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I N TROD UCT ION 

T h i s  report conta ins  t h e  lecture  notes  from the  s e r i e s  of lec tures  in  s t a t i s t i c s  and probability 

given b y  members of t h e  S ta t i s t ics  Group of the  Mathematics Divis ion a t  ORNL during t h e  period 

June 10,  1968, to August 12,  1968. Lec ture  notes  were made ava i lab le  a t  e a c h  lecture ,  and s i n c e  

the  completion of th i s  s e r i e s  of lec tures  the reques ts  from Laboratory personnel  for additional 

s e t s  of the  lecture  notes  have prompted t h e  compilat ion of t h e s e  notes  in to  th i s  report. T h e s e  

lec tures  were held on a weekly b a s i s  and were open t o  a l l  ORNL personnel  as  wel l  as  t h o s e  

interested individuals a t  Y-12 and K-25. T h e  lec tures  were wel l  received by t h e  majority of 

t h o s e  at tending,  who ranged from 75 t o  150 individuals  per lecture .  From a n  examination of t h e  

tab le  of conten ts  of t h i s  report, which l i s t s  the  t i t le  and lecturer for  e a c h  lecture ,  i t  c a n  b e  s e e n  

that  t h i s  series covered a wide var ie ty  of s ta t i s t ica l  topics .  E a c h  lecture  w a s  as  self-contained 

as  poss ib le .  T h e  notes  contained i n  t h i s  report emphasize t h e  important concepts  in  e a c h  lecture .  

T h i s  s e r i e s  of lec tures  in  s t a t i s t i c s  and probability w a s  a n  effort by t h e  S ta t i s t ics  Group t o  

familiarize invest igators  i n  the  physical  and biological  s c i e n c e s  with s t a t i s t i c a l  methods and 

concepts .  Since the need for t h e  s e r v i c e s  of s t a t i s t i c i a n s  h a s  been recognized by t h e  Laboratory, 

one of theprimary functions of the S ta t i s t ics  Group of t h e  Mathematics Division h a s  been  “to 

encourage a n  atmosphere in  which new concepts  c a n  b e  explored and fundamental research  

carried out using s t a t i s t i c s  and biomathematics. ”‘ 
In l ine with th i s  function t h e s e  lecture  notes  are  published to:  

1. indicate  t h e  too ls  which are  ava i lab le  in  s t a t i s t i c a l  methodology; 

2. acquaint  those  interested individuals  with t h e  language and terminology of s t a t i s t i c s ;  and 

3 .  i l lust ra te  t h e  manner in  which s t a t i s t i c s  may b e  applied i n  sc ien t i f ic  research .  

‘Math.  Div .  Ann.  Progr. R e p t .  D e c .  31, 1963, ORNL-3567, p. 3 3 .  
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LECTURE I: PROBABILITY, RANDOM VARIABLES, AND DISTRIBUTION FUNCTIONS 

Donald A. Gardiner 

1 .  PROBABIL ITY 

Any s tudy ,  whether intensive or c a s u a l ,  of the subjec t  ca l led  s t a t i s t i c s  must begin  with a n  

understanding of probability b e c a u s e  probability is the  b a s i s  of s t a t i s t i c s .  In fac t ,  a t  univers i t ies  

where s t a t i s t i c s  is taught se r ious ly  t h e  s tudent  is given a t  l e a s t  a quarter or semes ter  of prob- 

abi l i ty  before he is allowed t o  take  h i s  f i r s t  real  course  i n  s t a t i s t i c s .  Since t h i s  s e r i e s  of 

lec tures  is intended t o  be  a survey  of some topics  in  s t a t i s t i c s  and not a f o r m a l  course ,  we  need 

not b e  so  pedant ic ,  but a proper groundwork must b e  la id .  We wil l  begin  by outlining t h e  three  

concepts  of probability and by point ing out that t h e  three concepts  are not necessar i ly  incom- 

pat ible .  

1 . 1  Relative Frequency 

While interned in  Denmark during World War I1 a South African s t a t i s t i c i a n  named Kerrich 

t o s s e d  a co in  10,000 t imes.  He kept careful  records ,  which fortunately he  w a s  a b l e  t o  preserve,  

and t h e s e  records have become a valuable  source  for examples  and i l lustrat ions.  Heads turned 

up 5067 t imes.  

s ing le  t o s s  of Kerrich’s coin i s  0.5067. T h i s  is a n  example of the  re la t ive  frequency approach 

t o  a definition of probability. 

One is inclined t o  conclude that t h e  probability that  a head will turn up on a 

Consider  a s imple experiment the outcome of which cannot  be  known i n  advance  but  i n  

which the  poss ib le  outcomes may b e  c lass i f ied  as “favorable” or “unfavorable.” Should t h e  

experiment be  performed a number of t imes ,  t h e  ratio 

number of favorable outcomes 

number of t r ia l s  

is t h e  relat ive frequency of favorable  outcomes.  Intuitively we fee l  tha t  as t h e  number of t r i a l s  

increases  the  relat ive frequency will s e t t l e  down t o  some s t a b l e  va lue  greater  than zero  and 

less than unity. T h e  limit of th i s  ra t io  as the  number of t r ia l s  i n c r e a s e s  is t a k e n  as t h e  re la t ive  

frequency def ini t ion of the  probability of a favorable outcome. Inherent in  t h i s  definition is t h e  

assumption that  a favorable outcome from one t r ia l  is as likely as  a favorable  outcome from a n y  

other t r ia l  and that  t h e  resu l t s  of one trial d o  not affect the  r e s u l t s  of another t r ia l .  

In t h e  example of Kerrich’s co in  t h e  favorable  outcome w a s  t h e  appearance of a head and t h e  

experiment w a s  t h e  t o s s i n g  of the coin.  However, 10,000 t o s s e s  i s  not the  limit of the number 

of t o s s e s ,  even  though Kerrich may h a v e  wished that  i t  were. T h e  ra t io  5067/10,000 is a rather 

good es t imate ,  but  we would be  very reluctant  to  s t a t e  tha t  t h e  probability of ge t t ing  a head on  

Kerrich’s co in  is 0.5067, b e c a u s e  i f  Kerrich had stopped at  some other number of t r i a l s  t h e  rat io  

would have been  different. 

1 
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1.2 Axiomatic Probability 

Although t h e  relat ive frequency approach h a s  great  appea l  on intui t ive grounds i t  h a s  b e e n  

more fruitful t o  t reat  probability in  a more formal manner mathematically. Such a n  approach i s  

the  approach b a s e d  on three  s imple  axioms.  

Consider  a s e t  6 whose e lements  are  denoted by x. If 6 i s  a s e t  c o n s i s t i n g  of a l l  t h e  p o s -  

s i b l e  outcomes of a n  experiment, 6 i s  cal led a sample  s p a c e  and x represents  a poss ib le  outcome. 

