ,  Reedy, C r i t i c a l  Experiments with SPERT-D 

Fuel Elements, ORNL-TM-1207 (July 1365) . 
C4. G .  E .  Hansen -- e t  a l . ,  "Cr i t i ca l  Plutonium and Enriched-Uranium Metal 

Cylinders o f  Extreme Shape," Nucl. Sc i .  Ehg e - 8, 5'70 ( I  960), 

Reference C1 

Mult ipl icat ion measurements a t  IDS Alarms were used t o  determine 

c r i t i c a l  mss data  for ful ly  enriched uranium metal. 

metal cubes having an edge length up t o  1 i n .  were arranged i n t o  cubic 

arrays with water as moderator and r e f l e c t o r .  

w a s  varied from 0.75 to 2.25 i n ,  

La t t ices  o f  unclad 

The square l a t t i c e  p i t ch  

Some experiments were done with rods 
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i n  c y l i n d r i c a l  arrays. 

ranged from 0.5 t o  1 i n ,  

abouf, 80. 

The rods were l /8  i n .  i n  diameter,  and t h e  p i t c h  

WateIa-to-uranium volume r a t i o s  va r i ed  up t o  

Reference C2 

Cri t ica l  experiments were performed wi th  homogeneous so lu t ions  of 

fiLl.ly enriched uranium. 

27.1 and 74.6.  

f l e c t o r  and wi th  and without a cadmium l i n i n g  i n  the  conta iner .  

cases ,  i n t e r a c t i n g  a r r a y s  o f  as rriany as seven v e s s e l s  were t e s t e d .  Cylin- 

d r i c a l  v e s s e l s  of diameters up t o  30 i n .  were used. 

The so lu t ions  had €I/235U atom r a t i o s  be tween 

Ex-periments were made with (and a l s o  wi thout )  a water  r e -  

In  some 

Reference C 3  

A s e r i e s  of water-moderated and - r e f l e c t e d  experiments wi th  SPERT-D 

fuel. elements were performed a t  OXNL. 'The spacing between f u e l  i n  adja- 

cent  elements was va r i ed  up t o  about 2 i n ,  

i n  a l l  cases  except one i n  which a rounded l a t t i c e  w a s  made. 

were 2 f t  long i n  most experiments; however, a few experiments were done 

with 6 - f t  elements.  The f u e l  element c o n s i s t s  o f  a 3-in.-square aluminum 

a l l o y  tube containing 22 p a r a l l e l  f u e l  p l a t e s  60 m i l s  t h i c k  and spaced 147 

iiiils a p a r t .  

num containing 23.8 w t  % o f  f u l l y  enr iched uranium sandwiched between two 

20-rniL th icknesses  of alwrtinm a l l o y  cladding.  

t h e  o u t e r  rows of elements were only p a r t i a l l y  loaded t o  achieve c r i t i -  

c a l i t y ;  t he  ind iv idua l  p l a t e s  were removable. 

Rectangular geometry was used 

The elements 

Each f u e l  p l a t e  i s  a 20-mil-thick a l l o y  of  uranium and alumi- 

I n  some of the experiments, 

Iief erence CL. 

Mul t ip l i ca t ion  measwements were used t o  e s t a b l i s h  c r i t i c a l  configu- 

r a t i o n s  tcith: 

of  composition 95% a38Pu and 5% 24"Pu. 

extreme shape were b u i l t  up, having height/diameter r a t i o s  ranging from 

about 0 . O s / O  .3 and 4/Is. 

( 1 )  f u l ly  enriched uranium metal,  and ( 2 )  plutonium metal 

Elongated and squat  cy l inde r s  o f  

The uranium cy l inde r s  were of two diameters: 15 .00 and 3.24 i n .  

The plutonium cyl inder  diameters were 2 . 2  and 6.0 i n .  

nade wi th  d i f f e r e n t  r e f l e c t o r s  including water,  uranium, graphi te ,  poly- 

e thylene,  and beryl l ium. 

Experiments were 
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D. C r i t i c a l  Experiments with Poisons 

D1 . 

D 2 .  

D3. 

DL 

DS . 

D 6 .  

E .  B. Johnson and R .  K. Reedy, Jr.,  C r i t i c a l  Experiments with 

SPERT-D Fuel Elements, ORNL-TM-1207 (July '1965). 

G ,  D. Hickman, J .  A .  Bis t l ine ,  and L .  A .  MacNaughton, 'Water 

Moderated Cores with Boron Stee l  Septa a t  Elevated Temperatures, Jz 

Nucl. Sci .  Eng. - 8 ,  381 (1960). 

R.  A .  Haffley, R .  A .  Watson, and W .  SkoLnik, Measurement and 

Calculation o f  Relative Poison t o  Fuel Capture Ra t ios  i n  Slab 

Cores, KAPL-M-6528 (November 1365). 

R.  H. Clark, M, L.  Batch, and T .  G ,  P i t t s ,  Lumped Burnable Poison 

Program - Final  Report, BAW-3432-1 (January 1966). 

P ,  W .  Davison e t  al., Yankee C r i t i c a l  Experiments - Measurements 

on Lat t ices  o f  S ta in less  S tee l  Clad S l ight ly  Enriched Uranium 

Dioxide Fuel Rods i n  Light Water, YAEC-94 (Apri l  1359), 

E.  B. Johnson e t  a l . ,  Applied Nuclear Physics Division Annual 

Progress Report, ORNL-2389 (September 1957),  p e 3.  

c- 

-- 

Reference D1 

I n  some of  t h e  experiments with SPERT-D f u e l  elements, a l ready 

described under reference C3, 2s-mil-thick cadmium p la t e s  were inser ted 

i n  the water gaps between rows o f  elements. 

soluble boron w a s  added t o  a d i l u t e  solut ion o f  uranyl n i t r a t e  which 

served a s  moderator and r e f l ec to r .  

References D2 and D3 

Experiments were conducted a t  KAPL using boron--stainless s t e e l  p la tes  

and N i - l '  p l a t e s .  

and contained various loadings o f  'OB up to 1 .24 w t  $. 
were 50 mils thick,  with a 'OB content of 0.55 w t  8 .  
periments, water gaps were introduced near the poison; i n  others ,  the  

p l a t e s  were placed near the  water r e f l e c t o r .  

of Zircaloy-clad f u l l y  enriched uranium metal p l a t e s  1 .61 i n ,  wide and 

0.001," i n .  thick,  with 13-mil and 38-mil water gaps and 29-mi l  Zircaloy 

spacer p l a t e s  interspersed.  

