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INTRODUCTION

This report contains the lecture notes from the series of lectures in statistics and probability
given by members of the Statistics Group of the Mathematics Division at ORNL during the period
June 10, 1968, to August 12, 1968. Lecture notes were made available at each lecture, and since
the completion of this series of lectures the requests from Laboratory personnel for additional
sets of the lecture notes have prompted the compilation of these notes into this report. These
lectures were held on a weekly basis and were open to all ORNL personnel as well as those
interested individuals at Y-12 and K-25. The lectures were well received by the majority of
those attending, who ranged from 75 to 150 individuals per lecture. From an examination of the
table of contents of this report, which lists the title and lecturer for each lecture, it can be seen
that this series covered a wide variety of statistical topics. Each lecture was as self-contained
as possible. The notes contained in this report emphasize the important concepts in each lecture.

This series of lectures in statistics and probability was an effort by the Statistics Group to
familiarize investigators in the physical and biological sciences with statistical methods and
concepts. Since the need for the services of statisticians has been recognized by the Laboratory,
one of the primary functions of the Statistics Group of the Mathematics Division has been ‘‘to
encourage an atmosphere in which new concepts can be explored and fundamental research
carried out using statistics and biomathematics.’’!

In line with this function these lecture notes are published to:
indicate the tools which are available in statistical methodology;
acquaint those interested individuals with the language and terminology of statistics; and

illustrate the manner in which statistics may be applied in scientific research.

'Math. Div. Ann. Progr. Rept. Dec. 31, 1963, ORNL-3567, p. 33.

ix






LECTURE I: PROBABILITY, RANDOM VARIABLES, AND DISTRIBUTION FUNCTIONS

Donald A. Gardiner

1. PROBABILITY

Any study, whether intensive or casual, of the subject called statistics must begin with an
understanding of probability because probability is the basis of statistics. In fact, at universities
where statistics is taught seriously the student is given at least a quarter or semester of prob-
ability before he is allowed to take his first real course in statistics. Since this series of
lectures is intended to be a survey of some topics in statistics and not a formal course, we need
not be so pedantic, but a proper groundwork must be laid. We will begin by outlining the three
concepts of probability and by pointing out that the three concepts are not necessarily incom-

patible,

1.1 Relative Frequency

While interned in Denmark during World War II a South African statistician named Kerrich
tossed a coin 10,000 times. He kept careful records, which fortunately he was able to preserve,
and these records have become a valuable source for examples and illustrations. Heads turned
up 5067 times. One is inclined to conclude that the probability that a head will turn up on a
single toss of Kerrich’s coin is 0.5067. This is an example of the relative frequency approach
to a definition of probability.

Consider a simple experiment the outcome of which cannot be known in advance but in
which the possible outcomes may be classified as ‘‘favorable’’ or ‘‘unfavorable.’”” Should the

experiment be performed a number of times, the ratio

number of favorable outcomes

number of trials

is the relative frequency of favorable outcomes. Intuitively we feel that as the number of trials
increases the relative frequency will settle down to some stable value greater than zero and
less than unity. The limit of this ratio as the number of trials increases is taken as the relative
frequency definition of the probability of a favorable outcome. Inherent in this definition is the
assumption that a favorable outcome from one trial is as likely as a favorable outcome from any
other trial and that the results of one trial do not affect the results of another trial.

In the example of Kerrich’s coin the favorable outcome was the appearance of a head and the
experiment was the tossing of the coin. However, 10,000 tosses is not the limit of the number
of tosses, even though Kerrich may have wished that it were. The ratio 5067/10,000 is a rather
good estimate, but we would be very reluctant to state that the probability of getting a head on
Kerrich’s coin is 0.5067, because if Kerrich had stopped at some other number of trials the ratio

would have been different.



1.2 Axiomatic Probability

Although the relative frequency approach has great appeal on intuitive grounds it has been
more fruitful to treat probability in a more formal manner mathematically. Such an approach is
the approach based on three simple axioms.

Consider a set U whose elements are denoted by x. If (I is a set consisting of all the pos-
sible outcomes of an experiment, (. iscalled a sample space and x represents a possible outcome.
(. contains subsets, 4, B, C, etc., and it will be of interest to consider
1. the probability that x € A, written P(4),

2. the probability that x € B, written P(B),
3. the probability that x € 0, written P(),

4. other probabilities.

P), P(B), P(Q), etc. are called probability set functions if they satisfy the three axioms of
probability.
Writing ¢ as the null set (the set which contains no elements) and with the understanding

that A and B are subsets of (i, the three axioms of probability are as given below.

The Three Axioms

1. P(4 20.
2. P(A U B)=P(A)+P(B)if A and B are disjoint sets, that is, if A N B = ¢.
3. P(CL): 1.

Axiom 2 is the familiar ‘‘additive law’’ of probability which applies to mutually exclusive
sets.
From these axioms many theorems and corollaries may be deduced, the most important of

which are these:

If A€ is the complement of 4, P(4€) =1 — P(4).
2. P(¢)=0.

3. If4 CB, P4) < P(B).
4. 05 P@) S 1.
5. Whether ornot4A N B =¢, P(A U B)=PA)+ PB)-PA N B).

The reader may find it amusing and instructive to prove these results from the three axioms.
All that is necessary is a knowledge of elementary set theory.

The question naturally arises: ‘‘How does one obtain a numerical value for P(4)?’’ This
is the question of choosing a probability model, the answer to which, from a strictly mathemati-
cal point of view, is purely arbitrary. But from a practical point of view the question is not
trivial, and the answer, of course, depends upon the type of experiment that is contemplated and
what is known about it. In the coin-tossing experiment one might choose the probability of the

appearance of a head to be 1/2. This could be taken as the definition of a ‘‘fair’’ or ‘“‘unbiased’’



coin. If one assumes that Kerrich’s coin was a fair coin, one assumes that the limit of the
relative frequency is 1/2 There is no way of proving or disproving this hypothesis absolutely,
but one can see that, in this sense, the relative frequency concept is compatible with the axio-

matic concept of probability.

Conditional Probability

Before discussing the third concept of probability it will be convenient to introduce the
notion of conditional probability.

Let A and B be two subsets of the sample space (I, and let x be an element of (.. We in-
quire now into the question: ‘‘If x € B, what is the probability that x € A?”’

‘‘conditional’ probability because it is the probability

The probability in question is called a
that x is an element of the set A conditional upon the fact that x is an element of the set B. It
is written P(A4|B), which is read ‘‘the probability of 4 given B,’’ and is defined by

P(AnN B)

P(A]B):—P—(B)—- ,P(B)>0.

Note that this is a definition and not a result of the three basic axioms. However, P(4|B) does

‘‘anconditional’’

satisfy the three axioms, and therefore the same theorems which hold for
probabilities hold for conditional probabilities as well. [In showing this, one should treat B as

a sample space so that P(B|B) = 1.]

Sets as Events

In statistical parlance an outcome of an experiment is called an elementary event, and the
collection of all outcomes which belong to a certain subset is called simply an event. Thus

there is the correspondence

outcome, x: elementary event,

subset, A: event, 4.

If, in the performance of an experiment, an outcome x € 4 has been observed, we say that the
event A has occurred. It will be useful to speak of the event A and its probability P(4) in de-

fining independence.

Independence

Independence in the statistical sense is often called stochastic independence to differentiate
it from mathematical independence. We say that the event A is independent of the event B if
P(A|B) = P(A) and conversely. If the equality does not hold we say the events and their prob-

abilities are dependent.



The definition of independence allows us to state the familiar multiplicative rule of prob-

ability, namely that if the events A and B are independent, then
PA n B)=P(A)x P(B),

which is a direct consequence of the definition of conditional probability.
Frequently in applications P(4|B) is difficult to postulate, whereas P(4) and P(B) may not
be so difficult. But P(4|B) = P(4) if the events are independent, and so one is well advised to

plan one’s experiments to take advantage of the resulting simplification.

1.3 Inductive Probability

The third concept of probability we wish to consider is inductive probability. It has been
defined as the degree of belief one is willing to place on a proposition in the light of certain
evidence. We see immediately that inductive probability is not the same as the limit of a rela-
tive frequency, nor is it the same as the probability that an element belongs to a set of a sample
space.

(41

One might say that one is ‘‘almost sure’’ that Kerrich’s coin was a fair coin, in which case

“almost sure”’

is a nonquantitative measure of inductive probability. Some might wish to
quantify the inductive probability and say, perhaps, ‘‘I am 95% certain that Kerrich’s coin was
fair,’” but the 95% is still a degree of belief or an inductive probability.

This statement about Kerrich’s coin contains a mixture of two kinds of probability: the 95%
is a measure of inductive probability, and the word ‘‘fair’”’ means that the probability that a head
appears is .

Another statement that could be made about Kerrich’s coin is: ‘I am 95% confident that
the probability that a head turns up is between 0.4967 and 0.5167.”’ This is an example of
statistical inference which employs the idea of a confidence interval. Like the previous state-

ment it contains two kinds of probabilities: the 95% is a measure of inductive probability, and

the interval (0.4967, 0.5167) is a measure of the probability for a head with Kerrich’s coin.

2. RANDOM VARIABLES

Given sufficient ingenuity it is always possible to associate with every possible outcome
of an experiment a number on the real line. We shall use lower-case letters to denote these
numbers corresponding to the possible outcomes. Then, for example, in a coin-tossing experi-

ment we could set up the correspondence

if a head turns up, x = 1,

if a tail turns up, x = 0.

Before the experiment is performed we do not know whether x = 0 or x = 1. Therefore, to represent

the outcome of the experiment without a knowledge of how the experiment turns out, we will use



the corresponding capital letter, in this case X. The real number which represents the outcome
of an experiment before the outcome of the experiment is known is called a random variable.

Some examples will be instructive.

2.1 Coin Tossing

In the coin-tossing experiment we could set up the following definitions:

Sample space: (i = {head, tail} or 0 =ix; x =0, 1}
Subsets: A = thead] ord =ix;x =1}
B = {tail} or B =1ix; x =0}

Then in terms of the random variable X we have

PU)=Prob{X =0or1}=1,
P(A) =Prob {X = 1} = p, say,
PB)=Probi{X =0{=1-p.

It is an interesting aside to point out that P(4) and P(B) may be summarized in one expression,
<
f6)= p* (1= p)'™, x=0,1,05p 1.

Thus if x = 0, f(x)=PB)=1—-p,orif x =1, f(1) = P(4) = p. For the moment we will consider
this to be merely an ingenious summarization, The point here is to illustrate the use of the

random variable to describe an experiment.

2.2 Radioactive Decay

Suppose an experiment consists of placing a radioactive source before a counter for a
specified period of time. The possible outcomes of the experiment are all the integers which
might register on the counter. In this case the definition of the random variable is straightfor-

ward and requires no ingenuity whatsoever. We could set up the following correspondence:

Sample space: (b = {all nonnegative integers} or( =1{x; x=0,1,2, ...}
Subsets: A = lintegers less than 10} ord=1ixx=01,2,...,9
B =lintegers between 40 and 50} or B = {x; x = 41, 42, ..., 49} .

Then in terms of the random variables X we have

PO)=ProbiX =0,1,2,...4=1,
PA)=Prob{X =0,1,2,..., 9,
P(B) = Prob X =41, 42, ..., 49 .

If we wished we could postulate a probability model from which we could calculate probabilities

for the several sets. Such a model could be



e—-/\)\x
Prob {X = x} = ,x=0,1,2, ..., O0<A,

x!

but this is purely arbitrary. What we have illustrated is the reduction of the description of an

experiment to mathematical terms using the idea of the random variable.

2.3 A Piscatorial Experiment

A sport fisherman would agree that he could not predict the weight of a fish he might catch,
and he might also agree that it is reasonable to treat the weight of a fish as a random variable.

To describe this phenomenon we could define some sets as follows:

Sample space: {all possible weights} or 0 = {x; 0 < x < oo}

G =
Subsets: A =lweights of fry} or A =1{x; 0<x <1}
B = lweights of whoppers} or B = {x; 6 < x < oo}

Although these definitions are quite arbitrary they illustrate the concept of the continuous
random variable as opposed to the disctete random variables of the two preceding examples.

The probability functions for these sets in terms of the random variables are

PU)=Prob {0 <X <o} =1,
P() = Prob {0 < X < 1},
P(B) = Prob {6 < X < oo} .

It might be reasonable to postulate a function

<
f(x)=2"%x*1 exp {—x/2}/T'(@), 0<a <o, 0=x <o

= 0 otherwise

to aid in describing the probabilities so that
1
P4)= f(x) dx ,
=S
P®) = [~ fx)dx
J.

but again this is purely atbitrary, and some other models could be advanced which might be

more realistic.

3. DISTRIBUTION FUNCTIONS

Let X be a random variable defined on an interval of the real line, a <x <b. The distribution

function of the random variable X is defined simply as

Prob {X §x§ .



It is customary to use a capital letter from the first part of the alphabet to represent the distribu-

tion function, as, for example,
<
F(x)=Prob {X = x}{.

It will be useful to consider the derivative of F(x), which we will denote by the corresponding

lowet-case letter. Thus

dF (x)

dx

f(x) =

If X is a continuous random variable, f(x) is a derivative in the ordinary sense and it is defined
at each point of continuity of x. If X is a discrete random variable, then f(x) is not a derivative

in the ordinary sense. In the discrete case we define
[(xi) = F(Xi) - F(Xi—l) )

where we assume a sample space (i such that

< < < < < < <
:XI:XZ:...¥XI._1: i

G =

~{X1, b ST

Although it is frequently overlooked for convenience, it takes at least three statements to
completely specify the distribution function if the range of the variable, (a, 5), has finite limits.
Thus

0, x <a
Fey= < [0, asx<h
a
1, bix

If X is a continuous random variable the integral above is an ordinary Riemann integral. But if

X is discrete we interpret the integral to mean

@),
A

in which A is the set of all values of ¢ which are less than or equal to x but greater than or

equal to a.

3.1 Some Properties of the Distribution Function

A study of the definition of the distribution function F(x) will reveal that it possesses the

following properties:

<
1. 0SF) S 1.
2. F(x) is a nondecreasing function of x.
3, F(o)=1and F(—)= 0.
4

. F(x) is continuous to the right at each point x.



<
Roughly speaking, property 4 above means that the limit of Prob {X = x{, as one approaches x
from values larger than x, exists and this limit is equal to F(x),

From these properties we may deduce that for x| <x,

Prob {x, <X Sx,}=F(x,) - F(x,) .

If x =x, =x,, Prob {X =x.} is equal to the height of the step of F(x) at the point x,,. Thus,
if F(x) is continuous at x = x,, Prob X = x0§ = 0 because the height of the step at x, is 0.
3.2 The Probability Density Function

We have already defined f(x) as the derivative in one sense or another of the distribution
function F(x). We call f(x) a probability density function (p.d.f.), and we have already seen
some examples.
Coin Tossing

In the coin-tossing experiment we had a function which we will rewrite as

< <
f&)=p* Q1 ~p)=*, x=0,1, 0=p=1
=0 otherwise .

This is a bona fide p.d.f. whose distribution function is

0, x<0
<
Fx)= < 1-p, 05x<1,05p21
1, x21

Poisson Distribution

The example about radioactive decay assumed a probability density function

—Ayx

e

f(x) =

> x=0,1,2, ..., 0<A
x!

= 0 otherwise.
Its distribution function is

0, x <0
Fx)=+9 x e_’\)\t

t=0 t!

This is known as the Poisson distribution and is a realistic model for many real situations.



A Gamma Distribution

As an example of a continuous random variable we used the weight of a fish and assumed a

p.d.f.
f(x)=2"%x% 1 exp {—x/2}/T'(), O Sx <o, 0<a<oo
=0 otherwise .

The distribution function for this model, which is a special form of the gamma distribution func-

tion, mav ha evnressed onlv as

O: X<0
F(X):

foxfa)dt, 05 x <o

because the integral does not exist in closed form. However, this distribution function is tabled

for many values of a.

Exponential Distribution

As an example of a probability model for a random variable whose distribution function does

exist in closed form, consider

0, x<0
F(x) = <

l—e % 0Zx<o, 0<f<o.
The probability density function for this random variable is
_8 <
fx)=0e 7%, 0=x <o, 0<8 <o
= 0 otherwise.

This model is used extensively in the study of survival of organisms and in life testing.

3.3 Transformations of Random Variables

Very frequently one is interested in the behavior of a random variable that is some function
of another random variable. We shall illustrate one method of finding the distribution function
(and hence the p.d.f.) of a transformed random variable.

Suppose a random variable X is defined by a distribution function F(x) such that

0, x < —1

<
F(x)= 1+x)2 -1=x<1
>
1, x=1
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and that we are interested in the distribution function of the random variable ¥ = X?. Wehave

_< _
Prob {¥Y iy} = Prob {X? §y§ = Prob {—/y = X < Vi
= FQ/y) - F(~/y),

since Prob {X = —\/y{ = 0. Continuing,

1+vVy 1=y
FO7) = F(=yi) = — _ ZZ V7

2 2
Therefore
< 0, ¥y<0
Prob{¥ ~y}=G@)= {4 V¥ 05y <1
1, y21

which defines the distribution function for ¥. The probability density function will be the
derivative of G(y) with respect to y or

o) ! 0<yo1
g “2\/)—7-) y =

= 0 otherwise.



LECTURE Il: CHARACTERIZATIONS AND LIMIT THEOREMS

V. R. Rao Uppuluri

1. INTRODUCTION AND SUMMARY

In this lecture we shall review the fundamental concepts of a probability space, random vari-
able, distribution function, and the probability density function and indicate the tools of analysis
that will be essential to probe into these areas. In Sect. 3, we shall indicate the role played by
the concept of independence in the context of probability theory by pointing out several characteri-
zation theorems of the normal (Gaussian) distribution and the exponential distribution. In Sect. 4
we will give the analytical expressions of several of the standard distributions that are encountered
in statistics and indicate how they are derived. In Sect. 5 we will give the formulas for the char-
acteristic function and moments of some of the standard continuous distributions. In the last sec-
tion we will introduce the concepts of convergence of random variables and distribution functions

and give statements of the laws of large numbers and the central limit theorem.

2. REVIEW

In the study of any random phenomena, the concepts of (1) probability space, (2) random vari-
able, (3) distribution function, and (4) probability density function are very fundamental.

In probability theory, the basic sample space and the set of all conceivable events with a
given probability structure will be the natural level at which one would work. In other words, one
would work with a probability space and make very fine analysis using measure-theoretic ap-
proaches. Thus the results established would be theoretical in nature and will tend to be in the
nature of existence theorems, as can be illustrated by the strong law of large numbers and the
ergodic theorem.

At times, in several physical or natural phenomena it may be possible to directly focus atten-
tion on the random variables under consideration. By making a fine analysis of the structure of the
phenomena, it may be possible to pin down the relationships between the random variables under
consideration. This can be illustrated in the context of regression analysis and analysis of vari-
ance, about which we will hear more. The distributional properties and the moment properties of
these structured random variables are generally helpful to understand the underlying phenomena.
In this context, it may be worth adding a note that the concept of a random variable is that of a
continuous function where the domain of the function can be an arbitrary sample space but the
range is usually the real line or the Euclidean space. Also, random variables help to bridge the
gap between the results proved by a probability theorist and the user. Several types of conver-
gence of random sequences illustrate this point, and an applied person may be satisfied with the
weakest type of a convergence theorem, whereas the theorist is restless till he proves the

strongest type of convergence theorems.

11
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The next level one may choose to work at may be with the so-called distribution functions as-
sociated with random phenomena. A distribution function may be characterized as a real-valued,
nonnegative, bounded (less than or equal to 1), and monotone nondecreasing function. A distribu-
tion function need not necessarily be continuous, but it will have at most a countable number of
discontinuities. It is important to note that if one makes an assumption about the form of a distri-
bution function, it means that one is looking at a subclass of these functions. If one is fastidious
about making technical assumptions, like the differentiability of a distribution function, one would
work with distribution functions in studying the properties of the underlying random phenomena,
and one needs tools like the Lebesgue-Stieltjes integrals. Also, analytically it turns out to be
simpler to work with distribution functions, as contrasted to probability density functions, in
proving limit theorems like the central limit theorems.

Traditionally, any data that are recorded are grouped and represented as frequency histograms.
Then one looks for patterns in these histograms. Some try to find mathematical functions that fit
these histograms. If one consults a statistics book, one finds a certain class of neat mathematical
functions like (1) the normal probability density function, (2) gamma distribution, (3) beta distribu-
tion, (4) uniform distribution, (5) binomial distribution, (6) Poisson distribution, and so on, and
one looks for a function that best fits the data. Any nonnegative function which, when integrated
over the whole range of permissible values, integrates to unity may be characterized as a probabil-
ity density function. The data and the phenomenon that is under study generally help to pin down
the probability density function that may be appropriate for a particular problem. At times this
may be an initial step to formulate further hypotheses in the phenomenon under study and to carry
on experimentation for further verification. This leads to the aspect of statistical inference.
Though I have described the four concepts in the order (1) probability space, (2) random variable,
(3) distribution function, and (4) probability density function, the importance of concept (4) should
not be underrated. It should be acknowledged that the growth of some of the ideas in probability
theory has its origin in the study of the properties of probability density functions. Since this

study requires only advanced calculus as a tool, this is in the reach of many.

3. CHARACTERIZATION THEOREMS

Though it may not be specified, in many practical situations one would work with random phe-
nomena where one can change levels in the above setup. In other words, one would like to believe
that one lives in a world free of pathological situations. A situation where one can have a distri-
bution function without necessarily having a (derivative or a) probability density function is an
illustration of a pathological situation. For all practical purposes, any further concept introduced
at one level will still be valid at all levels. The concept of independence is an illustration of

this.
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3.1 Normal Distribution

In terms of independence one can characterize the distributional properties of several random
phenomena. We will illustrate below a few characterizations of the normal (Gaussian) distribution.

Theorem 3.1: Let Xl, X2, ..., X, ben independent but not necessarily identically distributed
random variables. Suppose that the two linear forms VYV =aX +...+a X and ¥V =5 X +...+
b X, are independently distributed. Then each random variable XJ. which has nonzero coefficients
in both forms is normally distributed.

The vector analog of the above theorem is also true and may be stated as

Theorem 3.2: Let Xl s X2, e, Xn be n independent but not necessarily identically distributed
p-dimensional random vectors. Suppose that the two random vectors Y1 =a X +...+a X and
Y,=b X, +...+bX areindependently distributed. Then each random vector Xj for which

a, b]. # 0 has a p-variate normal distribution.

Another characterization of the vector analog may be stated as

Theorem 3.3: Let X1’ X, o X, be n mutually independent p-dimensional random vectors,
and let Al, Ay ooy A, Bl, Bz, ..., B, be nonsingular square matrices of order p. If
n
L 4.x,
i=1
and
n
z B.X,

are independently distributed, then each X has a p-variate normal distribution.

The next theorem characterizes the normal distribution in terms of the independence of the
sample mean and sample variance. This result is useful in deriving the distributions of random
variables which are functions of sample mean and sample variance from a normal distribution,
such as the Student’s ¢ statistic and Fisher’s F statistic.

Theorem 3.4: Let X , X , ..., X be a sample from a certain population, and denote the sam-

2. The statistic X and s? are independent if and only

ple mean by X and the sample variance by s
if the population is normal.
It can be easily proved that the distribution of the sum of two independent normal variables is
normally distributed. The next theorem tells us about a form of the converse of this statement.
Theorem 3.5: If the sum of two independent random variables is normally distributed, then

each summand is also normally distributed.
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3.2 Gamma and Exponential Distributions

A nonnegative random variable X is said to have a gamma distribution if its probability density

function is given by
f(x) = e *Bx*-1/T'(a), a>0. Q)

When « =1, X is said to be exponentially distributed; 3 is referred to as the scale parameter. It
can be easily proved that if Z and Z, are two independently distributed gamma variables with the
same scale parameter, then Z1 +Z,and Z,/Z, are independently distributed. The next theorem
is a converse of this statement, which together with this remark characterizes the gamma distribu-
tion.

Theorem 3.6: If Z and Z, are independent nonnegative random variables for which Z, + Z,,
and ZI/Z2 are independent, then both Z1 and Z2 have gamma distributions with a common scale
parameter.

The next theorem shows that the only distribution which has the property of not having memory
is the exponential distribution.

Theorem 3.7: Let T be a nonnegative random variable,

P(T>x+y|T>x)=PT>y)

if and only if T has an exponential distribution.

The next theorem gives a characterization of the exponential distribution in terms of the mini-
mum and range of two random variables.

Theorem 3.8: Suppose that the random variables X and Y are independent and have absolutely
continuous distributions. Then in order that U = min(X, ¥) and V = X — ¥ be independent, it is
necessary and sufficient that both X and ¥ have exponential distributions.

Let X, X,,.-., X, be nindependent identically distributed nonnegative random variables. If

we arrange them in order of magnitude as X SX s n .. %X X

n,n’ Xk o is referred to as the kth-

order statistic in a sample of size n. Let us define

Vi=(—i+ DX, - X y,i=1,2,...,n,

i—1,n

with the understanding that X /== 0. The next theorem characterizes the exponential distribution
intermsof ¥ Y _,...,Y .
17 727 > T n
Theorem 3.9: Yl , Yz’ ..., Y are independently distributed if and only if X has an exponential
distribution.

A random variable U is said to have a uniform distribution on [0, 1] if

I

PUSu=u, 05us1.

The following theorem shows the relationship between a random variable with uniform distribu-
tion and a variable with exponential distribution. »
Theorem 3.10: Let 0 <U<land X =—1n U, sothat 0 < X <oe. X has an exponential distri-

bution with mean 1 if and only if U has a uniform distribution.
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4. STANDARD DISTRIBUTIONS
In this section we will introduce the reader to some of the standard distributions used in
statistics.
4.1 Chi-Square Distribution

Let X be a random variable distributed normally with mean 0 and variance unity; in other words

let the probability density function of X be given by

1
f(x) = X2 e Cx <o )

o
Then it can be easily shown that the variable ¥ = X2 has a probability density function given by

1
E(y) =——y 127V 2. 3)

N

This g(y) is referred to as the chi-square distribution with one degree of freedom. This is a spe-

cial case of the gamma distribution (1) with 8 =% and @ = % . The following is an important

-
theorem concerning the gamma variables.

Theorem 4.1: Let Y1’ Y, ..., Y, ben independent gamma variables with a common scale
parameter 3 and perhaps different values of a given by @, Oy ovo, @y Then¥ + ¥V 4+ ...+ Y
has a gamma distribution with the same scale parameter 8 and with a = «

n

1+a2+...+CLn.

From theorem 4.1 and (3), we can deduce the following useful corollary:
Corollary 4.1: Let X ,X, ..., X,ben independent identically distributed normal variables

with mean 0 and variance unity. Then ¥ = Xf +.o+ Xf1 has a gamma distribution with o = n/2

and 8 = 1/2 (which is referred to as a chi-square distribution with n degrees of freedom) given by

1 1
27/2 T'(n/2)

() = y D=t emy/2 0 <y <oo. )

4,2 ¢t Distribution
It turns out that the probability density function of R = /¥ /n is given by

n/2
fo) - 2(n/2)
I'(n/2)

n-—1 —nr2/2
,

0<r<oe , (5)

which is referred to as the root-mean-square distribution with n degrees of freedom.
The variate T may be defined as the quotient of two independent variates X and R, where X
has a normal distribution with mean 0 and variance unity and R is the root mean square of n other

independent identically distributed normal variates with mean 0 and variance unity.
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Theorem 4.2: T has the probability density function given by

2
£(f) - Pt + 1/2) ! < t<oe 6)

I'(n/2) Vvar (1 + 2/n)nt1)/2

which is referred to as the t distribution with n degrees of freedom.

4.3 F Distribution

If ¥ has a chi-square distribution with n degrees of freedom, then W = ¥/n will have the proba-
bility density function given by
n/2)"?
f(w) =( ) w(/2)—1 g—nw/2 L 0<w< oo, %)
(n/2)
which is referred to as the mean-square distribution with n degrees of freedom.
The variate F may be defined as the quotient of the respective mean squares of a and b inde-
pendent identically distributed normal variables with mean O and variance unity.

Theorem 4.3: F has the probability density function given by

ad’2 bb/z x@/2) -1

Bla/2, b/2) (ax + b)©@ +b)/2

, 0<x<oo . (8)

This is referred to as the F distribution with a and b degrees of freedom. This F is also known as

the variance ratio with a and b degrees of freedom.
5. EXPECTATION

5.1 Characteristic Functions

In this section we will introduce the notion of the characteristic function of a random variable,
which can be used in determining the moments (whenever they exist) and which is helpful in proving
the convergence of distribution functions. For brevity, we restrict ourselves to continuous vari-
ables. Let X be a random variable with probability density function f(x). Then the characteristic

function of the random variable X is defined by

B(t) = [el™ f(x) dx . )]

The following is a short table of familiar probability density functions and characteristic functions.
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Distribution Probability Density Function Characteristic Function
o 2/2,2 ; 22
Normal e x =) I Gift— Tt /2

o2

1 .
Laplace e"j““ﬂ"/a Ml +o2¢2y—!1
20

1
Rectangular 7 (a<x<a*t@) efat (eigt - 1)/ith

Eaxa—-le—ﬁx

Gamma (x> 0) L 1a
) [B/(B~it)]
see ‘r“r(—ml)‘ LA~ 0" 0 <x< GREONE Lm + i) oY
(m) I'(m) Py Z Tt at HCG+ 1
8 1
Cauchy —_ eipt-(t@{

7 8 (x =)t

5.2 Moments
The kth moment of the random variable X is defined by
E(X% = f K f(x) dx . (10)
For k =1, E(X) is referred to as the mean of the variable X. The variance of X is defined as
Var(X) = E(X?) - [E(X)]? . (11)

An alternate way of obtaining the kth moment of the variable X is to differentiate the characteristic

function ¢(t) k times and find its value at t = 0, that is,
E(Xxk) = ¢®(0) . (12)

At times this may turn out to be an easy way of finding the kth moment, but not necessarily always.

We will now give some formulas of moments for some well-known distributions.

1. Normal distribution:

1 2
f(x) = e=X /297 o3>0, ~<x<oo .

1.3:5. ... (k=1)c® for k even
E(Xk) =
0 for k odd .
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2. Rayleigh distribution:

X 2
f) = — =¥ /2% | 0<x<m
@4

a7
\/7 1.3.5 ... ka* for k odd
E(Xk) -

- k
2k/2 <—§—> tak for k even .

3. Maxwell distribution:

\/7 X2e-x2/ 2CL2
a7

2 k+1
[Z_ok*1/2 <_+_>!ak for k odd
T 2

1-3.5 ... (k + Dak for k even .

f(x) = 0<x<oo.

E(X¥y =

4. Gamma distribution:
'Baxa_1e_ﬁx

f(X):—l_‘(&)—‘, 0<x<oo .

EXK) = a(a + D(a +2) ... (a + k=1 B~ k.
5. Beta distribution:

foo = LD meig _ g1, 0cx<l
[(m) T'(n) : e
m(m+1)...(m+k—-1)

(m+n)(m+n+1)...(m+n+k—-1)

E Xk =

6. CONVERGENCE THEOREMS

In this section we will introduce the notions of convergence in probability, convergence in
quadratic mean, convergence with probability 1, and convergence in distribution. We will point
out the connections between these convergences. We will indicate the laws of large numbers and

the central limit theorem.

6.1 Convergence of a Sequence of Random Variables

A sequence of random variables {Xni, n=1,2, ..., 1is said to converge to a constant c:

P
1. in probability or weakly (and written X — c), if for every given € > 0,
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lim P(|X, —c|>e)=0; (13)
n oo

a.s.
2. strongly or almost surely (written tim X, = c with probability 1 or X —> c) if

n oo

P( lim X =c)=1, (14)
n o
or equivalently

lim  P( sup an—c|>€):Oforevery6;

N 7>

v

n N

q.m.
3. in quadratic mean (written X,— c), if

lim E(X, —c)*=0. 1s)

n "o
The following theorem shows the relationship among the various types of convergences.
Theorem 6.1:

q.m. P
1. Ian—% c,thean—% c.

a.s. p
2. Ian——> c, then Xn-—> c.

P it 2 a.s.
3. IfX,—>cand ), E(X,—0)? <o, then X —> ¢ .

R=1
6.2 Laws of Large Numbers

Theorem 6.2 (weak law of large numbers): Let {Xi}, i=1,2, ..., be a sequence of n inde-

pendent and identically distributed random variables. Then

(X +...+Xn) P

E(Xi):p,<oo, thenl—n__——% T
Theorem 6.3 (strong law of large numbers I): Let {XI.}, i=1,2, ..., be a sequence of n

independent random variables such that E(Xi) =p,;and Val(X ) = 0'1.2 . Then

o 2 X, +...+X + + .+ a.s.
Z —L < = implies that —1 n_ Mt h fn 2559 .
. 2 n n
i=1
Theorem 6.4 (strong law of large numbers II): Let {Xi },i=1,2, ..., be a sequence of n

independent and identically distributed random variables. Then

X +...+X a.s. .
—t 7 ——= 4 if and only if E(X,) exists and is equal to p .
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6.3 Central Limit Theorem

Let F_(x) denote the distribution function of the random variable X , thatis, F_(x) =
P(X < x).