6 c o n t a m s  s u b s e t s ,  A ,  B ,  C, e t c . ,  and it will be  of in te res t  to consider  

1. t h e  probability tha t  x E A ,  written P ( A ) ,  

2. t h e  probability that  x 6 B ,  written P ( B ) ,  

3. the  probability tha t  x 6 6, written P ( 6 ) ,  

4. other  probabi l i t ies .  

P ( A ) ,  P ( B ) ,  P ( s ) ,  e t c .  a r e  ca l led  probability s e t  funct ions i f  they s a t i s f y  t h e  t h r e e  axioms of 

probability. 

Writing 4 a s  t h e  nul l  s e t  ( the s e t  which conta ins  no e lements )  and with t h e  understanding 

that  A and B a r e  s u b s e t s  of 6, t h e  three  axioms of probability a r e  as  given below.  

The Three Axioms 

1. P ( A  => 0.  

2. P ( A  u B )  = P ( A )  + P ( B )  if A and B a r e  d is jo in t  s e t s ,  t h a t  i s ,  if A n B = $. 

3. P(6: ,= 1. 

Axiom 2 is t h e  familiar “additive law” of probability which appl ies  t o  mutually exc lus ive  

s e t s .  

From t h e s e  axioms many theorems and coro l la r ies  may b e  deduced ,  t h e  most important of 

which are t h e s e :  

1. If A‘: is t h e  complement of A, P ( A c )  = 1 - P ( A ) .  

2. P(4: )  = 0 .  
< 

3. If A C B,  P ( A )  = P ( B ) .  

0 = ] ’ (A) = 1. < < 4. 
5. Whether or not A n B = 4, P ( A  u B )  = P ( A )  + P ( B )  - P ( A  n B ) .  

T h e  reader  may find i t  amusing and  instruct ive t o  prove these  r e s u l t s  from t h e  three axioms.  

All that  is necessary  is a knowledge of elementary s e t  theory. 

T h e  ques t ion  naturally a r i s e s :  “How d o e s  one obtain a numerical value for P ( A ) ? ”  T h i s  

is t h e  quest ion of choosing a probability model, the  answer to  which, from a s t r ic t ly  mathemati- 

cal point of view, is purely arbitrary. But  from a pract ical  point of view t h e  ques t ion  is not 

t r ivial ,  and t h e  answer,  of course ,  depends  upon t h e  t y p e  of experiment that  is contemplated and  

what is known about  i t .  In t h e  co in- toss ing  experiment one might c h o o s e  t h e  probability of t h e  

appearance of a head t o  b e  2. T h i s  could b e  t a k e n  as t h e  definition of a “fair” or “unbiased”  
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coin.  If one a s s u m e s  that Kerrich’s co in  was  a fair coin,  one a s s u m e s  that  t h e  limit of t h e  

relat ive frequency i s  ’/. There  is no way of proving or disproving t h i s  hypothes is  absolutely,  

but one c a n  see that ,  in  th i s  s e n s e ,  the  re la t ive  frequency concept is compatible with t h e  axio- 

matic concept  of probability. 

Condi tiona I Probabil i ty 

Before d i s c u s s i n g  t h e  third concept  of probability it will be  convenient  to  introduce t h e  

notion of condi t ional  probability. 

L e t  A and B b e  two s u b s e t s  of the  sample s p a c e  5, and let x b e  a n  element  of 6. We in- 

quire now into the quest ion:  “If x E B ,  what is the  probability that  x e A ? ”  

T h e  probability i n  question is cal led a ‘(condi t ional”  probability b e c a u s e  it is t h e  probability 

that  x is an element  of the s e t  A conditional upon t h e  fac t  that x is a n  e lement  of t h e  s e t  B .  It 

i s  written P ( A  IB), which is read “the probability of A given B,” and is defined b y  

P ( A n  B )  

P ( B )  
P ( A  IB)  = , P ( B )  > 0 .  

Note that  t h i s  is a definition and not a resul t  of the three b a s i c  axioms.  However, P ( A J B )  d o e s  

s a t i s f y  t h e  three  axioms, and therefore t h e  s a m e  theorems which hold for (‘unconditional” 

probabi l i t ies  hold for conditional probabilities as wel l .  [In showing t h i s ,  one should  t rea t  B as  

a sample  s p a c e  so that  P ( B 1 B )  = 1.1 

Sets as Events 

In s t a t i s t i c a l  par lance a n  outcome of a n  experiment i s  cal led a n  elementary event,  and t h e  

col lect ion of a l l  outcomes which be long  to  a cer ta in  subse t  i s  cal led simply a n  event. 

there  is t h e  correspondence 

T h u s  

outcome, x: elementary event ,  

s u b s e t ,  A :  event ,  A .  

If, in  t h e  performance of a n  experiment, a n  outcome x E A has  been  observed,  we s a y  t h a t  t h e  

event  A h a s  occurred. It will b e  useful  to s p e a k  of t h e  e v e n t  A and i t s  probability P ( A )  in  de-  

fining independence. 

Independence 

Independence in  t h e  s t a t i s t i c a l  s e n s e  is often ca l led  s t o c h a s t i c  independence to  different ia te  

i t  from mathematical independence. We s a y  that  t h e  e v e n t  A is independent of t h e  event  B if 

P ( A  ( B )  = P ( A )  and conversely.  If t h e  equal i ty  d o e s  not hold w e  s a y  t h e  e v e n t s  and their  prob- 

ab i l i t i es  a re  dependent .  
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T h e  definition of independence al lows u s  to  s t a t e  t h e  familiar multiplicative r u l e  of prob- 

abi l i ty ,  namely tha t  if t h e  e v e n t s  A and E are  independent ,  t h e n  

P ( A  n E )  = P ( A )  x P ( B ) ,  

which is a direct  consequence  of t h e  def ini t ion of condi t ional  probability. 

Frequent ly  i n  appl ica t ions  P(A IB) is diff icul t  to  postulate ,  whereas  P ( A )  and P ( B )  may not 

be s o  difficult. But  P(A1B) = P ( A )  i f  t h e  e v e n t s  a r e  independent, and  so one is w e l l  advised  t o  

plan one’s  experiments  t o  take  advantage of the  resu l t ing  simplification. 

1.3 Inductive Probabi l i ty  

T h e  third concept  of probability we wish to consider  is inductive probability. It h a s  been  

defined as t h e  degree  of bel ief  one is willing t o  p lace  on a proposition in  the  l ight  of cer ta in  

evidence.  We see immediately that  inductive probability is not the s a m e  as  t h e  limit of a rela-  

t ive f requency,  nor is it t h e  same as t h e  probability that  a n  element  be longs  to a s e t  of a sample 

s p a c e .  