Also,  i n  a few experiments, 

The boron--stainless s t e e l  p l a t e s  were 30 mils thick 

The Ni-I 'B p l a t e s  

In  some o f  the ex- 

The f u e l  l a t t i c e  consisted 
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Reference D4 

Lumped poison e-xperiments were performed by Babcock and Wilcox. 

Borosilicate glass  rods ( 1 2 . 6 %  B,O,) o f  0.460- and 0.326-in. diameters 

were used a s  well  a s  0.326-in.-diam s i l i c a  glass  rods (3.00% B,O,) and 

aluminum-clad B,C rods. 

at, various locations.  

enrichment with OD = 0.475 in ,  

corresponding t o  a nomdera to r  to moderator volume r a t i o  o f  0.750. 

oxide density was 9.5 t o  1 0 . 2  g/cm3. The act ive f u e l  length was about 

5 f t  f o r  the 2.57g-enriched rods and about 5-1/2 f t  f o r  the 4%-enriched 

rods, 

The poison rods were substi tuted f o r  f u e l  rods 

The fue l  consisted of UO, rods of 2.5 and 4% 
The square l a t t i c e  p i tch  was 0.6& i n . ,  

The 

Reference D 5  

A number o f  c r i t i c a l  experiments were conducted w i t h  the Yankee 

2.7$-enriched UO, using soluble boron (boric ac id)  i n  the moderator. 

summary of t he  l a t t i c e  parameters i s  given under the reference A I .  

A 

Reference D6 

Experiments with s ta in less  s t e e l  and boron-loaded aluminum pla tes  

were performed using BSR f u e l  elements (see description of reference C6). 
The s t e e l  p la tes  ranged i n  thickness from 32 to  1 2 5  mils. 

minum pla tes  had boron loadings from 1 t o  50 g of natural  boron and were 

clad with aluminum, 

thick,  and the p la tes  with higher loadings were 1 1 4  mils thick. 

poison p la tes  were substi tuted for  f u e l  p l a t e s  a t  several  d i f fe ren t  

posi t ions,  

The B,C alu- 

The p la tes  with 1 6  g o r  l e s s  of boron were 52 mils 

The 

E .  C r i t i ca l  Exueriments with Different Reflectors 

El , E ,  C ,  Mallary, Orallory Cylindrical Shape Factor and Cr i t i ca l  Mass 

Measurements i n  Graphite, Paraffin,  and Water Tampers, LA-I 305 

(October 195.1 ) , 

E?.  R .  E.  Donaldson and W .  K .  Brown, C r i t i c a l  Mass Determinations of 

Lead-Reflected Systems, UCRZ-j255, June 1958. 



E3. G. E. Hansen and D. P. Wood, Precision C r i t i c a l  Mass Determinations 

for Oralloy and Plutonium i n  Spherical  Tuballoy Tampers, LA-1 356 
(February 1952) .  

E4. G .  E .  Hansen, H .  C .  Paxton, and D. P .  Wood, C r i t i c a l  Masses of 

Ora l loy  i n  Thin Reflectors,  LA-2203 (January 1958).  

R ,  C , Lane and 0 .  5 .  E. Perkins, Measurements of' the  C r i t i c a l  Mass 

of 3r[-l/2% Enriched Uranium i n  Reflectors o f  Wood, Concrete, Poly- 

ethylene and Water, AWRE Report No. NR 1/66 (February 1966), 

E, B, Johnson, Oak Ridge National Laboratory, pr ivate  communication, 

December 1966. 

E5 , 

E6. 

Reference El 

Mult ipl icat ion experiments were done using i n f i n i t e  r e f l ec to r s  of 

graphi te ,  paraff in ,  and water. 

extrapolated t o  y i e l d  c r i t i c a l  masses. 

inders o r  spheres of 93.9%-enriched uranium. 

from 3.25 t o  12.4 in.;  most of the units had diameters between 4 and 

7.5 i n .  

Reciprocal mult ipl icat ion p lo t s  were 

The cores were unmderated cyl-  

The core diameters ranged 

Reference E2 

Spheres and cylinders of f u l l y  enriched uranium ref lec ted  by lead 

were the  subjects  of mult ipl icat ion measurements a t  Livermore. 

uranium cylinder diameters were about 3 , 9  and 4.4 i n . ,  and the  sphere 

diameters were 5.6 and 5.9 i n .  

thicknesses o f  about 3.5, 5.0, 5.2, and 6.8 i n .  

11.3 g/cm3. 

The 

C r i t i c a l  s izes  were determined f o r  lead 

The lead densi ty  was  

Reference E3 

Multiplication measurements were made using a na tura l  uranium re-  

f l e c t o r  o f  d i f f e ren t  thicknesses up t o  9 i n .  The spherical  core was made 

of  f u l l y  enriched uranium. 

core with a na tura l  uranium re f l ec to r .  

Some experiments used a spherical  plutonium 



Reference Eh 

C r i t i c a l  masses were determined f o r  5'-l//l-in. -diam cylinders of 

f u l l y  enriched uranium surrounded by 1/2- and I- in . - thick r e f l ec to r s  of 

Be, graphite,  Mg, A l ,  T i ,  &eel,  Cu, W al loy,  na tura l  U, N i ,  Co, Mo, 

A1,03, Mo&, and polyethylene. Also,  c r i t i c a l  masses were measured fo r  

f u l l y  enriched uranium spheres with -2-  and -L-in.-thick r e f l ec to r s  of 

W a l loy,  Fe, N i ,  Ni-Ag, Cu, Zn, Th, Be, BeO, C ,  and na tura l  U .  Ektrapo- 

l a t ed  inverse multiplication data were used t o  es tab l i sh  c r i t i c a l  masses. 

Values OP r e f l ec to r  savings were also determined. 