Definition: The sequence of random variables {Xn } is said to converge in distribution (or in
law) to a random variable X with distribution function F (x) = P(X £ x) if F (x) »F(x)as n— o
at all points of continuity of F. Such a convergence is expressed as XHL—\ X.

Theorem 6.5: Let (;’)n (t) be the characteristic function of X, and ¢ (#) that of X. Let ¢ () be

continuous at the origin. Then

X, X ifand only if ¢ (1) —> (1) .

Theorem 6.6 (central limit theorem): Let {Xi },1=1,2,..., be a sequence of n independent

and identically distributed random variables such that E(X,)=pand Var(X,) = o? exist. Then

i P[\/?<Xl+.”+xn—#>§x

n——> o n

X
:f ! e“t2/2 dt .
oo /27T



LECTURE Ill: CONTINGENCY TABLES

Marvin A. Kastenbaum

1. INTRODUCTION

Appended to these notes is a bibliography of papers on the subject of contingency tables that
have appeared in the literature primarily during the past decade and a half. This chronological
listing is by no means complete. It results from a partial literature search of the statistics journals
in the ORNL library and includes only a small number of papers in the social sciences. Therefore,
if you know of any well-known papers that have been omitted, kindly call them to my attention so
that I may add them to the existing list.

My lecture will begin with some discussion of the underlying sampling distributions which go
into the construction and formation of contingency tables. I will briefly review the history and
theory of the y ? test criterion which is applied for testing hypotheses with contingency tables. I
will touch on such questions as partitioning of v ?, contingency tables of more than two dimensions,
measure of association, missing and mixed-up values in contingency tables, contingency tables
which come about as a result of consumer preference testing, Markov chains in contingency tables,
the Bayesian approach to contingency tables, and alternative analyses to the x? in contingency

tables. I will present some illustrative examples at certain points throughout my discussion.

2. STRUCTURE OF 2 x 2 CONTINGENCY TABLES

The basic structure of contingency tables, especially those which we are most accustomed to
encounter, is described with admirable lucidity by G. A. Barnard and E. S. Pearson in two papers
which appear in Vol. 34 of Biometrika for 1947. Although these authors concentrate primarily on
2 x 2 contingency tables; their logical approach to the whole problem is stated in such elementary
terms that both papers should be read by all statisticians. A systematic elaboration and applica-
tion of the ideas of Barnard and Pearson appears in a series of papers by Roy, Mitra, and
Kastenbaum in 1955 and 1956.

According to Barnard, the theory of statistical significance tests deals with abstraction of
experimental results. The fact that the figures in question may happen to be tensile strength of
iron bars, counts of radioactive particles, on-the-job accidents, or number of defectives is ignored
in carrying out the test. For the purpose of the statistical theory, the experiment in question
could just as well be represented by an experiment involving drawing balls from an urn. Once the
abstract picture has been formed, the analysis of it is largely a matter of pure mathematics. As
Barnard points out, “What distinguishes the statistician from the pure mathematician in this con-
nection should be the statistician’s ability to form valid abstract pictures of concrete cases and
his clear recognition of the limits of validity of his abstract pictures.”’

Consider the simplest type of contingency table, namely the 2 x 2 or fourfold table, as Table

la is sometimes referred to.

21
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Table la: The 2 x 2 Contingency Table — Cell Frequencies

I 1I Total
A 91 Ry .
My Ly n,.

Total n n ., N

Table 15: The 2 x 2 Contingency Table — Cell Probabilities

1 II Total
Py Pyy Py
Py Pjj Py,
Total P, P, 1

This table displays a sample of total size N divided into four mutually exclusive and jointly

exhaustive cells, so that no,+n ,+n, +n

) 21 , = N. Letus consider how such a table might

1 2

have come about.

2.1 One Muitinomial, or Two Variates (Responses)

A and B represent two shops or processes making the same articles. Roman numerals I and
II represent defectives and nondefectives respectively. All articles produced in shops 4 and B
are collected in a common bin, each of the articles having a small marking specific to the shop
from which it came. On the basis of a sample of size N we wish to determine if the percentage
defective in shop A is the same as it is in shop B. The sample of size N is taken from a common
bin containing a large number of articles from both shops. If the true proportion of articles in
category Al is p | while p, » P, and p,, represent the proportions of the other articles, then the
probability associated with the table is given by the general term of the multinomial expansion of
(Pyy +Pyy + Pyy + Py, thatis,

!
A RIS @1.1)

1 'n 1n 1
M0 0, 0y,

where p, | + Pyt Py TPy, =1
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2.2 Two Binomial Samples, or One Variate (Response) and One Way of Classification (Factor)

Perhaps a more realistic way in which our table may be constructed under a similar set of
circumstances would be if n, articles from shop A4 and n, articles from shop B were examined for
the proportion of defectives. In this case, of course, the articles which had been manufactured
would not be taken from the same bin, but rather shop A would have its bin and shop B would have
its bin.

If the probability that shop A will produce defectives is given by p,, and the probability that
shop B will produce defectives is given by p,,, then the probability of the arrangement in the
table is equal to the probability of finding n,, defectives from a sample of size n, in shop 4 and
n,, defectives in a sample of size n, in shop B.

This probability may be written as the general term of the product of two binomials, namely

n ! n_ !

1. n n 2. n n
11 f12 21 faq
P:-—'—'p“ Pro P21 Py > (2.2.1)
ORRTL o, 0y,
where -1- =1 - -
here p, ) =1 PipPyy=l=pypn, n,,+n,andn, =n, +n,,.

2.3 One Hypergeometric, or Two Ways of Classification

A third way in which the data in our table might occur is perhaps the most artificial of the
three structures which we will discuss. Its artificiality comes not from the fact that such a struc-
ture does not occur in real life. Rather, such a structure occurs less frequently than the two
structures already discussed. The classical example of such a structure occurs in the ‘‘lady
tasting tea’” experiment proposed by Sir Ronald Fisher. In this case we not only fix the total
sample size, but we also fix the values in all the marginals. How might this come about?

Here the experimenter has two types of objects of known frequencies, let us say n, andn, .

He tells his subject that there are among the N objects which he is presenting to him n, of type

1.
A and n, of type B. He then asks his subject to identify these objects accordingly. The proba-
bility that the subject will place n,, observations in the first cell given that the marginal totals

are fixed in this way is given by the underlying hypergeometric distribution as follows:

'n tn !
oy n,-n. o\

P- - , (2.3.1)

where n  =n., and n

1 1. =n

2 2.°
The three underlying distributions represented by Egs. (2.1.1), (2.2.1), and (2.3.1) account for

almost all contingency tables which are encountered in experimental situations.



24

3. DEGREES OF FREEDOM

At this point, it might be appropriate to spend a little time discussing the degrees of freedom
which are associated with tests of hypotheses concerning the data in contingency tables. The
rule for determining the number of degrees of freedom associated with any contingency table of
whatever structure is: the number of degrees of freedom is equal to the total number of cells in
the table, minus the number of independent linear constraints on the observations, minus the num-
ber of free parameters to be estimated from the data. In the case of a 2 x 2 table consider the

situation for the three structures which we discussed above.

3.1 One Multinomial

The total number of cells is 4, the number of independent parameters to be estimated from the
data is 2, and the number of linear constraints on the observations is 1. How does this come
about? The sum of the pij’s, P,, +P,,+ Py + Py, is 1. This is true. However, these four
pij’s are not independent of one another because they are subject to the two following constraints:
p, +p, =land p, +p , =1, so that there are only two independent parameters p, (or p, ) and
p , (orp 2) to be estimated here. The one linear constraint on the observations is that n o tag,t

n, +n,, =N.

3.2 Two Binomials

In the case of two binomials there is only one independent parameter to be estimated from the
data, and there are two linear constraints on the observations. The independent parameter comes
from the fact that one set of marginal totals is fixed, leaving no parameters to be estimated here.
However, the other set of marginal totals is variable and must be estimated subject to the con-
straint p  + p , = 1. The two linear constraints aren,, +n,,=n, andn,, +n,,=n, .

2 1

3.3 One Hypergeometric

In this case there are no independent parameters to be estimated from the data. Instead there
are four constraints on the data, three of which are independent. The values in the two rows and
two columns are constrained by their respective totals, but the fact that both sets of marginal
totals are also constrained to add to N reduces the number of independent constraints to 3.

In all three cases we have four cells and a combination of three linear constraints or inde-
pendent parameters to be estimated from the data. Thus the number of degrees of freedom is equal
to one in all three cases. This is one very interesting result in the two-way table. Another perti-
nent and interesting fact which we may refer to now in passing is that in the two-way table all
three structures result in the same large-sample y? test of the null hypothesis. These two results,
which are perhaps a bit of mathematical good fortune, may be the cause of some of the confusion

associated with the interpretation of data in two-way tables.
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4. STRUCTURE OF r x s CONTINGENCY TABLES

Let:=1, 2, ..., r designate rows and j =1, 2, ..., s designate columns.

4.1 One Multinomial

2]

r S r S
nij:N;Ez:pij:E Pi.:E P;=
=1 i=1 j=1

1 i=1 j=

Ip-

Il

]

.

N! oS g
P = H pij] . 4.1.1)

ni

=1 j=1

H:a:

Number of degrees of freedom: rs ~[(r = D+ (s~ D] =1 =( - 1)(s=1).

4.2 r Multinomial Samples

r

N S
Z n,=n; forall i E n; =N, Z P ;= 1
=1

1]
j=1 i=1

4.2.1)
Number of degrees of freedom: rs—(s - 1) —r=(r-1)(s = 1.
4.3 One Hypergeometric
S r r S
Enij:ni.,z:n En :En
j=1 i=1 i=1 j=1
r S
Mot Il n !
i=1 =1
4.3.1)

r S
M I ;!

i=1 j=1

Number of degrees of freedom: rs — (r+s—1)= (= 1)(s - 1).
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5. THE NULL HYPOTHESIS IN THE TWO-WAY TABLE
5.1 One Multinomial

The composite hypothesis we shall be interested in testing is that the two variates are inde-

pendent, that is, H Pij =P P against the alternative H # H ,, where p, and P (fori=1, 2,

0’
..,rand j=1, 2, ..., s) are arbitrary positive parameters subject to the constraints

z;pi. :zp.j =L
1 1

This is analogous to the hypothesis of no correlation (pxy = 0) in a bivariate normal population.

Under H  the likelihood function is given by

, N r a s a
Po=——— M o M o) - (.1.1)

i=1 j=1

5.2 r Multinomials

We have r independent samples of fixed sizes n, , n n_ , with Pijs the probability of an

2.0 " r. !

observation in cell (ij), such that
Lrj=p =1L
j

The composite hypothesis of interest is that P for any j, is independent of 1; that is, the
probability of an observation being in the jth position of row i is the same for all 7. This may be
specified as
H_: p;; =P, against H # H ,

0

where P (j =1, ..., s) is an arbitrary positive parameter subject to the constraint

Z:p.j: L.
j

This is referred to as the hypothesis of ‘homogeneity.”” It is analogous to and a generalization

of the hypothesis of equality of means for r homoscedastic univariate normal populations. For

random samples from normal populations, N(y,, o), 1=1, 2, ..., r, the usual hypothesis of in-
terest is:

HO: g =y = o = f =L,

He p #p.

The standard test of this hypothesis is the F test of equality of means.
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The likelihood function under the hypothesis of homogeneity of r multinomial samples is

r S
n

mH='l p.j‘j

=1 =1

P - : (5.2.1)

=(n

!
I’li]..
1

r
i=1j

5.3 One Hypergeometric

In this case, the likelihood function given by (4.3.1) is unchanged, and the null hypothesis is
one of ‘‘independence’’ or ‘‘inability to discriminate.’”” The question posed under this structure
is specific, as in the case of the ‘““lady tasting tea’’ experiment.

Note that if we were to start with (4.1.1) and let H p;;=p; P and then find the condi-
tional probability under H  subject to n, and n being fixed, this probability would be the hyper-
geometric given by (4.3.1).

6. TESTS OF HYPOTHESES IN THE TWO-WAY TABLE

In the year 1900, Karl Pearson proposed as a criterion for testing hypotheses, such as those

mentioned above, the statistic

) r S (nij ij

X<= —_— 6.

;; Np.. CRY
i=1 j=1 ij

Pearson suggested that in the limit, as N becomes large, this statistic has the y? distribution
with rs — 1 degrees of freedom. He further suggested that the number of degrees of freedom re-
mains unchanged when the p;; are estimated from the data. This we now know is wrong. Fisher
(1922, 1924) pointed out Pearson’s error and went on to give a proof of the limiting distribution of
X? which avoids most of the mathematical complexities in Pearson’s proof. A fully rigorous proof
of the limiting distribution of X? is given by Cramer (1946). Cramer assumes, among other things,
that the p;; are estimated by the method of maximum likelihood.

The maximum likelihood estimates of p;; under the null hypothesis are found to be p;j =

n; n ]./NQ, so that the usual form of this statistic for contingency tables is

n..
XZ:Z 2————————— . (6.2)

This statistic, we say, is distributed in the limit, as N becomes large, as y? with (r — 1)(s — 1)

degrees of freedom.
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The most pertinent question at this point is, “Is the same X2 test to be used for all three
structures?’’ The answer is, ‘‘Yes, when N is large.”” However, this is not so for small samples.
When the sample size N is small, Fisher (1934) recommends that the exact probabilities obtained
from the hypergeometric distribution (4.3.1) be used. The greatest objection to Fisher’s recom-
mendation is that a loss of power may result if the hypergeometric probabilities are computed
when the data actually arise from a single or from several multinomial samples.

K. D. Tocher (1950) has proposed a modification of Fisher’s exact test that is most powerful,
in the Neyman-Pearson sense, for one-tailed tests with data from any of the three structures. The
modification is best illustrated by an example.

Consider the hypothetical example (Table 2) involving the frequency of failure due to cracking
of specimens in 30-day tests on 24 large industrial boilers. The observations are classified as
cracked and uncracked, and also according to the addition or nonaddition of tannin to the feed-

water.

Table 2. Hypothetical Example

Uncracked Cracked Total
+Tannin 9 2 11
—Tannin 7 6 13
Total 16 B 8 24

The null hypothesis is that the failure of test specimens is not influenced by the addition of
tannin to the boiler feedwater. Given these data, we wish to make a one-tailed test at the 5%

level. The two possible sets of data which deviate more from the null hypothesis are

10 1 11 11 0 11
6 7 13 and 5 8 13
16 8 24 16 8 24

In Fisher’s exact test, we add the probabilities of the three tables as computed from the hyper-

geometric. This gives

8! 11! 13! 16! 1 1 1
24! 216! 709 6 70 10! 5! 8! 11!

= 0.12833 + 0.02567 + 0.00175
= 0.15575.

This value is regarded as the significance probability.
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In Tocher’s modification we compute the total probability of all more extreme cases, that is,
0.02567 + 0.00175 = 0.02742 .

If the numbers 0.15575 and 0.02742 are both below the stated significance level 0.05, reject the
hypothesis. If they are both above 0.05, accept it. If one is above and one is below, as in this

example, we calculate

0.05 — 0.02742
0.12833

=0.17595 .

Now, draw a random number between 0 and 1. If this number is less than 0.27595, we reject; if
greater, we accept. (Rationale: If H  is rejected only when the two most extreme cases occur,
the significance level is 0.02742. The third most extreme case, represented by the data, occurs
with probability 0.12833. Tocher’s modification declares as ‘‘significant’’ a fraction, 0.17595 of
the cases in which the observed data are encountered.) The Pearson chi-square statistic for
these data is X? = 2.098. Inasmuch as the square root of a chi-square variable with one degree
of freedom is distributed as a normal variable with zero mean and unit variance, the probability is
P(x? 2 2.098) = 2P(x > 1.448) = 0.148. For comparison with the exact procedure we must con-
sider only one tail of the normal distribution, so that P(3¢ 2 1.448) = 0.074.

6.1 Yates®’ Correction for Continuity

The distribution of the Pearson X? statistic is discontinuous. When all expectations are
small the chi-square approximation may be poor. The correction proposed by Yates (1934)
amounts to reading the chi-square table not at Xg but at a point between Xg and the value of X2
immediately below Xg in the discrete series of values. The formula for the 2 x 2 table is well
known and need not be repeated here. If it is applied to the data in Table 2, the resulting sta-
tistic is Xg = 1.028, and the probability is P(y? > 1.028) = 2P(y > 1.014) = 0.310. The corre-
sponding probability for the one-tailed test is P(y¢ > 1.014) = 0.155. The following table gives

comparable probabilities for a one-tailed test of the data in Table 2:

Test One-Tailed Probability
Fisher exact 0.156
X2 uncorrected 0.074
Xc2 corrected 0.155

Caution: If a number of X? values, each with one degree of freedom, are added to form a total X?,
the individual values should not be corrected for continuity. The total X? may be corrected, after
it has been obtained, by a procedure given by Cochran (1952). Also see Pastermack (1966) and
Grizzle (1967).
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6.2 Cochran's Recommendations Concerning Analyses of Two-Way Tables

The 2 x 2 table: For N < 20, or 20 < N < 40 and the smallest expectation less than 5, use
Fisher’s exact test. For N > 40 use X2, corrected for continuity if the smallest expectation
is less than 5.

Tables with degrees of freedom between 2 and 60 and all expectations less than 5: For small
N, use Fisher’s exact test. Otherwise use X?, considering whether the continuity correction
is needed.

Tables with degrees of freedom more than 60 and all expectations less than 5: Try to obtain
the exact mean and variance of X2, and use the normal approximation to the exact distribution.
See Haldane (1937).

. Tables with more than one degree of freedom and some expectations greater than 5: Use X?
uncorrected for continuity.

Continuous data: To test goodness of fit, group the data, using enough cells to keep the ex-
pectations down to 12 per cell for N = 200, 20 per cell for N = 400, 30 per cell for N = 1000.

Pool at the tails so that the minimum expectation is no smaller than 1.

7. ALTERNATIVE ANALYSES TO THE TRADITIONAL CHI-SQUARE

In recent years many authors have discussed analyses of contingency tables other than the

traditional Pearson chi-square analysis. These alternatives fall into two major categories,

namely, (1) the logit transformation in conjunction with standard least squares and (2) the likeli-

hood ratio test.

7.1 The Logit Transformation

This method was proposed by Woolf (1955) and elaborated on by Plackett (1962), Gart (1962),

Goodman (1963, 1964), Lindley (1964), and others. It may be demonstrated for the 2 x s table.

Let . be the observation in the ith row and jth column of a 2 x s contingency table, where

then

i=1,2and j=1,2, ..., s. If we take
1 1 1
Xj=n1j/n2j,zj=ln xj,and:=rl——+n——,
j 1j 2j
S
2 _ =2
x:=Y u(z; — 2) (7.1.1)

j=1

is distributed asymptotically as y? with s — 1 degrees of freedom, where
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i (7.1.2)

Equation (7.1.1) may also be written as

s 2
u.z.
573
j=1

S
X2 = Z uJ.zJ.Z -_— 7, (7.1.3)

j=1 -
u.
Ly

j=1

Example: The data in Table 3 are taken from Table 9.54 on page 292 of O. L. Davies’ text
Statistical Methods in Research and Production. ‘‘These data show the number of times piston
rings have failed in each leg (North, Centre, South) of two groups of compressors at an L.C.L
factory. The compressors are apparently identical and are oriented the same way in the Compres-
sor House. Each leg consists of two cylinders arranged vertically: the lower cylinder deals with
the first stage of compression, and the upper cylinder with the second stage. The South leg is,
in every case adjacent to the drive.”” Is the probability of failure of a piston ring independent of

compressors and location in compressor (leg)?

Table 3. Failure of Piston Rings by Location and Compressors

Compressor

Group North Leg Center Leg South Leg Total
1 17 17 12 46
2 36 24 60 120
Total 53 41 72 166

Arithmetic necessary for calculating logit test statistics:

17 17 12

X =— =—, = —,

1736 "2 724 T T g0

z, = =0.75031; z, = —0.34494; z, = —~1.60943 .

1 1 1 1 1 1 1 1 1
— =——+4-—=0.08660; — = —+ —=10.10049; — = —+ _—=10.1.
u, 17 36 u, 17 24 u, 12 60
u, = 11.54736; u, =9.95124; u, = 10.0 .
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3 3 3
Y u; = 31.499; Y uz; = -28.19%; ¥y u; 72 ~ 33.587 .

j=1 j=1 j=1

Logit X? = 8.357; Pearson X* = 8.760 .

7.2 The Likelihood-Ratio Test

This test, proposed by Wilks (1935), has been investigated by Woolf (1957), Chakravarti and
Rao (1959), and Kullback, Kupperman, and Ku (1962). In their 1962 papers, Kullback, Kupperman,
and Ku resort to an information theory approach and define a minimum discrimination information
statistic (M.D.1.S.) with the following properties:

1. distributed asymptotically as chi-square under the null hypothesis and as noncentral chi-square
under the alternative hypothesis, with appropriate degrees of freedom and noncentrality
parameter,
additivity,

3. convexity.

A
This statistic is 2] = —2 In A, where ) is the likelihood ratio. For the r x s contingency table,

A r N r S
2-Y ¥ 2a,inn;+2V1InN - Y 2n lan, — ¥ 2n lnn,. (7.2.1)
i=1 i=j i=1 j=1
If this appears to be a formidable alternative to the Pearson X? statistic, the authors give us
reassurance by presenting tables of 2y ln y for values of y from 1 to 10,000.

Applying the likelihood ratio approach to the data in Table 3 yields

2 3
L Y 2n,;Inn,;-1154.177; 2N In ¥ = 1697.180 ;

2 3
Y 2n, Inn, =1501.233; § 20 lnn = 1341.204 .

=1 j=1
The three comparable test statistics are

2l - 8.920,
logit X2 < 8.357,
Pearson X2 = 8.760.

In each case the probability of observing a value of chi-square greater than X?is P(x2>XH <

0.02. If we were testing at a 5% significance level, we would reject the hypothesis of independ-
ence between compressor groups and location of the leg. That is to say, using any of these pro-
cedures we would conclude that the performance of the two compressor groups is not the same at

all the legs.
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8. PARTITIONING OF CONTINGENCY TABLES

Assume, for one moment, that in the piston-ring example there was reason to believe, prior to
experimentation, that the performance of the compressor groups is the same at the north and center
leg but different at the south leg. Can we test these hypotheses using the same set of data?

This question often arises in the analysis of variance, where tools are available for partition-
ing the sum of squares associated with the test of a hypothesis concerning the equality of s means
into at most s — 1 orthogonal sums of squares. With each of the s — 1 sums of squares so derived
a hypothesis may be tested. Moreover, the total sum of squares with s — 1 degrees of freedom is
equal to the sum of all its orthogonal parts.

Applications of an analogous technique to contingency tables are given by Lancaster (1949),
Irwin (1949), Kimball (1954), and Kastenbaum (1960). The test statistic proposed by these authors
is the standard Pearson X2. Kullback, Kupperman, and Ku (1962) show how the same additive
partitions may be tested with the minimum discrimination information statistic.

Example: Partition of data in Table 3.

Compressor Group North Leg Center Leg Total
1 17 17 34
2 36 24 60
Total 53 41 94
North and

Compressor Group Center Legs South Leg Total
1 34 12 46

2 60 60 120

Total 94 72 166

Pearson X ?:

, (166)? [(17)2 an*  (34)?

_ - 1.017 (p>0.3),
1T @6)(120) L 53 a1 94J (p )

,  (166)7 [(34)2 (12)*  (46)*

:_ . } _7.743 (p <0.01)
(46)(120) L 94 72 166

1.017 + 7.743 = 8.760 = Pearson’s X?
M.D.1.S.:
2T, - 0.879 (p>0.3), 2, =8.041 (p<0.01),

0.879 + 8.041 = 8.920 = 21 .
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In each case we would conclude that performance of the compressor groups was the same for the
north and center legs but different at the south leg.

Alternatively, the contingency table may be partitioned into the same component parts, with
the standard Pearson X? analysis on each part. This procedure will not result in additive X?2.
However, this approximate partition is adequate for most tests of significance. Moreover, it has
not been shown that the additive partition is really preferable to the approximate partition in small
samples. This property of additive partitions, in fact, may be the principal motivation for much of
the work on contingency tables which has appeared in the literature in the past 15 years. Con-
sider only that statisticians have known for a long time about a random variable whose distribu-
tion may be specified by the chi-square probability density function, and that the sum of such
random variables is also distributed as chi-square. Add to this the knowledge that a test statistic
exists which is, at least asymptotically, distributed as chi-square. Immediately you stimulate the

desire to add things up or to separate things into their component parts.

9. CONTINGENCY TABLES OF MORE THAN TWO DIMENSIONS

Except for some brief references in two or three statistical texts, the subject of multidimen-
sional contingency tables was all but ignored until 15 years ago. Indeed, in his text which was
published in 1954, O. L. Davies raises and summarily dismisses the three-dimensional case as
follows: ‘“‘Such examples may be treated by an extension of the methods already explained which
the reader will have no difficulty in making if he has understood the principles.”” Unfortunately,
things are not as simple as Davies indicates they might be.

The transition from two dimensions to three dimensions necessitates a full understanding of
the underlying structure of the data, a clear and concise idea of what null hypotheses are to be
tested, and knowledge of the appropriate estimators associated with these null hypotheses in
order to calculate the corresponding test statistic. Contrary to Davies’ belief, new conceptual
problems are posed in going from two-way to three-way tables. On the other hand, the extension
from three- to higher-dimensional contingency tables does not pose any new problems.

The theory of multidimensional contingency tables is presented in the many references cited
in the bibliography. I shall briefly present some of the highlights and indicate some of the more

important references. Notation:

Let nijk denote the observed frequency and Piik the probability of having an observation in
cell (ijk) of a three-way table, where i =1, 2, ..., r designates rows, j=1, 2, ..., s designates

columns, and k =1, 2, ..., t designates layers. Also, let the marginal frequencies be denoted by

r r s S r
0= Z Niiks n..k:EZnijk: Z n = Z n; g
i=1 i j j

r t r t t
k= Z Ry 0. = EZ‘ Z Z 0k = Z n;; = Z n g
ik ik k
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;= Z Dyipr By =
k=1

N:iii”uk'

i=1j=1 k=1

For a single multinomial sample of size N, corresponding summations over the P;jx are similarly

denoted, and

9.1 Hypotheses Concerning the Two-Way Marginals of a Three-Way Table

Pairwise independence:

H: Pij, =P;. D (independence of I and J) , (9.1.1)
H;: p,,=p;, p_, (independence of I and K), 9.1.2)
H Pix=P; P (independence of J and K) . (9.1.3)

9.2 Hypotheses Which Have No Analog in a Two-Way Table

Conditional independence (partial independence):

Piix Pik Pljk Pi g Pk
= . ) OF Piipg = ——. 9.2.1)
Px P.x P Pk

Equation (9.2.1) is the hypothesis of conditional independence of I and J given K. This condition
is analogous to the hypothesis of zero partial correlation between I and] in a three-variate normal
population. It does not imply the independence of I and K or of J and K. However, if [ is inde-
pendent of K and J is independent of K, and if (9.2.1) also holds, we have the condition of mutual
independence:

Mutual independence:

Hyt pij=p; Pj P - 9.2.2)
Multiple independence:
H Pijx =Pij. Pk (independence of K and I]) . (9.2.3)

This condition is analogous to the hypothesis of zero multiple correlation in a three-variate normal

population. It implies independence between [ and K and between J and K. The converse, how-
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ever, is not true. That is to say, (9.2.3) implies (9.1.2) and (9.1.3), but (9.1.2) and (9.1.3) do not
imply (9.2.3).

It was at this point in late 1954 that Professor Roy and I found a need for additional theoreti-
cal concepts. For, in the special case of the multivariate normal population, not only does zero
multiple correlation imply zero correlation between all pairs of variables, but also conversely.
Obviously this did not hold for a three-variate contingency table. Therefore the question we posed
to ourselves was, ‘‘What set of conditions exists which, when superimposed on the conditions of

independence between pairs of variables, will jointly yield the condition of multiple independence?”’

The answer to this question was:

““No three-factor interaction’’:
Hyt poge Piit Pisk Prjk = Pist Prjt Prsk Pijk * (9.2.9)

Equation (9.2.4) is a generalization of the condition proposed by Bartlett in 1935 for the 2 x 2 x 2
and the 2 x 2 x 3 tables,

There has been considerable discussion in the literature of the past ten years concerning this
hypothesis. For a summary of the theory and philosophy concerning some of the hypotheses which
may be tested in a three-way table, the reader is referred to the paper by B. N. Lewis (1962). This
paper also gives techniques for analysis of data in multidimensional contingency tables. In addi-
tion the recent work of Bhapkar and Koch (1961, 1965, 1966) suggests that other hypotheses might
be more relevant and appropriate for certain types of contingency tables. For detailed reading on
the subject of multiway contingency tables see Bartlett (1935), Norton (1945), Simpson (1951),
Lancaster (1951), Roy and Kastenbaum (1956), Roy and Mitra (1956), Kastenbaum and Lamphiear
(1959), Lancaster (1960), Darroch (1962), Kullback, Kupperman, and Ku (1962), Plackett (1962),
Birch (1963), Goodman (1963), and Goodman (1964, Ann. Math. Statist.; 1964, J. Am. Statist.
Assoc.). For a numerical demonstration of the techniques (other than higher-order interactions) of
analyzing data in multidimensional contingency tables, see the paper by P. N. Ries and Harry
Smith (1963).

Some of the difficulties which O. L. Davies chose to dismiss in his statement which I quoted
earlier may be pointed up in remarks such as this one, extracted from Goodman (1964, J. Am.
Statist. Assoc.): ““‘In 1951 Lancaster suggested, on heuristic grounds, a rather simple procedure
for testing the hypothesis of zero three-factor interaction. Unfortunately, the distribution of the
test statistic suggested by Lancaster is not necessarily distributed as supposed (i.e., as chi-
square asymptotically) ... . Lancaster’s statement which has been quoted by Kendall and Stuart
(Vol. 2, 1961, p. 584) and by Snedecor (1958) that this test and Bartlett’s are ‘‘asymptotically

equal’’ is in error.””
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10. SPECIAL TOPICS IN CONTINGENCY TABLES

10.1 Missing and **Mixed-Up”’ Values

The problem of contingency tables with missing or misclassified values has been considered
by Bross (1954) and Watson (1956). In his paper, Watson presents an iterative procedure, similar
to the ‘‘missing-plot’’ technique in analysis of variance, for estimating the missing values in the
contingency table prior to performing the standard Pearson X? test. Kastenbaum (1958) demon-
strated that explicit algebraic formulas can be found for certain sets of missing values in con-
tingency tables. This problem has been studied, elaborated on, and generalized by Goodman
(1968), Bishop (1968), Bishop and Fienberg (1968), and Caussinus (1964, 1965, 1966). Other re-

cent investigations in this area are Asano (1965) and Mote and Anderson (1965).

10.2 Consumer Preference

An interesting structure for contingency tables is discussed by Anderson (1959) in a problem
involving consumer preference studies. One lot of each of three varieties (Vl, Vs V3) of snap
beans was displayed in retail stores, and each of 123 consumers was asked to rank the beans
according to first, second, and third choices. The actual data are given in Table 4. The
question is, ‘‘Does the usual X? test of independence of ranks and varieties with four degrees of
freedom apply?’’ That is, does each variety have the same chance (1/3) of receiving a given rank,
regardless of rank? This is not the usual problem of a contingency table with fixed border totals,
because repeated sampling is not a random rearrangement of 3 x 123 items subject to border re-
strictions. Fori=1, 2, ..., r varieties and j =1, 2, ..., r ranks, Anderson shows that the appro-

priate test statistic for n consumers is

2

r—1 r—-17%2 Z n
2
Q2= - Z: Z:l<nij_7> , (10.2.1)
=1 j=

r

which is distributed asymptotically as y? with (r — 1)? degrees of freedom.