One might s a y  tha t  one is “almost s u r e ”  that  Kerrich’s co in  w a s  a fair co in ,  in  which case 

almost  s u r e ”  is a nonquantitative measure of inductive probability. Some might w i s h  to  ( 1  

quantify the  induct ive probability and s a y ,  perhaps,  “I a m  95% certain t h a t  Kerrich’s co in  w a s  

fair,” but t h e  95% is s t i l l  a degree of bel ief  or a n  induct ive probability. 

T h i s  s ta tement  about  Kerrich’s co in  conta ins  a mixture of t w o  k inds  of probability: t h e  95% 

i s  a measure of induct ive probability, and t h e  word “fair”  means that  theprobabi l i ty  that  a head 

appears  is V 2 .  
Another s ta tement  t h a t  could b e  made about  Kerrich’s coin is: “I a m  95% confident  t h a t  

the probability that  a head turns up is be tween 0.4967 and 0.5167.” T h i s  is a n  example of 

s t a t i s t i c a l  inference which employs the  idea of a confidence interval .  L i k e  t h e  previous s t a t e -  

ment i t  conta ins  two kinds of probabi l i t ies :  t h e  95% i s  a measure of induct ive probability, and  

t h e  interval  (0.4967, 0.5167) i s  a measure of t h e  probability for a head with Kerrich’s coin.  

2. RANDOM VARIABLES 

Given suff ic ient  ingenui ty  it is a lways  poss ib le  t o  a s s o c i a t e  with every p o s s i b l e  outcome 

of an experiment a number on t h e  real  l ine.  We s h a l l  use lower-case le t te rs  to  d e n o t e  t h e s e  

numbers corresponding t o  t h e  p o s s i b l e  outcomes. Then ,  for example,  i n  a co in- toss ing  experi-  

ment w e  could s e t  up t h e  correspondence 

if a head turns up, x = 1, 

if a t a i l  turns  up, x = 0. 

Before t h e  experiment i s  performed we d o  not know whether x = 0 or x = 1. Therefore ,  t o  represent  

the outcome of t h e  experiment without a knowledge of how t h e  experiment turns out ,  w e  wil l  u s e  
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the corresponding capi ta l  letter, in t h i s  case X .  T h e  real  number which represents  theoutcome 

of a n  experiment before t h e  outcome of t h e  experiment is known is ca l led  a random variable. 

Some examples  will b e  instruct ive.  

2.1 Coin Tossing 

In the coin- tossing experiment we  could s e t  up t h e  following def ini t ions:  

Sample space :  6 = {head ,  t a i l )  or 6 = (x; 
Subse ts  : or A = I x ;  x = 1j 

or B = {x; x = 01 

= 0 ,  1) 
A = { h e a d \  

B = { t a i l )  

Then  i n  terms of the random variable  X we have 

P ( 0 )  = Prob { X  = 0 or 1) = 1 , 

P ( A )  = Prob ( X  = 1) = p ,  s a y  , 
P ( B )  = Prob { X  = 0 )  = 1 - p . 

It i s  a n  interest ing a s i d e  t o  point out that P ( A )  and P ( B )  may b e  summarized in one express ion ,  

< <  f(x) = p* (1 - p ) l - X ,  x = 0,  1, 0 = p = 1 . 

Thus  if x = 0, f(x) = P ( B )  = 1 - p ,  or if x = 1, f(1) = P ( A )  = p .  For the  moment we wil l  cons ider  

th i s  to b e  merely a n  ingenious summarization. T h e  point here  is to i l lustrate  t h e  use  of t h e  

random variable  t o  descr ibe  a n  experiment. 

2.2 Radioactive Decay 

Suppose a n  experiment c o n s i s t s  of placing a radioact ive source before a counter  for a 

spec i f ied  period of t i m e .  T h e  poss ib le  outcomes of the experiment are all t h e  integers  which 

might regis ter  on the counter. 

ward and requires  no ingenuity whatsoever .  We could s e t  up t h e  following correspondence:  

In th i s  case t h e  def ini t ion of the  random variable  is straightfor- 

Sample s p a c e :  6 = !all nonnegative integers!  

Subse ts :  A = ! integers  less than 101 o r A = { x ; x = 0 , 1 , 2  , . . . ,  91 

or C, = {x; x = 0 ,  I, 2, . . .I 

R = {in tegers  between 40 and 501 or B = {x; x = 41, 42, . . ., 49) . 

Then i n  terms of the random var iab les  X w e  have  

P ( 0 )  = Prob { X  = 0, 1,  2, . . . )  = 1 , 
P ( A )  = Prob { X  = 0, 1, 2, . . ., 91 , 
P ( B )  = Prob IX = 41, 42, . . ., 491 . 

If we wished we could postulate  a probability model from which we could ca lcu la te  probabi l i t ies  

for t h e  s e v e r a l  sets. Such a model could  b e  
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but t h i s  is purely arbitrary. What we have i l lus t ra ted  i s  the reduction of t h e  descr ip t ion  of a n  

experiment to  mathematical terms us ing  t h e  idea  of t h e  random variable .  

2.3 A Piscator ia l  Experiment 

A sport  fisherman would agree that  he  could not predict t h e  weight  of a f i sh  he  might c a t c h ,  

and he  might a l s o  agree  that  i t  is reasonable  t o  t reat  t h e  weight  of a f i s h  as  a random variable .  

To descr ibe  t h i s  phenomenon we could def ine  some s e t s  as follows: 

Sample s p a c e :  

Subse ts :  

= {al l  poss ib le  w e i g h t s )  or 6 = {x; 0 < x < 
A = ( w e i g h t s  of fry) or A = ( x ;  0 < x < l[  

B = {weights  of whoppers)  o r  B = {x; 6 < x < -1  

Although t h e s e  def in i t ions  a re  qui te  a rb i t ra ry  they i l lus t ra te  t h e  concept  of t h e  cont inuous 

random variable  as opposed to  t h e  d iscre te  random var iab les  of t h e  two preceding examples .  

T h e  probability funct ions for t h e s e  s e t s  i n  terms of the  random var iab les  a r e  

P(6) = Prob { O  < X <-I = 1 , 
P ( A )  = Prob { O  < X < 1) , 
P ( B )  = Prob ( 6  < X < - 1  . 

It might be  reasonable  t o  postulate  a funct ion 

< 
f ( x )  = r Q x a - l  e x p  { - ~ / 2 l / r ( a ) ,  0 < a < m, 0 = x < m 

= 0 o therwise  

to a id  i n  descr ib ing  the  probabi l i t ies  so t h a t  

P ( B )  = Jcu f ( x )  dx , 
6 

but aga in  t h i s  is purely arbitrary, and some other  models could b e  advanced which might b e  

more r e a l i s t i c .  

3. DISTRIBUTION FUNCTIONS 

L e t  X b e  a random variable  defined on a n  interval  of the  real  l ine,  a < x < b .  T h e  distribution 

function of t h e  random var iab le  X i s  def ined simply as 

< Prob {X = xj . 
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It i s  customary to use a capi ta l  le t ter  from t h e  f i r s t  part of t h e  alphabet  to represent  t h e  dis t r ibu-  

tion function, as ,  for example, 

< F ( x )  = P r o b  )X = X I  . 