Reference E5' 

Safety-oriented experiments were done a t  Aldermaston, England, using 

re f lec tors  o f  wood, concrete, polyethylene, and water. The r e f l ec to r  

thickness was varied up to  about 8 i n .  Unmoderated stacks o f  uranium 

metal p la tes  of 3'1.7% enrichment were used f o r  the  cores,  which had s lab 

and rectangular geometries. The r e f l ec to r  dens i t ies  were: ( 1  ) wood, 

0.693 g/cm"; ( 2 )  concrete, 2 .37  g/cm3; (3)  polyethylene, 0.919 g/cm3; 

and (4) water, 1 .O g/cm3. 

o f  which 2.64 w t  % could be driven o f f  by heating. 

well a s  c r i t i c a l  masses and dimensions, were determined. 

The water content of  the concrete was 7.85' w t  %, 
Reflector savings a s  

Reference E6 

In some o f  the experiments current ly  i n  progress at, ORNL (described 

under reference BS) with 4.9%-enriched water-mderated uranium metal rods, 

re f lec tors  o f  lead, s t e e l ,  and water have been used i n  thicknesses up t o  

8 i n ,  

t o  IC i n .  

were placed on one or two s ides ,  leaving water on t h e  o thers .  

s izes  and r eac t iv i ty  worths were determined by the cal ibrated water-height 

me tho d . 

Also,  the  water gap between f u e l  and r e f l ec to r  was varied from 0 

The f u e l  was arrayed i n  rectangular geometry, and the re f lec tors  

C r i t i c a l  

E'. Arrays of In te rac t ine  Units 

F1 . J. T . Thomas, C r i t i c a l  Three-Dimensional Arrays of Neutron- 

Interact ing Units, ORNL-TM-719 (October 1963). 



F3. L .  W. G i l l e t  e t  a l .  , Cri t ica l  Arrays o f  Neutron Interacting Units, 

Om-31 93 (September 1961 ) , p , 155,. 

F3. 5 .  K ,  Fox, L. W. Gilley, and A .  D. Callihan, C r i t i c a l  Mass Studies, 

Part  I X ,  Aqueous s3sU Solutions , ORNL-2367 (March 1958) . 
,Reference F1 

F ive- l i te r  cylinders of  concentrated uranyl n i t r a t e  solution were 

arranged i n  c r i t i c a l  arrays.  The uranium concentrations were 61.3, 2'79, 

and LIS g / l i t e r ,  with a 

atom r a t i o s  o f  440, 92,  and 59 respectively.  

t ha t  contained the f u e l  were about 8 i n ,  i n  diameter and 7-1/2 i n .  high, 

and had a I/L-in.-wall thickness. 

the cyl indrical  units ranged from 0 t o  6-1/2 i n .  

and 125 units were assembled i n  cubic and parallelepipedal geometry. 

of  the arrays were reflected by paraffin and Plexiglas i n  thicknesses up 

t o  6 i n .  

content o f  42 .6  w t  $, resul t ing i n  H/""'U 
The Plexiglas cylinders 

The surface-to-surface sepal-ation of 

Arrays of  8 ,  27,  64, 
Some 

Reference F2 

Cylindrical bo t t l e s  of enriched uranyl n i t r a t e  were arranged into 

arrays o f  a s  many a s  100 uni ts .  

around the arrays nor an interspersed moderator w a s  present.  

the moderator and re f lec tor  thickness was varied.  The f u e l  concentration 

w a s  41 0 g of  uranium (containing 32.6 wt % 235U) per l i t e r ,  

o f  cyl indrical  bo t t l e s  were used. 

diameters of about 4.7 and 5.1 i n . ,  a length o f  about 4 f t ,  and capaci- 

t i e s  o f  about 13 and 1s l i t e r s  respectively.  

was a 6-ft-long aluminum cylinder with a &in ,  I D .  

ranged ve r t i ca l ly  with the i r  bases i n  a l inear ,  square, o r  t r iangular  

pa t te rn .  Surface-to-sur2ace spacings up t o  8-1/2 i n .  were employed. The 

a r ray  periphery was e i ther  square o s  hexagonal. 

In  some experiments, nei ther  a re f lec tor  

In others,  

Three kinds 

Two were of  polyethylene with inner 

The th i rd  type o f  container 

The uni t s  were a r -  

Reference F3 

In some o f  the experiments described under reference C2, interact ing 

arrays of as many a s  seven cylinders o f  f u l l y  enriched uranyl n i t r a t e  

were constructed. The cylinders were arranged i n  hexagonal, t r iangular ,  
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and l i n e a r  p a t t e r n s  wi th  edge-to-edge spacings up t o  24.5 i n .  One s e t  

o f  experiments was performed wi th  t h r e e  uni ts  i n  a tri-angular pat,t,em a 

One of t h e  cy l inde r s  was then mved t o  various pos i t i ons ,  forming i sosce -  

l e s  . t r i ang le s  wi th  d i f f e r e n t  v e r t e x  ang le s .  



7 .  SHIELDING 

7.1 General Considerations 

The shielding o f  any shipping cask must reduce the  external  dose 

r a t e  from the  l a rges t  expected source to below specified tolerance l eve l s .  

Usually, such shielding i s  accomplished with lead ,  Therefore, t h i s  chap- 

t e r  w i l l  be devoted pr imari ly  t o  t he  use of lead, although s t e e l ,  depleted 

uranium, concrete, and other materials can be used t o  advantage under var i -  

ous circumstances. 

A number o f  avai lable  textbooks and reference documents discuss the 

subject  of shielding i n  d e t a i l ;  consequently, t he  theory and calculat ional  

methods w i l l  not  be presented here.  

computer codes and top ica l  reports  can be obtained from the  Radiation 

Shielding Information Center. 

In  addi t ion,  a l i s t i n g  o f  shielding 

Inquir ies  should be addressed t o  : 

Radiation Shielding Information Center 

Oak Ridge National Laboratory 

P .  0 .  Box x 
Oak Ridge, Tennessee 37830, U . S . A .  

The purpose of t h i s  chapter i s  t o  provide AEC personnel with a quick 

and reasonably accurate method o f  determining whether t he  shielding i n  a 

given cask w i l l  be adequate f o r  a specif ied source. The nomographs pre- 

sented here a r e  modifications o f  those included i n  the f i r s t  version o f  

t h i s  guide (ORNL-TM-2L10) and should be m r e  useful  than the e a r l i e r  ones. 

However, they should be used only f o r  checking purposes and should not be 

considered as a subs t i t u t e  f o r  a formal shielding ana lys i s .  