Table 4. Consumer Rankings of Three Varieties of Snap Beans

Variety Rank 1 Rank 2 Rank 3 Total
v, 42 64 17 123
v, 31 16 76 123
v 50 43 30 123

Total 123 123 123 369
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10.3 Markov Chains

The structures for contingency tables which we have discussed involve some assumptions of
independence of successive sample observations. There frequently arise practical situations in
which these assumptions are not valid. One class of such situations involves dependent observa-
tions resulting from realizations of states of a simple stationary Markov chain (Billingsley, 1961).
In this situation the matrix of transition probabilities is given by a stochastic matrix which is
square and whose row totals add to 1. The corresponding frequencies form a square contingency
table. Analyses of such data, including tests of hypotheses of a specified matrix of transition
probabilities, Markovity, and homogeneity of several realizations of Markov chains are given by
Kullback, Kupperman, and Ku (1962). Tests auxiliary to X2 in Markov chains are given by Gold
(1963).

10.4 Measures of Association

The two areas of study covered by the broad title of ‘‘statistical inference’” are hypothesis
testing and estimation. I have devoted all my time to the former and none to the latter. In con-
tingency tables the lack of independence should give some indication of the degree of association.
Measures of association in contingency tables have been proposed for at least as long as tests of
hypotheses. Indeed they have been used and abused rather widely in the social sciences.

I shall not go into this area in detail. The series of papers by Kruskal and Goodman (J. Am.
Statist. Assoc. 1954, 1959, 1963) on measures of association for cross classification and the
recent papers by Goodman (1963) on interactions in multidimensional contingency tables provide
an excellent history and summary of the subject. The most recent paper on this subject is by

Mosteller (1968).

10.5 Bayesian Analysis

Finally, as if not to be outdone, contingency tables have most recently been given considera-
tion by the Bayesian statisticians. Lindley (1964) and Good (1965) describe how data from a
multinomial distribution and, in particular, data in the form of a contingency table may be studied
using a prior distribution of parameters and expressing the results in the form of a posterior dis-
tribution of the parameters. Gart (1966) shows how a Bayesian argument may be used for choosing

a critical region for the exact test.
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LECTURE IV: CONFIDENCE REGIONS

Marvin A. Kastenbaum

1. AN EXAMPLE OF STATISTICAL INFERENCE
Let X1' Xz’ e, Xn be a sequence of n independent random variables, X, having the normal

distribution N(x; u, o°?). If

n

-1
X=—X +X,+...+ X)),
n

then the random variable
Z=\nX - o
has a standardized normal probability density function, N(z; 0,1). Alsoif Z € 0, where
0=fz;—0<z< o},
and
A = {z; z< 2z}
and
A2 ={z, z> 22}

for z, <z, then

1 z 2
Prob{Z e (A UA N =— [ 2e=t/24t. 1.1
rob | E(lu,z)i \/277]'Ze (1.1)

1
With simple algebraic manipulation it follows that
Prob {Z € (A, U 4,)°} = Prob iz, £ Vn(X — p)/o < z,}
= Prob {zlo/\/ﬁi()_f—u)§22c/\/§} (1.2
= Prob {X — zza/\/ﬁ§y§ X ~ z,0/\/n}.
For z,==-2, = 1.96, the tables of the cumulative normal distribution (Tables la and b) show that
Prob {—1.9% < /i (X — p)/o < 1.96}
= Prob {X — 1.96 o/\yn <y < X + 1.96 o/\/n}

3 —~1.96 _ @© S . (13)
1 f-m Kz) dz fl.%f()d

It

il

® —1.96
1_2f1.96 Kz) dz=1— 2.[_00 #(z) dz = 0.95 .
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If o is known, each of the random variables X — 1.96 o/\/n and X +1.96 o/y/n is a statistic.!

The interval [X — 1.96 o/\/@, X + 1.96 o/y/a] is called a random interval.

The probability statement specified by (1.3) may be read as follows: Prior to the performance
of an experiment, the probability is 0.95 that the random interval [X — 1.96 a/y\/n, X + 1.96 o /+/n]
includes the unknown fixed point (parameter) p.

Up to this point the discussion has been a probabilistic one in the sense that the determina-
tion of a probability density function for X and a random interval are merely exercises in proba-
bility. The application of these concepts to the realizations of an experiment can result in
statistical inferences.

Suppose an experiment yields X, = x , X2 =Xy e, X
by X = (X, + X, 4+ ...+ xn)/n. If both ¥ and ¢ are known, the interval [x — 1.96 U/\/n_, x + 1.96

n = X,, with a sample value of X given

o/v/n)] will have known end points. It should be obvious that 0.95 is not the probability that this
specific interval includes the parameter u. In fact, either y is in this interval or it is not in this
interval.

However, the fact that, prior to the performance of the experiment, there was a probability of
0.95 that the random interval {X — 1.96 o/\/n, X +1.9 o//n} would include the parameter g,
leads one to have the same degree of faith in the specific interval [X ~ 1.96 /\/n, ¥+ 1.96 o//\/n].
This faith or confidence in the observed interval [¥ — 1.96 o/v\/n, X + 1.96 o /\/n] is the reason it
is referred to as a 95% confidence interval. The number 0.95 is called the confidence coefficient.
The confidence coefficient is equal to the probability that the random interval includes the param-
eter. One may, of course, obtain 90 or 99% confidence intervals for p.

If o is not known, the end points of the random interval would not be statistics. Although the
probability statement about the random interval remains valid, a sample would not yield an interval
with known end points. That is, when ¢ is unknown a statistical inference about y does not

appear to be feasible. Fortunately, a method does exist for bypassing this obstacle.

2. CONFIDENCE INTERVALS FOR A MEAN

Let Xl, X,oon, Xn be a sequence of n independent random variables, Xi having the normal
distribution N(x; p, o ?) with both p (= ®< < ) and o2 (0 <o?< «) unknown. Let X and §? =
Z(Xi — X)¥/(n — 1) denote respectively the mean and variance of X ,..., X,. The problem is to
find a confidence interval for p.

It can be shown (1) that \/n(X — p)/o has the normal distribution N(0, 1), (2) that (n — 1)$%/0?
has a chi-square distribution with n — 1 degrees of freedom, and (3) that \/F()? — w)/o and
(n — 1)S?/0? are independent. It can also be shown that a random variable T may be defined in

terms of two such variables. In fact,

1a statistic is a function of random variables which does not depend upon an unknown parameter.
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X - _
TzM:\/,T(X — /S (2.1)
(n — 1)$%/0°?
(n-1)

has a t distribution with n — 1 degrees of freedom, whatever the value of o2 > 0 (see Appendix,
Sect. 9 of this lecture).
For a given positive integer (n — 1) and a probability of 0.95, say, two values a and b (a < b)

can be found from a table of the cumulative ¢ distribution (Table 2) such that
Prob {a < T < b} = Prob {a < \/?()7 — /S <bli=0.95. 2.2)

Since the p.d.f. of the random variable T is symmetric about the vertical axis, a and b are conven-
tionally chosen so that a = —b, b > 0. 1If, for a = —b, the probability of this event is written in

the form
Prob {X — bS/\/n < u< X + bS/\/n} - 0.95, 2.3)

then the interval [X — bS/\/n, X + bS/\/n] is a random interval having probability 0.95 of includ-
ing the unknown fixed point (parameter) y. If the experimental values of X1’ X2, oo, X, are x

Xyy ooy Xp, with

n

s? = Z (x; — Y/ (n-1),

=1

where

n
X = E Xi/“ s
i=1

then the interval [(X — bs/\/n), (X + bs/\/n)] is a 95% confidence interval for 11, for every o? > 0
(see Table 2).
Example: If n =10, X = 3.22, s = 1.233, then the interval

[3.22 — (2.262)(1.233)/1/10, 3.22 + (2.262)(1.233)/\/101 ,

or (2.34, 4.10), is a 95% confidence interval for y, where b = 2.262.

3. CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO MEANS

The random variable T may be used to obtain a confidence interval for the difference i, — p,
between the means of two independent normal distributions, N(x; p,, o ?)and N(y; iy o ?), which

have the same (but unknown) variance, o2+

Let X, X2, oo, X and Y, Y, ....,Y, be two sequences of independent random variables

having respectively the probability density functions N(x; ., c?) and N(y; iy c?). Denote the
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means of the two sequences by X and ¥ and the variances by Sf and Sg respectively. These
four statistics are mutually independent. Moreover, X and YV are independently distributed with
means y, and p, and variances o?/n and o ?/m respectively. Accordingly, their difference X — ¥

is normally distributed with mean u| — y, and variance o?/n + o?/m.? Then the random variable

X =V = (), —py)

3.1

o*/n + o%/m

has the nommal distribution N¥(0, 1). Furthermore (n — 1)5312/02 and (m — l)Sg/U2 have independent

chi-square distributions with n — 1 and m — 1 degrees of freedom respectively, so that their sum

(n — 1)Sf + (m — l)Sg

0'2

has a chi-square distribution with n + m — 2 degrees of freedom. It follows that the random

variable
(X -Y) =, —p)INVo¥n+ oY m
) \/7(11— 1)Sf + (m — l)Sg
o n+m—2)
X =P =, = py)

/<n_1)sf+(m_1)s§ <1 1>
n+m-~2) 7+;

has a ¢t distribution with n + m — 2 degrees of freedom.

T

(3.2)

As in the earlier part of this discussion, a positive number 5 can be found such that

Prob {—b < T < b} = 0.95.

(n — 1)Sf+(m—1)5§ 11
i (n+m—2) <:+;> ’ 3-3)

this probability may be written

If

Prob {(X — ¥) — bS; < (u, — p,) <X = ¥)+ bS_ 1= 0.95.

It follows that the random interval {(X — ¥) — bS ,, ()—( -+ bS , § has a probability 0.95 of in-

cluding the unknown fixed point #, — p,- As usual, the experimental values of the means and

2"

2If X1 and X2 are independent random variables, Var(X1 + Xz) = Var(X1 — X2) = Var X1 + Var X2.
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variances will provide a 95% confidence interval for By — My, when the variances of the two inde-
pendent normal distributions are unknown but equal.

Example:
n=10,m=7,X=4.2,5y =3.4;

s? = 5444, 2 -3733, d=%X-7 =08

9(54.44) + 6(37.33) 1 1
Sy- (— +—)=+/11.559 = 3.4 ;
15 10 7

degrees of freedom = 15, b= 1.753.

The 90% confidence interval for By = iy, is

(~5.16, 6.76) .
We shall not consider the difficulties encountered when the variances are unequal. It will be

sufficient to say that exact confidence intervals are difficult to evaluate when this situation pre-

vails. One approach to this problem yields the Behrens-Fisher solution. Form=n

2 2
S 51+S2
d ™~ n ’
and
(X - I_/)’(F‘l —py)
T -

\/(Sf + Sg)/n

has a t distribution with 2(n — 1) degrees of freedom.

4. CONFIDENCE INTERVALS FOR A VARIANCE

Consider a sequence of n independent random variables X1’ X2, ..., X, which have the

normal distributions N(x;; p, o ?). The random variable
n
Ve § - o
i=1

has a chi-square probability density function with n degrees of freedom (see Appendix, Sect. 9).
For a given probability, say 0.95, and for the fixed positive integer n, values of aand b (0 < a < b)
may be determined from the table of the chi-square distribution (Table 3) so that

Prob {a < ¥ < b} = 0.95 ,
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or

n
Prob{a < Z (X, ~ /o< b}: 0.95, 4.1

=1

or

n n
Prob{ (Xi—,u)2/b<<72< 2 (Xi—ﬂ)z/a} =0.95.
i=1 i=1

If ;v is known, then both (X, — x)*/b and Z(X, — p)?/a are statistics. Moreover, [Z(X, — 1)?/b,
Z(X, — p)?/al is a random interval having probability of 0.95 of including the unknown parameter o 2.

When the random experiment has been run, then the particular interval [Z(x, — p)2/b, Z(x, — p)¥al
is a 95% confidence interval for o2,

What is the situation, however, when y is unknown?

The fact that (n — 1)S?/o % has a chi-square distribution with n — 1 degrees of freedom, what-
ever the value of i, implies that inferences can be made about the unknown variance o ? even though
¢ is unknown.

With some preassigned probability, say 0.98, a and 5 (0 < a < b) can be found from tables of

the chi-square distribution so that
Prob fa < (n — 1)S?/0? < b} =0.98 . (4.2)

One convention for selecting a and b is to do so in such a way that

foa Ky) dy - fbm f(y) dy = 0.01, (4.3)

or
Prob {(n — 1)S%/02 < a} = 0.01 = Prob {(n — 1)S%/02 > b}

(see Table 3). Then
Prob i(n — 1)S%/b <o? < (n —1)S%/a} = 0.98 , (4.4)

so that [(n — 1)S%/b, (n — 1)S%/al is a random interval having probability 0.98 of including the
L X =

fixed but unknown parameter o'2. After a random experiment is performed and X =x a

b
x,, with

s?=2(x, - )/ (n-1),
2

the 98% confidence interval for o2 is

[(n = 1)s%/b, (n — 1)s%/4] .
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Example:
n=9 s2-858.
The 90% confidence interval for o2 is given by

[8(8.58) 8(8.58)
15.507 © 2.733

or (4.43, 25.12), where b = 15.507 and a = 2.733.

5. CONFIDENCE INTERYALS FOR THE RATIO OF TWO VARIANCES

LetX ,...,X,and Y , ..., Y Dbetwo sequences of independent random variables having
probability density functions N(x; 1, Uf) and N(y; p,, Ug) respectively. Let the means of the

two sequences be denoted by X and ¥ and the variances by
n —_—
$i- Y X, -X¥@-1
=1
and
m —
2= 2 ¥, - Y)2/(m-1).

=1

The random variables (n — 1)S?/02 and (m — 1)S3/c] are independent and have chi-square distri-
butions with n — 1 and m — 1 degrees of freedom respectively. It follows, therefore, that the
random variable

2,2
51/0’1

F - (5.1)

2,2
52/02

has an F distribution with parameters n — 1 and m — 1 (see Appendix, Sect. 9). Thus, for given
values of n and m, and with a preassigned probability 0.95 (say), two numbers a and b (0 < a < b)
can be determined from tables of the F distribution (Table 4a and b), so that

2, 2
SI/U1

Prob a < <b%=0.95, (5.2)

S2 2
2/0-2
or

Prob {aS2/S2 <o l/o? < bS2/S2}=0.95.
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Accordingly, [aSi/Sf, ng/Sf] is a random interval having probability 0.95 of including the fixed
but unknown parameter Ug/af.

If the experimental values of X1’ cee, Xn and ¥, ..., Y aex, ..., x and y,, ..., y,, re-

spectively, and if

s1-E(y - DY@ -1
and

sg :2()’]- -N¥(m-1),

then the interval [asg/sf, bsg/sf] is a 95% confidence interval for the ratio crg/Uf of the two un-

known variances.

Example: Find the 90% confidence interval for (crg/af) given that

n=10, m=5, s}=200, s}=30.0, (sj/s))=15.

s; 9 s3 b
Prob d a—<—< b— - 0.90 - [ g(f) dif
S2 Uz SZ a
1 1 1
a foe)
1- £y df — £y df | 5.3
fo ey dt- [ e (5.3)
where
[7 e di- f°° &(f) df < 0.05 . (5.4)
0 b

a 1 1
fo g(f)dfzprob3F9_4<a}:Prob{F >;}

1
= Prob {F‘L9 >;} - 0.05 . (5.5)

1 1
—=363, a=——.
a 3.63

Similarly 5 = 6.00 .
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6. CONFIDENCE REGIONS FOR A VECTOR OF p MEANS

Define the p-dimensional random variable x“3 as the vector

whose elements are jointly distributed as the p-variate normal distribution

¢)(x):__1i exp {_i(x_#)’Z"l(x—-p.)} for ~o< x <, (6.1)
(2mP/ 2|3 |1/2 2
where
p'=E(x) = [E(x ), E(x)), ..., E(x)]
=[;Ll, uz,...,up] (6.2)
and
3 = Ellx — EQ)}[x — E(9 "}
_UU U”...U‘J
:012 Toge v+ Thp
% Tap o) 6-3)
On the basis of a sample of size n from this population, estimate the mean vector pu’ by
X=X, X, oen, T
where
n
% =1/n K x;
j=1
foralli=1,2, ..., p, and the dispersion matrix 3 by
—s“ Sy, Sip
s_ S, Sya+ e+ Syp
lep Szp e spp— y (6,4)

3The notational conventions in multivariate analysis are such that the use of lower-case letters for
random variables as well as realizations of random variables is almost mandatory. Upper-case letters are

used to designate matrices.
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where

1 n
Z (= X)) (g = %)

j=1

n—1

forall fandk=1,2, ..., p.
The confidence region for y is the volume enclosed by the p-dimensional hyperellipsoid

(n-1)p 6.5)

= %) ST =X = o P p, np)

where F(l—ﬁ- p, n—p) is the upper 100(1 — 3)% point of the F distribution with p and n — p degrees

of freedom (0 < 8 < 1). The risk incurred by falsely assigning the point @y by oy Ilp) to this
region is 100(1 — B)%.

7. CONFIDENCE REGIONS FOR A BIVARIATE VECTOR OF MEANS

When p = 2, the random vector x" = (xl, x,) is distributed as a bivariate normal with mean

vector p "= (/‘1' #2) and dispersion matrix

st 7.1)

Estimate u” by

X'=(X, x,)

and X by
Si1 S
§= : 7.2
Si2 S22
where
_ 1 g
X1—;Z Xy
j=1
_ 1 G
"(22;2 Xoj
j=1
1 n
< 2 = \2
Spp-ste——F (- 5D, 7.3
n—17"=
j=1
s = s ! i(x - X.)2
S22 T 27,1 2j 27
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The confidence region for p is the area enclosed by the ellipse

o Smt oy 2D
W=7 ST =R =P 2 e (7.4)
The risk incurred by assigning the point (i, /‘2) to this region is 100(1 — 3)%.

An example of several such confidence ellipses calculated from data collected on human

chromosomes and plotted by the CALCOMP pen and ink plotter is presented in Fig. 1.

ORNL DWG. 65-1411

CONFIDENCE RECIONS FOR THE MERN VECTORS OF CHROMOSOME RAM LENGTHSsCELL 811» Fe10

— 3 Ve

—/

R %

§

AN
-

10'90Ee00

we LENGTH OF SHORT ARMS

10206400

1.00€+00 k// ] [
P%

& 002-01 \ ——

0.00E-0)

1,300 1, WE«80 100580 1. 90«00 . W0 200800 2,80E«00

200800 2280
w LENGTH OF LONG RRMS

Fig. 1. Confidence Regions for the Mean Vectors of Chromosome Arm Lengths, Cell 811, F.10.



64

8. REFERENCES

Chew, Victor, ‘“Confidence, Prediction, and Tolerance Regions for the Multivariate Normal Distri-
bution,”’ J. Am. Statist. Assoc. 61, 605-17 (September 1966).
Crow, Edwin L., and Robert S. Gardner, ‘“Confidence Intervals for the Expectation of a Poisson

Variable,”’ Biometrika 46, 441-53 (December 1959).
9. APPENDIX

9.A  The Chi-Square Distribution (x2): See Table 3

Let Z1’ 22, e, Zn be a sequence of n independent random variables each distributed as

N(z; 0, 1). The probability density function of the random variable

Y:Z?+Z§+...+Zﬁ (A.1)
is
1
£,(y) = ———— ya/D) =1 g=y/2 for y > 0, (A.2)
21/ 21(n/ 2)
=0 for y <0.

The corresponding cumulative distribution function is

Yy
G,(y)=Prob {Y <y} = fo £,(w) dw . (A3

This distribution is known as the XZ distribution. It contains one parameter n, which is denoted

as the number of degrees of freedom.

9.B  The ¢t Distribution: See Table 2

Let Z be a random variable which is N(z; 0, 1), and let ¥ be a random variable distributed as
chi-square with n degrees of freedom; and let Z and Y be independent. The probability density

function of the random variable

z

vV Y/n

T= (B.1)

is

n+1

< >(n+1)/2
£.(H= for ~0< t <. B.2)
: V@F(n/z)
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The corresponding cumulative distribution function is
G_(¢) = Prob {T < (1 f g, W) dw . (B.3)

The ¢ distribution is completely specified by the parameter n, the number of degrees of freedom

associated with the random variable ¥ having the chi-square distribution.

9.C The F Distribution: See Table 42 and b

Consider two independent chi-square variables U and Y having n, and n, degrees of freedom

respectively. The probability density function of the random variable

U/n,
F = C.1
0 €1
is
n_ /2
. n, +n, il_ 1 f(”1/2) 1
2 n,
£,(f) = for 0 < f< o, (C.2)
n; n, n f (nytny)/2
r<_ (2
2 2 n,
=0 elsewhere, (C.2)
The corresponding cumulative distribution function is
G () - Prob {F < f} f g,(w) dw . (C.3)

The F distribution is completely determined by two parameters n, and n,, which are the degrees of

freedom associated the two chi-square variables.
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TABLE la. THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION
1 2,,.-
Fz)=Peiz < zl= —— [ &% /Zdtx for —4.99 < z < 0.00.
27 J.®
P ‘00 01 02 ‘03 ‘04 05 06 ‘07 08 -09

— 0 *5000 4960 ‘4920 -4880 4840 4801 4761 4721 4681 4041
-1 4602 4562 -4522 4483 ‘4443 ‘4404 4364 4325 4280 4247

- 2 ‘4207 4168 4129 4090 4052 4013 -3974  -3936 3897 3859
-3 | -382r 3783 3745 3707 3669 3632 -3594 3557 3520 3483

- 4 3446 ‘3400 3372 3336 3300 3264 3228 3192 3156 -3r21

— 5 -3085 -3050 -3015 -2981 2946 2912 -2877 2843 2810 -2776

— 6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451

— 7 2420 -2389 2358 2327 2297 -2266 2236 -2200 2177 2148

- 8 2119 2090 -2061 2033 2005 1977 1949 ‘1922 1894 1867
-9 1841 1814 1788 1762 1736 ‘1711 ‘1685 -1660 ‘1035 1611
—10 -1587 1562 ‘1539 1515 1492 ‘1469 ‘1446 ‘1423 *1401 ‘1379
-1t 1357 1335 ‘1314 -1292 ‘1271 1251 *1230 -1210 -1190 ‘1170
—12 1151 1131 1112 -1093 -1075 ‘1056 -1038 -1020 1003 -09853
—13 09680 ‘09510 09342 09176  -0goI2 08851 08691 -08534 08379  -08226
—I4 08076  -07927 07780 07636  -07493 07353 07215 07078 006934  -00811
—-15 06681 06552 00426 06301  -06178 06057 03938  -05821 -05705  -05592
—16 ‘05480 ‘05370 05262 -05I55 -05050 ‘04947 04846 04746 04648  -04551
—1% ‘04457 ‘04363 04272 04182  -04093 04006 03920 03836 03754 03673
—1-8 ‘03593 03515 ‘03438 03362 03288 03216 ‘03144 ‘03074 03005 -02938
—19 02872 02807 02743 02680 02619 ‘02559 ‘02442 02385 02330
—2:0 ‘02275  -02222 02169 ‘02118  -02068 02018 01970 -01923 -01876  -01831
—2°1 ‘01786 01743 01700 01659 -01618 01578 01539 01500 -0I463 01426
—22 ‘01390 01355 -0I32I -01287  -01255 ‘01222 -OIIgI  -0l160 -0II30 01101
—23 ‘01072 ‘01044 -OIOI7 -0*gQo3 -0*gbh42 029387 029137 028894 -028656 -028424
—24 | 028198 027976 027760 0?7549 -027344  -0*7143 026947 026756 0?6569 -026387
—25 026210 -026037 -025868 -0*5703 -025543 025386 025234 025085 -0%4940 -0%4799
—2+6 02 4661 ‘024527 -o? 4396 -0 4269 02 4145 024025 -023907 ‘023793 -0* 3681 ‘023573
—27 023467 023364 -023204 -023167 -0%3072 ‘022980 -0*28g0 ‘022803 -022718 -022635
—28 ‘022555 -022477 -0%2401 -0*2327 -0*2256 022186 0?2118 -0*2052 -0?1gB8 021926
—29 021866 -021807 -021750 -0?1695 -0%1641 ‘021589 021538 -0°1489 -0%I1441 -021395
—30 ‘021350 -021306 0?1264 -0*1223 -021183 ‘021144 '0*1107 -0?1070 -0%*1035 0?1001
—31 039676 039354 029043 ‘038740 -038447 ‘038164 037888 -037622 -037364 -037114
—32 ‘036871 036637 026410 -036190 -0350976 ‘035770 035571 -0%5377 ‘0’5190 -0%5009
—33 034834 034665 034501 -0%4342 -034189  -0l14041 -0338g7 033758 033624 -0%3495
—34 033360 -033248 -033I31 -033018 032909 032803 032701 02602 02507 0% 2415
-35 032326 -032241 -0%2158 -032078 -0%2001 031926 031854 -031785 -031718 021653
—36 ‘031501 -03I53I ‘031473 -031417 031363 ‘031311 031261 -0%I2I3 031166 031121
—37 031078 031036 -049g61 ‘049574 -0*g20I 048842 048496 048162 -047841 -047532
-3-8 047235 046948 -046673 -046407 046152 ‘0*59006 045609 -0%5442 ‘045223 -0*5012
-39 044810 044615 044427 -0%4247 -044074 043908 013747 043504 043446 -0*3304
—40 043167 043036 -042910 -042789 042673 ‘042561 ‘042454 -0*2351 ‘042252 ‘042157
—41 ‘042066 -041978 -041894 -0*1814 -041737 041662 041591 041523 -0%1458 -0%1305
—42 ‘041335 041277 -04I222 -04II68 041118 ‘041069 041022 ‘059774 ‘059345 ‘08934
—43 058540 088163 -0%7801 -057455 057124 056807 056503 -056212 -0550934 -0%5668
—44 ‘055413 055169 054935 054712 ‘054498 034294 ‘054098 -0%391r -053732 -0%3501
—45 053398 053241 -053092 -052949 052813 052682 052558 -052439 -052325 -0%2216
—46 052112 052013 -051gIg -051828 -0%1742 ‘051660 051581 051506 051434 -051366
—47 081301 081239 -051f79 -051123 -05I069 081017 -0%g680 -0fg211 -088765 008339
—4:8 | -0°7933 -0%7547 047178 -0%6827 -0%6492  -0%6173 05869 -0°5580 085304 -0€5042
—49 094792 -0%4554 084327 -0f41IT -0°3906 083711 -083525 063348 063179 -0°3019

Example: F(-1.96) = 0.02500
-2 O
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TABLE 1b. THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION

‘9?3790
"9%5339
‘926533
‘977445
‘9*8134
928650
.930324
9% 3129
935166
910631

'9°7674
‘938409
-3 8922
"9* 2765
‘9*5190
"9*6833
‘9*7934
.948665
.951460
9% 4587
‘95 6602
-gs 7888
'9*8699
-9% 2067
95208

O

F(z) = Priz < zl =

5040
5438

5832

6217
‘0591

6950
7291
7611
'7910
8186

8438
8065
8869
"g0490
‘92073

‘93448
‘94030
‘95037
‘90485
97193

‘97778
‘98257
98045
‘98950
Q22024

‘9% 3963
'§*5473
920036
‘9?7523
9?8193

"9 8694
-93 0646
‘9%3363
"9*5335
‘916752

‘9’7759
‘93 8469
'9* 8964
"9* 3052
‘945385
‘9*6964
-g*8022
.948723
951837
.954831

956759
‘g 7987
-9’ 8761
-9%2453
‘965446

1

2T

02 03 04
5080 ‘5120 5160
‘5478 °5517  °5557
5871 5910 -5048
6255 6293 0331
0628 6604 6700
0985 7019 7054
7324 7357 7389
7642 7673 7703
‘7939 7967 7995
8212 -8238 -8204
8461 -8485 -8508
8686 -8708 8729
-8888 -8go7 ‘8925
‘9658 -guB24 90988
‘92220 92304 ‘92507
‘93574 93699 93822
‘94738 94845 94950
95728 95818 -95907
‘96562  -g0638  -gb712
‘97257 97320 97381
‘97831 97882 97932
-g8300 98341  -g8382
‘98679  -98713  -98745
‘98983 9?0097 -9*0358
‘922240 -Q*2451 -922656
974132 924207 -9*4457
'9*5004 925731 9?5855
9?6736 926833 -g*6g28
‘9?7599 -G*7673 °9*7744
‘9?8250 -9*8305 -9*8359
‘9*8736 928777 -9*8817
970957 931260 -9} 1553
‘933590 9?3810 -gi4024
‘9°5499 935658 -¢?5811
‘96869 -926982 -937091
'9°7842 9?7922 -9*7999
‘938527 9?8583 938637
‘9*0039 9*0420 -9*0799
‘9*3327 '9*3593 -9*3848
'9*5573  '9*5753 '9*5920
"9*7090 g47211 -g47327
‘g*8106 -g*8186 -g*+8263
-g*8778 -9*8832 -9*8882
‘952199 952545 -9*2876
955065 -9>5288 -955502
‘956908 -gs7o51 -gs7187
988081 958172 98258
958821 958877 -95893I
-g82822 -g¥3173 -9®3508
‘985673 -9°5889 986094
Example:

5199
*5590
5987
403068
6736

7088
7422
‘7734
-8023
-8289

8531
8749
8944
‘91149
92647

"93943
95053
95994
"gb784
‘97441

97982
98422
98778
‘920613
-g* 2857

9> 4614
‘9% 5975
‘927020
927814
928411
-9z 8856
93 1836
‘93 4230
"9’ 5959
‘97197
‘98074
-93 8689
‘g4 1158
"9* 4094
‘g4 ()092

‘947439
-9*8338
-9* 8931
‘93193
985706

957318
938340
958983
-9 3827
-9%628¢

05

5239
5036
6020
6406
6772

‘7123
7454
7704
8051
‘8315

8554

-8770

-8g6b2

91309
‘92785
"94062
95154
96080
-gb856
97500

98030
98461
-g8809
‘920803
973053

9% 4766
‘9?6093
‘9?7110
-9* 7882
‘928462

9?8893
‘g3 2112
‘9% 4429
‘936103
"9* 7299
‘938146
'9°8739
"9* 1504
‘9*4331
'946253

‘9* 7546
‘948409
‘948978
‘9% 3497
‘9% 5902

957442
‘98419
‘90320
9° 4131
‘956475

‘06

F(2.57) = .924915 = 0.994915

z 2
f e~* /Zdx for 0.00 < z < 4.99.
-0

7

5279
5075
0004
6443
6808

‘7157
7486
‘7794
8078
-8340

8577
8790
‘8980
91406
‘92922

‘94179
9525+
Q6164
96926
‘97558

98077
-g8s500
98840
Q2 1100
93244

9?4915
‘926207
‘9*7197
‘9*7948
‘28511

g*8930
‘9?2378
‘93 4623
‘936242
‘9?7398
‘9?8215
928787
‘9* 1838
"9* 4558
‘g* 6400

‘947649
948477
950226
‘g8 3788
.95 ()089

-9s 7561
‘9% 8494
‘9°0789
‘98 4420
.96 6652

08

5319
5714
6103
6480
0844

7190
7517
7823
8106
8365

8599
BE10
8997
‘91621
"93056

94295
‘95352
96246
‘96995
97615

98124

98537

98870

"9’ 1344
9% 3431
-9% 5000
9?0319
9?7282
‘9?8012
9?8559

9% 8965
-g3 2636
93 4810
‘926376
97493
-g3 8282
938834
.94 2159
‘944777
"9*6554

-9*7748
9* 8542
‘98 0655
.954066
9% 6268
‘98 7675
-gs 85606
.96 1 235
'9° 4696
-g% 6821

0 +2z

-0g

'5359
5753
O141
‘0517
0879

7224
7549
7852
8133
8389
8621
8830
QU147
91774
93189

‘94408
"95449
96327
-g7062
97670
98169
98574
‘98899
91576
‘923613
‘g* 5201
‘920427
927305
‘928074
.92 8()05

‘928999
-g3 2886
9% 4991
‘936505
-9} 7585

‘9* 8347
98879
‘9* 2468
‘9* 4988
g+ 6696
947843
.90 8605
-9s 1066
‘94332
‘956439
957784
938634
-g9 1661
9% 4958
.90 6981



1
2
3
4
5
6
7
8
9
o

I

I
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27

28 -

29
30

40
6o

120

)
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TABLE 2. DISTRIBUTION OF ¢

P = Probability.