It will b e  useful  t o  consider  t h e  der ivat ive of F ( x ) ,  which we will denote  by  t h e  corresponding 

lower-case le t ter .  T h u s  

If X is a cont inuous random variable ,  f ( x )  i s  a der ivat ive in  t h e  ordinary s e n s e  and it is defined 

at  e a c h  point of continuity of x .  If X i s  a d iscre te  random var iab le ,  t h e n  f ( x )  is not a der ivat ive 

in  t h e  ordinary s e n s e .  In t h e  d iscre te  case we def ine  

where we assume a sample s p a c e  0 s u c h  that 

< < < <  - < <  - - . . . - x i - ,  5 x . =  . . . =  bl 
1 = x 2  6 = I x , ,  x 2 ,  . . . ; a  = x 

Although i t  is frequently overlooked for convenience,  it t a k e s  a t  l e a s t  three s ta tements  t o  

completely spec i fy  t h e  distribution function if the  range of t h e  var iable ,  (a, b ) ,  h a s  f ini te  limits. 

T h u s  

x < a  

< b = x  

If X is a continuous random variable  t h e  integral above  is a n  ordinary Riemann integral .  But i f  

X is d iscre te  we interpret the integral  to mean 

Zf(t) , 
A 

in  which A is t h e  s e t  of all va lues  of t which a r e  l e s s  than or e q u a l  to x but greater than or 

equal  t o  a .  

3.1 Some Properties of  the Distribution Function 

A study of the  definition of the  distribution function F ( x )  will  r e v e a l  t h a t  it p o s s e s s e s  t h e  

following properties: 

< < 
1. 0 = F ( x ) = =  1. 

2. F ( x )  is a nondecreasing function of x. 

3 .  F ( N )  = 1 and F ( - m ) =  0. 

4. F ( x )  is cont inuous t o  the  right a t  e a c h  point  x .  
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< 
Roughly speaking ,  property 4 above means  that the limit of Prob  { X  = X I ,  as  one approaches x 

f rom va lues  larger than  x, e x i s t s  and t h i s  limit is equal  t o  F ( x ) .  

From t h e s e  propert ies  we may deduce  that  for x 1  < x 2  

Prob { x ,  < X = x 2  I = F ( x , )  - F ( x , )  . 
< 

If x 

if F ( x )  is cont inuous a t  x = x o ,  Prob { X  = x ,  I = 0 b e c a u s e  t h e  height of t h e  s t e p  a t  x,, i s  0.  

= x, = x , ,  Prob { X  = x , ]  is equal  t o  t h e  height of the s t e p  of F ( x )  a t  t h e  point  x,,. T h u s ,  
1 '  

3.2 T h e  Probabil i ty Density Function 

W e  have  already defined f ( x )  as  t h e  der ivat ive in  one s e n s e  or another  of t h e  dis t r ibut ion 

function .F(x). W e  c a l l  f ( x )  a probab i l i t y  d e n s i t y  func t ion  (p.d.f.), and we have already s e e n  

some examples .  

Coin Tossing 

In t h e  co in- toss ing  experiment we had a function which we will rewrite as  

< <  
f ( x )  == p x  ( 1  - p ) l - X ,  x = 0 ,  1 ,  0 = p = 1 

== 0 otherwise . 

T h i s  i s  a bona f ide p.d.f. whose distribution function is 

0 ,  x < o  
< < <  

1-p ,  O = x < l , O = p = l  
> { 1, x = l  

F ( x )  = 

Poisson Distribution 

T h e  example about radioact ive d e c a y  assumed a probability dens i ty  funct ion 

= 0 otherwise.  

I t s  dist:ribution function is 

T h i s  is known as t h e  P o i s s o n  dis t r ibut ion a n d  is a rea l i s t ic  model for many r e a l  s i tua t ions .  
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A Gamma Distribution 

As a n  example of a cont inuous random variable  we used t h e  weight  of a f i s h  and assumed a 

p.d.f. 

< f(x) = 2 - a ~ a - 1  e x p  I -~ /21 /T(a ) ,  0 = x < m, 0 < a < 

= 0 otherwise 

T h e  distribution function for t h i s  model, which is a s p e c i a l  f o r m  of t h e  gamma dis t r ibut ion func- 

tion, - - * ’  he OYnrPssed onlv as 

x < o  

Y t )  dt, 0 = < x < m 

because  the  integral  d o e s  not e x i s t  i n  c losed  form. However, t h i s  distribution funct ion is tabled 

for many va lues  of a .  

Expanentia I Distribution 

A s  a n  example of a probability model for a random variable  whose distribution function d o e s  

e x i s t  in  c l o s e d  form, consider  

T h e  probability dens i ty  function for t h i s  random variable  is 

< 
f ( x ) = e e - 8 x ,  o = ~ < ~ ,  O < O < ~  

= 0 otherwise.  

T h i s  model is used extensively in  t h e  s tudy  of survival  of organisms and in l i fe  tes t ing .  

3.3 Transformations of Random Variables 

Very frequently one is interested in  the  behavior  of a random var iab le  that  i s  s o m e  function 

of another random variable .  We s h a l l  i l lust ra te  one method of finding t h e  distribution function 

(and hence  t h e  p.d.f.) of a transformed random variable .  

Suppose a random variable  X is defined by a distribution function F ( x )  s u c h  that  

0,  x < - 1  

(1 + ~ ) / 2 ,  -1 = x < 1 

1, x = l  

< 
> 
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and that  we are  interested i n  t h e  distribution function of t h e  random var iab le  Y = X ‘. W e  have  

s i n c e  Prob  IX = - = 0. Continuing, 

Therefore 

< 
F’rob {Y = y l  = GO.) = 

which def ines  t h e  dis t r ibut ion function for Y .  T h e  probability dens i ty  funct ion wil l  be  t h e  

der ivat ive of GO.) with respec t  to  y or 

= 0 otherwise.  



LECTURE II: CHARACTERIZATIONS AND LIMIT THEOREMS 

V. R. R a o  Uppuluri 

1 .  INTRODUCTION AND SUMMARY 

In th i s  lec ture  w e  s h a l l  review t h e  fundamental concepts  of a probability s p a c e ,  random vari- 

able ,  distribution function, and the  probability densi ty  function and  ind ica te  t h e  tools of a n a l y s i s  

that will be e s s e n t i a l  t o  probe into t h e s e  areas. In Sect .  3 ,  we s h a l l  ind ica te  t h e  role played by 

the concept  of independence in  t h e  context  of probability theory by pointing out s e v e r a l  character i -  

zat ion theorems of the normal (Gaussian)  distribution and the  exponent ia l  distribution. In Sect .  4 

we wil l  give the ana ly t ica l  express ions  of severa l  of t h e  s tandard dis t r ibut ions that  are encountered 

in s t a t i s t i c s  and ind ica te  how they a r e  derived. In Sect .  5 we will give the  formulas for t h e  char-  

ac te r i s t ic  function and moments of some of t h e  s tandard continuous dis t r ibut ions.  In the l a s t  sec- 

tion w e  wil l  introduce the  concepts  of convergence of random variables  and distribution funct ions 

and give s ta tements  of the  l a w s  of la rge  numbers and the  central  limit theorem. 