7.2 D3T Regulations 

Recently, changes have been made i n  permissible dose r a t e s  allowed a t  

the  surface o f ,  o r  a t  specified distances from, a spent f u e l  shipping cask. 

The l a t e s t  in formt ion  concerning the shielding requirements of casks has 

been published by the Department o f  Transportation i n  the Federal Register' 

and i s  reproduced below. 
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" A l l  radioactive rraterials,  l iqu id ,  so l id  and gaseous must be pack- 

aged i n  sui table  containers (shielded, i f  necessary) so t h a t  any time 

during the n o r m l  conditions incident t o  t ransportat ion the radiat ion 

dose r a t e  does not exceed any of the  l i m i t s  specified i n  the following 

subparagraphs. 

................. 
1 .  200 millirem per  hour a t  any point  on the  external  surface of  the 

package , 

2. 10 millirem per hour a t  three f e e t  from any accessible  external  

surface o f  t he  package e 

"Packages fo r  which the radiat ion dose r a t e  exceeds the l i m i t s  speci- 

f i ed  above but does not exceed a t  any tinie during t ransportat ion any of 

the  l i m i t s  specif ied i n  subparagraphs ( 1 )  through (4 )  below, nay be t rans-  

ported i.n a vehicle  (except a i r c r a f t )  assigned f o r  t h e  sole  use o f  tha t  

consignor, and unloaded by the consignee from the  ti.ansport vehicle in 

which o r ig ina l ly  loaded, 

1 .  1000 millirem per hour a t  three f e e t  from the external  surface o f  

the package (closed t ransport  vehicle  only);  

2 .  200 millirem per hour a t  any point, on the external  surface o f  the 

car  o r  vehicle  (closed transport  venicle  only);  

3 .  10 millirem per hour a t  s ix  f e e t  from the external  surface o f  'the 

car  or vehicle;  and 

14.  2 millirem per  hour o r  equivalent i.n any normally occupied posi- 

t i on  i n  the car  o r  vehicle except t h i s  does not apply to  pr iva te  

mtor c a r r i e r s .  I f  

7.3 Slnielding Estimates 

It i s  of ten  qui te  useful  t o  be ab le  t o  determine quickly whether the 

shielding o f  a cask i s  adequate f o r  a given service.  

w e  have included a nomograph' t h a t  permits an estirnation of the shielding 

required to  reduce the  dose r a t e  from spent fue l  elements t o  any specified 

siirface dose r a t e  (see Fig.  7.1 ) . 

For t h i s  purpose, 
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Figure 1.1 i s  based on the assumption tha t  a large source has the 

same a c t i v i t y  and mass per unit, volume a s  the  average f o r  a cask cavity,  

and tha t  the f u e l  i s  e i ther  f a i r l y  well dis t r ibuted o r  approximately 

centered i n  the cavi ty .  

ceeds about 200, where FJ i s  the average density o f  the cask contents ( i n  

pounds per cubic foot )  a d  D i s  the minimum cross-sectional. dimension o f  

the cavity ( i n  f e e t ) .  For  values o f  wD as s r m l l  a s  100, however, the 

conservatism o f  the method r e su l t s  i n  l e s s  than 1/2 i n .  o f  added lead 

thickness. 

This rrmdel i s  sui table  when the product wD ex- 

7.3 .I Comparison of Nomograph and Machine Code 

Calculations made t o  determine the shielding thickiie ss required t o  

produce a dose r a t e  o f  100 mr/hr on the cask surface were determined 

usi.ng the QAD-PSA code3 (which uses a kernel technique, with the buildup 

factor  calculated by the nmments method) and compared with those values 

obtained i n  F i g .  'i.l f o r  the same surface dose r a t e .  

The nomograph gives values of lead thicknesses generally within 5% 
of those calculated using the QAD-PSA code; the extremes a re  -7.6% and 

+5 04%. 

7.1.~ Calculation of E;xl;er.nal h s e  Rates - Open Vehicle 

In most prac t ica l  cases the shielding thickness w i l l  be s e t  l i m i t  

the dose r a t e  a t  3 f t  from the accessible cask surface (IO m r / h r )  ra ther  

than t o  l i m i t  t h i s  surface dose r a t e  (which should not exceed 200 mr/hr 

except as noted i n  Sect . 7 .I  ) . 
(see F i g .  7 . 2 )  that, re la tes  the dose r a t e  on the sixface of the cask t o  

a dose r a t e  of 10 mrem/hr a t  3 f t  Prom the cask surface fo r  casks o f  var i -  

ous si.zes. 

Therefore, Langhaar developed a nomograph 

4 

Figure 7 . 2  i s  based on a cosine" d is t r ibu t ion  o f  flux leaving the 

cask surface; such a d is t r ibu t ion  appears to  f i t  best  the small amount of 

experimental evidence available.  
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'7.5 Effect  of Using S t e e l  
on the  External 

S tee l  i s  generally used t o  encase 

f o r  the Outer Shel l  
b s e  Rate 

the lead shielding of a cask. 

When the  thickness of s-tee1 exceeds approximately 1 t o  2 mean f r e e  

paths, buildup f a c t o r s  f o r  s t e e l ,  r a t h e r  t'han lead,  should be used i n  

making dose r a t e  calculat ions 

Since s t e e l  buildup f a c t o r s  a r e  grea te r  than t,he ones f o r  lead, the 

designer cannot simply ca lcu la te  the  lead shielding required, reduce it 

by a given amount, and then replace t h a t  amount of lead with an equal 

mass of s t e e l .  To overcome t h i s  problem, Fig.  7 .3  was prepared. This 

f igure  indicates  t h e  thickness of a lead-s tee l  combination t h a t  w i l l  be 

equivalent t o  a given lead sh ie ld  thickness,  taking i n t o  account appro- 

p r i a t e  buildup f a c t o r s .  

The parametric curves indicate  the lead thickness t h a t  w i l l  be re -  

quired for  shielding as given by Fig. 7.1 ;  t h i s  then defines the  combina- 

t i o n  o f  l ead-s tee l  thicknesses o f  equivalent shielding which may be read 

from the ordinate  and abscissa .  

7.6 Calculation of External Dose .Rates - Closed Vehicle 

When casks a re  transported i n  a closed vehicle ,  surface and other 

dose r a t e s  may exceed the  values prescribed f o r  casks under normal han- 

dl ing conditions (see Sect,  7 . 2 ) .  

than those on the surface o r  a t  3 f t  f r o m t h e  surface m y  be l imi t ing .  