” | g .8 -7 -6 ‘5 4 -3 Py .1 -0§ 02 oI 001
‘158 -325 510 727 1000 1376 1963 3078 6:°314  12:706 31-821 63657 636'619
‘142 289 +445 <617 -816 1061 1-386 1-886 2920 4-303 6:965 9925 31°598
137 t277 424 -584 765 ‘978 1250 1638 2:353 3182 4541 5841 127941
*134 *271 414 569 - 741 ‘941 I'I90 1°533 27132 22776 3747 4604 8-G10
‘132 267 -408 -§59 727 ‘920 11§56 1°476 27015 2571 3365 4032 6859
‘131 *265 ‘404 "§553 718 ‘906 I'134 1'440 1°943 2447 3143 3797  5°959
‘130 +263 ‘40z *549 -7II 896 1-119 1415 1-893 2365 27998 3499 5405
‘130 *262 *399 546 ‘706 ‘889 1108 1-397 1-860 2:306 2896 3355 5041
*129 +261 -398 543 ‘703 +883 1100 1383 1-833 2-821 3250 4781
*129 <260 -397 -"542 -700 879 1093 1372 1-812 2:228 2:764 3169 4587
‘129 260 +396 ‘540 ‘697 <876 1088 1363 1-796 2-201  2-718 3106 4437
‘128 -259 395 ‘539 695 873 1083 1356 1782 2179 2681 3os5 4318
*128 -259 -394 -538 ‘604 ‘870 1°079 1°350 I‘771I 2160 2:650 3 oIz 4221
+128 -258 -393 *537 -692 -868 1076 1°345 1-701 2145 2624 2977 4140
+128 258 -393 536 -Ggr -866 1074 1-3.41 27131 22602 2°947 4073
+128 258 -392 -535 ‘690 -865 1071 1°337 I'746 2120 2°583 2-921 4015

; "128 -257 -392 -53¢ 689 +863 1°069 1°333 I'740 2110 2°567 2898 396§
“127 -257 -392 '534 -688 +862 1°067 1°330 I'734 2101 27552 2878 3922
~127 -257 -391 -533 -688 -861 1066 1-328 1729 2093 2°539 2861 3883
-127 -257 -391 °533 ‘687 -860 1°064 1°32§5 1-72% 2086 2:528 2:845 3850
~127 257 -391 ‘532 -686 -859 1063 1°323 1'721 2080 2-518 2-831 3819
~127 256 -390 -532 -686 +858 1:061 1°321 1-717 2074 2508 2819 3792
-127 +256 -390 ‘532 -68g +858 1°060 1319 1714 2r06g 2500 2807 3767
127 256 -390 "531 683 ‘857 17059 1318 1711 2°064 2492 2797 3745
-127 +256 <390 ‘531 -684 -856 r-o58 1°316 1708 2r060 2485 2787 3725
+127 256 -390 ‘531 -684 +856 1058 1315 1-700 2056  2°479 2779 3707
-127 +256 -389 '531 634 855 1'057 1°314 1°703 2052 2°473 2771 3690
‘127 256 -389 -530 ‘683 -855 1056 1°313 1-701 2:048 2467 2763 3674
<127 -256 -389 *530 -683 -854 1°0§55 1311 1699 2°045 2°462 2756 3659
-127 -256 -389 -530 -683 ‘854 17055 1310 1697 2:042 2457 2750 3646
+126 -255 388 -529 <681 ‘851 1°050 1303 1684 2:021 2°423 2°704 3551

_ 126 -254 -387 -527 679 -848 1°046 1°296 1-671 2°000 2°3g0 2:660 3460
<126 254 -386 -526 -677 <845 17041 1289 1-658 1980 2-358 2:617 3373
-126 -253 385 ‘524 -674 +842 170306 1282 1°645 17960 2°326 2-576 3291
P=1-Pr{-b<T<bl=Pr{T<~bl+ PriT>+nl

-b ©
:f (8 d'+f (1) dt F{r)
—® b
b
=1 - f £(t) dt
-b -6 0 b

<
=2 f (1) dt
b



focdom| 199 98 95 9o
1| *o%157 -0%28 r00393 ‘o158
2 { ro20I ‘0404 ‘103 ‘211
3 -r1g 185 -352  -384
4 *297 429 711 1004
5 ‘554 752 1145 1610
6 ‘872 1°134 1°635 2204
7 1239 1°564 2167 2833
8 10646 27032 2°733 3490
g | 2088 2532 3325 4108
1o | 2558 3059 3940 4865
11 3053 3609 4575 5578
12 3571 4178 5226 0304
13 | 4107 4765 5892 7042
14 | 4660 5368 6570 7790
15 | 5229 5985 7261 8547
16 | 5812 0-614 7962 g 312
17 6:408 7255 8672 10°085%
18 701§  7'906 9*390 10865
19 7633 8567 10°117 I1°651I
20 ! 8260 9237 10851 12:443
21 8897 0°9I5 II'SQOI 13240
22 9°542 10°6oo 12338 14°041
23 | 10196 11°293 13091 14848
24 | 10°856 11992 13-848 15659
25 | 11524 12:°697 14°611 16°473
26 | 122198 13'409 15°379 17°292
27 | 12°879 14-125 16-151 18-114
28 | 13565 14:847 16-928 18939
29 | 14256 15°574 17°708 19-768
30 | 14:953 16306

18:493

20°599

TABLE 3.
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DISTRIBUTION OF x?

P = Probability.
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S48
AKX
'424
2* 19§
3000

3828
4071
5°527
6393
7:267

8-148
9°034
9'926
10°821
11-721

12-624
13531
14440
15352
16- 266

17-182
18- 101
19°021
19°943
20867

21°792
22°719
23647
24°577
25508

“50

30 20 ‘10 11 ‘o2 ‘o1 +ooI
1'074 1-042 22706 3841 5412 06635 10827
2408 3219 4605 5991 7824 9210 1381%
3665 4642 6-251  7-815 9837 11335 16°208
4878 5989 7779 9388 11668 13-277 18465
6064 7289 9236 11°070 13-388 15086 20°517
7°231 8558 10°645 12°592 15033 16:S12 22:457
8:-383 9803 120017 134067 16:622 18-475 24 322
9°524 11°030 13362 15507 18:-168 20°090 26-12§
100656 12:242 14684 16-919 19:679 21666 27-877
11°781 137442 15987 18-307 21°161 23 209 29588
122899 1463t 17:275 19:675 22°618 24°725 31-264
14011 15812 18-549 21°020 24°054 26-217 32:9og
15119 16:°985 19-812 22362 25472 27688 34-528
16°222 18151 21064 23685 26:873 29141 36°123
17-322 19°311 22307 24°996 28-259 30°578 37697
18:418 20°465 23542 26:296 29-633 32:000 39-252
19°511 21°615 24769 27°587 30°995 33'409 40°790
20°601 22760 25989 28:869 32°346 34-805 42-312
21°689 23:'9oo 27204 30°144 33687 36°191 43 820
220775 25038 28-412 31°410 35020 37566 45 315
23858 26-171  29°615 32°671 36°343 38'932 46'797
24°939 27°301  30°813 33924 37°659 40°289 48208
26-018 28-429 32:007 35172 38:9068 41.638 49728
27°096 29°553 33196 36°415 40°270 42°980 §I°179
28-172 30675 34°382 37:652 41°560 44°314 §2G20
29°246 31°795 35°503 38:885 42-856 45:642 54°052
307319 327912 30741 40°113 44°140 46:963 55476
31°391 34027 37°916 41°337 45419 48278 56893
32461 35°139 397087 42°557 40693 49-588 58-302
33530 367250 40r256 50892 59703

43773

47°962

For larger values of #, the expression 4/2yt—4/22—1 may be used as a normal deviate with unit variance, remembering that
the probability for x* corresponds with that of a single tail of the normal curve.

P=Priy> b}

j:n fy) dy
1—f0b fy) dy
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TABLE 4a. DISTRIBUTION OF F.

g(fy\

peiF, | >bl= [ anar . 0¢ o
12 b Upper 5%, points F
B I
1 2 3 4 5 6 7 8 9 110 2|5 | 0 23 e | 10| @
| ,

1 [1614 {1996 (2157 (2246 (2302 (2340 |2368 (2389 [240-56 2410 1243-0 (2459 2480 2491 [250-1 |2511 |252:2 (2533 (2543
2 (1851 | 1900 | 1916 | 19-25 | 19:30 | 1933 | 10-35 | 19-37 | 19-38 | 19-40 | 19-41 | 1943 | 19-45 | 19-45 | 19-46 | 19-47 | 19-48 | 19-49 | 19-50
3 [1013( 955 928| 912{ 901, 894! 889 | 885| §Al| 879} 874| 870| 866 | S64| 862 | 859 | 857 | 855| 853
4 | 77| 69¢| 65| 639 | 626| 616 | 609 604 596 | 591 | 586 | 580] 577 575 572 569 | 566 563
5 | 661| 679 | 541 519 505 | 495| 488 | 482 | 477 474 | 468 462 456 | 453 | 450 | 446 443 440 436
6 | 599 514 476 | 453 | 439 428 | 421 | 415 410| 406 | 400| 39¢| 387 384| 381] 377| 374¢| 370| 367
7 | 669 ( 474| 435| 412 397 387| 373! 373| 368 364 | 357 351| 344 | 341 338 | 334 330| 327 | 323
8 | 632| 446 407 | 384 | 360 358 | 350 | 344| 339 | 335| 328 322| 315! 312| 308 304| 301 297 293
9 | 512 426| 386 | Q6| 348 | 337 | 320 323 | 318| 314| 307 301 | 294 | 200| 286 283 279 25| 2T
496 | 410 371 348 333 | 322| 314| 307| 302 208| 2901 | 285| 277 | 274 270| 266 | 262 258| 264

484 398! 350 336 320| 309| 301 | 2905 200 285| 279 | 272| 2631 261{ 257{ 253 | 243! 245 240

475| 389 | 349) 326 311| 3.00| 291| 285| 280 | 275| 260 | 262| 254 | 251 | 247 243 238 | 234] 230

467| 381 | 341| 318| 303 | 292 283 | 277 271 | 267| 260 253 | 246 | 242| 238 234 230 225| 221

460 | 374 334¢| 311) 206 285 | 276 | 270 | 265| 260 | 253 | 246| 239 235| 231| 227 222| 218 213

45¢| 368 320( 308| 200 279| 271 | 264 | 259 | 254| 248 | 240 233! 220| 225| 220 26| 21| 207

449 | 363 | 324| 301 ) 285| 274 | 266 | 250 | 254 | 249 | 242 | 235 228 | 224| 219| 215| 211| 208| 201

445| 350 | 320 296| 281 | 270 | 261 | 255 | 249| 245| 238! 231 | 223| 219| 215| 210 206 201 | 1.96

441 | 355| 316 293 | 277 | 2:66| 258| 251 | 246 241| 234 | 2°7| 219 215| 211| 206 | 202 | 197 192

438 352 313| 2900| 274 | 263 | 254 | 248 | 242 | 238] 231| 223 | 216| 211| 207 203| 198| 193 | 188

435 | 349)| 310] 287 27| 260 251 | 245| 239 | 235| 228 | 220| 212| 208 | 204| 199 | 1.95| 190 | 184

432 | 347 307| 284| 268| 257 | 249 | 242| 237| 232| 225! 28| 210| 205 201 | 1.96{ 192 | 187 | I1.81

430 | 344 | 305| 282| 266| 255 248 | 240| 234 | 2:30( 223 | 215| 207| 203| 198 | 194 189 | 184 1.78

428 | 342 303| 280 | 264 253| 244 | 237| 232 | 227| 220| 213| 205| 201 196| 191 186 | 1-81| 1.76

426 340 | 301 | 278 | 262 251 242 | 236| 230 225| 218 | 211 203 198, 194 | 189 | 184 179| 1.73

424 330| 299 276 | 260 249 | 240| 234 228 | 224 216 200 201 196] 192 | 187 182 17| 171

423 337 298| 274| 259 | 247| 239 232| 27| 22| 215| 207| 199| 195] 190| 185| 180 I75] 169

27 | 421| 335| 296 273 | 257 | 246 237| 231| 225| 220| 213 | 206 197 193 | 188 | 18| 179 | 173 | 1.67
28 | 420| 334 295| 271 | 256 | 245| 236 229 224 219 212| 2-04| 196 191 | 187 182| 177 171 | 165
29 | 418( 333| 293 270| 253 | 243| 235( 228 | 222 | 218 | 210| 203 19¢| 190{ 185| 18} | 175 170} 184
30 | 417 382| 202 269 253| 242 | 233 227 221 216 209| 201 | 193 189 | 184 179 174| 168 1.62
40 | 408| 323| 284| 261| 245/ 23¢| 225| 218| 212 | 208| 200| 192 | 184| 179 174 | 169 | 164 158| 1351
60 | 400| 315 276 253 | 237| 225( 217 210 208! 199 192| 184! 175 | 170 165 159 | 153 | 147 139
120 | 392 307 268| 245 229 | 217| 200 | 202( 196 11| 183| 175 166| 161[ 155 150 143 135 | 1.25
© | 884 300| 260| 237| 221| 210| 201 194 188 183 175| 167 157 | 152| 146 139 132 | 122 1.00

| i i i

"y
]
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Sy /S, : . . . .
;—'/;’, where s] =8, /v, and s3 = S, /v, are independent mean squares estimating a common variance ¢* and based on v, and v, degrecs of freedom, respectively.
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TABLE 4b. DISTRIBUTION OF F

Upper 1%, points

sE2se BuNRy

f "l 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 | 120 [
1 4052 149995 5403 |5625 (5764 5850 |5028 (5982 16022 16056 (6106 6157 |6209 (6235 (6261 6287 16313 |6339 6366
2 | 9850 99-00| 99-17| 99-25| 99-30| 99-33| 99-36| 9937| 9939 9940 0942| 9943 9945 9946| 99-47| 9947| 99-48{ 99-49| 99-50
3 | 34¢12| 3082( 2046 2871| 28-24| 27.91| 2767| 2749] 27-35! 27-23| 2705 2687 2669| 26:60| 26:50| 26-41| 26:32| 2622| 2613
4 | 2120| 1800| 1669 1598| 1552 15-21| 14-98| 14-80| 14-66| 14-55| 14:37| 1420 1402] 1393| 1384( 1375 13-65| 13-56| 1346
5 | 1626 1327| 1206 1139 1097] 1067| 1048] 10%9| 1016| 1005 e8| 72| 955 v4r] 938| o20| e20| ou| o2
6 | 1375 1092| 978| 915| 875 847 826/ 810 798| 787 T72{ 7T66[ 740, 131| T23| T14| 706 697 688
7 | 1225 955| 845| 785| 746] 719 699 684 672| 662| 647| 631 61| 607 599 59| 582| 674] 565
8 | 1128| 865 1759 701| 663 37| 618 603| 591| 6581 567( &62| 538 528| 520 512 503 495 486

9 | 1056 802 699 642] 606 580 561 547( 535 52| 511, 496| 481 473| 465 457| 448 440] 4

10 | 1004 756 655 599 564| 639 520 506| 494| 485 471 456 441| 433 4925 417 408| 400| 3

11 965| 721| 622 567 532| 507 489| 474 463 454| 440 425 410{ 402| 3o04| 386] 378 369 3

12 | 933 693] 595, 6541 506 482| 464 450, 439 430 416 401| 386 378 370| 362 354 345 3

13 907| 670 &574| 621 486| 462 444 430/ 419 410 396 382 366 359 35| 343 334 325 3

14 886| 651| 556| 504 469 446 428 44| 403| 394 380| 366 351 343, 335 327 318 308| 3

15 868 336| b542| 489| 456 432 414 400| 389| 380 367 3s2| 337 320 321| 313 Bos| 298| 2

16 853 823 529 477| 444| 420 403] 389] 378| 369| 355 34l 326 318 310{ 302| 293| 284 2

17 840| 611| 6&18| 467| 434 410 93| 379 368| 360 346 31| 316| 308 300| 292/ 283 275 2

18 829 01| 509| 488) 425 401 884 371 360 351 337| 323, 308 300 292 284| 275 266 2

19 | 818 6593| 501| 450 417| 394 377| 33| 352 343 330 315( 300 292| 284| 276, 267| 258 2

20 810 685| 494 443| 410| 387 370{ 356 346 387 323 300 204 286 278/ 269/ 261 252 2

2 802| &578| 487| 437| 404 381| 364 351| 340| 331 317| 303 288 280| 272| 264 255 246/ 2

2 795 572| 482| 431| 399 376 359| 345! 335| 326 312| 298| 283 275 267 258 250 240| 2

P 788| 6566| 476f 426| 394 371 354 341 330 321| 307| 293 278 270| 262 254 245 235 2

2 782 6561 472| 422| 390 367 350 336| 326| 317 3-03] 289 274 266 258 249 240{ 231| 2

777| &57| 468 418 385 363 346| 332 22| 313] 299| 285 270 262 254| 245 236 227 2

772| 6853 464 414| 382 359 342/ 320, 318| 309 296 281| 266 258 250 242 233 223 2

7681 6543| 460, 411| 378| 356/ 339 326 315 306| 293 278 263 255 247| 238! 22 220, 2

764| 545 457 407 375| 363| 336 323 312 303 290, 275 260 252| 244 235, 226, 2IT| 2

760| 642 454 404 373| 350| 333 32| 309| 300| 287 273 257 240 241 233 223 | 214| 2

756| 639] 451| 402| 370/ 347| 330| 317 307| 298, 284 270| 255 247 239 230| =221; 21| 2

731 &18{ 431| 383 351 329 312 299 289 280| 266 252| 237 220 22| 21| =202 182, L

708\ 498! 413] 365/ 334 312| 295 282! 272 263 250 235 220 2I12| 203 194 184 113 I

685 470| 395 348\ 317 296| 279| 266 256, 247 234 219 203| 195 186 176/ 1-66] 153 I

663 461| 378 332| 302 280 264 251 241 | 232| 218 204 188 179| 170/ 169 147 ;s 3 1

8, /S . .
F =:_§=v_l ;—', where s7=8,/v, and 3= S,/», are independont mean squares estimating a common variance o and based on v, and v, degrees of freedom, respectively.
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LECTURE V: DISTRIBUTION-FREE TESTS

W. E. Lever

1. INTRODUCTION

The purpose of this lecture will be to acquaint you with some of the possible uses of distri-
bution-free tests. Roughly speaking, a distribution-free test is one which does not make any
assumptions about the precise form of the populations which are being sampled. However, in
many cases the underlying distribution functions must be assumed to be continuous and/or to
have the same form or to be symmetrical about the same point.

The reason that we do not need to make extensive assumptions about the distribution func-
tions is that the magnitudes of the observations are not used directly in the test. Instead, we
use the ranks, frequency, or some other such attribute of the original observations to provide the
information used by the test statistic.

Given these types of measurements, distribution-free tests are usually concerned with
medians, ranges, etc., instead of the parameters of the distribution.

However, if the experimenter has definite a priori knowledge of the parametric form of the
distribution from which his observations arise, he should definitely use the classical test pro-

cedures and not the distribution-free test procedures.

2. ADVANTAGES AND DISADVANTAGES OF DISTRIBUTION-FREE TESTS

Now distribution-free tests have several advantages and disadvantages in relation to classical
testing procedures. Some of the advantages are as follows: (1) Distribution-free tests are usually
much easier to derive, since they can be derived by use of combinatorial formulas instead of the
complex mathematics usually needed to derive the classical tests. (2) The computations needed
for distribution-free tests are usually much easier than for the classical tests, and they are
usually much faster to apply for small and moderate samples. (3) Since distribution-free
tests are based on fewer and less elaborate assumptions than the classical tests, they can
be legitimately applied to a much larger class of populations. (4) If the assumption of
continuous distributions is violated, both the fact and the degree of the violation become
readily apparent from the existence of extensive tied observations in the observed data.

Checks of this sort are not available to the experimenter to advise him that a parametric
assumption has been violated. (5) Generally, distribution-free tests have a much wider
range of possible measurements which can be used.

Now that we have considered some of the good points of distribution-free tests, let us con-
sider some of their disadvantages. (1) When a large number of similar tests are to be conducted
using a computer rather than a desk calculator, classical tests will usually be faster to do at all
sample sizes. (2) Generally, distribution-free tests have decreasing statistical efficiency relative

to classical tests as the sample size becomes large. (3) Problems can arise with the choice of
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a rejection region for the test, since the point probability of a distribution-free test statistic
does not necessarily increase as the test statistic approaches its most probable value. (4) Also,
since the distribution of the test statistic is usually discrete, a value of the test statistic for a
preassigned level of significance o may not exist.

The advantages and disadvantages we have just considered are very important factors to be
considered when choosing between a distribution-free test and a classical test, but possibly the
most important factor is the sample size. This is true for the following reasons: For small
samples (e.g., ¥ < 10), distribution-free tests are easier to apply, as indicated before, and only
slightly less efficient even if all the assumptions of the classical test are met. But at these
sample sizes, violations of the assumptions for the classical tests generally have their most
serious effects and are most likely to go undetected. Thus, unless one has some a priori
knowledge that all the assumptions are valid for the classical test, the wise choice would
usually appear to be a distribution-free test. For larger samples (e.g., N > 30), some distribution-
free tests still compare favorably with classical tests, but many are time consuming. Also, in
contrast to classical tests whose assumptions are met, their calculated or tabled probabilities
may only be approximate. In addition, the violations of the assumptions for the classical tests
will have become apparent, and in many cases their effect may have been negligible due to the
properties of the central limit theorem. Thus for large samples the wise choice would be the
classical test.

In the remainder of this lecture I will try to point out some of the common types of distribution-
free tests, so that you will have an indication where they can be applied. In each procedure con-
sidered, I will consider the rationale behind the procedure, the null hypothesis (i.e., the hypothesis

to be tested), the necessary assumptions, and the treatment of tied observations.

3. SIGN TEST

The sign test is a very simple and easily applied distribution-free test for the equality of the
medians of two distributions. It requires that the observations from the two distributions occur
in pairs and that we be able to at least observe the sign of the difference of these two observa-
tions.

The rationale for the sign test is as follows: Suppose we have two random variables A and B
and that n pairs of observations are taken on A and B. Then if the medians of the distributions
of A and B are the same, the observed values of the differences Ai ~ B, can be either plus or

1

minus with probability 7. Letr be the number of plus or minus signs, whichever is fewer. Then

the probability of obtaining r or fewer of the appropriate signs if the medians are the same is

- LG
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Thus, if q,< a/2, where @ is the level of significance, we would reject the hypothesis that the
medians are equal.

Formally the null hypothesis is that for every difference 4, — B,

1
P(A,>B)=PA,<B)=1,,

that is, the distributions of 4; and B, have equal medians.

For the null hypothesis to hold, we must assume that P(4, = B,) = 0, that is, there are no
zero differences. Also, the differences 4, — B, must be assumed to be independent.

However, even if the assumption that P(A, = B)) = 0 holds, the lack of precise measurements
may lead to some zero differences. If this does happen, the most accepted procedure for handling
this situation is to assign half of the zero differences plus signs and half minus signs, dropping
one zero difference if there is an odd number of them.

For an example of the application of the sign test we will use problem 7.3, p. 201, of Brownlee
(1960). The example is as follows:

In a trial of two types of rain gages, 69 of type A4 and 12 of type B were distributed at random
over a certain area. In a certain period 14 storms occutred, and the average amounts of rain

found on the two types of gages were as shown in the accompanying table. Now suppose we wish

Storm Type A Type B Signof A — B
1 1.38 1.42 -
2 9.69 10.37 -
3 0.39 0.39 0
4 1.42 1.46 —
5 0.54 0.55 -
6 5.94 6.15 -
7 0.59 0.61 -
8 2.63 2.69 -
9 2.44 2.68 -

10 0.56 0.53 +
11 0.69 0.72 -
12 0.71 0.72 -
13 0.95 0.93 n
14 0.50 0.53 -

to test at the 5% level of significance, by use of the sign test, that the two gages are giving the
same results.

To apply the sign test we must be able to assume that the probability of a zero difference is
zero and that the differences are independent. Both of these assumptions are reasonable, since
the gages would be measuring continuous variables and the measurements are based on different
storms. Note that in this case we do not make the assumption that the distribution of possible

measurements is symmetrical.
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Now there are 2 plus signs, 11 minus signs, and 1 zero difference. Then the probability that
we would only find 2 plus signs out of 13 differences (we disregard the one zero difference) is

given by

2 13 1 13
=L |, —2—> = 0.011<0.05/2.
1=0

Thus in this case we would reject the hypothesis that the two rain gages give the same results.
Sign tests are also available for testing trend in location, trend in dispersion, and cyclical

trend.

4. SIGNED RANK TEST

The next procedure we will consider is again a test based on paired observations, but in this
case we will consider the rank of the differences in addition to the sign of the difference. This
is done by ranking the absolute values of the differences and then assigning the sign of the dif-
ference to the rank.

The rationale behind the signed rank test is as follows: Consider two random variables 4 and
B which are sampled in pairs. Either if the distributions of 4 and B are the same or if they are
just symmetrical about the same point, then there are 2™ possible ways the signs could be assigned
to the observed ranks, where n is the number of differences. Thus, if the distributions are the
same or are symmetrical about the same point, we would expect the sum of the ranks with plus
signs to be about the same as the sum of the ranks with negative signs, in absolute value.

For the test statistic let T be the absolute value of the sum of the ranks with plus or minus
signs, whichever is smaller. We will reject the hypothesis that the two populations are the same
or that they are symmetrical about the same point if the probability of a value of T less than or
equal to the observed T is less than o/2, where a is the level of significance. Tables of critical
values of T are given by Wilcoxon, Katti, and Wilcox (1963) for 5 < n < 50.

Formally, the null hypothesis is that the medians and the means of the two distributions are
equal, if the assumptions are true.

The necessary assumptions for this test are as follows: The two distributions have identical
form, differing at most in location, or the two distributions are both symmetrical. Also we require
that the n differences be independent and that the probability of a zero difference be zero. This
latter assumption can be accomplished by assuming that the two distributions are both continuous.

If tied differences occur through a lack of sufficient measurement precision, then the pro-
cedure is as follows: If there is an even number m of zero differences, consider them as occupy-
ing the m lowest ranks. Then give each the midrank of this group (m + 1)/2, and assign half of
them a plus sign and half a minus sign. If there is an odd number of zero differences, disregard

one of them, and reduce the sample size to n — 1.
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If nonzero differences are tied in absolute magnitude, the number of each group should be
given the midrank of the group and the sign of its corresponding difference.

As an example of the signed rank test, let us again use the example used for the sign test
with the additional assumption that both distributions are symmetrical. Then the differences and

their ranks are as follows:

Storm A—B Rank of A - B
1 -0.04 ~9.5
2 —0.68 —13
3 0
4 —-0.04 —9.5
5 -0.01 -1.5
6 —-0.21 —11
7 -0.02 -4
8 —0.02 ~4
9 —0.24 —12

10 +0.03 +7
11 —0.03 -7
12 —0.01 —-1.5
13 +0.02 +4
14 —0.03 -7

Then the test statistic T is:
T=+4 +7=11.

Then by checking the Wilcoxon, Katti, and Wilcox tables, it can be seen that the critical value of

T is 17; thus
P(T <11) < 0.05 .

So again we reject the hypothesis that the gages give equal results.

5. THE RANK SUM TEST

The rank procedure to be considered in this section is again a method of comparing aspects of
the distributions of two random variables A and B. But unlike the two previous situations con-
sidered, the data are not assumed to arise in pairs. In this procedure we rank the n observed values
of A and the m observed values of B (n and m are not necessarily equal) as if they are one popula-
tion. Then we base our test procedure on the sum of the ranks of the observed values of 4 or the
observed values of B.

The rationale behind this procedure is as follows: If two random samples are drawn from the
same population, then they may be regarded as a single random sample of size m + n which has
been divided in some random manner into subsamples of sizes n and m. Thus any assignments of

n ranks to one population A and m ranks to population B are equally likely if the two samples

came from the same population. For a test statistic let T be the sum of ranks from the smaller
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sample or, if the samples are of equal size, the smaller sum of ranks for the two populations.
Then if the probability that a value of T can occur less than or equal to the observed value of
T is less than a/2, given that all assignments of n ranks to population A and mranks to popula-
tion B are equally likely, we will reject the hypothesis that 4 and B have the same distribution.
Critical values of T can be found in Wilcoxon, Katti, and Wilcox (1963).

Formally, the null hypothesis is that each of the

m+n
o)
pairs of rank assignments are equally likely. This implies the null hypothesis that the distribu-
tions of the random variables A and B are identical.

The necessary assumptions for this procedure are: The m + n observations are random and
independent. Also, the two distributions must have the same form, and the two distributions are
continuous (the probability of ties occutring is zero).

If ties do occur as the result of imprecise measurements, they are only a problem when the
group of tied values lies in both samples. When a group of tied observations occurs totally within
one sample, they should be arbitrarily ranked as if they were not tied. If the tied group occuts in
both samples, the most frequently recommended procedure is to assign each member of the tied
group the midrank of the group.

For an example of the application of the rank sum test, let us use problem 7.4, p. 202, of
Brownlee (1960). The example is as follows:

A group of mice are allocated to individual cages randomly. The cages are allocated, in
equal numbers, randomly, to two treatments, a control A and a certain drug B. All animals are
infected, in a random sequence, with tuberculosis. Given that the drug is not toxic, we wish to

test the hypothesis that the drug had no effect at the 5% level of significance. The days the mice

died and their ranks are as follows (one mouse got lost):

Control, A Drug, B
Day of Death Rank Day of Death Rank
5 1 7 4
6 2 8 8.5
7 4 8 8.5
7 4 8 8.5
8 8.5 9 13
8 8.5 9 13
8 8.5 12 15.5
9 13 13 17
12 15.5 14 18
17 19
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Then the statistic T is the sum of the ranks of A, so that

T=(1+2+4+4+85+85+85+13+155)
=65.

Then by checking the Wilcoxon, Katti, and Wilcox tables, we find that the critical value of T for
m= 9 and n=10 is 69. Thus P(T < 65) < 0.05, and we reject the hypothesis that the drug had no

effect.

6. A K-SAMPLE PROCEDURE FOR UNMATCHED DATA — ONE-WAY CLASSIFICATION

Up to this point each of the procedures considered has dealt with comparisons of the distri-
butions of two random variables. So now let us consider some applications of distribution-free
procedures to the comparison of K distributions. In this section we will consider unmatched data —
what is generally called a one-way classification. In the next section we will consider a two-way

classification.

The one-way classification procedure which we will consider is an extension of the tank sum
test for unmatched data considered in the previous section. Thus the rationale behind it will be
similar to the rationale behind the rank sum test. That is, suppose N random and independent
observations were taken on C random variables and they were ranked from 1 to N regardless of
what population they came from. Then, if the C random variables arise from the same population,
the expected sum of ranks for the observations on each of the C random variables would be
n,(N + 1)/2, where n, is the number of observations on the ith random variable and (N + 1)/2 is
the average rank for all N observations.

Now let R, be the sum of the observed ranks of the observations on the ith random variable.

If the C random variables came from the same population, then the differences
R, —n,(N +1)/2

should be small. Then, using this idea, two of the statistics which have been proposed to test

the hypothesis that the C random variables have arisen from the same population are as follows:

C
S=Y [R, —n(N+1)/21% , ¢
i=1
and
12 c [R, - n(N +1)/2]
H- 2
NV + 1) El n, @

Exact tables for S have been computed by Kruskal and Wallis (1952) and Rijkoort (1952) for

C =3, 4, or 5 and for equal sample sizes on each random variable of n, = 2, 3, 4, or 5 for C = 3,
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n,=2or3for C=4,and n, =2 for C = 5. Also, exact tables for H have been computed by
Kruskal and Wallis (1952 and 1953) for C = 3 and n, < 5, the n; not necessarily equal. Also, for
large values of n;, i=1,..., C, H is distributed approximately as a chi-square random variable
with C — 1 degrees of freedom.
Formally, the null hypothesis is that the C random variables all come from the same population.
The necessary assumptions for this procedure are that the observations are drawn randomly
and independently from continuously distributed populations. The continuous distribution require-
ment is one way of forcing the probability of a tie to be zero. Also, if the approximate chi-square
test is to be used, all the n, must be large enough for the central limit theorem to apply.
If ties occur, assign each group of tied values the midrank of the tied group. Then if there

are ¢, tied values in a group, adjust H in the following manner:

) H
H

1- (8 — t)/(N3 - N) '

For an example of the application of the K-sample procedure for unmatched data, we will use
the example on p. 284 of Bradley (1960). The example is as follows:

Suppose that speed of reading is to be tested under three degrees of illumination, at 5% level
of significance. Nine subjects ate selected at random from a common population, and three sub-
jects are randomly assigned to each condition of illumination (4, B, C). For some reason, one
subject fails to complete the experiment. The results and their ranks are given in the following

tables:

Result Rank
A B C A B C
22 36 39 1 4 6
31 37 44 2 5 7
35 51 3 8
Sum 6 9 21

Since the subjects have been randomly selected and the response is continuous, the assump-
tions seem to be satisfied.

Then after ranking the eight observations as one population, we find the rank sums for the
three conditions to be 6, 9, and 21 respectively. Also, we find their respective expected rank
sums, under the hypothesis of one distribution, to be 3(8 + 1)/2, 2(8 + 1)/2, and 3(8 + 1)/2.