2. REVIEW 

In the  s tudy  of any random phenomena, the  concepts  of (1) probability s p a c e ,  (2) random vari- 

able ,  ( 3 )  distribution function, and (4) probability densi ty  function a re  very fundamental. 

In probability theory, the  b a s i c  sample  s p a c e  and the  s e t  of a l l  conceivable  e v e n t s  with a 

given probability s t ructure  wil l  b e  the  natural l eve l  a t  which one would work. In other words, one  

would work with a probability s p a c e  and make very f ine ana lys i s  us ing  measure-theoretic ap-  

proaches.  T h u s  the  resu l t s  es tab l i shed  would be  theoret ical  i n  nature  and will tend to  b e  in  t h e  

nature of ex is tence  theorems, a s  c a n  be i l lus t ra ted  by the  s t rong  law of la rge  numbers and the  

ergodic theorem. 

At t imes,  in severa l  physical  or natural phenomena i t  may be  poss ib le  t o  direct ly  focus a t ten-  

tion on the random variables  under considerat ion.  By making a f ine ana lys i s  of the  s t ructure  of the  

phenomena, i t  may be poss ib le  to  pin down the relat ionships  between the  random var iab les  under 

considerat ion.  T h i s  can  be  i l lustrated i n  the  context  of regression a n a l y s i s  and a n a l y s i s  of vari- 

ance ,  about which we wil l  hear more. T h e  dis t r ibut ional  propert ies  and the  moment propert ies  of 

t h e s e  s t ructured random var iab les  a r e  generally helpful to understand the underlying phenomena. 

In th i s  context ,  i t  may b e  worth adding a note  that  the  concept  of a random variable  is that  of a 

continuous function where the  domain of the  function c a n  be  an arbitrary sample  s p a c e  but  the 

range i s  usual ly  the  real l ine  or the  Eucl idean s p a c e .  Also ,  random var iab les  he lp  to bridge the  

gap between the  resu l t s  proved by a probability theoris t  and t h e  user .  Several  types  of conver- 

gence of random s e q u e n c e s  i l lus t ra te  t h i s  point, and an appl ied person may be  s a t i s f i e d  with the 

weakes t  type of a convergence theorem, whereas  the theoris t  is r e s t l e s s  t i l l  he  proves the  

s t ronges t  type of convergence theorems. 

11 
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T h e  next leve l  one  may c h o o s e  to work a t  may be  with the  so-cal led dis t r ibut ion funct ions as- 

soc ia ted  with random phenomena. A dis t r ibut ion function may b e  charac te r ized  as a real-valued,  

nonnegaiive, bounded ( l e s s  than or  equal  to l), and monotone nondecreasing function. A dis t r ibu-  

tion function need not necessar i ly  b e  cont inuous,  but  i t  will have  at most  a countable  number of 

discont inui t ies .  I t  is important to note  tha t  i f  one  makes a n  assumption about  the  form of a dis t r i -  

bution function, i t  means that  o n e  is looking a t  a s u b c l a s s  of t h e s e  functions. If one is fast idious 

about making technica l  assumptions,  l ike  t h e  differentiability of a dis t r ibut ion function, o n e  would 

work with distribution funct ions in  s tudying  t h e  propert ies  of t h e  underlying random phenomena, 

and one n e e d s  tools l i k e  t h e  Lebesgue-St ie l t jes  integrals .  Also,  analyt ical ly  i t  turns  out to b e  

simpler to work with dis t r ibut ion funct ions,  as cont ras ted  to  probability dens i ty  funct ions,  in  

proving limit theorems l i k e  the  central  limit theorems. 

Tradi t ional ly ,  any  da ta  tha t  a r e  recorded a r e  grouped and represented a s  frequency his tograms.  

Then one  looks  for pa t te rns  in  t h e s e  his tograms.  Some try to find mathematical funct ions tha t  f i t  

t h e s e  histograms. If one consul t s  a s t a t i s t i c s  book, one  f inds a cer ta in  class of n e a t  mathematical 

functions l ike  (1) t h e  normal probability dens i ty  function, (2) gamma dis t r ibut ion,  (3) beta  distribu- 

tion, (4) uniform dis t r ibut ion,  (5) binomial dis t r ibut ion,  (6) P o i s s o n  dis t r ibut ion,  and so on,  and 

one looks for a function tha t  b e s t  fits the  da ta .  Any nonnegative function which,  when integrated 

over the  whole range of permissible  va lues ,  in tegra tes  t o  unity may be  charac te r ized  a s  a probabil- 

ity densi ty  function. T h e  d a t a  and the  phenomenon that  is under s tudy generally help to  pin down 

the  probability dens i ty  function tha t  may b e  appropriate  for a par t icular  problem. At t imes t h i s  

may b e  ,an ini t ia l  s t e p  to formulate further hypotheses  i n  the  phenomenon under s tudy  and to  carry 

on experimentation for further verification. 

Though I have  descr ibed t h e  four concepts  i n  t h e  order  (1) probability s p a c e ,  (2) random variable ,  

(3) distribution function, and  (4) probability dens i ty  function, the importance of concept  (4) should 

not b e  underrated. I t  should b e  acknowledged tha t  the  growth of s o m e  of t h e  i d e a s  in  probability 

theory h a s  i t s  origin i n  t h e  s tudy  of the  propert ies  of probability dens i ty  funct ions.  S ince  th i s  

study requires only advanced ca lcu lus  a s  a tool, t h i s  is i n  t h e  reach of many. 

T h i s  l e a d s  t o  t h e  a s p e c t  of s t a t i s t i c a l  inference. 

3.  CHAR ACT E R IZ AT ION THE OR EMS 

Though i t  may not  b e  spec i f ied ,  i n  many prac t ica l  s i tua t ions  one  would work with random phe- 

nomena where one  c a n  change  l e v e l s  i n  t h e  above  se tup .  In other words, o n e  would l i k e  to  be l ieve  

that  one l ives  in  a world free  of pathological  s i tua t ions .  A s i tua t ion  where o n e  c a n  h a v e  a dis t r i -  

bution function without necessar i ly  having  a (der ivat ive or a) probability dens i ty  function is a n  

i l lustrat ion of a pathological  s i tuat ion.  F o r  a l l  pract ical  purposes ,  any further concept  introduced 

a t  one Level wil l  still b e  val id  at  all leve ls .  T h e  concept  of independence is a n  i l lustrat ion of 

this. 
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3.1 Normal Distribution 

In terms of independence one c a n  charac te r ize  the  distributional propert ies  of severa l  random 

phenomena. We will i l lus t ra te  below a few character izat ions of the  normal (Gauss ian)  distribution. 