Figures 7 . b  - 7.6 provide the  r a t i o  o f  the  dose r a t e  a t  some point  P t o  

tha t  on -the surface.  Once the dimensions of the  cask and vehicle  have 

been specif ied,  these curves plus t h e  information i n  Sect. 7 . 2  can be used 

t o  determine the l imi t ing  dose r a t e  and the  p i n t  a t  which it w i l l  occur. 

If the l imi t ing  dose r a t e  o c c u s  a t  a locat ion other  than 3 ft from the 

cask surface, Figs, 7.11. - '7.6 can be used t o  determine what the  surface 

dose r a t e  should be; F i g ,  '7 . I  can then be used t o  determine the necessary 

lead shielding.  

Under such conditions, dose r a t e s  other  
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Fig. 7.4. R a t i o  of Cose at P t o  lhse on t h e  Surface Based on 
Cosine" Flux D i s t r i b u t i o n  on Surface ,  

F i g .  7.5. Ratio of Dose a:t P .to Dose on the Surface Based on 
Cosinen E'liue E. &Tibution on Surface .  
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Fig ,  7.6.  Rat io  of Dose a t  P t o  Dose on t h e  Surface Based on 
Cosine" Flux Distribution on Surface. 

7 . 7  Example 

Assume t h a t  a cy l indr ica l  shipping cask, 10 f t  long and 2 f t  i n  

diameter, which weighs 45,000 l b  i s  used to  t ransport  one experimental 

f u e l  element from a reactor  t o  an examination f a c i l i t y .  The f u e l  e le-  

ment, i r rad ia ted  300 days, has a total-shipping-weight-to-thermal-output 

r a t i o  (W/Q) of  200.  

s t a in l e s s  s t e e l  outer  and inner s h e l l s  t h a t  a re  I / L  i n .  and 1 i n .  thick,  

respectively.  

f u e l  element t o  be shipped a f t e r  a 100-day cooling period without exceed- 

ing an external  dose r a t e  of  10 m/hr a t  3 f t  f rom the cask surface? 

The cask shielding cons is t s  of  7 i n .  of lead, plus 

Does t h i s  cask have s u f f i c i e n t  shielding t o  permit the 

Answer: From Fig.  7.2, a 2-ft-diam cylinder with an ac t ive  length 

of 8 f t  would have a surface dose r a t e  o f  50 mr/hr i f  t h e  dose r a t e  were 

l imited t o  10 m / h r  a t  a dis tance 3 f t  from the  surface.  

The equivalent lead sh ie ld  required t o  produce a surface dose r a t e  

of 50 m/hr can be obtained from Fig. 7 . 1 .  For t h i s  case, = (200) 
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(50) = I O 4 ;  then,  f o r  a r e a c t o r  opera t ing  time of  300 days and a cool ing 

time o f  100 days, 8 i n .  o f  l ead  equivalent, would be requi red .  

From Fig. 7.3, a cask whose o u t e r  s t a i n l e s s  s t e e l  shell. i s  1 in, 

t h i c k  would 1-eqiiire 7-1/2 i n .  o f  l e a d  t o  develop a t o L a l  o f  8 i n .  of l ead  

sh ie ld ing  equiva len t .  Since t h e  cask in ques t ion  has only 7 i n .  o f  l ead  

p lus  a I /h- in . - thick inner  s t e e l  s h e l l ,  i t s  sh ie ld ing  would probab1.y not  

be adequate.  

The above procedure can. b e  reversed t o  determine t h e  decay per iod 

t h a t  would be required p r i o r  t o  shipment of t'ne element, while  maintain- 

ing t h e  SO-mr/hr l i m i t  a t  the cask sur faxe .  

mately 200 days decay would he r equ i r ed ,  

For t h e  case c i t e d ,  approxi- 
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0 .  URANIUM-SHIELDFD CASKS 

8 . I  General Considerations 

Uranium metal i s  of i n t e r e s t  as a shielding material  for shipping 

casks because o f  i t s  high density,  radiat ion absorption eff ic iency,  ther -  

mal conductivity, high melting poin t ,  high s t rength,  and ava i l ab i l i t y .  

A br i e f  summary o f  the more important propert ies  o f  uranium metal which 

a r e  per t inent  t o  i t s  use f o r  rad ia t ion  shielding follows: 

Because o f  i t s  high densi ty  ( *  19 g/cc), a cy l indr ica l  uranium 

sh ie ld  w i l l  usual ly  weigh less than 75% o f  a lead sh ie ld  and less than 

50% o f  a s t e e l  shield having the same in t e rna l  cav i ty  dimensions and 

comparable radiat ion at tenuat ion capab i l i t i e s .  

weights of the  casks using d i f f e ren t  shielding mater ia ls  depends upon 

the cavi ty  length and diameter and shielding requirements. 

The ac tua l  r a t i o  o f  the 

Uranium has a high thermal conductivity (approximately equal to t h a t  

o f  so l id  lead)  and spec i f ic  heat; it has a melting point o f  2071°F which 

can be an important s a fe ty  consideration. 

Although uranium oxidizes upon exposure t o  a i r  t o  form a non- 

protect ive oxide f i l m ,  canning i n  an i n e r t  atmosphere prevents contact 

between uranium and a i r  and e f f ec t ive ly  eliminates any oxidation problem. 

A s  a neutron r e f l ec to r ,  uranium i s  a s  e f fec t ive  as water. Calcula- 

t ions  ind ica te  t h a t  replacing an i n f i n i t e  water r e f l e c t o r  with a small 

water gap backed by uranium would cause an almost ins igni f icant  change 

i n  keff . 
Under ce r t a in  conditions uranium can form a low-melting eu tec t ic  

a l loy  i f  it i s  placed i n  contact with s t e e l  although the  problem can be 

e a s i l y  overcome. 

growth i f  the grain s t ruc ture  i s  not randomly or ien ta ted .  