Thus the test statistic H is given by

12 |6 =27/ (9 -9)% (21 - 27/2)*
= +
8x9 3 T 3

=6.25.
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Then by consulting the Kruskal and Wallis tables, we find that given the null hypothesis:

P(H > 6.25) = 0.011 < 0.05 .

Thus we would reject the null hypothesis that the speed of reading is the same under the three

degrees of illumination.

7. A K-SAMPLE PROCEDURE FOR MATCHED DATA - TWO-WAY CLASSIFICATION

In this next case, instead of each treatment being applied to different subjects, each treat-
ment will be applied to every subject. Thus every observation will depend on two classifications.
This method differs from the test considered in the previous section, since that test considered
only one classification, the treatment.

In this procedure, the application of a treatment to the subject must be done in such a manner
that the response for another treatment applied to the same subject will not be affected. This
requirement is needed since we will be interested in seeing whether the responses for the various
treatments will be the same over each subject. The rationale behind this procedure is as follows:
Suppose that we have m subjects and n treatments and that each of the n treatments is applied to
every subject. Now suppose we rank the n treatments over each subject separately; then we will
have m sets of ranks from 1 to n.

Then if a subject responds in an equal manner to each treatment, although this response may
be different from subject to subject, we would expect the sum of the ranks for each treatment to
be m(n + 1)/2. The value (n + 1)/2 is the average rank for each treatment, averaged within a
subject.

Now let Ri be the sum of the ranks for a treatment; then one statistic which has been proposed

for testing the effect of the treatment on the subjects is as follows:

! n+ 1\?
5= R —m .
E(x-n")

If the hypothesis that the treatments have an equal effect on a subject is true, then we would ex-

pect the value of S to be small, so that we would reject the hypothesis for large values of S. For
small values of m and n, critical values of S have been tabled by Kendall (1955), and for larger
values of m and n, 125/mn(n — 1) has been shown to have approximately a y? distribution with

m — 1 degrees of freedom.

Formally, the null hypothesis is as follows: For each subject, the random variables which
represent the responses of the subject to the treatments have the same distribution. But this
does not imply that the responses for the treatments on different subjects have the same distri-
bution.

The necessary assumptions for this procedure are as follows: The subjects are independent

and the observations on each subject are randomly selected; that is, the treatments are applied in
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a random order. Also, the response distribution for each subject is assumed to be continuous.
This implies that the probability of tied observations on a subject is zero.

If, through a lack of measurement precision, ties do occur, the following procedure is recom-
mended. For each subject assign the tied group the midrank of that group. A correction for the
statistic S when ties occur is as follows: Let tij be the number of tied observations in the ith

group of ties within the jth subject. Then use the corrected statistic

m

L -t

m-n(n+1) j=1 i

12 T 12n-1)

S+

For an example of the application of the two-way classification procedure we will use the

example on p. 292 of Bradley (1960). The example is as follows:

Each of three subjects performs a well-leamed task three times, each time under the influence
of a different drug. Performance is timed, and the experimenter wishes to test the hypothesis
that no subject’s performance times were influenced more by one drug than by another, at a 5%

level of significance. Tables of the times and of their ranks are as follows:

Time Time Rank
Subject Drug I Drug II Drug III Drug I Drug II Drug III
A 4.76 1.30 7.91 2 1 3
B 14.51 10.27 35.84 2 1 3
C 82.11 82.09 82.14 2 1 3
Sum 6 3 9

The assumption of continuous response distributions seems valid in this case, since we are

measuring time. So if the observations have been selected in the proper manner, the necessary

assumptions seem to be valid.
Now after we have ranked the times of each subject separately, we find that the sums of the

ranks for the three drugs are 6, 3, and 9. Also we find that the expected rank sum for each drug,

under the hypothesis of equal effects, would be

) 5

Thus the test statistic S is given by

S=6-6)2+3-6)2+(9-6)=18.
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Then by consulting Kendall’s exact tables, it can be found that, given the null hypothesis,

P(S > 18)=0.028 <0.05.

Thus we would reject the hypothesis that the drugs produce equal effects.

8. CONCLUSION

The group of distribution-free test procedures which we have just considered is a small but
useful subset of the set of distribution-free procedures.

We also have procedures available for various kinds of trends, runs of events, confidence
controls, and several other situations. To read about many distribution-free procedures I suggest
you read Wright Air Development Division (WADD) Technical Report 60-661, Distribution-Free
Statistical Tests, by James V. Bradley, available at the Y-12 Technical Library. This report also

contains extensive bibliographies at the end of each chapter.
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LECTURE VI: LINEAR REGRESSION
T. L. Hebble

1. INTRODUCTION

The concept of linear regression is concerned with the relationship between a measured re-
sponse Y and a function of known constants (x,, ..., xp) and unknown parameters (8, ..., Bp).

This relationship is often written in the form

Y=,81xl+,82x2+...+ﬁpxp+e,

where e is the error in measuring Y. The word ‘‘linear’’ means that ¥ is a linear function of the
3’s and not necessarily of the x’s. If we know Bl, e, Bp we could predict the response exactly

by the above functional (true) relationship. However, in general, we do not know the B’s, and it

<

is desirable to find some function of the observations ¥ which provides a ‘‘good’’ estimate of

By Bo

Examples of linear regression occur frequently in chemical kinetics, thermodynamics, and
virtually all areas of physics. The fixed constants are usually specific values of process varia-
bles such as temperature, flow rate, and catalyst concentration. Although these variables are not
exactly known, the errors associated with measuring them are negligible relative to the errors in

measuring the response.

We shall confine ourselves to a discussion of parameter estimation, confidence interval esti-
mation, and some tests of hypotheses associated with linear regression. Since a heavy reliance
is placed on the use of matrices, a short review of the fundamentals of matrices is given in the

Appendix (Sect. 7 of this lecture).

1.1 Notation

Every effort is made to conform to the notation of previous lectures, but in certain instances
tradition dictates that other notation be employed. In addition to capital letters (other than those
in boldface) I shall use the letter e to designate random variables. Constants and the realization
of random variables are denoted by lower-case letters. Also, parameter estimates which are indi-
cated by a /A (“hat’’) or ~~ (tilde) (such as é\ and 52) are either random variables or numerical

values of random variables.

2. LINEAR REGRESSION

2.1 Definition of Problem

Consider a random variable ¥ which is functionally related to known constants x , ..., X,

and unknown parameters 3, ..., ,BP by

83
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Y:le1+,82X2+...+Bpxp+e,

where e is a random variable representing measurement error. Let the probability density function

(p.d.f.) of Y be given by

fy; xp0 oo X By ooos B -

Assuming that the expected value of e, E(e), is equal to zero, we may write

EM)y=Bx +...+B,x, .

The x’s are process variables or independent variables, and Y is the response or dependent
variable. The 8’s are called the regression coefficients, parameters, or effects.
As an example, we might consider that for some process, efficiency Y is related to tempera-

ture according to
L
Y=08x +B,x,+e,

where x, = temperature, x, = X12’ and e is measurement error. In this model, the unknown param-

2
eters 3, and 3, are the linear and quadratic effects of temperature on efficiency.

Now expand this idea of a single experiment with two parameters in the model to n experiments
with p parameters in the model. That is, we have n equations and p unknowns in which each

equation represents an experiment and the ¥’s and e’s represent random variables:
e N
Y1¥‘81x11+...+ﬁpx1p+el
Y2:181X21 + ... +,3px2p+ e,

. (2.1.1)

Y, =B %, +--- +Bpxnp+ enJ
The expected value of the response for the ith experiment is
E(Yi):ﬁlxi1+..‘+[3pxip G(G=1,...,n).

It is convenient and certainly less cumbersome to convert to matrix notation. Thus Egs. (2.1.1)

become

Y (nx1) _ X(nxp) B(p><1) 4 elXx1) ,

where
.Y1 X2 Xip B, €y
Y= .Yz X22 Xap B By |oe=| e
v Xag e Xnp B, e,
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Matrices and vectors are denoted by boldface letters. The superscripts denote order and will be
omitted when the context is clear.

The X matrix may be preselected as prescribed by an experimental design, or the X matrix
may be just a collection of similar experiments. It is important that the values of x are known

constants, or at least the errors associated with measuring them are negligible.

3. ESTIMATION OF PARAMETERS

Two general methods of parameter estimation as applied to linear regression are presented.

First, the method of least squares is discussed under the assumptions:
E(e)=0, E(ee)=0721l,

where 0 is an nx1 vector of zeros and | is the identity matrix. The prime (") indicates the
transpose. Second, the method of maximum likelihood is discussed under the assumption that
e ~ N(0, o21), that is, that e has a multivariate normal distribution.

In the second case, each e, (i=1,..., n) has a normal distribution with mean 0 and variance
o2, Also, the variance-covariance matrix o2l implies that the e; are mutually independent (in a

stochastic sense), since the covariance elements are 0.

3.1 Method of Least Squares

A technique of parameter estimation which has a strong mathematical and intuitive foundation
is the method of least squares. For a given function f(x, 8) and a response y, the set of parame-

ters B is found so that the residual sum of squares is a minimum:

n
residual sum of squares = E ly, — f,(x, B)1* . (3.1.1)

i=1

Here x is the vector of levels of the independent variables which corresponds to the ith experiment.
Equation (3.1.1) represents the sum of squared deviations between the observations and the
function.

In terms of our problem, we may write for the residual sum of squares

Y oel=ee=(Y - XB) (Y- XB). (3.1.2)

i=1
Note that in Eq. (3.1.2) we must restrict ourselves to linear functions of B, whereas in Eq.

(3.1.1) f(x, B) may be virtually any function. If e e is divided by n — p, the degrees of freedom

for error, we obtain the residual mean square:

1 ief: ! e’e.

n—p.= n—p

residual mean square =
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Since we have values for y (the outcome of the experiment) and x (the known levels of the inde-
pendent variables), we need only to find B so that e “e is a minimum. To do this we differentiate

e’e with respect to each S8, set the resulting equations equal to zero, and solve for B. Thus:

n
- 2
- E <Yi - B1Xi1 - Bzxiz o T Bpxlp)
i=1
and the partials with respect to the S’s are

de’e

HBI -2 Igl ¥, = Bixjp = = Bpxi)(=x;)

dﬁ ~21§ T = Bixiy = = BpXip (= xip) -

In matrix notation,

de’e
_55_: =2X(Y = XB) = =2X’Y + 2X'XB .

[¢

The value of 8 for which de’e/df = 0 is denoted é and is called the least-squares estimate of 3.

A
The equations (de’e/dB) = 0 = X'XB — XY are called the normal equations. Premultiplying both

sides of the normal equations by (X'X)—!, we have'

XX HXXB = (X X)=1XY i | X°X| £0,
and hence
18 == (XX)~1XY .

The method of least squares does not provide an estimate of 2. An estimate of o2, denoted

A
32, can be found by substituting 8 for 8 in the equation for the residual mean square:

>
N
1l
—
™=
@
N
1l
o
o0
l

1 A A
; om (= XBY - XB).

A
It can be shown that this estimate is unbiased, that is, that E(0 %) = o2,

IThe matrix (X X)™" is not defined for lX X[ = 0. To avoid this, we state that X must be of rank p,
which implies that the p X p X'X matrix is also of rank p. A p X p matrix of rank p is nonsingular,
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3.2 Example
Suppose we consider the simple linear model
Yi:181xi1+[32xi2+ei fori=1,2,...,n.

There are n observations and p = 2 parameters. To generate an intercept B, let x; =1 for all

i=1, ..., n Setting Xy = X, this model may be rewritten as
Y, =B, +B,x;+ e fori=1,...,n. 3.2.1)

Now

]

Since
1 1 1 x, n Zx,
(X/X) = : = )
Xy X 1 X Zx; 2X21
then
Zx} -Zx,
nZ(x, - D aZ(x, - ¥
(X X)~1 =
Zx; 1
nX(x;, - x)> X(x; -~ X)?
Thus
A 1 Zx} Sy, - Zx,Zxy;

B=(XX)=1 XY=
nz(xi - i)2 —XXI-ZY,- + HZY,-Xi

A
The elements of B can be reduced to

A

A _ -
BIIY—B2X
and

A E(XI—E)(YI—}?)

Z(x; - %)°
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The unbiased estimate of o2, the residual mean square, is

[Z(x, - D, - )

A 1 _
o?= 2(}’1 - Y)2 -
n-2 2 (x, - %)?
In the foregoing example the summation over 1 is understood to go from 0 to n.
For a numerical example, consider the problem presented in Graybill? in which we wish to

predict the distance that a particle travels in time x. Suppose the time is measured accurately

relative to distance and we measure the distance the particle travels at several points in time.

time, x ‘1 2 3 4 10 12 18

distance, d ' 9 15 19 20 45 55 78
Assuming that the particle travels at constant velocity, the model [see (3.2.1)] is
dl{.:,81+,82Xi+ei (i=1,2,...,n),

where 8 is the position of the particle at ¢t = 0 and 3, is the velocity of the particle. Thus, if

Y is the vector of distances and X is the matrix of times,
X'X) = 7 50\ , Xx~-t= 0.35469 —0.020656 \ ,

50 598 —0.029656 0.0041518

A

B, 5.71

A = , 0?=222.
B, 4.02

3.3 Gauss-Markov Theorem

>

>
I

Y'Y= 12,201 ,

The major properties of é\as an estimator of 8 are given in an important theorem called the
Gauss-Markov theorem. This theorem states that, under the following assumptions:
1. Yx1) - X(@xp) BPX1) 1 eX1) where X is of rank p <n,
2. E(e) =0,
3. E(ee’y=c?l,
the least-squares estimate ﬁ/}\provides the best linear unbiased estimate of 8. The word ‘‘best’’
means that the variance of é\i is a minimum when compared with all other linear estimators of 3.
(Note that here ‘‘linear’” refers to a linear function of the observations.) Since the distribution of

A
the residual e was not specified, 8 cannot be compared with all estimators.

2F. A. Graybill, An Introduction to Linear Statistical Models, vol. 1, McGraw-Hill, New York, 1961.
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The Gauss-Markov theorem may be extended to all linear functions of 8. For a given px 1

vector of constants r, the best linear unbiased estimate of 8 is given by

A
VB = r(X'X)~IXY .

3.4 Parameter Estimation by Method of Maximum Likelihood

To employ the method of maximum likelihood as a means of estimating parameters, we must
assume that the joint probability density function (p.d.f.) is known. When the p.d.f. is considered
to be a function of the parameters, it is called the likelihood equation, and for a given *‘random’’
sample, the estimates of the parameters which maximize this equation are called maximum like-
lihood estimates.

In terms of our regression problem, assume that
e~ N, o). (3.4.1)

As mentioned earlier, (3.4.1) implies that each e, (i =1, ..., n) is normally distributed with mean
0 and variance o2 and that the e; are mutually independent. This joint p.d.f. and hence the

likelihood equation L may be written as

L=1f(e;B 02 L exp(—e’e/207) . (3.4.2)
(anz)n/Z

We now wish to find those estimates of 8 and o 2 which maximize (3.4.2). To accomplish this, it

will be easier to work with the logarithm of the likelihood function:

In L

In f(e; B, o ?)

(Y- XBY - XB) _%m Qo2 . (3.4.3)

202

The values which maximize (3.4.3) also maximize (3.4.2).

To obtain these estimates, the partials of Eq. (3.4.3) with respect to each parameter are

found. Thus for S,

dInL 1
=—[XY - XXA81,
IB o?
and for o2,
dln L 1
- [(Y = XBY(Y = XB) — no?].
o2 204

Setting the above partials equal to zero and solving for the parameters, we have

B - (X X)-1xY
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and
~ 1 A N
T =Y - XBY(Y - X
n

Note that the maximum likelihood estimate of 8 is the same as the least-squares estimate of S.

As indicated earlier,

EB) - B

and

E< . 8§ - E@ =02,
n—p

That is, the unbiased estimate of o2 is

n

32 Loy _XBy(Y - xp) .

n-—p n-—p
Under the assumptions

1. e~ N(O, o2,

2. Y =XB+e, where X is of rank p <n,

the estimators ‘é\ and &2 have several important properties. Among these are:

1. ,é\ ~ N[B, o 3(X"X)~ ] (multivariate normal),

2. minimum variance unbiased,

3. (n-— p)(/}Q/O? ~ chi-square distribution with n — p degrees of freedom,

4. ,/B\and 52 are independent.

They also have the properties of being consistent, complete, sufficient, and efficient.
4. TESTING THE REGRESSION MODEL

4.1 Test for Lack of Fit

Regression analysis as presented can also be employed when the relationship is not known or
when we wish to approximate a more complicated expression. As mentioned earlier, e’e represents
the residual (error) sum of squares if the functional relationship is known. However, if it is not
known or we wish to approximate a complicated function, e’e contains the sum of squares that is

due to the inability of the model to fit the data or simply lack of fit. That is,

{residual sum of squares (RSS)] = [error sum of squares (ESS)]
+ [lack of fit sum of squares (LFSS)] .
We may test this lack of fit if there are multiple obsesvations at one or more values of x or if

there is a separate independent estimate of o ?. (By ‘““multiple observations’’ is meant that the

experiment is repeated and not just continued by extending a single experiment.)
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In terms of matrices,
ee=(Y =~ XB)(Y — XB)= Y'Y _ XY,
where Y Y is the total sum of squares and é'X’Y is the sum of squares due to regression. Thus
LFSS = Y'Y — 8°X'Y _ Ess.

The error sum of squares is computed by ‘*pooling’’ (combining) the sum of squares about the
mean at each value of x for which there are multiple observations. For example, if there are k
observations made at a particular value x, then the sum of squares about ¥, the mean of the
response at x, is computed according to the familiar
x 2
k 1;1 y1>

k
Z(.Vj_?)’z: Zyjz '——k——':

=1 j=1
where
n
}7: Z .Y,/k
i=1

The number of degrees of freedom is k — 1.
If there are 4 distinct values of x and there are k; (21)in the ith group (1 =1, ..., 4y, then

the error sum of squares is obtained by summing over all values. Thus

Lk
EsS= Y, ¥ v, -7)°

i=1 j=1

and has n — 4 degrees of freedom. Now, since ESS and LFSS are independent and are distributed

v? with n — £ and £ — p degrees of freedom, respectively, the ratio

LFSS/(£ — p)
ESS/(n -~ £)

~F[4—-p,n-41]. (4.1.1)

For convenience, this test may be outlined by using Table 1.

If the ratio (4.1.1) exceeds the preselected percentage point of the Snedecor F distribution,
the model is not an adequate representation of the data, and a new model should be found. If the
ratio is not significant, there is no reason to reject the model. On the other hand, there is no
reason to assume that the model is correct or even that it is the best model.

The question often arises as to whether the residual mean square can replace the error mean
square for testing various hypotheses if the lack of fit is not significant. The purpose of using
the residual mean square is to increase the degrees of freedom for error and thereby reduce the

value from the F table. There is no clear-cut answer, and the choice is left up to the individual.
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Table 1. Analysis of Variance

Degrees of Sum of
Source Freedom Squares Mean Square F Ratio
Total n Y'Y
Regression P ,é\'X'Y /§'X'Y//p
. . A . Ny
Residual n—p Y'Y -8'XY (Y'Y - 37°XY)
n—p
Lack of fit £-p LFSS LFss/(4 — p)
Compare [see Eq. (4.1.1)]
Error n—4 ESS ESS/(n ~ /ﬁ)

4.2 Comparison of Models Using R?

A second measure of the effectiveness of the regression model is the square of the multiple

correlation coefficient R:

N —2
R2=B XY —ny
Y'Y - ny?
where
. 1 g
Y:;Z}’f

1

1
Y'Y = total sum of squares,

/\/ ’ .

B XY = regression sum of squares.

This is the proportion of the total sum of squares (adjusted for the mean) which is accounted for
by the model and should be used to compare different models using the same data. In general,
for n > 2p, a value of R? < 0.85 indicates a poor model. An R? > 0.90 indicates a good model,
and hopefully R2 > 0.95. It should be recognized that when p=n, R? = 1, and when p is large

relative to n — p, R? is close to 1.

5. CONFIDENCE INTERVALS
5.1 Confidence Intervals About 8

Under the assumption that e ~ N(0, o 2l), we can place confidence intervals about individual

estimates of B or jointly about all 8. Earlier it was stated that since

e~ N0, o2,
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then

B~ NB, (X X)~102] .

A
Thus the variance of B, (i=1, ..., p) is given by <A72cii, where c;; is the ith diagonal element of

(X’X)~*. The 100(1 — a)% confidence interval about f3, is

A Ao A Ao for i
Bi = tin_p 1oy VCii® " SBi<Bi+ tn_p1_ay VCii© ori=1,...,p,

where ¢ is the 1 — a point of the t distribution with n — p degrees of freedom. However,

(n—p,1—2a)
the confidence interval statement says nothing about the remaining coefficients. It is wrong to

compute a similar confidence interval for each coefficient and then consider all simultaneously.

The proper joint confidence interval for all 8, (i=1, ..., p) is given by the following inequality:
A 7 ’ A
(B - BYXX(B - B)<pd? F(p,n~p).

A vector of constants, B, is said to lie within the joint interval if it satisfies the above inequality.
In a p-dimensional space defined by the p parameters, this inequality generates a p-dimensional

hyperellipse.

In terms of the numerical example presented earlier, the individual 95% confidence intervals

on B and B, (forn=7,p=2, t o o5 =2:57, 5% = 2.22) are

[5.71 ~ 2.57 1/(2.22)(0.355) < B, < 5.71 + 2.57 1/(2.22) (0.355)j|

and

[4.02 — 2.57 (2.22)(0.00415) < 8, < 4.02 + 2.57 \/(2.22)(0.00415)]

respectively. The joint confidence interval on 3, and B, simultaneously is an ellipse in the

space of B, and f3,.

The corresponding 100(1 — a)% confidence interval about a linear function of the 3, is given by

A /. A /
{r’IB - t(n—p,l—.a) QZr’(X’X)—-I, << ”B * t(n—p.x._a) GZr’(X’X)—l.-}, .1.1)

where r is a p x 1 vector of known constants. For example, if

()

the 95% confidence interval about

B
FB=(+1 -1) -8, -8,
B
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is
l:(S.71 —4.02) — 2.57,/(2.22)(0.418) < (,81 — Bz) <(5.71 — 4.02) + 2.57«(2.22)(0.418)} ,

or

[-6.15 < (B, — B,) <9.53] .

5.2 Confidence Interval About E (Y)

The 100(1 — @)% confidence interval about

§2)
E(Y) = Z B;x;

=1

is similar in form to Eq. (5.1.1):

N Aoy s - DA Noorngr
{ Z Bix; — t(n_p’l_a)\/<72x0(x X)‘lx0 < Z Bix; < Z Bix; + t(n_pll_a)\/o*zxo(x X)“lxo ,
i=1

i=1 i=1

where x is a vector of constants representing specific values of the independent variables. This
confidence interval gives us a measure of how well we know the mean value of the response at a
given set of levels of the independent variable. By plotting the response against one independent

variable, the above interval generates a confidence band about the regression curve.

5.3 Confidence Interval About Mean of Future Observations

A confidence interval may be placed about the mean of one or more future observations. Sup-
pose n experiments have been completed and the least-squares estimate of 8 has been computed.
It is now desirable to perform k additional experiments at a particular set of x’s, say x;. The

100(1 — a)% confidence interval about the mean ¥ , of these k proposed experiments is given by

A Agll PPIVIRVN — A - / 1 SN~
B xo‘t(n-p,1_a)\/02|:}:+ X (X' X) Iongyogﬁ Xo+ tn_p 1-a) §2l:-1-(-+ Xy (X7X) 1x0} ,

A
where @, X, 82, and ¢ were defined earlier under Sect. 3.4. When k = 1, we have the

(n—p,1-~2)
confidence interval about a single future observation.

6. SOME COMMENTS ON STEPWISE REGRESSION

Most computer programs which generate least-squares estimates of parameters in linear re-
gression belong to a class commonly referred to as stepwise regression programs. In general,

stepwise regression programs build models by successively adding single parameters to the pre-
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viously determined model according to some scheme. The criterion of such a program might be to
add that parameter which causes the greatest reduction in the residual sum of squares. Of course,
there must be some ultimate model which is prescribed in the input. If the choice of all models
suitable for your data is a subset of the successive models that are built and if the building
criterion is compatible with your problem, the concept of stepwise regression may be of some use.
However, in most cases, the vast amount of output of such a program clouds the important informa-
tion to be gained from its use. An excellent account of the various types of regression programs
is given in Draper and Smith.?

The ¢ tests in the printed output of most programs represent tests made on individual coeffi-
cients and do not provide a joint test of all parameters.

The numerical output from one program may differ substantially from the corresponding output
of another program. This can be attributed primarily to the use of different matrix inversion sub-
routines. If the X'X matrix is nearly singular, the results may be wild. When in doubt, the best
way to check this is to compare (X"X)—! XX with the identity matrix. A second reason for differ-
ing outputs is in connection with computing the sums of squares associated with each parameter.
These values depend on the order in which they were calculated (unless the X’X matrix is diagonal).
A competent statistician should be consulted before using these sums of squares.

The Statistics Section uses special computer programs which are based on the University of
California BIMD series and are altered to meet our specific needs and philosophy. Other programs

are equally as good if not better.
7. APPENDIX

Fundamentals of Matrices

An n x m matrix is a rectangular array of numbers having n rows and m columns (n, m =1,

2, ...). Thus

- _
11 Xi2 v Xim
X1 X92 - Xom
X= [xij] =
_an Xng - - XnmJ
The X, (i=1,...,n j=1,..., m) are called the elements of the matrix, the first letter (or

number) in the subscript referring to the particular row and the second letter (or number) referring

to the particular column. The size of a matrix is called the order. Thus X is of order ‘‘n by m”’

3N. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, 1966.
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and is written X{"<M)_ The order is usually omitted when the context is clear. If m =1 the
matrix is a column vector; if n = 1 the matrix is a row vector. A matrix of order 1 x 1 is a scalar.
A matrix is square when n = m, and a symmetric matrix is a square matrix in which T
G, j=1,...,n).

The set of elements {xii§ (for i =1, ..., n) constitute the main diagonal. A diagonal matrix
is one in which only the diagonal elements differ from zero. If all the diagonal elements are equal

to 1, such a matrix is called the identity matrix.

Basic Operations Using Matrices

The transpose of A, denoted A" (or A7), is the matrix A with the rows and columns inter-
changed. Thus [a,] = [a;,]. Note that (A") = A.
The addition of two matrices of the same order is performed by adding to each element of one

matrix the corresponding element of the second matrix:

In multiplication, matrix B is premultiplied by A if the sequence AB is preserved. If BA, B is
postmultiplied by A. The matrices A, B are said to be conformable for multiplication if the number
of columns in A is equal to the number of rows in B when A is postmultiplied by B. If A is pre-
multiplied by B the number of rows in A must be equal to the number of columns in B. If A and B

are of order n_. x m. and n,xm

. . respectively, and m, = n,, then the product AB is of order

2!
n, xm,. Eachelementof C= AB, say Cjjr is obtained by multiplying every element of the ith
row of A by the corresponding element of the jth column of B and summing the resulting m, products.

Thus

my

€= Z by -
k=1

Note that AB does not necessarily equal BA.
The inverse of a nonsingular square matrix A, denoted A~?, is defined to be that matrix

which satisfies
(A)(A~ 1y = | (identity matrix) .

Matrix A is nonsingular if the determinant, |A|, is not equal to 0.

Properties of Matrices

A matrix of order m x n is said to be of rank r (for 0 < r < m < n) if r represents the order of

the largest submatrix which is nonsingular.
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Let Y be an n x 1 column vector of constants and A be an n x n matrix. Then

n n
YAY- Y ¥ Yi¥iij
i=1 j=1
is called a quadratic form in the y’s. This quadratic form is said to be positive definite (positive
semidefinite) if and only if Y'AY > 0 (Y'AY > 0) for all vectors Y £ 0. The matrix A is also said
to be positive definite (positive semidefinite).

A matrix is said to be orthogonal if A’A = |, that is, if

n 1
) E a;;8;;= 0.

i=1 j=1
i#]



LECTURE VIlI: NONLINEAR ESTIMATION

John J. Beauchamp

1. INTRODUCTION

In this lecture we present a brief introduction to the subject of nonlinear estimation. This
deals with the relationship between an observable random variable and one or more independent
(nonrandom) variables, when that relationship can be expressed in a nonlinear functional form.
This case arises when definite information is available about the form of the relationship between
the random variable or response and the independent variable. When such information is available,
we usually prefer to fit the more realistic model rather than a linear model which might be less
realistic.

In the lecture on linear regression we discussed the fitting, by least squares, of models which

were linear in the parameters of interest, that is, models of the type

Y:BO+BIZI+...+BPZP+€, ey
where ¥ can represent the observable random variable; Z , ..., Zp can represent any functions of
the basic independent variables X1 , -+, X, ; and € can represent the ‘‘experimental error’’

associated with ¥. Example:
— 2 4
Y~,81X1+B2X1 sin X, + €.

In this case Z =X and Z, = Xf sin X,. As we have seen from the earlier lecture the estimation
of the parameters 3, ..., Bp in equations of the form given by (1) is well understood.
Suppose that we assume a functional form which explains the observations apart from experi-

mental error, that is,

Y=1f(0)+ ¢, 2
or

EX)=1(,0), 3)
where

0=0,,...,0) @

is the vector of unknown parameters to be estimated and

E=(,, ..., &) (5

is the vector of known or controlled independent variables. There are n observations on the random
variable ¥ corresponding to an observed value of the vector of independent variables €. These

observations are denoted by

98
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Y, =H&,0)+ ¢, , 6)
where

‘fu:(é-lu’ ""gku)’ )
foru=1, 2, ..., n. The actual observed values of Yu are denoted by Yo u= 1,2,...,n. Our

aim is to obtain the least-squares estimate of §, that is, obtain a value of § that minimizes

n
SO = ), Iy, -1, 0. (8)
u=1
When the function f is nonlinear in the elements of §, then $(6) may have multiple or relative
minima, whereas if f is of the form given in Eq. (1) then the least-squares estimates of the
parameters are unique and also the best linear unbiased estimates for the case when the random
variables € are assumed to be independent with constant variance. It should be noted that the
least-squares estimators of § are equivalent to the maximum likelihood estimators of 6 when the
additional assumption is made that the €, are normally distributed, since minimizing S(6) with
respect to @ can be shown to be equivalent to maximizing the likelihood function with respect to
f. This can easily be seen by examining the likelihood function, which, for this case, can be

written as

1
L6, o%) = I ————— expi-Ily, - (&, N12/202

u=1 Qro?)i/2

= 2roD) ™"/ 2 exp [ -5(0)/2c07] .

2. GEOMETRY OF LEAST SQUARES

Before we present some of the procedures to estimate the vector 8, we want to examine the
geometry of the situation so that we may appreciate some of the difficulties that may arise in
nonlinear estimation. The contours defined by S(d) = constant may be examined in two different
ways. We may examine them in a subspace of the sample space called the estimation space,

which consists of all points with coordinates given by

HEL, 0, 1,0, ..., (€, O ; ©)

that is, it is the locus of all points with coordinates given by (9) as 6 takes on all possible
values. If the function f is linear in @, then the estimation space is a hyperplane with dimension
equal to p. In addition, the lines of constant § are equally spaced and orthogonal. If f is non-
linear in @, then one or both of these conditions may not be met. In Fig. 1 we have shown the
sample space and estimation space for three simple models. Figure la is a simple linear model,
Fig. 1b is intrinsically linear since it is linear after a transformation of the parameter, and Fig.
1c displays a model which is intrinsically nonlinear since it is not possible to convert it into a

form like Eq. (1). If we let ¢y = e in Fig. 1b then it becomes like Fig. la.



100

ORNL-DWG 68—-7408

6
(a) T
f(£,8)=6¢
CD_ y2:
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f(£,,6)

Fig. 1. Somple Space for Three Different Regression Models.
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Another related method of examining contours of constant S(@) is to examine these contours in
the parameter space or @ space. If the function f is linear, then the contours of constant S(6) in
the parameter space consist of concentric ellipses. If the function f is nonlinear, then the contours
are often elongated or banana-shaped. In addition, the contours for the nonlinear model may have
multiple loops surrounding many stationary values which provide alternative minima for S(8).

Example: Consider the model

6. ¢ -6 ¢

Y =1 2 + €. (10)
62—01

If 6 and 0, are interchanged, this leaves the model unaltered. Therefore, if the minimum for S(6)
A A A A
is attained at (6, 6,) = (01, 62), the same minimum value for S() is given at (6, 02) =(60,,0),

so that a double solution exists.

3. METHODS OF ESTIMATION

We will now discuss some methods which may be used to find the least-squares estimate of the
vector 8. These methods make use of one or both of the following: (1) the gradient or steepest
descent method and (2) the Gauss-Newton or linearization method. Both of these methods are
iterative and involve the choice of a vector 5(0) of initial estimates of the parameters. These
initial estimates may be intelligent guesses or preliminary estimates based on some available in-

formation. Hopefully, these initial values will be improved upon in the successive iterations.