Theorem 3.1: L e t  X I ,  X , ,  . . . , X n  b e  n independent but not necessar i ly  ident ical ly  dis t r ibuted 

random variables .  Suppose that  the two l inear  forms Y1 = a l X l  + . . . + a n X n  and Y ,  = h , X ,  + . . . i 
bnXn a r e  independently distributed. Then  e a c h  random variable  Xi which h a s  nonzero coeff ic ients  

in both forms is normally distributed. 

T h e  vector ana log  of the  above  theorem is also t rue and may b e  s t a t e d  as  

Theorem 3.2: L e t  X I ,  X , ,  . . . , X n  b e  n independent but not necessar i ly  ident ical ly  dis t r ibuted 

p-dimensional random vectors .  Suppose tha t  the two random vectors  Y ,  = a ,  X ,  + . . . + a n X n  and 

Y ,  = b , X ,  + . . . + hnXn are independently dis t r ibuted.  Then e a c h  random vector Xi for which 

a ,  b ,  # 0 h a s  a p-variate normal distribution. 
I J  

Another character izat ion of the  vector ana log  may b e  s t a t e d  as  

Theorem 3.3: L e t  X , ,  X , ,  . . . , X n  b e  n mutually independent p-dimensional random vectors ,  

and l e t  A l ,  A , ,  . . . , A n ,  B , ,  B,,  . . . , Bn be  nonsingular square  matr ices  of order p .  If 

n 
A,X, ’  

i =  1 

and 

n 

i =  1 

are  independently dis t r ibuted,  then e a c h  X i  h a s  a p v a r i a t e  normal distribution. 

T h e  next  theorem charac te r izes  the  normal distribution in  terms of the independence of the  

sample mean and sample  variance. T h i s  resul t  is useful  in  der iving the dis t r ibut ions of random 

variables  which a r e  functions of sample  mean and sample  var iance from a normal distribution, 

s u c h  as  the Student’s  t s t a t i s t i c  and Fisher ’s  F s ta t i s t ic .  

Theorem 3.4: Let X I ,  X,, . . . , X ,  b e  a sample  from a cer ta in  population, and denote  the  sam-  

ple  mean by X and t h e  sample  var iance by s2. T h e  s t a t i s t i c  X and s2 a r e  independent if and only 

i f  the  population is normal. 

It can  be eas i ly  proved that  the distribution of the sum of two independent normal var iables  is 

normally distributed. T h e  next  theorem te l l s  u s  about a form of the  converse of th i s  s ta tement .  

Theorem 3.5: If the  sum of two independent random variables  is normally dis t r ibuted,  then 

e a c h  summand i s  a l s o  normally distributed. 
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3.2 Gamma and Exponential  Distributions 

A nonnegative random variable  X is s a i d  to  have  a gamma distribution if its probability dens i ty  

function is given by 

When a := 1, X i s  s a i d  to b e  exponent ia l ly  dis t r ibuted;  p i s  referred to as  the  scale parameter. It 

c a n  b e  eas i ly  proved that  if 2, and 2, a r e  two independently dis t r ibuted gamma var iab les  with t h e  

same scale parameter, then 2, + Z,  and Z, /Z,  a r e  independent ly  dis t r ibuted.  T h e  next  theorem 

i s  a converse of th i s  s ta tement ,  which together with th i s  remark charac te r izes  the  gamma dis t r ibu-  

tion. 

Theorem 3.6: If 2, and 2, a r e  independent nonnegative random variables  for which 2,  + 2, 

and Z1/.Z, a r e  independent, then both 2, and 2, have  gamma dis t r ibut ions with a common s c a l e  

parameter . 
T h e  next  theorem s h o w s  tha t  the  only dis t r ibut ion which h a s  the  property of not having  memory 

is the  exponent ia l  distribution. 

Theorem 3.7: L e t  T b e  a nonnegat ive random variable .  

.P(T > x + y 1 T > X )  = P(T > y )  

i f  and only if T h a s  a n  exponent ia l  distribution. 

T h e  next  theorem gives  a character izat ion of  the exponent ia l  distribution i n  terms of the  mini- 

mum and range of two random variables .  

Theorem 3.8: Suppose t h a t  the  random variables  X and Y a r e  independent  and have  absolu te ly  

continuous dis t r ibut ions.  T h e n  i n  order that  U == min(X, Y )  and V = X - Y b e  independent ,  i t  is 

necessary  and suf f ic ien t  tha t  both X and Y have exponent ia l  dis t r ibut ions.  

L e t  X , ,  X , ,  . . . , X ,  be  n independent ident ical ly  dis t r ibuted nonnegative random variables .  If 
5 5  we arrange them i n  order of magnitude as  X I , n  5 X ,,, 

order s t a t i s t i c  in a s a m p l e  of size n. L e t  u s  def ine 
. . . - X n , n ,  X,,n is referred to  as the  kth- 

Y, = (n - i + I) ( X i , n  - Xi-,,,) , i = 1, 2, . . . , n ,  

with the understanding tha t  X o , ,  = 0. T h e  next  theorem charac te r izes  t h e  exponent ia l  dis t r ibut ion 

in  terms, of Y y,, . . . , y n .  
Theorem 3.9: Y 1 ,  Y , ,  . . . , Y n  a r e  independently dis t r ibuted if and  only i f  X h a s  a n  exponent ia l  

distribution. 

A random variable  U is s a i d  to  have a uniform dis t r ibut ion on [ O ,  11 i f  

T h e  following theorem s h o w s  the  relat ionship between a random variable  with uniform dis t r ibu-  

tion and a var iable  with exponent ia l  distribution. 

Theorem 3.10: L e t  0 < U < 1 and X = -In U, so  t h a t  0 < X < m .  X h a s  a n  exponent ia l  d i s t r i -  

bution with mean 1 i f  and only if U h a s  a uniform dis t r ibut ion.  
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4. STANDARD DISTRIBUTIONS 

In th i s  sec t ion  we wil l  introduce the reader to  some of the  s tandard dis t r ibut ions used  i n  

s t a t i s  t i cs .  

4.1 C hi-Square Distribution 

L e t  X be a random variable dis t r ibuted normally with mean 0 and var iance unity; i n  other  words 

le t  the  probability densi ty  function of X b e  given by 

Then i t  c a n  be e a s i l y  shown that  the var iable  Y = X 2  h a s  a probability dens i ty  function given by 

y - l / 2 e - Y / 2 .  &(Y> =- 

G 
1 

( 3 )  

T h i s  g ( y )  i s  referred to  as the  chi-square distribution with one  degree of freedom. T h i s  i s  a s p e -  

cial case of the gamma distribution (1) with /3 = '4 and a = ' 4 .  T h e  following is an important 

theorem concerning the gamma variables .  