It also is  subject  t o  a permnent thermal cycling 

Although many of the s t r u c t u r a l  propert ies  o f  uranium a r e  approxi- 

mately the same a s  mild steel ,  the differences i n  chemical pmger t i e s  

between the  two mi te r ia l s  require the  use o f  spec ia l  procedures and tech- 

niques,  Uranium produced i n  vacuum induction furnaces can be cas t  in to  
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var ious  shaped molds. 

machined, and welded wi th  the  same type of sh ip  equipment tha-t  i s  used t o  

fabr icabe mild s t e e l .  

In add i t ion ,  uranium b i l l e . t s  can be r o l l e d ,  formed, 

Since uranium has a s i g n i f i c a n t  weight and volume advantage as com- 

pared wi th  lead ,  a s i g n i f i c a n t  savings i n  shipping c o s t s  could be r e a l i z e d  

by using uranium casks .  This advantage must be weighed aga ins t  t he  higher 

c o s t  of maberials arid fabr icat i .on before  an at tempt  can be made t o  de t e r -  

mine economic f e a s i b i l i t y ,  

Salmon i n  R e f ,  1 .  

This problem was discussed by Slapper t  and 

Sev-era1 years  ago, considerat,ion o f  ti?e advantageous s a f e t y  f e a t u r e s  

of uranium casks were expected t o  have r e s u l t e d  i n  the  development of  

s eve ra l  uranium-shielded radioisotope shipping casks" and a demonstration 

f u e l  element shipping cask progl-am, 3-6 

demonstrated t h e  f e a s i b i l i t y  of  uranium-shielded shipping casks .  

s e v e r a l  i-ndustrial .  f a b r i c a t o r s  have .the c a p a b i l i t y  t o  produce 11-ranium- 

sh ie lded  casks .  

Resul ts  o f  t hese  e f f o r t s  have 

Current ly ,  

8.2 Prope r t i e s  o f  Uranium 

Some o f  t h e  more important physical. and chemi.cal p rope r t i e s  o f  ura-  

nium a r e  l i s t e d  i n  Table 2 .6 .  

8.3 Technological Fac tors  

I n  t'ne p a s t ,  the  use of uranium, e i t h e r  as a mterial of  cons t ruc t ion  

o r  as a r a d i a t i o n  sh ie ld ,  has been l i m i t e d  by a h i s t o r y  of  unsa t i s f ac to ry  

performance r e s u l t i n g  from a genera l  l ack  o f  understanding of the s p e c i f i c  

p rope r t i e s  of uranium. The high c o s t  of s t a r t i n g  ma te r i a l  (UE',) f o r  the  

p r i v a t e  s e c t o r  of t h e  shipping indus t ry  has a l s o  had a s igni - f ican t  d e l e t e -  

r i ous  e f f e c t  on i t s  use ,  

is  summarized i n  t h e  fol.lowing paragraphs.  

Some of t h e  r e c e n t l y  developed uranium techno1.ogy 

8.3.1 Thermal Expansion 

The bas ic  uranium crys ta l .  has d i f f e r e n t  c o e f f i c i e n t s  of  thermal ex- 

pansion along i t s  d i f f e r e n t  axes;  the c o e f f i c i e n t  i n  one d i r e c t i o n  i s  

negat ive .  Since these  erysta1.s become o r i en ted  i n  va r ious  d i r e c t i o n s  dur- 

ing  forming opera t ions  ( e . g . ,  r o l l i n g  b i l l e t s  i n t o  p l a t e ) ,  t he  c o e f f i c i e n t  



o f  thermal expansion of a fabricated item w i l l  not only be unpredictable 

but w i l l  vary when measured i n  d i f f e ren t  d i rec t ions .  This condition can 

be eliminated by a heat treatment i n  which the  worked metal i s  heated 

in to  the  beta range ( i a e . ,  about 125O"F), and e i t h e r  quenched or allowed 

t o  furnace cool.  

s u l t s  i n  a metal having equal, predictable,  and moderate coef f ic ien ts  of 

expansion i n  a l l  d i r ec t ions ,  Uranium cast ings w i l l  normally have random 

grain or ien ta t ion  and, therefore,  a r e  comparable i n  thermal expansion 

behavior t o  uranium heat t rea ted  i n  the  beta range. 

This treatment randomizes the  grain s t ruc ture  and re-  

Table 8.7 presents a comparison o f  the  thermal expansion coef f ic ien t  

o f  uranium and some o ther  metals normally used i n  fabr ica t ion  work. 

8.3.2 Thermal Cycling Growth 

Thermal cycling growth, a charac te r i s t ic  exhibited by uranium metal 

having preferred grain or ientat ion,  causes the metal t o  permanently change 

dimensions when thermally cycled t o  650°F o r  higher.  

i s  re la ted  t o  preferred grain or ientat ion,  it follows that cas t  or beta- 

heat- t reated uranium i s  not subject t o  thermal cycling growth; t h i s  has 

been confirmed by extensive t e s t ing .  

Since t h i s  growth 

Table 8.1 . Thermal Ekpansion Coefficients 
f o r  Various Materials 

Mat e r ia 1 
Therm1 m a n s i o n  Coefficient 

( lo-"/ O F )  

Aluminum 

Copper 

S ta in less  s t e e l  (300 c l a s s )  

S ta in less  s t e e l  (400 class) 

Stee l  

Mo ne 1 
Uranium (random grained) 

13.3 
10.0 

10.0 

6.1 

6.7 
7 .8 
8 -0  



8.3 .3  Formation of Uranium-Iron Alloy i n  a F i re  

Uranium i n  contact with s t a in l e s s  steel. can form a low-melting a l loy  

(mp, 1337°F) if heated above tha t  temperature e 

cask t e s t ing  program ver i f ied  the  effectiveness o f  using a tungsten d i f fu-  

sion ba r r i e r  placed bebreen t i e  uranium shield and the  s t a in l e s s  s t e e l  

cladding t o  prevent a l loy  formation. Tests have a l so  indicated that  

0.005 i n .  of  copper w i l l  provide adequate diffusion ba r r i e r  protection 

a t  f i r e  t e s t  conditions (llc7S"F); however, much be t t e r  protection i s  pro- 

vided by 0.00s i n .  o f  plasma sprayed tungsten. 

t h i s  treatment w a s  completely effect ive a t  1900°F f o r  2 .s h r .  

sprayed diffusion ba r r i e r  was applied t o  t he  s t a in l e s s  s t e e l  ra ther  than 

the uranium sh ie ld .  