3.1 Gradient or Steepest Descent Method

We will need the following definition before discussing the gradient or steepest descent
method:
Definition: Let g(x) be a real-valued function, where x is a vector in p-dimensional Euclidean

space. The gradient of g is then defined as

g 9 g\’
Vg=<g _g_g-> . (11)

8x1 8x2 axp

Hence we note that Vg is vector valued and indicates a direction. If x(°? is some fixed point in
the p-dimensional space, then we can show that Vg(x“”) points in the direction from x¢°) in which
& increases most rapidly. Therefore —Vg(x (%)) points in the direction from x(®? in which g de-

creases most rapidly.

A
For our problem, let @ ¢*) be the estimate of the vector § at the vth iteration; then the gradient

method would find a new estimate of 6 by

A

9<V+1>:é(”>—AVS(é(V)) , (12)
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where A is a positive constant. This procedure is repeated with é(v *1) taking the place of 419\(’/).
The calculation proceeds in this way until it is halted by some arbitrary rule. Some stop when
the residual sum of squares is sufficiently small, some stop when the elements of § (¥ ¥ 1) — g™
are sufficiently small, and some stop after a fixed number of iterations. However, there is no
generally accepted stopping rule.

The gradient method has the advantage that it is easy to compute and it gives rapid improve-
ment in reducing S(d) when 8“’) is far from the minimum. This method also has some disadvantages,
though, and some of these disadvantages are: (1) the step size from iteration to iteration must be
determined; that is, the value of the constant A in (12) must be determined, and this has produced
many variations of the method; (2) convergence can be very slow near the minimum value of
S(6); and (3) the direction of steepest descent is not unique under a change of scale.

The third disadvantage may be understood by considering the following example:

Example: The two models whose regression equations are given by

6. ¢
E(Y) =0 > %=1(,0
and
—-36 ¢
E(Y,) =0, 2 "= 1,0
fori=1, 2, ..., n, differ only in a change of scale of the parameter 62. Let
n
S, - ¥ ly, -1, 0
u=1
and

5,0 = ¥ Iy, - £,E, 017 ;

u=1

then by comparing the vectors —VSI (@) and —VS2(6) it can easily be seen that these two vectors
do not have the same direction in the @ space. For example, letn=3,y =2,y,=1,y,=2, ¢ =1.5,

£,=1.0,£,=0.5,0, =5, and 6, = 1; then
_-VSI(G) = (—1.47562, 3.25976)
and
—-VSZ(G) = (0.51263, —5.05388) ,

which do not have the same direction in the 8 space.
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3.2 Gauss-Newton or Linearization Method

The Gauss-Newton or linearization method of estimating the parameters in nonlinear regres-
sion uses the results of linear least squares in a succession of stages and has been referred to
by some as linear regression for nonlinear models. The first step in this method involves the
expansion of f(fu, 6) in Eq. (6) in a Taylor series expansion about the point 8¢°) of initial
estimates of the elements of 8 and curtailing this expansion after the linear terms in the ele-

ments of §. That is, the function t’(fu, 0) is approximated by the following linear function:

p I, O
£, 0+ ¥ |—— 0, -6, (13)
i=1 891 g = p0)

Let
(€9 = £(£,, 0,

(0) _ (0)
B =0, 6,

1

(£, 6))
A I
1u

]

99, 6=6(0)
then it can be seen that the model in Eq. (6) is of the form, approximately,
p
Y, -0 =Y B,z +ec,. (14)
i=1

That is, it is of the linear form given in Eq. (1) to the selected order of approximation. Then, near
8¢9, it should be true that $(9) = S(8), where $(6) is S(8) when f(£,, 0) is approximated by (13),

namely,

n P
SO =Y @, ) z0p)?

u=1 i=1

= (r(®) — Z(OIR0)) 7 ((0) _ Z2(0)GO)Y (15)
where
=y, £, ..., y, - )",
AR
7| . L)z,
Z<1°n) Z;On)

0) _ g (0) 0)y~
BO=(BO, .. B =0, -0, ..., 0,-00)".
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Since é(t?) is a quadratic form in 8, it can be minimized with
B0 _ (Z(0)* Z(ON)=1 (Z(0) ()} | (16)
if the inverse of Z¢9)’Z(%) exists. A new estimate of the vector @ is found from
é(l)zé(0)+é(0) . a7

A A A
Using 6 (1) in the place of 8 (®), the above steps are repeated again. Let 8 (") be the vector of

estimates of 8 on the vth iteration; then
A A A
6D g LR (18)

The above procedure is repeated in this way until it is halted by some arbitrary stopping rule. As
was mentioned in the discussion on the gradient method, there are numerous stopping rules that
may be adopted. The iterative linearization method for estimating the elements of 8 has the
advantage that (1) it can solve our estimation problem in one iteration if f is linear and (2) it
usually converges rapidly when we are close to the minimum, since that is where the quadratic
approximation to S(6) should be rather good. However, this procedure may also have some draw-
backs in that (1) it may converge slowly, (2) it may oscillate widely, and (3) it may fail to con-
verge at all when it attempts to take too large a step in the parameter space. To combat some of

these deficiencies there have been numerous modifications proposed to circumvent these problems.

A A
One of these modifications takes only a fraction of the 8 ¢*? vector and adds to 6 (*, that is,
takes very short steps in the parameter space. For some problems this has been quite effective

in achieving convergence to a minimum of S(8).

3.3 Marquardt's Compromise

D. W. Marquardt has developed a modification of the linearization method that also has con-
nections with the gradient method. Marquardt’s method represents a compromise between the
linearization method and the steepest descent method and appears to combine the best features
of both while avoiding their limitations. Since the gradient and linearization methods each give
a correction vector for the vector of initial estimates of the parameters, the Marquardt algorithm
provides a method for interpolating between these two vectors and also for obtaining a suitable
step size. The basic idea behind this algorithm is that if the linearization approximation yields
a function S(8) which is a good approximation to S(§) only in a certain neighborhood of the current
iterate on @, then §(0) should be minimized only within that neighborhood and not globally. Intui-
tively, this should be a better procedure than merely continually halving the correction vector
found by the linearization procedure, since this vector may be pointing nearly 90° away from the
optimum local direction, which is the direction found by the gradient or steepest descent method.
The complete reference on Marquardt’s algorithm is given in the list of references. There have
also been numerous nonlinear estimation procedures developed for cases when f is of a particular

form, for example, if f is a sum of exponential terms. However, since it would be difficult to
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discuss all of them, we will only give a reference to an extensive bibliography on the general
subject of nonlinear estimation that covers many of these special techniques. This bibliography
is found at the end of the chapter on nonlinear estimation in the book by Draper and Smith which

is also listed in the references.

4. ESTIMATES OF YARIANCES

In order to obtain estimates of the variances and covariances of our least-squares estimates
of the elements of the vector §, which we denote by é\(v), some approximation must be used, since
it is generally impossible to obtain exact expressions for these variances and covariances. If we
assume that the observations ypou=1,2,..., n, are observed values of n iridependent random
variables each having a constant variance o?, then the covariance matrix of 8 (¥’ may be approxi-

mated by
(Z’TMY=152 19

where Z¢*? is the n x p matrix of partial derivatives of the function f with respect to the elements
A
of @ evaluated at § (*?, which has been defined earlier. In order to evaluate this covariance matrix

the constant o2 is estimated by
G2 = 8O ™)(a~p), (20)

A A
where S0 (?) is the residual sum of squares evaluated at 8 (*), By substituting &? into 19), the

A
estimated variance of 61.(”) is found as the ith diagonal element of the resulting matrix.

5. INITIAL ESTIMATES

The iterative procedures that have been discussed above all require initial estimates of the

parameters € , 0p. It is important that as much prior information as possible be used to

1
make these starting values as reliable as possible. With good initial values it will often be
possible for an iterative method to converge to a solution faster than would otherwise be possible.
In addition, good starting values may protect against the convergence of the iterative scheme to
an unwanted stationary point of S(@) when multiple minima exist or if several local minima exist,
one of which is the absolute minimum. Parameter values which may be physically impossible or
which do not provide the true minimum of $(6) may result from such unwanted points. One way to
help avoid such difficulties is to set up a grid of points in the parameter space where 5(@) is
evaluated. From this set of values of S(f) it will usually be possible to see what the form of the
sum of squares surface is, and it may also reveal that multiple minima are possible. In any case,
the grid point at which S(@) is smallest can be used as a starting point of an iterative procedure,
or a reduced grid can be examined in the best neighborhood, to obtain a better starting point.
Frequently it is possible to obtain initial estimates of the parameters in a nonlinear regression

model by a graphical or visual examination approach. In order to demonstrate how the approach

can be used we consider the model given by
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i

Fig. 2. Regression Curve and Data Used to Obtain Initial Estimates of 9] and (92.

_8 £
EY)=0Q0-e 27y 21
foru=90,1,2,...,10. In Fig. 2 a plot of the observed data points (fu, y ) is given along with

a smooth hand-drawn curve to approximate the function E(Y) in Eq. (21). The hand-drawn curve
appears to approach an asymptote of about 8.5 as £ increases. Therefore an initial estimate of 01
could be taken as é\(lo) =8.5. In order to obtain an initial estimate of 6, we use that point where
E(Y) achieves about one-half of its maximum value and then read off the value of £ where this
occurs, which is denoted by &%, that is, find & when E(Y) =~ 4.25, Many other points could have
been used for Ehgisés*tep, but this point was chosen since E(Y) is equal to 01/2 at this point, which
implies that e %~ =0.5. We then estimate ¢, by

A —In 0.5
0O = |

2 {:*
A
From Fig. 2, & ~ 1.25 and 6 {» ~ 0.55. Although we are unable to make any statements about the
A A
statistical properties of 0 50) and 0 (20), they are easily found and can help in choosing a particular
region of the 6 space where we evaluate S(f). In addition, these graphical estimates could be used

as initial estimates in the iterative estimation procedures described earlier.
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LECTURE Vill: ANALYSIS OF VARIANCE

David G. Gosslee

1. INTRODUCTION

Repeated observations generally exhibit variation due to changing conditions, observers,
material, and other factors. These factors can seldom, if ever, be controlled easily and inexpen-
sively. Thus many factors are controlled by the experimental design, and other factors are con-
trolled in a probabilistic sense by randomization and replication. A properly designed experiment
allows efficient analysis of the variation due to specific factors and unbiased estimation of the
effects of factors controlled by design.

Sir Ronald Fisher (1925) originally defined analysis of variance as ‘““separation of variance

ascribable to one group of causes from the variance ascribable to other groups.”’

The analysis of
variance is a statistical method that has been widely used for many years since its development
by Fisher. Thus many books and journal papers contain the theory, method, designs, principles,
calculations, and examples necessary for intelligent use of the method. Many programs for com-
puters exist to perform the calculations for a variety of designs.

In previous lectures in this series the analysis of discrete observations and distribution-free
tests were developed and described. The analysis of variance is a method of analyzing continuous
observations assuming that the error term distribution is Gaussian. The design factors can be
quantitative or qualitative.

The development of linear regression also was given in a previous lecture using the general
linear hypothesis theory. The analysis of variance can be derived from the theory, although a
difficulty arises since the design matrix is singular and not of full rank. This can be overcome by

reparameterization or by use of the generalized inverse (Kempthorne 1952, Graybill 1961, and

Searle 1966).

I will speak of single observations on an experimental unit such as the diameter of a reactor
fuel pellet or of ‘“one at a time’’ analyses of multiple measurements which could include, for
example, other measurements on the pellet. Methods of analyzing multiple measurements include

the analysis of covariance and multivariate analysis of variance.

2. MODELS

The analysis of variance is used to analyze observations in experiments and surveys in social,
physical, and biological sciences. The variation might be considered in some investigations as
variance per se, while in others it might be considered as the variation caused by effects of factors
on the mean levels. The models for the two cases are called variance components and fixed
models respectively. The mixed model which contains both fixed and random effects will not be

discussed.
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2.1 Variance Components Model

Interest in the relative variation or variance due to different sources is typical in genetic
studies. The variation due to inheritance (genotypic variatiomn, Ué) is compared with the variation
due to the interaction of inherited traits with the environment (phenotypic variation, Ug). The
calculation of O'é and U; will be described in Sect. 3. Other examples are common, such as the
investigation of the precision of manufacturing operations.

The levels of a factor are assumed to be random samples from a population of levels, and we
are interested in making an inference about the variance among levels from the sample to the
population. In the genetic study it might be assumed that herds of cows were sampled randomly
and that cows within herds wete sampled randomly. Likewise, it might be assumed in a production
study that types of machines were randomly sampled and that machines of a given type were ran-
domly sampled.

The analysis of variance for random models is used to answer questions such as:

1. What proportion of variability is due to inherited traits? That is, what is the estimate of

LR

In how many generations will this ratio stabilize?

3. How much variation is caused by nonhomogeneous raw material relative to the variation caused
by differences among machines?

4. What is the optimum allocation of effort on material, machines, operators, and training to reduce
the variation in product?

2.2 Fixed Model

The fixed model is assumed if we are interested in the effect due to a treatment compared with
a control or in the differences among several treatment effects. These differences can be expressed
as variances and analyzed by the analysis of variance. If we trained operators by several different
methods we might wish to test whether differences among the programs were significant in order to
test hypotheses on the effectiveness of training programs. That is, we are primarily interested in

testing differences among mean levels.

3. CALCULATIONS

The analysis of variance is obtained by decomposing the sum of squares of the observations
into meaningful component sums of squares. Each sum of squares is divided by the corresponding
degrees of freedom to obtain a variance, usually termed a mean square.

Given y,, y,, ..., ¥, as realizations of the random variable ¥, we wish to subdivide the total
sum of squares, Eyiz, i=1,2,..., n, where the y’s represent measurements on a random sample of
experimental units. The treatments are allocated to the units by a restricted randomization pro-
cedure. The particular set of restrictions determines the experimental design. The model is de-

termined by the design and the assumptions.
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Table 1. Summary of Measurements in a One-Way Classification®

Group 1 Group 2 e Group i ce Group t
Y11 Y21 Yi1 Y1
Y12 Yag Yig Yo
Y13 Y23 Yi3 Y3
Y1 Vaj Vij Ve
ylr y2r yir ylr
Group mean ‘)71. 372. N 571.. . ?t.

Grand mean

N

“The table naturally hides the randomization scheme. The experimental units should be
assigned to the groups randomly.

For example, given n observations from ¢ groups with r units in each group, we let Vii represent
the jth measurement in the ith group (Table 1). The following algebraic identity demonstrates a

meaningful decomposition:

t r

t t r
Z Z yizj:”?,z. +r Z ;. _7..)2+ E Z (yij_?i.)z'

i=1 j=1 i=1 i=1 j=1
The corresponding model for this one-way classification is:

EX)=p~+T,,

1

4 =
)ij y+7i+eij.

Thus a measurement is represented as a linear combination of the mean i, the effect of the ith

group 7,, and the error €;j- The summary analysis of variance is shown in Table 2. The expected

2

mean squares indicate that the statistics sZ,

and s% can be used to test hypotheses and make
estimates on the parameters 0’2 and 7,.
In a previous lecture we learned that the ratio of two independent random variables each having

a chi-square distribution is a random variable having an F distribution. In this analysis of variance
(t=Dsi/0? +ro2)
and

tr — 1)sl/o?
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Table 2. Summary of Analysis of Variance Calculations

Expected Mean Squares

Source of Degrees of Mean
Variation Freedom Sum of Squares Square Random Model Fixed Model
r t
— 2
Total n=rt Z Z Vi
j=1 i=1
52
Mean 1 ny
t t
—_ — .2 2 2 2 2
Among treatments t—1 rz (yi._y“) sg, o +r(77_ o +rE Ti/(t_l)
i=1 i=1
r t
cate: - 2 2 2 2
Within treatments tr -~ 1) (yi]_ -¥.) Sg o o

are independently distributed as chi-square with ¢t — 1 and #r — 1) degrees of freedom, respectively,
and
si/(o? + rol)

F =
2,2
sE/a

The test of the hypothesis that o2 = 0 is easily formulated since F then reduces to s%/s2. How-
ever, if the ratio of interest is 02 /(o2 + 0°2) and not 02/(0'? + ro2), then the development of
confidence limits on the ratio is more complex.

The mean squares in Table 2 for the random model can be related to the genetic example by
considering that the variability among herds represents genetic variation and the variability among
cows within herds represents phenotypic variation. It is assumed that a random sample of ¢ herds
and r cows within herds was selected. The ratio

2

o

2 2
o4 ol
can be estimated by

— 52

2
ST E

s2 4 (r - s}
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For the fixed model we can consider the treatments to be the training methods mentioned earlier.
Then F = szT/sz_ is a statistic that is obviously sensitive to variation in training methods since
2

s% is an unbiased estimate of

o2+ r IT(t=-1).

Furthermore, the distribution of F is the Fisher-Snedecor distribution when 271.2 = 0. Thus we can

test the hypothesis that T,=T,=...=7T,=0using F.

4. TESTS OF HYPOTHESES

Given a properly designed and conducted experiment we can obtain efficient and unbiased
estimates of the parameters and linear functions of the parameters in the model. In addition, each
linear combination that is estimable has a corresponding unique mean square that can be used to
test the hypothesis that the linear function of the parameters is zero.

For example, if

)\:71_7

and E({) = A, then A is estimable and s; = r4%/2 is a unique mean square. A test of the hypothe-
sis that 7T, -T7,=0 (i.e., that 7 = 72) is obtained by computing F = sg,/sé and comparing it
with the 100(1 — a) percentile of the F distribution with 1 and #r — 1) degrees of freedom,

F I1, t(r —1)]. With two treatments, one degree of freedom, an equivalent test can be made by

calculating a ¢ statistic which will be the square root of the F statistic. In this case,

t=F, -5,V 22 /5.

For three treatments and two degrees of freedom we can construct many pairs of independent
contrasts such that the sum of squares for each pair is the same. For example, for one pair we can

choose

2 — —

=Yy T Y, and %2:)’1.—2)72.+y3.

and for another pair

47’3:)71._572. and {)’4:571.*'572._25_'3.'
Then

s,f = r”ﬁf/Z , sg = r’€§/6
and

s§ = r/ﬁg/Z, si= r’ﬁi/6
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are single degree of freedom mean squares associated with the corresponding contrasts. It can be
shown that

2 2
S
1+S2

2 2 = = 52
=Sy s =r 2y, -
which is equal to the among treatments sum of squares in Table 2 when ¢ = 3.

Furthermore, each contrast can be used to test a hypothesis using the associated mean square.
Thus the most meaningful pair can be chosen.

This procedure can be generalized to more than three treatments and demonstrates the manner

in which the F test on the equality of several means is a generalization of the Student ¢ test on

two means.

5. ASSUMPTIONS

Let me introduce this section with a quote from Mainland (1968): ‘‘Until the very last step,
when we take the variance ratio (F) to a published table, the method has no connection with the
Gaussian or any other particular frequency distribution. It represents a neat, exact and rather re-
markable relationship that exists in any group of numbers that is divided into two or more subgroups

(classes) either equal or unequal in size.”’
As a first step, the analysis of variance table is a meaningful way to summarize the observa-

tions. If, secondly, we choose to estimate parameters in the model or perform tests of hypotheses,
in a probability sense, then we need to assume that the random components are independently and
normally distributed about zero mean and with common variance.

Normality is often justified after examining data. Repeated observations on identical material
can be analyzed to test the assumption of normality. Also, the residuals from the model can be
analyzed in a similar manner. The residuals are the differences between the observed values and
the corresponding estimated values. For example, given ﬁ and ’/;i to be maximum likelihood esti-

mates of the parameters y and T,, then
A AN
eij:yij—u—’Ti

are the n residuals for the model previously stated. Graphical methods are particularly useful in

examining residuals.

6. DESIGN OF EXPERIMENTS

The proper decomposition depends on the design. In some cases poor planning or loss of ex-
perimental units and observations causes difficulty, and a statistician is sought to ‘‘salvage some-
thing’’ from the experiment. A statistician should be consulted to aid in planning the experiment.

A good design will ensure unbiased estimates of the effects of factors and an unbiased esti-
mate of the error variance. The design can be chosen either to obtain the most sensitive tests for

a given effort or to minimize the effort for a given sensitivity.
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The principles of experimental design are also directed toward ensuring that the assumptions
are valid. Thus randomization is essential to allow us to assume independence of error terms,
obtain an unbiased estimate of the error variance, and to make valid inferences.

One restriction on randomization is a type of sampling, termed systematic, in which the experi-
mental units are chosen in a cyclic manner so that every kth unit is chosen. For example, every
Sth unit on a production line might be chosen for testing, every 3d plot in an agricultural experiment
might be selected for treatment, or every 12th name on a list is chosen for interview in & survey.

Systematic sampling is often less expensive, and the means are sometimes estimated more
accurately. However, the estimate of the variance is often biased. In the examples mentioned
above, such bias would exist if there was a trend in quality of the item under production, if there
was a fertility gradient in the agricultural trial, and if the list of persons had been ordered by a
variable correlated with a variable measured in the survey. Obviously, the means could be biased
if a cycle exists in the sequence of units, for example, if the units on the production line came

from five machines and always in the same sequence.

7. TRANSFORMATIONS

If nomality cannot be assumed or if the variance is not homogeneous, a mathematical trans-
formation of the observations can cause the assumptions to be more nearly valid. Since investi-
gators are accustomed to the concept that measuring devices and experimental units often perform
transformations on the variable of interest, the idea of a mathematical transformation should seem
somewhat natural.

The investigator very often measures a variable that is functionally related to the variable of
interest. The function may be known or unknown. An example from several divisions of the
laboratory is the measurement of the diameter of an experimental unit, the diameter then being
transformed into surface, volume, or mass, depending on the investigation. The statistical analy-
sis is made on the values most nearly validating the assumptions.

Transformations are used in analysis of variance most frequently to correct for nonhomogeneity
of the error variance. The need might be discovered by plotting residuals or by plotting means and
variances for subgroups of the data. Also, specific transformations are proposed for certain types
of data on a theoretical or a common usage basis.

Some variance-stabilizing transformations based on statistical theory are: (1) square root if
the variance is proportional to the mean, (2) logarithm if the standard deviation is proportional to
the mean, and (3) inverse sine for proportions.

The square root transformation is common for counts less than 100 and also for proportions
less than 0.2.

A transformation also affects the additivity of effects and the distribution of the error term.
For example, the logarithmic transformation will change a multiplicative model to an additive model.
A transformation that stabilizes the error variance is expected to make the distribution more nearly
normal. As we learned from a previous lecturer, the normal distribution is the only distribution in

which the variance is independent of the mean.
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8. MULTIPLE COMPARISONS

In the analysis of variance situation the investigator usually has some specific tests planned
and also wishes to search for significant effects which could not be anticipated. Thus the standard
procedure for testing a few carefully posed hypotheses needed to be, and was, modified to include
multiple comparisons. Even if some of the specific hypotheses could be included in a general
multiple comparison procedure they should be considered separately in order to make the overall
procedure more sensitive or powerful. This is an example of providing more powerful tests by in-
cluding more information in the procedure.

For example, a specific comparison of the mean of a control group with the mean of several
treated groups or comparison of the control with each treatment individually is more powerful than
a multiple comparisons test among all the group means.

A multiple comparisons test is a procedure for performing all possible pairwise comparisons.
If the standard ¢ test is used, too many significant results will be declared. That is, the actual
level of significance is larger than the nominal level and increases rapidly as the number of con-
trasts increases. The new methods allow multiple tests to be performed and maintain a chosen
level of significance.

The text by Steel and Torrie (1960) has an excellent discussion of these procedures.

9. CONCLUDING REMARKS

The assumptions are realistic in many experimental situations, and the analysis of variance
method is a widely used tool for the following reasons:

1. In many situations the errors, which are often a composite of several sources of error, are
random variables which are approximately Gaussian, independent, and additive.

2. The analysis of variance tests and estimation procedures are robust. That is, they are not
highly sensitive to departures from normality. This is particularly true for tests of hypotheses on
means. Caution is in order for tests of hypotheses on variances.

3. Transformations can be made easily on observations to make the error terms approximately

normal.
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LECTURE IX: DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY

Toby J. Mitchell

1. INTRODUCTION

In its widest sense, experimental design can be defined briefly and directly as the planning
of experiments. In this lecture, we shall center our attention on experimental design from the
statistical point of view. That is, we shall view the results of the experiment in terms of some
sort of probabilistic mathematical model, and we shall see what principles of experimental de-
sign emerge.

Why has the statistician become involved in this area? Generally he is not knowledgeable in
the subject field in which the experiment is being conducted, and it is fair to ask why he feels
able to contribute anything at all. The answer is based to some degree on the fact that virtually
all inferences concerning the results of experiments are, implicitly or explicitly, probabilistic in
nature. In addition, there is an increasing tendency to use probabilistic models to describe the
actual results of the experiment itself. This dual use of probability to describe not only the re-
sults of experiments but the inferences which can be made from these results has brought the
statistician, whose business is applied probability, into the middle of scientific experimentation.

Many experimenters, recognizing this, dutifully (and sometimes reluctantly) take their data to a
statistician from time to time. Far from being grateful, the statistician is often heard to grumble
because he was not consulted when the experiment was still in the planning stage. Disagreeable
or not, the statistician has a point, and it is this: In order to carry out a reasonably valid statis-
tical analysis of the data, it is desirable first that the data be collected in such a way that cer-
tain probabilistic assumptions are satisfied. If this is not possible, then the data should be col-
lected in such a way that failure to satisfy such assumptions will not foul up the inferences made
from the results. In any case, the manner of collecting the data, that is, the design of the ex-
periment, is important to the validity of the analysis. If the statistical principles of experimental
design are ignored, it is quite possible to collect an enormous set of data for which there are no
known methods of making valid inferences about the results.

Experimental design is, in other words, an integral part of the whole iterative process which
is involved in scientific experimentation. Professor George Box of the University of Wisconsin

often illustrates this point by means of the following diagram:

EXPERIMENT

CONJECTURE
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This diagram illustrates how the prior knowledge of the experimenter is first used to formulate a
conjecture about the underlying physical mechanism of the system he is studying. He uses this
conjecture to design an experiment, the results of which are then analyzed. The results of the
analysis help him formulate a new conjecture, which in turn leads to a new design, and so forth.,
This iterative process is continued either until the goals of the project have been reached or,
perhaps more realistically, until there are no more funds available.

Just as the statistician is often quite ignorant of the subject field of the experimenter, so the
experimenter often lacks a deep understanding of statistics, Even if he recognizes the importance
of statistical experimental design, he may feel so intimidated by the prospect of getting involved
with statistics that he essentially ignores the formal aspects of experimental design altogether.
Fortunately, the common sense of a good experimenter often leads him to behave just as he would
if he knew all the statistical rules. Most of the basic principles of experimental design are, as
we shall see, almost obvious, and simple adherence to them will generally be enough to keep the
experimenter out of trouble. In some situations, however, especially those in which an explicit
mathematical model is conjectured, a more sophisticated approach is necessary if the experimenter
is to squeeze as much information as possible out of his data. In any case, the better his experi-
ment is designed, the more useful information he can expect to get out of it.

In this lecture, we shall first discuss a few of the basic ‘‘common sense’’ principles, which
will be presented in connection with some of the older ‘“standard’’ designs. We shall then con-

sider the designs which have arisen more recently in connection with response surface methodology.

2. BASIC PRINCIPLES OF EXPERIMENTAL DESIGN

2.1 Classification of Variables

Before beginning a discussion of basic design principles, it will be helpful to consider the

different types of variables present in an experiment. We shall classify these as follows:

1. Response variables. These are the variables which correspond to the tesults of the experi-
ment. They are represented by the obsetved data and are not directly under the control of
the experimenter. There are generally many response variables corresponding to each
experimental run, though only a few may be of sufficient interest to be measured.

2. Controlled, measurable variables.

a) Variables of interest. The purpose of the experiment is generally to discover what effect
changes in these variables have on the response variables. Therefore the levels of these
variables, which can be controlled by the experimenter, are deliberately altered during the
course of the experiment.

b) Variables which are not of interest. The main reason for considering these is to control
them in such a way that their effects on the response variables will not bias conclusions
about the effects of the variables of interest.

3. Uncontrolled variables. These variables also affect the response variables and are, in fact,
the cause of the “‘random error’’ associated with the response.

Most statistical models consider an observed response y to be composed of two parts:
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1. the “‘true value’” 5 of that response, where 5 depends only on the levels of the controlled
variables, and

2. the ““random error’’ ¢ caused by the uncontrolled variables.
Often these two parts are assumed to act additively, so the basic mathematical model is of the

form:
yen+e, @.1.1)

where 7 is some function of the controlled variables and € is presumed to be a random variable.
The usual goal of a good experimental design is to perform the experiment in such a way
that the nature of the relationship between 7 and the controlled variables will become clear

in spite of the uncontrolled variation.

2.2 Randomization

One of the most important principles of experimental design is randomization. Probably
the simplest application of this technique decides the order in which to perform a set of ex-
perimental runs, after all other aspects of the design have been settled. If there are n runs
in the experiment, this sort of randomization can be accomplished by writing the integers
from 1 to n on separate pieces of paper and then drawing them out of a hat, one by one. The
order in which the numbers happen to be drawn specifies the order in which the runs are to be
petformed. (Equivalently, a table of random numbers could be used.)

What is the purpose of this? First, we must recognize that no experiment is under perfect
control, hence the inclusion of the random error term (€) in the basic model (2.1.1). We can

write this model in terms of the individual observations:
y,=1m;+ €;, i=1,2,...,n, 2.2.1)

where n is the number of runs in the experiment. If we now assume that each ¢, depends only on
the state of the uncontrolled variables, which in turn depends only on the time of the ith run,
then we can regard the €’s as being ‘‘fixed’’ by the choice of times at which the experimental
runs are to be performed. By choosing the order of the runs we are, in effect, ‘“assigning’’ the
n’s to the fixed €’s. There are, in fact, n! possible assignments which could be made. Even
though we do not know the magnitudes of the errors, we can at least give each experimental
arrangement an equal chance by drawing the arrangement, as from a hat, in such a way that the
probability, prior to the draw, of obtaining any particular arrangement is 1/n!.

The effect of this randomization procedure is to ensure a ‘‘fair game.”” For example,
suppose the €’s, unknown to us, increase as the experiment progresses. If we fail to randomize
the order of the runs and choose instead to do the experiment in the most convenient way, we
shall unwittingly inflate all the readings y,; corresponding to the sets of conditions which were

convenient for us to run toward the end of the experiment. Of course, we can never give each
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experimental run an equal random error. What we can do through randomization, however, is to
give each experimental run an equal chance of being associated with any particular error from
the set at hand.

It should be noted here that we have not, in the above, made any assumptions about the
distribution of the €’s — in fact, we have not even assumed that they have a distribution. There
are some experiments in which the only probabilistic structure assumed is that which is imposed
by the (known) randomization scheme itself. In other situations, when one prefers not to make
any distributional assumptions about the €’s, one can, for testing certain hypotheses, make use
of nonparametric ‘‘randomization’’ tests which are based only on the probability structure induced
by the randomization.

Usually the statistical analysis of data is based on further assumptions which include
specifying some underlying distribution for the €’s. Generally the assumption is that the {ei}
behave as if they were independent realizations of a random variable with distribution function
F(¢), where F is specified. The assumption of independence is crucial to most statistical
analyses, more so, in fact, than the correct specification of F. In practice, one can expect
the assumption of independence to be quite wrong. If, however, randomization is carried out
and the y’s are assigned randomly to the ¢’s, then (for reasons we shall not discuss here) the
observed y’s often behave approximately as if the €’s were drawn independently from some
distribution and then tacked onto the 7’s to give the y’s. Besides ensuring a ‘“fair game,”’
therefore, randomization gives our statistical assumptions a firmer footing than they would
otherwise deserve.

So far, we have discussed randomization in connection with the order of performing ex-
perimental runs. More generally, randomization involves the assignment of treatments
(combinations of the controlled variables) to experimental units (e.g., intervals in time).

For an example in which the experimental units are not just time intervals, let us
consider a hypothetical experiment which has to do with the spinning of straw into gold. We
shall suppose there are two processes, A and B, for doing this, and we wish to test ex-
perimentally to see which process is superior, We may select 20 bales of straw, say, and
we decide to put 10 of these through process A and 10 through process B. Which 10 bales
should we assign to process A? By the principle of trandomization, we should choose at

random one of the

(1)

possible subsets of bales out of 20, so that each subset has an equal chance of being
selected. In particular, randomization will ensure that a particularly ‘‘well-nourished’’ bale
(i.e., one which would provide, under either process, more gold than most of its fellow bales

on the same process) has the same chance of being assigned to process A as to process B.
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Similarly, a ‘‘dud”’ bale would have an equal chance of being assigned to each of the two
processes, thus ensuring a fair game. Once the bales had been assigned to the two processes,
we would apply randomization once more to determine the order of performing the runs.