Theorem 4.1: L e t  Y 1 ,  Y , ,  . . . , Y ,  b e  n independent gamma variables  with a common scale 

parameter /3 and perhaps different va lues  of a given by a l ,  a2, . . . , a,. Then Y 1  + Y ,  + . . . + Y ,  

h a s  a gamma distribution with the s a m e  scale parameter P and with a = a + a + . . . + a, . 
1 2  

From theorem 4.1 and ( 3 ) ,  we c a n  deduce the following useful  corollary: 

Corollary 4.1: Let X 1 ,  X , ,  . . . , X n  b e  n independent ident ical ly  distributed normal var iab les  

with mean 0 and var iance unity. Then  Y = X i  + . . . + X i  h a s  a gamma distribution with a =  n/2 

and P = l/, (which is referred t o  as a chi-square distribution with n degrees  of freedom) given by 

4.2 t Distribution 

It turns out that  the  probability densi ty  function of R = -is given by 

which is referred to  as  the  root-mean-square distribution with n degrees  of freedom. 

T h e  var ia te  T may b e  defined as the  quotient of two independent  var ia tes  X and R, where X 

h a s  a normal distribution with mean 0 and var iance unity and R is t h e  root mean square  of n other  

independent ident ical ly  dis t r ibuted normal var ia tes  with mean 0 and var iance unity. 
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Theorem 4.2: T h a s  the  probability dens i ty  function given by 

which i s  referred t o  as  the  t distribution with n degrees  of freedom. 

4.3 F Distribution 

If E' h a s  a chi-square distribution with n degrees  of freedom, then W = Y/n will  have  t h e  proba- 

bi l i ty  dens i ty  function given by 

W ( n / 2 ) - 1  e -nw/2  , O < w < m ,  
( n / 2 1 " / ~  

f(w) = 
r ( n / 2 )  

(7) 

which is referred t o  as  the  mean-square distribution with n degrees  of freedom. 

T h e  var ia te  F may be  defined a s  the  quotient of the  respec t ive  mean s q u a r e s  of a and b inde- 

pendent  ident ical ly  dis t r ibuted normal var iab les  with mean 0 and  var iance unity. 

Theorem 4.3: F h a s  the  probability densi ty  function given by 

T h i s  is referred t o  as t h e  F distribution with a and b degrees  of freedom. T h i s  F is a l s o  known a s  

the  var iance ratio with a and b degrees  of freedom. 

5.  EXPECTATION 

5.1 C ha ra c ter i s t i c F unctions 

In th i s  s e c t i o n  w e  wil l  introduce the  notion of the  charac te r i s t ic  function of a random variable ,  

which c a n  be  used  in  determining the  moments (whenever they e x i s t )  and which is helpful in  proving 

the corivergence of dis t r ibut ion functions. F o r  brevity, w e  res t r ic t  ourse lves  to  cont inuous vari- 

ab les .  L e t  X be  a random variable  with probability dens i ty  function f ( x ) .  Then t h e  charac te r i s t ic  

function of the  random variable  X is defined by 

T h e  following is a s h o r t  t ab le  of familiar probability densi ty  funct ions and charac te r i s t ic  funct ions.  
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Distribution Probobil ity Densi ty  Function Charocteristic Function 

Normal -e -(x- p)2/211.2 i p t  - c 2  t2  /2 
1 

D f i  

Gamma 

B e t a  

s 1 
Cauchy - 

Ti x 2  + (x - 1 ) 2  

5.2 Moments 

T h e  kth moment of the  random variable  X is defined by 

E ( X k )  = x k  f(x) dx . (10) 

For k = 1, E ( X )  is referred to as  t h e  mean of the var iable  X. T h e  var iance of X is defined as  

Var(X) = E ( X 2 )  - [ E ( X ) I 2  . (11) 

An a l te rna te  way of obtaining the  kth moment of t h e  var iable  X is to differentiate the charac te r i s t ic  

function +(t) k t imes and find its va lue  a t  t = 0, that  i s ,  

E ( X k )  = +‘k’(0)  . (12) 

At times this  may turn out to  be  a n  e a s y  way of finding the  kth moment, but not necessar i ly  a lways .  

W e  wil l  now give some formulas of moments for some well-known dis t r ibut ions.  

1. Normal distribution: 

1.3.5. . . . ( k - 1 ) d  for k even 

for k odd . E ( X k )  = 
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2 .  Rayleigh distribution: 

X 
f (x)  = - e- x 2 / Z J ,  O < x < m .  

a2 

f g 1 . 3 . 5  . . . k a k  for k odd 

3. Maxwell distribution: 

4. Gamma distribution: 

pax"- 1 e - P X  

r ( a )  
f (x)  = , O < x < m .  

E ( X k )  = a(a + l ) ( a  + 2) . . . ( a  + k - 1)PVk 

5. Beta  distribution: 

m(m + 1)  . . . (m + k - 1)  

( m + n ) ( m + n + l )  . . .  ( m + n + k - 1 )  
E ( X k )  = 

6. CONVERGENCE TI EORE IS 

In th i s  s e c t i o n  w e  wil l  introduce the notions of convergence in probability, convergence in  

quadrat ic  mean, convergence with probability 1 ,  and convergence i n  distribution. W e  wil l  point 

out the  connect ions between t h e s e  convergences.  W e  wi l l  ind ica te  t h e  l a w s  of la rge  numbers and 

the  central  l i m i t  theorem. 

6.1 Convergence of a Sequence of Random Variables 

A s e q u e n c e  of random variables  { X , ) ,  n = 1, 2 ,  . . . , is s a i d  t o  converge to  a cons tan t  c: 

1 .  i n  probability or weakly (and written X n  - c), if for every given t > 0 ,  
P 
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l i m  
n 'M 

P( 1 Xn - c j > E )  = 0 ; 

a.  s .  
2. strongly or a lmost  surely (written I i m  X n  = c with probability 1 or Xn* c) if 

n 'DO 

P( l i m  X = c ) = l ,  
n- 'm 

or equivalent ly  

lim P (  s u p  / X n  - c 1 > E) = O for every E ;  

> n =  N 
N 

q.m. 
3. in  quadrat ic  mean (written Xn+ c), i f  

T h e  following theorem shows the relationship among the  various types of convergences.  

Theorem 6.1: 

q.m.  P 
1. If Xn c ,  then Xn+ c .  

2 .  I f X n - - - +  c ,  t h e n X n +  c .  
a . s .  P 

M 
P a.  s .  