The recent demonstration 

In a laboratory t e s t ,  

The plasma 

8.3.4 Chemical Activity 

Because o f  i t s  chemical and physical propert ies ,  uranium shields  

should be clad with some material  such as s t a in l e s s  s t e e l .  The proper 

design o f  cladding welds, along with adequate inspect,ion and t e s t  proce- 

dures, i s  necessary t o  prevent cladding f a i l u r e  since it i s  important 

t ha t  the cladding be absolutely f r e e  o f  any breaks o r  pinholes i f  s a t i s -  

factory service i s  t o  be obtained. Reactions which the s t e e l  cladding 

can prevent (assuming the s t e e l  clad weldment has been backfi l led with 

i n e r t  gas) are  those between uranium and oxygen t o  form uranium oxide and 

between uranium and moisture, o r  water, t o  form e i the r  the  oxide or hy- 

dr ide.  The oxide i s  generally loose and f l u f f y  and quickly f i l l s  any void 

space within the cladding of a shipping cask. 

h a l t  the oxidation since fur ther  contact with the contaminating agent i s  

prevented by the presence of the  reaction products. 

i n  the formation o f  uraniuni hydride. 

This condition tends to  

Such i s  not the  case 

When uranium reac ts  with water, hydrogen i s  evolved. This hydrogen 

can migrate through extremely small passages t o  sites which may favor i t s  

reaction with uranium t o  form uranium hydride, The production of uranium 

hydride i s  not se l f  l imit ing since it can decompose a t  cer ta in  ( r e l a t ive ly  

moderate) temperatures, leaving a spongy residue f r e e  o f  hydrogen. The 



l ibera ted  hydrogen can migrate t o  other favorable locat ions t o  fo rm m r e  

uranium hydride and repeat the cycle .  

The uranium hydride produced i n  t h i s  process has a low densi ty  and, 

therefore,  s w e l l s  upon formation; t h i s  swelling can came cladding defor- 

mation or rupture.  Such react ions are possible a t  temperatures normally 

encountered i n  cask service provided moisture i s  present t o  i n i t i a t e  t he  

process. 

It is  important t o  r e i t e r a t e  t ha t  t h e  presence o f  a sound cladding 

mater ia l  around the uranium can completely eliminate the  problem o f  s ig-  

n i f i can t  chemical a c t i v i t y  which might render the cask temporarily in-  

operat ive,  

8.3.5 Uranium Alloys 

Some a l loys  o f  uranium may o f f e r  specif ic  desirable  improvements i n  

physical  o r  chemical propert ies  of t he  metal. 

advantage they might of fe r  t o  the cask designer would have t o  be consid- 

ered on a case by case bas is .  

Such improvements, and the 

The most common alloying material i s  molybdenum. The resu l t ing  a l -  

l o y  i s  more expensive than uranium metal, depending on the  amount used, 

and a l s o  l e s s  dense. However, t he  a l l o y  has higher s t rength and improved 

oxidation res i s tance ,  

8.b Design Considerations 

The impact of a uranium s t ruc ture  results i n  high shock loads with 

smll  deformations due t o  the high ( -  20 x IO6 p s i )  modulus o f  e l a s t i c i t y  

o f  t h e  mater ia l .  

by a uranium s t ruc ture ,  the accompanying high shock loads imparted t o  the 

cask contents may be undesirable. Also ,  loading t h a t  w i l l  result i n  ten- 

s i l e  s t r e s s  i n  uranium must be minimized since Uranium has low elongation 

t o  f a i l u r e  values in tension,  In  order t o  guarantee low t e n s i l e  loadings 

and accelerat ions,  some form of impact cushioning i s  usually provided. 

It i s  r e l a t i v e l y  easy t o  include s t e e l  s a c r i f i c i a l  members on the  cask t o  

provide t h e  necessary cushioning, ( re f .  Chap. 2 )  The design of the 

While a la rge  amount o f  impact energy can be absorbed 



demonstration fuel element shipping cask uti l izing sacr i f ic ia l  s tee l  f ins,  

is shown i n  Fig. 8.1 . 
is given in ref .  4. 

A detailed discussion of the design of th i s  cask 

8.5 Fabrication 

Presently the weight of a single casting, produced in  a vacuum induc- 

tion furnace, i s  limited to around 10,000 l b ,  

duce larger single pour castings in the future but now there is  m economic 

incentive for  doing so, 
casks whose uranium shielding requirements exceed such a l i m i t .  

nium melt may be cast i n  mlds t o  specific shapes o r  it may be cast i n  

b i l l e t s  and rolled to form plate, 

It m y  be possible to  pro- 

This has produced two fabrication concepts fo r  

The ura- 

If castings are  used, they must be stacked as  required by the design 

and the pieces joined in an appropriate manner t o  form a rather rigid 

structure. 

the appropriate sizie, nested, and welded also t o  form a rigid structure. 

If the plate approach is considered, they must be formed to 
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There a r e  advantages and disadvantages t o  both methods but, it will 

suf f ice  here t o  say t h a t  they both can be made t o  work. It should be 

noted, however, t h a t  pr ivate  indus t r i a l  concerns a r e  equipped t o  produce 

cast ings ra ther  than p l a t e .  With sound cast ings joined t o  form a mono- 

l i t h i c  type s t ruc ture ,  then the behavior o f  t he  cask should be qui te  

s imilar  t o  the  one produced i n  the Commission f a c i l i t i e s  u t i l i z i n g  the 

p l a t e  technique and t e s t ed  so extensively,  The in t en t  o f  the t e s t s  were, 

o f  course, aimed primarily a t  t e s t ing  the ruggedness and du rab i l i t y  o f  

a strong uranium structure  ra ther  than the techniques used t o  produce 

t h a t  s t ruc ture  . 