In more complex experiments, the appropriate randomization procedure is not so obvious.
In general, it is helpful to think of each experiment as being systematically designed up to
a certain point, after which we throw up our hands and randomize. In the above example, for

instance, we carefully specified that

1. there are to be 20 bales of straw in all,
(2.2.2)

2. 10 bales are to be assigned to each process.

The restrictions (2.2.2) correspond to our systematic design. The design is not completely

specified, however, until we determine

1. the assignment of bales to processes, and
(2.2.3)

2. the order of the experimental runs.

The decisions (2.2.3) are made by randomization, which essentially considers all designs which
satisfy (2.2.2) and gives each an equal chance of being selected.

One of the most common mistakes when randomizing has been to ignore part of the class of
designs which satisfy the systematic requirements. That is, some designs which satisfy these
requirements have no chance of being selected. Often the effect of this is that a choice is made
from a class of designs which has more restrictions than were designed into the experiment.

No harm is done until the data are analyzed, at which time the experimenter estimates his error
without taking into account the added restrictions which he has unwittingly imposed through
faulty randomization. An example of this type of mistake will be given later in connection with

Latin square designs.

2.3 Blocking

Returning to our straw-into-gold example, we now consider a situation in which it is possible
to separate the bales of straw into two parts and submit one part to process A and the other to
process B. To keep the total number of tests the same, we shall now assume a total of ten
bales altogether. Assuming that an individual bale is more homogeneous in ‘‘nourishment’’ than
different bales, we can now obtain comparisons between processes without regard to the differences
in nourishment between bales. Even if a bale were especially well nourished compared with the
others, that fact would not affect the comparison of the two processes within that bale. By
averaging the differences between the yields of process A and process B within all the bales,
we obtain an estimate of the ‘‘true’’ difference which is much more precise than the ‘‘one bale,
one process’’ procedure we discussed in Sect. 2.2, simply because the ‘‘between bale’’ variation
is no longer associated with our estimate. The only variation due to nourishment which is now

associated with our estimate is that which represents the inhomogeneity within bales.
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This is an example of the technique known as blocking, which is simply the arrangement of
the experimental units into separate blocks (e.g., bales), based on the expectation that the
variation in response within blocks will be considerably lower than the variation between
blocks. An experiment which is to be performed by several National Laboratories, for example,
might be designed so that the experimental runs performed by a single laboratory are all
considered part of the same block, while those performed by different laboratories are assigned
to different blocks. In this way, overall differences in results from one laboratory to the next
would not be associated with the estimates of the effects of the variables of interest, even
though data from all the laboratories are used to obtain these estimates.

We should remark that most blocking arrangements are made assuming that, for a given
treatment, the mean difference in response from one block to the next is simply a constant
which depends on the pair of blocks involved, but which does not depend on the particular
choice of treatment. In other words, the mean difference in response between treatment A,
block 1, and treatment A, block 2, is exactly the same as the mean difference in response
between treatment B, block 1, and treatment B, block 2. While this assumption is seldom true
in practice, it is a good first step toward accounting for differences in response between
blocks. Though it is implicit in most standard blocked designs, this assumption can be
relaxed if more sophisticated blocking is desired.

One of the most useful applications of blocking has to do with the order in which runs are
performed, a problem which has already been discussed in terms of complete randomization.

If the random errors are expected to follow some sort of a time trend, it is often advisable to
set up the experimental program in a sequence of subexperiments, where each subexperiment

is treated as a single block. Within each subexperiment, or block, the runs would be performed
in random order.

The incorporation of blocks into a design belongs to the ‘‘systematic’’ phase of designing
the experiment. To analyze the data from a blocked design, we need to include the appropriate
blocking variables in our model. (These blocking variables are generally ‘‘controlled variables
which are not of interest,’”’ in terms of the classification of Sect. 2.1.) When we decide to
block instead of randomizing completely, we are, in effect, considering a more elaborate model.
Where are we to draw the line? We might be tempted to get carried away with our blocking
and end up making every experimental run a single block. Such a design would be doomed, of
course, because it complicates the model too much for the number of runs at hand. (In general,
blocking a design into b blocks usually adds b — 1 parameters to the mathematical model.) There
are no hard and fast rules which specify when to stop blocking and start randomizing, but one
useful rule of thumb is that the number of parameters in the model, including the b — 1 blocking

parameters, should be no greater than three-fourths of the total number of observations.
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2.4 '""Fixed Variables"’

In most experiments, there is a set of controllable variables which could be varied during the
course of the experiment but which are held constant, or ‘“fixed,”’ to avoid overcomplicating the
design. These variables are often of secondary interest to the experimenter, who holds them
constant so that the effects of the variables of primary interest will stand out more clearly.

While this is often a good idea, care must be taken in interpreting the results, since any
conclusions drawn from the experiment are technically valid only for the levels of the fixed
variables which pertain during the experiment. In order to make a more powerful statement,
it is necessary to assume, either by conjecture or by referring to other data, that the effects of
the primary variables on the response are the same no matter what the levels of the fixed
variables. In the jargon of the statistician, this is equivalent to saying that there is no
interaction between the fixed variables and the primary variables. When such interactions do
exist, it is advisable to ‘‘free’’ the fixed variables which interact with the primary variables,
by varying them in the experiment. Though this may appear to overcomplicate the experiment,
there are designs, as we shall see, which are particularly good for estimating the main effects
and interactions of a large number of variables, all of which are varied in a highly systematic

fashion, during the course of the experiment.

2.5 Replication

Repetition, or replication, of an experiment or part of an experiment can be a very valuable
feature of an experimental program. In designed experiments, replicating some of the experimental
runs allows the experimenter to obtain an estimate of the random error. If, for example, we are
observing yield as a function of temperature in a chemical reaction, and if we test the yield at

n different temperatures, then all the observed variation in yield will come from two sources:

1. variation due to the difference in yield from one temperature to another, and

2. random variation which would be present even if the temperature were constant.

Without replicating some points, that is, making several tests at the same temperature for one or
more temperature levels, we would not be able to tell how much of the total variation was due
to source 1 and how much to source 2. The variation among multiple observations at a single
point, however, is due strictly to source 2, and we can get an estimate of it by combining such
information from all points with repeat obsetvations.

The estimate of random error arising from repeat observations is valid no matter what model
is used to fit the data. This estimate is extremely useful in checking the adequacy of any
proposed model. If, for example, our estimate of random error, under the assumption that the
model is correct, is much larger than the estimate of random error from repeat observations,
then we have evidence that the model is inadequate.

Replication can also be used by the experimenter to check the predictive power of his
conclusions from the initial experiment. Nothing adds more weight to a theory than evidence

of its ability to predict the results of future experiments with reasonable accuracy.
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2.6 Sequential Experimentation

Virtually all experimental programs are sequential in nature. An initial experiment is run,
the data are analyzed, tentative conclusions are drawn which indicate the direction of further
experimentation, and so forth. In general, the advantages of sequential experimentation make
it undesirable to perform too elaborate an experiment initially, no matter how sophisticated or
statistically appealing the design may appear.

Unfortunately, because of the mathematical difficulties involved in considering the design
at each stage of a sequential experiment to be, in effect, a random variable depending on the
results at the previous stage, much of the statistical literature has so far ignored the formal
aspects of sequential design. In practice, however, it is often sufficient to ““play it by ear,”’
designing and analyzing each stage in the usual fashion (as if it were a single experiment),
always utilizing the knowledge gained at previous stages. Often it is helpful to ‘‘pool”’ the
data from a series of stages and analyze them all together as if the whole design had been
laid out beforehand. When this is done, it is important to include whatever block differences

there might be (from stage to stage) as terms in the model.

3. SOME STANDARD DESIGNS
3.1 Completely Randomized Design

We consider an experiment in which five treatments, A, B, C, D, and E, are to be compared.
The systematic part of the design specifies that each treatment is to be tested three times.

Subject to this restriction, a random order for performing the runs was selected, as follows:
ECBBDEDADEBCAAC 3.1.1)
The model corresponding to this design would probably be of the form:

Vi=p byt €5 i1=1,2,..,15, 3.1.2)

where y is an overall ‘‘base level”’ for the response, th is the effect of whatever treatment

appears in the ith run, and ¢, is the random error.

3.2 Randomized Block Design

Now suppose that, instead of the order given in (3.1.1), the result of our randomization
happened to be the order AAABBBCCCDDDEEE. It would be tempting to assert that this
ordering is ‘‘not random,’’ discatd it, and try again, However systematic the ordering might
appeat, the fact would remain that it was selected fairly and squarely, every other ordering
having been given an equal chance. If we ask ourselves why this ordering is ‘‘not random,’’
we shall probably find that the reason we are worried about the clustering of treatments is

that, in the presence of a time trend, one treatment might get all the high random errors and
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present a false impression of superiority. We can solve this problem by dividing the runs
into three sequentially run blocks and specifying that each treatment is to appear in each
block exactly once. The randomization procedure is now applied to give the order of runs

within blocks. For example:

Block Order
1 ADBCE
2 BAECD 3.2.1)
3 BADEC

This type of design is called a randomized block design. It successfully prevents the severe
clustering of treatments which might occur in a completely randomized design.
When the blocking parameters are incorporated into the model (3.1.2) we have an appropriate

model for the design in (3.2.1):

Vij=ut bty €4 1=1,2,3, (3.2.2)

where the subscript 7 refers to the block number and the subscript ij refers to the jth observation
in the ith block. Again, ; is an overall ‘““base level”’ of response, t(ij) is the effect of whatever
treatment occurs at the ijth observation, and €4 is the random error at the ijth observation. The
three blocking parameters b, b

block.

,» and b, allow for a constant shift in response from block to

3.3 Latin Square Design

A design with even more systematic restrictions than the randomized block design was used
in an experiment whose purpose was to compare the effects of the following five different types

of background music on the efficiency of workers in a defense plant:

A: Country and Western
B: None

C: Viernese waltzes
D: Rock and roll

E: Sen. Dirksen

Because it is felt that the day of the week and even the week itself have an effect on worker
efficiency, over and above that of the background music, the experiment was carefully planned
to ensure that all five treatments (types of music) can be compared not only within each row

(weeks) but also within each column (days). For example:
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Da
Week Y

Ul AW N e

WO Om =
o m > 0 WA
m o> W o 0=
O mw = » 03
> 0O U w oA

Inspection of the design shows that, indeed, each treatment appears once in each row and once
in each column. This type of arrangement is called a Latin square design. In this particular
example, it is an application of blocking with respect to two variables (weeks and days) which
are not of direct interest but whose influence on the response we wish to account for in our
model. As a result of using this type of design, the variation in worker efficiency due to
differences between days and between weeks does not cloud up our estimates of the differences
between types of background music.

To apply the principle of randomization in this case, we must select a single design from
all those which satisfy the requirements of a Latin square, namely, that each letter should
appear exactly once in each row and once in each column. It would not do to make up a

convenient Latin square, for example,

oo BN B w R < B S
O o o » w
om > w0
= o> W O o
> w0 o m

and then “‘randomize’’ by assigning the letters randomly to the treatments, because this would
restrict our selection to a particular subset of all 5 x 5 Latin squares. If the data from a design
derived from such a ‘‘randomization’’ procedure are analyzed according to the usual Latin square
analysis, the estimate of error would probably be all wrong,

The usual model corresponding to an m x m Latin square design is

Vi=HAI+Cit t(ij)+ Eij’ i=1,2,..,m, (3.3.1)
i=1,2,...,m,

where 4 is the overall ‘‘base level’’ of response, r, is the effect of the ith level of the factor
associated with rows, ¢ is the jth level of the factor associated with columns, t(i].) is the
effect of whatever treatment is associated with the ijth observation, and €5 is the corresponding
random error.

Latin square designs are useful when blocking with respect to two variables, as in the above
example, or when there are no interactions among the variables associated with rows, columns,
and letters. When such interactions are present, however, the results of the analysis of a

Latin square design can be quite misleading.
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3.4 Graeco-Latin Squares

In many cases, the Latin square designs can be generalized to include yet another restriction.
Whereas with the Latin square we dealt with three variables (represented by rows, columns, and
letters) we shall now consider four variables (represented by rows, columns, Latin letters, and
Greek letters). Again, our restrictions require that any level of any variable must be associated
once and only once with any level of any other variable.

A 4 x 4 Graeco-Latin square is given below.

Aa BB Cy Db
By A6 Da CB
c5 Dy AB Bu
DB Ca BS Ay

Note that the problem of constructing a 4 x 4 Graeco-Latin square is the same as that of the
following parlor game:

Take the four highest cards of each suit in a regular deck of cards and arrange them in a
4 « 4 array in such a way that each row and each column contains exactly one card from each
suit (clubs, diamonds, hearts, or spades) and one card from each denomination (jack, queen,
king, ace). '

The question of the existence of Graeco-Latin squares of specified dimension became a
classical mathematical problem nearly 200 years before these squares were ever utilized in
the design of experiments. The great Swiss mathematician Euler (1707-83), having shown
that n x n Graeco-Latin squares exist when n is odd or a multiple of 4, conjectured that they
did not exist for any other value of n. In 1901, the French mathematician Tarry showed
Eulet’s conjecture to be correct for n = 6. It was not until 1958 that the problem was solved.
Three mathematicians, R. C. Bose, S. S. Shrikande, and E. T. Parker, all specialists in the
combinatorial aspects of experimental designs, finally proved Euler’s conjecture to be wrong
in every case except for n = 6. (An interesting account of this discovery is given in the

November 1959 issue of Scientific American.)

3.5 Balanced Incomplete Block Design

Often the number of available experimental units is restricted in such a way that it is not
possible to apply each treatment once within each block. A hypothetical example is the
problem of having seven swimmers race in a three-lane swimming pool. An obvious approach
is to arrange the race in several heats. It is not possible to compare all seven treatments
(swimmers) within each block (heat). We can, however, set up seven heats in such a way that
each swimmer swims in three heats and competes against every other swimmer exactly once

during the course of the meet. For example:
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Heat
1 2 3 5 6 7
1 2 3 41 21
Swimmers 2 3 4 5 5 6 3
4 5 6 7 6 7 7

Such an arrangement is called a balanced incomplete block design, incomplete in the sense
that the whole set of treatments does not appear within each block, and balanced in the sense

that every pair of treatments appears together in the same number of blocks.

3.6 Youden Square Design

If, in the comparison of swimmers in Sect. 3.5, we feel that certain lanes are generally
more favorable than others, we can arrange the heats in such a way that each swimmer, during
the course of his three heats, swims once in each of the three lanes. This added restriction
removes from the analysis of differences among swimmers that part of the variation which is

due merely to differences among lanes. Such a design is called an incomplete Latin square,

or a Youden square, and is shown below:

Heat
Lane
1 2 3 4 5 6 7
1 2 3 45 6 7
2 2 3 45 6 71
4 5 6 71 2 3

4. FACTORIAL AND FRACTIONAL FACTORIAL DESIGNS
4.1 Foactorial Designs (General)

One of the simplest designs for investigating the effect of several variables on a response is
the factorial design, in which every combination of the levels of the variables of interest is
investigated. If, for example, there are m variables of interest (often called ‘‘factors’’), and we
consider p; levels of the jth factor, j = 1, 2, ..., m, then the factorial design, which includes
every possible combination of factor levels, consists of P, X PyX ... X P runs.

An advantage of factorial designs is that they are easy to construct and analyze. The
regular pattern of the observations makes the data easy to ‘‘look at.”” If, for example, we find
that some of the factors have a negligible effect on the response, then the data can often be
viewed as a replicated factorial in the remaining variables.

The main disadvantage of factorial designs is that the number of runs required soon gets
out of hand if the number of variables or the number of levels of the variables becomes large.
In Sects. 4.3 to 4.5, we shall see how to reduce the number of runs by performing only a

specially selected subset of the runs required by the full factorial.
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There are several empirical models which can be fitted to the data from a full factorial

“multiway’’ classification model with one observation per cell, which is

design. One is the
often discussed in connection with analysis of variance techniques. For example, consider
the usual two-way classification with I rows and J columns, where [ is the number of levels
of factor A and J is the number of levels of factor B. This is, of course, just an [ x J factorial,

and the model is:

Vii=wmt ai+ﬁj+yij+ i 1=1,2,...,1, “4.1.1)
i=1,2,...,7,

where Vi is the observation at the ith level of A and the jth level of B, ; is an overall base
level of response, a, is the main effect of the ith level of 4, B]. is the main effect of the jth
level of B, Yij is the interaction of the ith level of A4 with the jth level of B, and 61.]. is the
random error. (If there were repeat observations, they would be used to estimate the random
error. When there are no repeat observations, some of the interaction terms y;; must be
assumed negligible if an estimate of error is desired.)

The form of the model (4.1.1) can easily be extended to apply to any factorial design.

A second type of model, which is really a reparameterization of model (4.1.1), is often
used in connection with factorial designs. This reparameterization is performed for reasons of
mathematical convenience — most of the individual terms in the model are not physically
meaningful. In this lecture, we shall give an example of this model in the 3 x 3 case and let it
go at that.

Suppose we are investigating two factors, A and B, each at three levels. For the purposes
of this model, we label the levels 0, 1, and 2 for both variables. Letting Vi denote the observa-

tion at the ith level of A and the jth level of B, we write the model

+ (AR,

i+2j’

¥, = n v (A, + (B), + (AB) 4.1.2)

i+j

where the subscripts, which are all integers (mod 3), indicate the ‘‘levels’’ of the ‘‘effects”’
(A), (B), (4B), and (AB?). The physical significance of these parameters seems rather abstract.
For example, (ABZ)R is defined as (1) — (11), where (¢) is the mean of the treatment combinations
for which the level of A plus twice the level of B is equal to k (mod 3) and (if) is the mean of
all treatment combinations.

It is fair to ask why such an apparently meaningless parameterization should be introduced
at all. The answer comes when we are faced with the problem of selecting a subset of treatment
combinations which is to be run instead of the full factorial. In this situation, it turns out that
the parameterization (4.1.2), with its ‘“modulo p’’ operations and all, is much more productive
than (4.1.1). A more complete discussion of the ‘“‘modular’’ model (4.1.2) is given in Kempthorne,
1952.

Another model which is used in connection with factorial designs is the polynomial regression

model, which we shall discuss later with regard to response surface designs. This type of model
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is more restrictive than the models previously discussed in that it forces the response to be
represented by a polynomial in the controlled variables. It is often extremely useful, however,
especially in giving an overall ‘‘picture’’ of the response.

There are many other kinds of models which have been used to fit data from factorial experi-
ments, This is because factorial designs arose principally on the basis of their own merits,
rather than from consideration of a particular model. In effect, models such as (4.1.1) and
(4.1.2) were constructed to fit the design. More recent work in experimental design theory
has tended to emphasize the opposite approach: the selection of a design to suit the current

working model.

4.2 2¥ Factorial Designs

A particularly important class of factorial designs, in its own right and as a building block
for mote elaborate designs, is the class of 2% factorials. Although each of the k factors takes
on only two levels in this type of experiment, it is often remarkable how much information can
be obtained through the use of these designs.

In the 2% factorials, the main effects and interactions have a clear physical interpretation,
To illustrate, let us focus our attention on a single variable A. We see that every combination
of levels of the remaining variables is associated once with the low level of A and once with
the high level of A (where ‘“low’’ and ‘‘high’’ are convenient ways of referring to the two levels
of a variable). The difference between the ‘‘true’’ responses at these two points represents the
effect of A at that particular combination of the other variables. There are N/2 such differences,
where N — 2K - total number of observations. We now define the main effect of A to be the
average of all these differences. The main effect of A4 is, in other words, indicative of the
overall change in response (averaged over the whole design) when A4 is switched from its low
level to its high level. The main effects of all the other variables are defined in a similar
way.

Now suppose we consider the factorial design which corresponds only to those observations
taken at the high level of factor A, and we define, for this design, the main effect of another
variable B in the usual way. We then do the same thing for the factorial design corresponding
to the low level of factor A. We now have (i) the main effect of B at the high level of 4 and
(if) the main effect of B at the low level of A. The interaction between A and B is defined to

be one-half the difference between (i) and (i7), that is,

1
AB interaction :?[(i) - (n].

It is a measure of the change in the main effect of factor B when factor 4 is changed from its
low level to its high level.
If we were to consider, instead, the change in the main effect of factor 4 when B is changed

from its low level to its high level, we would obtain exactly the same formal expression. In
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other words, the AB interaction is happily the same as the BA interaction. The remaining
two-factor interactions can be defined in the same way.

Similarly, we can define three-factor interactions, four-factor interactions, and so forth,
For example, the ABC interaction is equal to one-half the difference between the AB interaction
at the high level of C and the AR interaction at the low level of C. Equivalently, the ABC
interaction could be defined in terms of the change in the AC interaction between the low and
high levels of B, or the change in the BC interaction between the low and high levels of 4 — all
such definitions result in the same formal expression.

To see what form is taken by the formal expressions for the main effects and interactions,

we shall consider the following 23 design:

A B C ‘“true’’ response

- - - 7,

+ - = 7,

- 4+ - M3

+ o+ = n, “4.2.1)
- - 4 74

+ = Mg

-+ 4+ 7,

+ o+ o+ Mg

where we use a minus sign to represent the low level of a factor and a plus sign to represent the
high level. We note that all possible combinations of levels of the three factors are included

in the design. The main effect of A4 is, by our definition above,
1
2 [, =)+ Gy = n)+ (g = 1g) + (g = 7))

1
::Z[—n1+r]2—7/3+774—775+776—7)7+778]- (4.2.2)

The expression (4.2.2) can be obtained mechanically by multiplying each of the »’s by the
corresponding sign in the 4 column, taking the sum, and dividing by the number of plus signs
(4) in the column. It turns out that the same sort of rule can be followed to obtain the expression
for any interaction without having to go back to the basic definition. For example, to obtain the
expression for the ABC interaction we would first form column ABC, the ith element of which

is the product of the ith elements of columns 4, B, and C. The ABC column is therefore:
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+

and the ABC interaction is found by multipling the 5’s by the corresponding elements of this

column and dividing by the number of pluses (4):
. . 1
ABC interaction :z (—1]1 N,y TN, N TN N, 7]8) . (4.2.3)

Expressions for all the main effects and interactions can be obtained in the same way.
Estimates of the effects are obtained merely by substituting the observed §yi} for the
{ni} in the expressions for the effects. For example, the estimated ABC interaction is:

1
z(—y1+y2+y3—y4+y5—ys—y7+y8)-

Although the distinction between the true effects (in terms of the n’s) and the estimated effects

(in terms of the y’s) should be understood, we shall often refer to both merely as ‘‘effects.”’
Some appealing properties of the estimated effects are:

1. They are all uncorrelated (if the original observations are uncorrelated).

2. They all have variance 402/N, where o2 is the variance of the original observations and N

is the total number of observations. This means that for N > 4, the effects are much more
precisely determined than the expectations of the individual observations.

3. They are usually approximately normally distributed, even though the distribution of the
original observations may be quite nonnormal.

4.3 2%=! Fractional Factorials

The principal disadvantage of the 2X factorial designs is that, for k even moderately large,
the number of runs required (¥ = 2%) is excessive. In this case, we often perform only a subset
of these runs, where the subset is chosen so that the important information (e.g., main effect
estimates) is retained while less important information (e.g., high-order interaction estimates)
is sacrificed.

Suppose, for example, we are considering four factors (which we shall label 1, 2, 3, and 4)
but we want to perform only half the runs required by the fult 2* factorial. Let us arbitrarily

choose to perform only those eight runs which correspond to a plus sign in the 1234 column of
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the 2% design. (We recall that the ith element of the 1234 column is obtained by multiplying
the ith elements of the 1, 2, 3, and 4 columns of the 2% design, where [as in (4.2.1)] we
represent the low level of a variable by a minus sign and the high level by a plus sign.) The

corresponding combinations of levels are given by the following design matrix:

Factor
—1—2*3— Observation
- - - - v,
- = 4 Y,
- 4+ - 4 Y,
s - - v, 4.3.1)
- o~ 4+ 4 e
-+ - 6
-+ 4 -

This design is an example of a 24! fractional factorial design, where the 4 in the superscript
stands for the number of variables and the —1 indicates that this is a 27! (or one-half) fraction
of the full factorial.

Note that if we construct the 1234 column in this design, it will turn out to be a column
of pluses. This is to be expected, since we have deliberately chosen only those runs of the

24 factorial which have a + sign in the 1234 column. Symbolically, we write
I=1234, (4.3.2)

where the letter I stands for a column of pluses. We call (4.3.2) the defining relation of the
design. The defining relation, which arises from the way in which the fractional factorial
is constructed, is extremely useful in determining the properties of the design. In this lecture,
however, we shall not go into this important aspect of the theory.

Now suppose that we use column 1 of (4.3.1) to form the linear combination:

1
P
AJI:Z(—y1+y2—y3+y4—y5+y6—y7+y8)- (4.3.3)

We might expect /ﬁl, by analogy with the full factorial analysis, to be a valid estimate of the
1 effect. To our disappointment, however, we find that /El estimates not the 1 effect but the
sum of the 1 effect and the 234 interaction, where the effects are as originally defined in

connection with the full 24 factorial. Similarly,
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/f’z estimates 2+ 134,

£3 estimates 3+124,

L, estimates 12+ 34, (4.3.4)
%13 estimates 13 + 24,

%23 estimates 23 + 14,

)@123 estimates 4+ 123,

where the subscript on an 4 indicates the column of pluses and minuses which is used to obtain
that particular linear combination.

We say that effect 1 is confounded with (or aliased with) the 234 interaction, effect 2 is
confounded with the 134 interaction, etc. Confounding is the price of doing only half the
runs of the full factorial. If, however, we can assume three-factor interactions to be negligible
compared with main effects and two-factor interactions, then /ﬁl, {2, {3, and /{}’1 23 estimate,
essentially, the main effects 1, 2, 3, and 4, respectively.

In fact, the design of this example was chosen, through the defining relation (4.3.2), so
that this sort of confounding would occur. In general, if we choose for the defining relation

of a half fraction of a 2% factorial
I =12...k, (4.3.5)

it will turn out that (1) main effects are confounded with (k¢ — 1)-factor interactions and (2)
two-factor interactions are confounded with (k — 2)-factor interactions, etc.

The same sort of confounding occurs if we choose
=-12...k, (4.3.6)

that is, if our half fraction consists of those runs which have a minus sign in the 12... k column
of the full factorial. Had we done this in our 2%~ ! example above, the confounding relationship

(4.3.4) would have been:

{1 estimates 1-234,
/32 estimates 2—-134,
(4.3.7)
A4 estimates 123 - 4.
123

The design should, of course, be chosen in the light of whatever prior knowledge exists
about the relative importance of the variables. The experimenter will attempt to choose a design

which will confound those effects assumed to be important with those presumed to be unimportant.
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In the absence of prior information, it is generally assumed that main effects are more important
than two-factor interactions, which are more important than three-factor interactions, etc. This

kind of rationale supports the choice of defining relations such as (4.3.5) and (4.3.6).

4.4 2%-P Fractional Factorials

In the previous section, we constructed a 2K—1 fractional factorial by deciding to perform only
those runs from the 2X factorial which corresponded to the plus signs in a specially selected
column. (As we remarked earlier, we could just as well have chosen the half fraction associated
with minus signs in the selected column.) If we want to cut this fraction again in half, we can
select another column, half of which is minus and half of which is plus, and do the same sort of
thing.

If we do this p times, the resulting design is a 2X~P fractional factorial, where the k in the
superscript refers to the number of variables and the —p refers to the fact that we have a 27°P
fraction of the full factorial. The number of runs in a 25—P design is, of course, 2K~P,

In the original 2% design there are, in general, 2P — 1 columns which, when a 2K—P
fraction is taken, appear in that fraction as columns of all pluses or all minuses. This
means that the defining relation [see (4.3.2)] of a 2X~P design contains 2P terms, including
I. The confounding relationships, which can be obtained directly from the defining relation
(in a way which we shall not discuss here), are correspondingly more complicated than in
the 2K~ 1 case.

In this lecture, we shall avoid a general discussion of the 2¥~P designs and shall give,

instead, methods for constructing two very useful kinds of these designs.

Resolution 11l Designs

One important class of 2X~P designs consists of the so-called ‘‘resolution III"’ designs
(where the III refers to the number of variables in the ‘‘shortest’’ term of the defining relation,
not counting I). Resolution III designs are characterized by the property that all main effects
can be estimated clear of one another, but some of them are confounded with interactions
involving two or more factors. If all interactions are assumed negligible, then clear estimates
of all the main effects can be obtained.

Resolution III designs can be constructed simply as follows. Suppose we are investigating
k variables and we wish to construct a resolution III design in 2™ runs, m < k. We first write
down the m columns corresponding to a full 2™ factorial and label these columns 1, 2, ..., m.
(In what follows, these will be called the ‘‘original m columns.’”) Each of the remaining
columns m+1, m+2, ..., k is constructed by taking some product of the original m columns.
There are 2™ — m — 1 such products, and it does not matter which ones we select to complete

our resolution III design.
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To give a specific example, we now construct a resolution III design in k = 5 variables

and 2™ = 8 runs (m = 3):

1 2 3 4-12 5=13 Observations

+ - - - - vy,

-+ - - + ¥y,

+ + - + - Y, 4.4.1)
- -+ + - v

+ - 4 - . Ve

-+ o+ - - vy,

+ o+ o+ + + Vg

The original m columns correspond to variables 1, 2, and 3 and form a 23 factorial design. The
remaining variables (4 and 5) are associated with the product of columns 1 and 2 and the product
of columns 1 and 3 respectively. Our design is now completely specified. If we can assume
interactions negligible relative to main effects, the estimate of any main effect can be obtained
simply by multiplying the signs in the appropriate column by the corresponding observations,
adding, and dividing the result by the number of plus signs in the column.

Since there are 2™ — m — 1 products of the original m columns which can be used to give
the columns associated with new variables, the maximum number of new variables which can
be accommodated is 2™ — m — 1. The total number of variables in such a saturated design is
therefore 2™ — 1. That is, in the absence of interaction, we can investigate 2™ — 1 main
effects in 2™ runs.

(%4

These designs are used frequently in ‘‘screening’’ situations, where there are a large
number of variables present and the experiment is to indicate which factors have the largest

main effects.

Resolution IV Designs

Resolution IV designs are characterized by the property that main effects are not confounded
with two-factor interactions but are confounded with interactions involving three or more
factors. Two-factor interactions are confounded with each other and with higher-order
interactions.

These designs are particularly useful when the experimenter is interested primarily in
estimating main effects but cannot assume that two-factor interactions are negligible.

The simplest way to construct a resolution IV design in k variables and 2™ runs is
first to write down a resolution III design in k — 1 variables and 2™~ ! runs. Denoting this

array of pluses and minuses by D, we write a new array



D*:{

that is, the lower half of array D is just the ‘‘mirror image’’ of the upper half, in the sense
that each sign in the upper half is changed to the opposite sign in the lower half. At this
point, we have a design in 2™ runs but only k — 1 variables. We complete the design by
adding the kth column, which consists of 2"~ ! plus signs followed by 2~ ! minus signs.
As an example we shall construct a resolution IV design to accommodate four variables

in eight runs. We first construct, as described above, a resolution III design in three

D

it
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variables and four runs:

We now tack

The last column (for variable 4), which consists of four pluses followed by four minuses, is

3-12

the

+

+

“mirror image’’ of this design onto itself to give:

now constructed to give our resolution IV design:

1

Note that this design turns out to be the same as the design (4.3.1), with the runs rearranged.

2

3

4
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4.5 Other Fractions of 2X Factorials: The Plackett-Burman Designs

The fractional factorials described above are not the only designs which could be selected as
subsets of the 2% designs. Much of the recent literature on two-level designs has, in fact, been
devoted to studying the properties of such ‘‘irregular’’ fractions.

One class of “‘irregular’’ designs which has been in use for some time is the class of
Plackett-Burman designs. These designs are essentially ‘‘main effect plans’’ in that they,
like the resolution III designs, provide clear estimates of all main effects as long as all
interactions are negligible. The number of runs in any Plackett-Burman design is always
a multiple of 4. This is less restrictive than the fractional factorials, which require the
number of runs to be a power of 2. Methods for constructing the Plackett-Burman designs

can be obtained through the references at the end of these notes.

4.6 Fractions of General Factorial Designs

When selecting fractions of general factorial designs, the same basic principles apply as
when selecting fractions of two-level factorials, The goal, as usual, is to derive a fraction with
the least undesirable confounding properties.