6.5.1 Uranium Welding 

Welding o f  uranium can be an important fac tor  i n  the production o f  

uranium casks,  

order t o  exhibi t  the same radiat ion at tenuat ion as the base metal. Weld- 

ing procedures have been developed which; 1 )  have su f f i c i en t  s t rength and 

d u c t i l i t y  t o  give the  f inished cask the required s t r u c t w a l  strength; 

2 )  a r e  not so d i f f i c u l t  o r  tedious t h a t  welding cos ts  a r e  a major fabr i -  

cat ion cost  fac tor ;  and 3 )  do not present an undue heal th  hazard t o  the 

welders .7 

Welds must be f r e e  of voids and/or oxide inclusions i n  

The property o f  uranium which makes it d i f f i c u l t  t o  obtain sound 

welds is  i t s  chemical r eac t iv i ty  a t  welding temperature, spec i f ica l ly  i t s  

high a f f i n i t y  f o r  atmospheric oxygen. An absolute absence o f  a i r  i n  con- 

t a c t  with hot u ran ium i s  necessary if sound welds a re  t o  be obtained. 

uranium welding method used t o  produce the uranium-shielded casks discussed 

i n  r e f ,  5 was tungsten i n e r t  gas and i s  generally referred t o  as TIG weld- 

ing.  

The 

Another method which has been used was a modified TIG procedure using 

Si lver  i s  completely insoluble i n  m o l -  s i l v e r  plated uranium f i l l e r  rods. 

t en  uranium and forms an impervious film on the molten surface.  

coating on the  f i l l e r  rod prevents oxide formation on the  rod u n t i l  i t  i s  

melted during welding. The s i l v e r  f r o m  the  rod then f l o a t s  on the surface 

o f  the  molten uranium and prevents t he  formation o f  insoluble n a t e r i a l  

which would remain i n  the weld and impair i t s  qua l i ty ;  it also eliminates 

The s i l v e r  



the  need for. chemical o r  major phys i ca l  t reatment  o f  t h e  weld between 

passes .  Elimination of  c leaning bet-ween passes  inc reases  tlie o v e r a l l  

welding speed by a f a c t o r  of 5' t o  10.  

a r e  normally f r e e  o f  vo ids  and/or i nc lus ions  a Subsequent be ta  anneal ing 

of  t h e  weld a rea  w i l l  produce t h e  same chemical, phys ica l  and mechanical 

p rope r t i e s  comparable to  those of c a s t  o r  be ta -hea t - t rea ted  uraniwnS7 

Welds produced by t h i s  procedure 

8.6 Test ing of a Prototype Uranium-Shielded Cask 

RecentJy tne  Commission i n i t i a t e d  a program (mentioned previous ly  i n  

Sec t .  8 .1)  wi th  a Tiel$ t o  determining t h e  t e c h n i c a l  f e a s i b i l i t y  of  using 

r a t h e r  large urani1.m s h i e l d s  i n  r ad ioac t ive  ma te r i a l s  shipping s e r v i c e .  

A demonstration cask design was developed which would i n d i c a t e  t h e  be- 

havior of massive uranium s h i e l d s  under normal and acc ident  condi t ions 

( s e e  Fie; e 8 . I  ) . 
t e r  0529, 10 CFR 7 1 ,  a n d  IAEA Safe ty  Se r i e s  6 normal t r a n s i t  design c r i -  

t e r i a ,  and passed t h e  hypothe t ica l  acc iden t  s e r i e s  f o r  shipping r ad ioac t ive  

materials. 

summarized i n  t h e  following paragraphs.  

This cask4-' success fu l ly  met t h e  app l i cab le  AEC Chap- 

The s i g n i f i c a n t  r e s u l t s  of t'ne des t ruc t ive  t e s t i n g  program a r e  

The m a x i m u m  cask dece le ra t ion  rates measured for t h e  3O-€t c losure  

edge impact t es t  of t h e  f u l l  s i z e  were 14145 g ' s  and 781 g ' s  on the  bottom 

of the l i d  and on t h e  bottom of the  cask, r e spec t ive ly .  Inspect ion of the 

cask following t h e  t es t  showed that, t h e  impact damage was i s o l a t e d  t o  ap- 

proximately one-half of t h e  c losure  end impact fins and t o  a s m a l l  s ec t ion  

of t he  s t e e l  f l ange  to which t h e  f i n s  were welded, 

I 

Figure 8 . 2  i s  a photograph of t he  cask closure and damage. The maxi- 

mum change i n  c a v i t y  diameter,  -0.053 i n . ,  w a s  l oca t ed  near  -the top of  t h e  

c a v i t y ,  

The maximum acce le ra t ion  r a t e  measured i n  the  40-in.  free f a l l  punc- 

t u r e  t es t  was 78 g .  No se r ious  damage w a s  incurred i n  t h i s  t e s t ;  t h e  

maximum permanent change i n  cask c a v i t y  diameter w a s  loca ted  near  t h e  

po in t  of impact, 

- 

There was no leakage of l i q u i d  to t h e  ou t s ide  of t h e  cask during t h e  

impact tes ts ,  No dimensional changes were experienced t h a t  would have 



prevented the cask from being used 

me o&L& WELg a b  tzspmed to 
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a 14Ts"F environarent for 
fim. A%% ana*29 of the 

Tests made after the W d  @lmmd that there was I#) b o s -  
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maintaining a r e l a t ive ly  uniform dose r a t e  on the cyl indrical  external 

surface o f  the cask. Four separate depleted uraniivn castings were made 

f o r  t h i s  cask, each approximately 11 f t  long .  The cask was designed in 

t h i s  way to  provide a 1 2  i n .  square cavi ty  ye t  keep the L o t a l  cask plus 

t r ac to r - t r a i l e r  weight below 73,380 lb, the maximum weight l imi t  f o r  mmst 

s t a t e s .  

i n  use. 

'The cask has been approved by tne  AEC and B3T and i s  presently 

Figure 8.4 shows a cask whose shielding thickness i s  6-3'4 i n .  of 

depleted uranium; the cask weighs 11,450 l b  and i s  designed t o  accommo- 

date kO0,OOO curies  of "CO which produce 6 kw of heat ,  

bu i l t  f o r  the Oak Ridge National Laboratory by the Paducah Gaseous 

Diffusion Plant, using the  laixinated p l a t e  technique has a l so  been ap- 

proved by the AEC and DOT as meeting a l l  norm1 and accident conditions 

required by the regulations.  

This container, 

SAGRIFOCIAL PONE WITH /-ANTIMONIAL- LEAD ALLOY 
RADIANT :LDS ENERGY 

E EP HOLE 

F i g .  8 .3 .  Sectiion View o f  .the NRU-NRX I r radiated Fuel  Shipping 
Cask (Courtesy of  Na-tional Lead Company) 
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Fig. 8 .k . Uranium Shielded “ O C o  Cask. 
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