The mathematics is somewhat more difficult, however, and we shall not go into it here.
Methods for choosing fractions of factorials of form pk, where p is a prime number, are quite
well established and involve the use of mathematical operations ‘“modulo p.”” When the
number of levels (p) of each of the k factors is not a prime but is a power of a prime, the
problem of choosing a fraction can be solved through the introduction of ‘‘pseudofactors.”’
Again, we shall not discuss this approach here. It has been only within the past year or two
that an approach has been developed to handle the most general problem, that of selecting

fractions of a p, X P, x ... x p, factorial, where the p’s are not necessarily equal.

4.7 Blocking Factorial and Fractional Factorial Designs

We remark in passing that there exist methods for blocking factorial and fractional factorial
designs, and these are very closely related to the methods for selecting fractions which we
discussed above. Each block is, after all, a fraction in its own right. Historically, in fact,
fractional factorials first arose as blocks of the full factorials, long before they were applied

on their own.
5. THE MODEL-ORIENTED APPROACH TO EXPERIMENTAL DESIGN

5.1 Notation

In this section, it will be convenient to define a set of ‘‘coded’’ variables {Xi} which are
related to the controlled variables {fi} in an experiment by the following type of linear

transformation:
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P — i=1,2, ..., k, (5.1.1)

where £, and S, are arbitrary constants, chosen for convenience.
For example, consider two controlled variables, temperature (T) and concentration (C), of

a chemical in an experiment involving a chemical reaction. The design

T C
200 1.4
400 1.4 (5.1.2)
200 2.0
400 2.0

(X3

can be put into ‘‘coded’’ form by writing

T — 300 C - 1.7

X =—, X =—

! 100 2 0.3

to give

Xy %,
-1 -1

1 -1 5.1.3)
-1 1

1 1

which is now in the form of a 2? factorial design.

When we discuss a particular type of design, we shall generally write it in terms of the
coded variables. It should be understood that the coded design is actually a representative
of a large class of designs, each member of which can be transformed into the coded design
by means of the appropriate coding (5.1.1).

Without loss of generality, we shall also write our models in terms of the coded variables.
If our original model is a polynomial of degree d in the &’s, as it often will be, we note that

the corresponding model in terms of the x’s will also be a polynomial of degree d.

5.2 First-Order Designs

In recent years, much of the work in design theory has departed from the traditional
approach of constructing a model to suit a given design and has turned instead to the problem of
choosing a design to suit a conjectured model.

The simplest sort of empirical model for the response is one which is linear in the controlled

variables. If our k controlled variables are 51, 52, e, &, we write
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yu:BO+,81X1u+,82x2u+...+kaku+ €, u=1,2,...,n, (5.2.1)

where the x’s are the coded values of the £s. This model is called a first-order linear model,
where ‘‘first order’’ refers to the x’s and ‘‘linear’’ refers to the B’s. When it is understood
that the model is linear in the B’s, it is called simply a ‘‘first-order model.”’

What sort of designs are suitable for the type of model (5.2.1)? This depends on the
criteria for a ‘“good’’ design, but in this case the generally accepted criterion requires that
the design should be chosen so that the variances of the estimated coefficients (,é) are
minimized. It can be shown that if the ‘““spread”’ of the design points is fixed, where the

‘“‘spread’’ of the design points corresponding to the ith controlled variable is defined as

A
then the n-run design which achieves the minimum variances for all the 8’s simultaneously

must be ‘“orthogonal,’”’ that is,

n
L Gy, - X, — x)=0 for all i Li,
u=1 ,j=1,2, ..., k.
Designs possessing this desirable property are, for example, the factorials, fractional factorials,
and Plackett-Burman designs discussed above.

14

If we increase the ‘‘spread’’ of the variables, we find that the variances of the estimated

‘““improvement’’ achieved in this way is illusory, however, since

coefficients decrease. The
the model (5.2.1), which may be a good local approximation to the response in a small region
of the x space (space of the coded variables), usually becomes less and less adequate as the
‘“‘spread”’ of the ¥’s increases. It is important to remember that the design criteria we shall
discuss are often developed under the assumption that the model is good. We must always be
careful not to let these criteria lead us to a design for which this assumption no longer holds.
The most economical class of orthogonal first-order designs is the class of simplex designs,
which can be used to investigate n — 1 variables in n runs. We have already encountered some
simplex designs, namely, the saturated two-level fractional factorials of resolution III and the
Plackett-Burman designs. Geometrically, in the x space, the general simplex design consists
of n points in n — 1 dimensions, arranged so that all the distances between points are equal.
For example, in two dimensions (i.e., for two variables x and x2) the points of a simplex
design form an equilateral triangle; in three dimensions, a tetrahedron. Although the simplex
designs are efficient in that the number of runs is equal to the number of parameters to be
estimated, it should be remembered that, unless they are augmented in some way, they cannot

provide a check on the adequacy of the model. For this reason, two-level factorials and un-

saturated fractional factorials are often preferred as first-order designs.
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5.3 Second-Order Designs

When a first-order model proves inadequate, it is often helpful to consider a second-
order model, that is, a model which represents the response as a quadratic function in the

x’s. In two variables x  and x,, for example, a second-order model would take the form:

Y= Bot Bx 4 By, + Blle+322x§+ﬁuxlx2. (5.3.1)

We mentioned previously that such models are sometimes used to fit data from the class of
3K factorial designs. Another class of designs, one which was developed specifically
for second-order models, is the class of central composite designs. A central composite

design in k variables is made up of three basic parts:

1. a ““‘cube,’”” which may be a 2% factorial or 2X~P fractional factorial,

b

2. 2k ‘‘star points,’® which lie on the k axes (two on each axis, both at the same distance
from the center but in different directions),

3. ‘‘center points,”’

which are repeat points located at the center (x =0, x_ =0, ..., x, = 0)
of the design.

2

An example of a central composite design in two variables is as follows:

Xy X,
-1 -1
‘““‘cube’’ 1 -1
-1 1
1 1
—1.414 0
“estar’? 1.414 0 (5.3.2)
0 —~1.414
0 1.414
0 0
‘‘center’’ 0 0
0 0
0 0

The distance (1.414) of the star points from the center of the design (5.3.2) was chosen so that
the variance of the estimated response at any point in the x space depends only on the distance
of that point from the center. [Note: the estimated resplonse at any point x = (x , Xyy eees Xp)
is obtained by substituting the estimated coefficients (8) for the 8’s in the model and dropping
the random error term.] This criterion, which requires equality of the variances of the estimated
responses on any sphere centered at the origin, is called the criterion of rotatability. We shall

not go into its justification here, except to say, rather weakly, that the corresponding rotatable

designs essentially give equal information about the response in all directions from the origin.
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The need to introduce a new criterion, such as rotatability, in connection with second-order
designs, when the minimization of the variances of the coefficients served us so well in the
first-order case, arises because the latter criterion is no longer applicable. In general, it is
not possible to select a second-order design which minimizes the variances of all the ,é’s
simultaneously. In an attempt to meet this difficulty a ‘‘generalized variance,’”’ which is the
determinant of the variance-covariance matrix of the ,[%’s, has been suggested as a single
overall measure of the variances of the coefficients, Minimization of this generalized variance
is equivalent to minimization of the volume of the confidence ellipsoid for the B’s, a fact which
supports its use as a design criterion.

Another approach in the selection of design criteria has been to consider not the variances
of the coefficients but the variance of the estimated response function y(x), where x is a point
in the space of the coded variables. Even then, no unique criterion has been accepted.

Some which have been suggested are:

Rotatability: V{$(x)] is a function only of r = (x "x)'/ 2.

2. Minimize max V[p(x)], where R is some °

x € R

‘region of interest’’ in the x space.

3. Minimize f w(x) V{#(x)] dx, where w(x) is some weight function which indicates the
R
importance of estimating the response well at the point x.

Other criteria have been introduced which consider, in addition to the variances, the bias
which might arise if the model is inadequate.

The existence of so many competing criteria, no one of which is clearly superior, points
up the futility of trying to select an ‘‘optimum’’ design for practical use. What is generally
required in practice is not a design which will be optimum with respect to a finely defined set

““g00d’’ with respect to many criteria.

of criteria but one which will be
G. E. P. Box and J. S. Hunter have listed some key properties of ‘‘good’’ designs for

polynomial models, which should serve as useful guidelines:

1. The design should allow the approximating polynomial of degree d (tentatively assumed
to be representationally adequate) to be estimated with satisfactory accuracy within
the region of interest.

2. It should allow a check to be made on the representational accuracy of the assumed
polynomial.

It should not contain an excessively large number of experimental points.
It should lend itself to blocking.

It should form a nucleus from which a satisfactory design of higher order can be built in
case the assumed degree of polynomial proves inadequate.

5.4 Higher-Order Designs and Designs for Nonlinear Models

Just as a quadratic model can be useful when a first-order model is inadequate, so can cubic

and even higher-order models be applied if necessary. The number of parameters in these
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higher-crder models becomes rather large, however, and it is difficult to associate a clear

‘‘parsimonious’’ parameterization can be
P

physical meaning with many of them. Often a more
achieved by considering nonlinear models, that is, models which are no longer linear in the
B’s. A simple example of such a model is a sum of exponentials:

x =B590% 94

-8
| 127 1u
¥v,=B,,¢ +lee + € u=1,2,...,n.

Until a few years ago, there was very little in the statistical literature concerning designs for
such models. Some recent ‘‘first steps’’ are indicated in the references at the end of these

notes.

6. RESPONSE SURFACE METHODOLOGY
6.1 Viewing the Response as o Surface

The characteristic concept of response surface methodology is that of considering the

((truei’

response, which is a function of the controlled variables, as a surface over the space
of those variables.

This idea is most clearly understood when we consider just two (coded) controlled variables
x, and x . The true response at the points of the x -x, plane is viewed as a surface hovering
over that plane. If this response surface is reasonably smooth, we can expect it to be adequately
represented by a linear function within a small neighborhood of any given point (x, 4 X,,)- Over
a slightly larger region a quadratic approximation may be necessary, a larger region may require
a cubic, and so forth. This rationale is often employed to justify the use of the polynomial

models described above.

6.2 An Optimum-Seeking Method: Steepest Ascent

We shall now briefly illustrate an application of experimental design, in conjunction with
response surface concepts, to the problem of finding the point of maximum (or, equivalently,
a minimum) response.

Suppose that there are two (coded) controlled variables x, and x, and that we wish to find
the levels of x, and x, at which the maximum ‘‘true’’ response can be attained. We might

first ““guess’’

a point (x , x,.), which we feel is near the region of maximum response, and
center a first-order design about that point. This design could well include a few repeat points
at the center, not only to provide an estimate of the random etror but also as a check on possible
curvature in the surface.

When the first-order model has been fitted:

A A

Y= By+ Bix, + Bx,, (6.2.1)
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we move our next experiments away from the region of the first experiment, along the direction of
steepest ascent, that is, the direction in which the fitted surface rises most sharply. This
direction can be calculated easily from (6.2.1), and we have that any point (x , x ) on the line of

steepest ascent satisfies:
A A
(X1*X1o’ Xz"xzo):’\(ByBg)r 6.2.2)

where A is just an arbitrary positive constant which determines how far the point (x, x2) lies
from the center (x, , x, ) of the initial experiment. The usual procedure is then to perform
several experimental runs at points along the line of steepest ascent (6.2.2), continuing to
move along that line until the observed response no longer increases. By this time, we

may be quite far away from the original conditions (x Lo’
design about the point we have reached, calculate a new direction of steepest ascent leading

x20). We now center a new first-order

away from that point, and proceed as before.

Eventually, we shall come to a region for which the linear model is no longer adequate.
This may mean that we are near the top of the ‘‘hill”” we have been climbing. At this point,
we can easily augment a first-order design, perhaps with some ‘‘star’’ points, to give a
second-order design. When the second-order model is fitted, it should indicate the location of the
point of maximum response. A few confirming runs should then determine whether or not the
actual maximum has been attained.

In practice, there are other considerations, such as the problem of maintaining other responses
within certain specification limits while a single response is being ‘‘optimized.’”’ Sometimes,
in fact, it is never possible to ‘‘optimize’’ — one just tries to do better today than one did
yesterday. The principles involved in the steepest ascent approach are valuable, however, and

have often been applied with considerable success.
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LECTURE X: ELEMENTS OF STOCHASTIC PROCESSES
V. R. Rao Uppuluri

1. DEFINITIONS AND PRELIMINARIES

Stochastic process: An indexed family of random variables X(¢) is called a stochastic process.
The parameter t belongs to a set T referred to as the index set.

If T=1{0,1, 2, ...}, then we will say that X(t) is a discrete-time stochastic process. When T
is discrete we shall write X, instead of X(n). If T = (=, =), then X(t) is called a continuous-
time stochastic process.

We note that the index set T can at times be an arbitrary set. For example, X(¢) could be the
height of an ocean wave at a location given by the latitude and longitude and denoted by ¢.

The space in which the possible values of X(¢) lie is called the state space and is denoted by
S. IfS=10,1, 2, ...}, we refer to the stochastic process as a discrete-state process. If S = (~o,
), then we will call X(¢) a real-valued stochastic process. If S is Euclidean k space, then X(t)
is said to be a k-vector process.

Generally, the relationships among the random variables X(¢), t € T, are specified by giving
the joint distribution function of every finite family X(t,), X(¢,), ..., X(¢,) of variables of the
process.

For the purpose of this lecture, a stochastic process may be considered as well defined once
its state space, index parameter, and family of joint distributions are prescribed.

Process with independent increments: Let T = [0, =), and let £, <t,<...<t, bean arbitrary
choice of time points. If the random variables X(t,) — X(¢,), X(¢;) — X(¢,), ..., X(¢,) — X(t,_)
are independent, then we say that X(¢) is a process with independent increments.

Markov process: Let T = [0, ), and let t, < t, <...< t, <t be an arbitrary choice of time

points. A process is said to be Markovian if
Pla< X®OSb| X)) =x,, X(t,)) = x,, ..., X(t,) = x,) = Pla< XS b | X(t)= x,] .

In other words, a Markov process is a process with the property that, given the value of X(£),

the values of X(s), s > ¢, do not depend on the values of X(u), u < ¢; that is, the probability of
any particular future behavior of the process, when the present state is known exactly, is not
altered by additional knowledge concerning its past.

The function
P(Xy Sy t; A): P[X(t) EA 1 X(S): X] )

t>s and A an interval of the real line, is called the transition probability function and is basic

to study the structure of Markov processes.

145



146

Stationary processes: A stochastic process X(t) is said to be strictly stationary if the joint
distributions of the families of random variables [X(t1 +h), X(t,+ b)), ..., X(t, + B)] and
[X(tl), cen X(tn)] are the same for all h and arbitrary selections ¢, t,, ..., t, of T. In particular,
the distribution of X(¢) is the same for all £ ¢ T. This condition asserts that in essence the
process is in probabilistic equilibrium and the particular times at which we observe the process
are of no relevance.

A stochastic process X(f) is said to be wide sense stationary or covariance stationary if it
possesses finite second moments and if Cov[X(), X(¢t + B)l = ELX(t) X(¢t + B)] — E[X()] E[X(t + h)]
depends only on h for all t € T.

Stationary processes are found to be appropriate models for describing many phenomena that

occur in communication theory, astronomy, biology, and economics.

2. EXAMPLES
2.1 Brownian Motion Process (or Wiener Process)

The Brownian motion process is a special type of stochastic process which is the most re-
nowned and historically the first that was thoroughly investigated. As a physical phenomenon the
Brownian motion was discovered by the English botanist Brown in 1827. In 1905, a mathematical
description of this phenomenon was first derived from the laws of physics by Einstein. The physi-
cal theory was further perfected by Smoluchowski, Fokker, Planck, Burger, Furth, Ornstein,
Uhlenbeck, Chandrasekhar, Kramers, and others. The first concise mathematical formulation of
the theory was given by Wiener in his 1918 dissertation and later papers. In terms of the general
framework of stochastic processes, the Brownian motion process is an example of a continuous-
time, continuous-state-space Markov process.

In 1827, Brown observed that small particles immersed in a liquid exhibit ceaseless ir-
regular motions. In 1905, Einstein explained this motion by postulating that the particles under
observation are subject to perpetual collision with the molecules of the surrounding medium. Let
X(t) be the position of the particle at time ¢, and let X(0) = x,. Let p(x, ¢ | x,) be the conditional

probability density of X(¢ + ty), given that X(t.) = x, sothat

o
> o0
p(x, t] x)=0, f plx, t| x)dx=1.

We postulate that the probability law governing the transitions is stationary in time; that is,

px, t| x,) does not depend on £y Further, we assume that

lim p(x, t| x)=0 forx#£x,
t- 0
which implies that X(¢ + t) is likely to be near X(¢,) for small t. From physical principles

Einstein showed that p(x, ¢ | x,) must satisfy the partial differential equation
dp 3%p

5 PaE 2.1)
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which is called the diffusion equation, D being the diffusion coefficient. The evaluation of D is
based on the formula D = 2RT/N{, where R is the gas constant, T is the temperature, N is
Avogadro’s number, and f is the coefficient of friction. By choosing the proper scale we may

take D = ¥

4. Then we can show that

p(x, t] xy) = (1/y276) exp [—(x — x,)*/21] (2.2)

is the unique solution of (2.1) with the above boundary conditions. Thus p(x, ¢ | x,) gives the
probability density function of X(¢) — X(0). The complete Brownian motion process is given by
the following definition.

Brownian motion process is a stochastic process X(¢), t = 0, with the following properties:

1. X(t)is a process with independent increments.
2. Every increment X(t + s) — X(s) is normally distributed with mean O and variance ct; c > O is

a fixed constant.

The physical origins of the Brownian motion process suggest that the possible realizations
X(t) (sample paths) whose movements result from continuous collisions in the surrounding
medium are continuous functions. The proof of this statement requires delicate analysis. The
sample paths X(¢), although continuous, are very kinky, and their derivatives exist nowhere.
This fact is rather deep. Using the property of continuity, we can compute some interesting

probabilities associated with the Brownian motion. For instance, it can be shown that

2 00 2
Pl max X(u) 2 al = —— f e X /2T gy (2.3)
0S u< T V27T Ja
under the condition X(0) = 0.
If Ta denotes the random time (variable) at which X(¢) first attains the value a, where X(0) =
0, it can be shown that
< >
P(T, = )= Pl Jax. XwZal XO@=0], 2.49)

O=u=t
which gives us the probability density function of T .

The probability that X(¢) has at least one zero in the interval (¢, t,), given X(0) = 0, can be

shown to be
2 I
—arc cos \t,/t, . (2.5)
7

2.2 Poisson Process

Another important example of a continuous-time <T = [0, oo)>stochastic process is the Poisson
process. The sample function X(¢) counts the number of times a specified event occurs during

the period [0, t). Thus each sample path X(¢) is represented by a nondecreasing step function.
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—

A sample function of a Poisson process, with X(0) = 0.

Concrete examples of Poisson processes are the following:

the number of x rays emitted by a substance undergoing radioactive decay,
the number of telephone calls originating in a given locality,
the occurrence of accidents at a certain intersection,

the occurrence of errors in a page of typing,

S A

the breakdowns of a machine.

These examples may be viewed as Poisson processes based on the concept of the law of rare
events. We have a situation of several Bernoulli trials with a small probability of success at
each trial, where the expected number of successes is constant. Under these conditions it is a
familiar theorem that the actual number of events occurring follows a Poisson law. In the case
of radioactive decay the Poisson approximation is excellent if the period of observation is very
short compared with the half-life of the radioactive substance.

We will now give a set of postulates which lead to the fact that X(¢) follows a Poisson dis-

tribution, where X(¢) denotes the number of events during [0, ¢).

Postulates

1. The numbers of events [X(¢,) — X(¢,)] and [X(¢,) — X(¢,)] are independent, where t, <ty <ty
PlX(t+ h) — X(£) S x) depends only on A and x, but not on t or on X(¢).

3. The probability of at least one event happening in a time period of duration A is
p(h) = ah + o(a) ,

where o(h)/h tends to 0 as h > 0.
4. The probability of two or more events happening in time A is o(h). (This leads to the im-

possibility of the simultaneous occurrence of two or more events.)

From these postulates, it can be shown that

) at)m e—at
PlX(t) = mlz(——, m=0,1,2,....

m!
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Often the Poisson process arises in a form where the time parameter is replaced by a suitable
spatial parameter, as illustrated by the following formal example. Consider an array of points
distributed in a space E. Let NR denote the number of points contained in the region R of E.

We postulate that IVR is a random variable. The collection {NR} of random variables, where
R varies over all subsets of E, is said to be a homogeneous Poisson process if the following

assumptions are fulfilled:

1. The numbers of points in nonoverlapping regions are independent random variables.
2. For any region R of finite volume, N is Poisson distributed with mean A V(R), where V(R)
is the volume of R. The parameter A is fixed and measures in a sense the intensity component

of the distribution, which is independent of the size or shape.

Spatial Poisson processes arise in considering the distribution of stars or galaxies in space,
the spatial distribution of plants and animals, the distribution of bacteria on a slide, etc.

We shall now give some more properties of the Poisson process. Let us recall that from the
definition of a continuous-time, discrete-state Markov process, with stationary transition proba-

bilities,
Py ()= PX(t+ w)=j | X(u)= 1]

will be independent of u, for alli, j= 0,1, 2, ....
The Poisson process is a Markov process on the nonnegative integers which has the follow-

ing properties:

PX(t+R) ~X@)=1| X®)=x]=ah +ol), x=0,1,2, ...,
2. PIX(t+R)~X()=0| X(t)=x] =1 — ah + o(h),
3. X(0)=0.

At times the Poisson process is referred to as the completely random process, as it distributes
points “‘at random’’ over the interval [0, ) in much the same way that the uniform distribution distributes
points over a finite interval. In particular, the probability of an observation falling in a sub-
interval is a function of its length only, and the numbers of events occurring in two disjoint time
intervals are independent random variables.

Another illustrative example of the Poisson process is that of fishing. Let X(z) denote the
number of fish caught in the time interval [0, t). Suppose that the number of fish available is very
large, that the enthusiast stands no better chance of catching fish than the rest of us, and that as
many fish are likely to nibble at one instant of time as at another. Under these “ideal’’ condi-
tions, the process {X(t), t 2 0} may be considered as a Poisson process. This example serves to
point up the Markov property (the chance of catching a fish does not depend upon the number
caught) and the ‘‘no premium for waiting’’ property, which is the most distinctive property possessed
by the Poisson process. It means that the fisherman who has just arrived at the pier has as good
a chance of catching a fish in the next instant of time as he who has been waiting for a bite for

a few hours without success.
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Another example is afforded by problems arising in the theory of counters. If X(t) is the
number of radioactive disintegrations detected by a Geiger counter in the interval [0, t), the
process is Poisson as long as the half-life of the substance is large relative to t. This provision
ensures that the chance for a disintegration per unit of time may be considered as constant over
time.

Let T, denote the time (random) between the kth and (k + 1)st event. The random variables

T, are called the ‘‘waiting times’’ between successive events, and

Se=To+ T+ ...+ Ty

denotes the time at which the kth event occurs.
In the case of a Poisson process, we have the following:

Theorem: The waiting times T, are independent and identically distributed random variables,

following an exponential distribution with parameter a.

3. MARKOV CHAINS
3.1 Definitions and Preliminaries

A discrete-time Markov chain {Xn} is a Markov stochastic process whose state space is a

countable or finite set and for which the index set T is (0, 1, 2, ...). It is convenient to label
the state space of the process by {0, 1, 2, ...}, and it is customary to speak of X, being in state
rif X = 4.

n

The probability of X, being in state j, given that X is in state i (called a one-step transi-

tion probability), is denoted by

PR S PIX, =] X, =]

1

When the one-step transition probabilities are independent of the time variable (i.e., independent

of the value n), we say that the Markov chain has stationary transition probabilities. In this case
n,ntl1
if

one trial. It is customary to arrange the elements pjj as a matrix and to refer to the matrix

p =P and p;; is the probability that the state value undergoes a transition from i to j in

P=(p;, 054, j=w)

as the transition probability matrix of the Markov chain; we note that all the elements of this

matrix, p;;, are nonnegative and that the sum of the elements in any ith row,
2 p ’
=0 Y

is equal to unity.

The Markov chain is completely determined when once the transition probability matrix P and

the value of X are specified. We note that

PXo=ig X =iy, Xy=iy oo Xy = i)= By opy gy ooy o (BLD)
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3.2 One-Dimensional Random Walks

A one-dimensional random walk is a Markov chain whose state space is a finite or infinite sub-
set (a, a+ 1, ..., b) of the integers, in which the particle (state of the system), if it is in state 1,
can in a single transition either stay in 1 or move to one of the adjacent states i - 1, i+ 1. If

the state space is taken as the nonnegative integers, the transition matrix of a random walk has

the form
Py 0 0
q,r,p, 0
P - 0 g,r, py ..
where
q;+r;+p;=1,1=1,2, ..., r,+p,=1.

The fortune of a player engaged in a series of contests is often depicted by a random walk
process. Specifically, suppose an individual (player A) with fortune k plays a game against an
infinitely rich adversary and has probability p; of winning one unit and probability ¢, = 1 — p,

(k 2 1) of losing one unit in each contest, and ro=1. The process an}, where X represents his
fortune after n contests, is a random walk. Note that once state 0 is reached (i.e., the player A
is wiped out), the process remains in that state. This process is also commonly known as the
““gambler’s ruin.”’

If P, = 0 and r, = 1, then 0 acts as an absorbing barrier. Once the patticle reaches zero it
remains there forever. If p, > 0 and r > 0, then 0 is a partially reflecting barrier.

A classical mathematical model of diffusion through a membrane is the famous Ehrenfest model,
namely, a random walk on a finite set of states where the boundary states are reflecting. The
random walk is restricted to the states 1= —a, —a+ 1, ..., =1, 0, 1, ..., a with transition

probability matrix

0 otherwise

The physical interpretation of this model is as follows: Imagine two containers containing a
total of 2a balls. Suppose the first container, labeled A, holds k balls and the second container
B holds 2a — k balls. A ball is selected at random (all selections are equally likely) from among
the totality of the 2a balls and moved to the other container. Each selection generates a transi-

tion of the process. Let the state of the system be determined by the number of balls in 4.
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3.3 A Discrete Queueing Markov Chain

Customers arrive for service and take their place in a waiting line. During each period of
time a single customer is served, provided that at least one customer is present. If no customer
awaits service, then during this period no service is performed. During a service period new
customers may arrive. We suppose that the actual number of arrivals in the nth period is a random

variable fn whose distribution function is independent of the period and is given by
P(k customers arrive in a service period) = P(fn =k)=ay, k=0,1,2, ..., a= 0, Ta,=1.

We also assume the random variables fn are independent. The state of the system at the
start of each period is defined to be the number of customers waiting in line for service. If the

present state is 7, then after a lapse of one period the state is

i—-14¢ ifi2 1
£ ifi-0,

t

i
o

where & is the number of new customers that arrived in this period while a single customer was

serviced. In terms of the random variables of the process, we can express this as
X, = max(X, — 1, 0)+ §n .

The transition probability matrix is given by

o o L

L - . . . . 1.,

It is intuitively clear that if the expected number of new customers,

k;o K

that arrive during a service period exceeds 1, then certainly with the passage of the time the
length of the waiting line increases without limit. On the other hand, if zkak < 1, then we shall
see that the length of the waiting line approaches an equilibrium. If Zkak = 1, a situation of

gross instability develops.
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3.4 Success Runs

Consider a Markov chain on the nonnegative integers with transition probability matrix of the

form
_po 7, 0 ]
p, 0 g
pP= p, 0 g9, s
p, 0
where ¢, > 0, p, > 0, and ¢; + p; = 1,1= 0,1, 2, ... . The zero state plays a distinguished role

in that it can be reached in one transition from any other state, while state 1 + 1 can be reached
only from state 1.

A special case of this transition matrix arises when one is dealing with success runs result-
ing from repeated trials, each of which admits two possible outcomes, success (S) or failure (F).
More explicitly, consider a sequence of trials with two possible outcomes, S or F. Moreover,
suppose that in each trial, the probability of S is « and the probability of F is8 = 1 -~ a. We say
a success run of length r happened at trial n if the outcomes in the preceding r + 1 trials, includ-
ing the present trial as the last, were, respectively, F, S, S, ..., S. Let us now label the present
state of the process by the length of the success run currently under way. In particular, if the
last trial resulted in a failure, then the state is zero. Similatly, when the preceding r + 1 trials
in order had the outcomes F, S, ..., S, the state variable would carry the label r. The process is

clearly Markovian, and the transition matrix has the above form with

P -8, n=-01,2...

3.5 Branching Processes

Suppose an organism at the end of its lifetime produces a random number & of offspring with

probability distribution
P(é.:k):aki k= 0: 17 27 sy

where a, 2 0 and Zak =~ 1. We assume that all offspring act independently of each other and at the
end of their lifetime (for simplicity, the life-spans of all organisms are assumed to be the same)

individually have progeny in accordance with the same probability distribution, thus propagating

their species. The process {X_}, where X, is the population size at the nth generation, is a

Markov chain. The transition matrix is given by

Pij=PXyy =i Xy=D=PE& +..a & =1,

where the &’s are independent identically distributed random variables.
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3.6 A Genetic Model

The following idealized genetics model was introduced by S. Wright to investigate the fluctua-
tion of gene frequency under the influence of mutation and selection. We begin by describing a
so-called simple haploid model of random reproduction, disregarding mutation pressures and
selective forces. We assume that we are dealing with a fixed population of 2V genes composed
of type a and type A individuals. The makeup of the next generation is determined by 2N inde-
pendent binomial trials as follows: If the parent population consists of j genes of type a and
2N — j genes of type A, then each trial results in a or A with probabilities p; = j/2N and q; =
1 — (j/2N) respectively. Repeated selections are done with replacement. By this procedure we
generate a Markov chain {Xn}, where X is the number of a genes in the nth generation among a
constant population size of 2N elements. The state space contains the 2V + 1 values (0, 1, 2, ...,

2N). The transition probability matrix is computed according to the binomial distribution as

2N
» P(Xn+1:k!Xn:j):pjk:<k>p;(qj21v—k, k, j=0,1, ..., 2N .

4. PROPERTIES OF MARKOY CHAINS
4.1 n-Step Probabilities

A Markov chain is completely defined by its one-step transition probability matrix and the
specification of a probability distribution on the state of the process at time 0. Let p?j denote

the probability that the process goes from state 1 to state j in n transitions, that is,

P = P(X =j| X,=1).

n+m

It can be shown that
n < r

P = kz:opikpf(j, where r+ s=n .

If the probability of the process initially being in state j is p;, that is, P(Xo - )= P then the

probability of the process being in state k at time n is
Pk = 2 Pipji = PXp = 6.

In order to study the limiting behavior of p;’j as n - o, we need to introduce some principles of

classifying the states of a Markov chain.

4.2 Classification of States

A state j is said to be accessible from state i if, for some integer n 2 0, p;.’]. > 0. Two states
i and j, each accessible to the other, are said to communicate. A Markov chain is said to be

irreducible if all states communicate with each other.
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We define the period of state i, written d(i), to be the greatest common divisor of all integers
n 2 1 for which p?i > 0, (f p?i = 0 for all n 2 1 define d(i) = 0.) A Markov chain in which each
state has period unity is called aperiodic.

Let [;.’k stand for the probability that, in a process starting from state j, the first entry to

state k occurs at the nth step. Let us put

(0) _ _ % fn o8 n
' =0 L= 2 fjo = Z 0l
Clearly [jk is the probability that, starting from state j, the system will ever pass through state k.
The state j is said to be persistent if f]-j = 1 and transient if [jj < 1. A persistent state j is
called a null state if its mean recurrence time pj= oo

An aperiodic persistent state j with pj < eois called ergodic.

4.3 Limit Theorems

Theorem:

1. The state j is transient if and only if
S n
;EO ph.<(”-

In this case
o0
z Pl <o
n=0 1

for all 1.

2. The (persistent) state j is null if and only if

but p;.’]. > 0as n-oo, Inthis case p?j > 0 for all i.
3. An aperiodic state j (persistent) is ergodic if and only if i < oo. In this case as n -» oo,

n
ij
A Markov chain is said to be ergodic if all its states are aperiodic and persistent with finite

mean recurrence times. We have the following important theorem.
Theorem: In an irreducible ergodic chain the limits
lim p;.’k = u,
n-oo
exist and are independent of the initial state j. Furthermore,
u, >0, Euk =1, U = ZUipij ,
i

for all j.
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Conversely, suppose that the chain is irreducible and aperiodic and that there exist numbers

u, 2 0 satisfying
't
L u, =1, u; = IZUipij .
Then the chain is ergodic, the u, are given by

: n
Uy = lim p]k ,
n-oo

and 4, = 1/p,, where p, is the mean recurrence time of state k.
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