3. If X n - +  c and x E ( X n  - c)' < M , then Xn- c 
R = l  

6.2 Laws of Large Numbers 

Theorem 6.2 (weak law of large numbers): L e t  { X i { ,  i = 1, 2, . . . , be  a sequence  of n inde-  

pendent and ident ical ly  distributed random variables .  Then  

( X 1  + . . .  
E ( X i )  = p < m ,  then 

n 

Theorem 6.3 (strong law of large numbers I ) ;  L e t  { X i  1, i = 1, 2 ,  . . . , b e  a s e q u e n c e  of n 

independent random variables  s u c h  that  E ( X i )  = p i  and Var(Xi)  = u,? . Then 

m.2 x ,  i... + x n  - p 1  + p 2  + . . .  i c " ,  a.s; 1 --$ < m implies that  
n n i = l  

Theorem 6.4 (s t rong law of large numbers 11): L e t  1 X i  1 ,  i = 1, 2,  . . . , be  a sequence  of n 

independent and ident ical ly  distributed random variables .  Then  

X I  + . . .  + X n  a . s .  
p i f  and only i f  E ( X i )  e x i s t s  and is equal  t o  p 

n 
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6.3 Central  L i m i t  Theorem 

Let lin (x) denote  the  distribution function of the  random variable  X n ,  tha t  i s ,  F n  (x) = 

P(X, 5 1:). 
Definition: T h e  s e q u e n c e  of random var iab les  { Xn is s a i d  t o  converge i n  dis t r ibut ion (or in  

law) to a random variable  X with distribution function F ( x )  = P ( X  5 x) i f  F , ( x )  - F ( x )  as  n + 

a t  all po.ints of cont inui ty  of F . Such a convergence is expressed  a s  Xn- X. 

Theorem 6.5: L e t  +,(t) b e  the charac te r i s t ic  function of Xn and + ( t )  that  of X. L e t  $ ( t )  b e  

continuous a t  t h e  origin. Then  

L 
X n - +  X if and only i f  $ , ( t ) t  $ ( t ) .  

Theorem 6.6 (central  limit theorem): L e t  { Xi j ,  i = 1, 2, . . . , b e  a s e q u e n c e  of n independent  

and ident ical ly  dis t r ibuted random variables  s u c h  tha t  E ( X i )  = f~ and V a r ( X i )  = D* e x i s t .  Then  

.. 



LECTURE Ill: CONTINGENCY TABLES 

Marvin A. Kastenbaum 

1 .  INTRODUCTION 

Appended to t h e s e  n o t e s  is a bibliography of papers  on the subjec t  of cont ingency tab les  that  

have appeared in  the literature primarily during the p a s t  d e c a d e  and a half. T h i s  chronological 

l i s t i n g  i s  by no means  complete. It resu l t s  from a par t ia l  l i terature  s e a r c h  of the s t a t i s t i c s  journals  

in  the  ORNL library and inc ludes  only a s m a l l  number of papers  in  the s o c i a l  s c i e n c e s .  Therefore ,  

i f  you know of any well-known papers  that  have been omitted, kindly c a l l  them to my attention so  

that  I may add them t o  the e x i s t i n g  l i s t .  

My lecture will begin with some d iscuss ion  of the underlying sampl ing  dis t r ibut ions which go 

into the  construction and formation of contingency tables .  I wil l  briefly review the history and 

theory of the x t e s t  criterion which is applied for t e s t i n g  hypotheses  with contingency tables .  I 

will touch on s u c h  ques t ions  as  partitioning of x 2 ,  contingency t a b l e s  of more than two dimensions,  

measure of assoc ia t ion ,  miss ing  and mixed-up va lues  i n  contingency t a b l e s ,  contingency tab les  

which come about as  a resul t  of consumer preference tes t ing ,  Markov c h a i n s  in contingency tab les ,  

the Bayes ian  approach to contingency tab les ,  and al ternat ive a n a l y s e s  to the x 2  in contingency 

tables .  I wil l  p resent  some i l lustrat ive examples  a t  cer ta in  poin ts  throughout my d iscuss ion .  

2. STRUCTURE OF 2 x 2 CONTINGENCY TABLES 

T h e  b a s i c  s t ructure  of cont ingency tab les ,  espec ia l ly  those which we are most accustomed to  

encounter ,  is descr ibed with admirable lucidi ty  by G. A. Barnard and E. S. Pearson i n  two papers  

which appear  i n  Vol. 34 of Biometrika for 1947. Although t h e s e  authors  concentrate  primarily on 

2 x 2 contingency tab les ;  their logical  approach to t h e  whole problem is s t a t e d  in  such  elementary 

terms that  both papers  should b e  read by a l l  s t a t i s t i c i a n s .  A sys temat ic  elaboration and applica- 

tion of the i d e a s  of Barnard and Pearson  appears  in  a series of papers  by Roy,  Mitra, and 

Kastenbaum in 1955 and 1956. 

According to Barnard, the  theory of s t a t i s t i c a l  s ign i f icance  t e s t s  d e a l s  with abstract ion of 

experimental resul ts .  T h e  fact  that  the figures in  quest ion may happen to b e  tens i le  s t rength of 

iron bars ,  counts  of radioact ive par t ic les ,  on-the-job acc idents ,  or number of defec t ives  is ignored 

in carrying out  the tes t .  For the purpose of the s t a t i s t i c a l  theory, the experiment in quest ion 

could j u s t  as  wel l  b e  represented by an experiment involving drawing b a l l s  from an urn. Once t h e  

abs t rac t  picture  h a s  been formed, the  a n a l y s i s  of i t  is largely a matter of pure mathematics. As 

Barnard points  out ,  “What d is t inguishes  t h e  s ta t i s t ic ian  from the pure mathematician i n  th i s  con- 

nection should be the s ta t i s t ic ian’s  abi l i ty  t o  form valid abs t rac t  p ic tures  of concre te  cases and 

h i s  c l e a r  recognition of the l imits  of validity of h i s  abstract  pictures .”  

Consider the s imples t  type of contingency table ,  namely the  2 x 2 or fourfold table ,  as  T a b l e  

la i s  sometimes referred to. 

21 
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Table  la: The 2 x 2 Contingency T a b l e  - C e l l  Frequencies 

I I1 T o  tal  

A " 1 1  " 1 2  "1. 

" 2 1  "22 "2 .  B 
- 

N ". 1 ". 2 
T o t a l  

T a b l e  lb: The 2 x 2 Contingency T a b l e  - C e l l  Probabi l i t ies 

I I1 T o t a l  

p11 p 1 2  p1. 

p 2  1 p 2  2 p 2 .  

p .  1 p .  2 

A 

B 

T o t a l  
- - ~ 

1 

T h i s  table  d i s p l a y s  a sample  of total  size N divided into four mutually exc lus ive  and jointly 

exhaus t ive  c e l l s ,  s o  that  n 1  

have  come about. 
+ n 1  + n 2  + n 2 2  = N .  L e t  u s  consider  how s u c h  a tab le  might 

2.1 One Multinomial, or T w o  Variates (Responses) 

A and B represent  two s h o p s  or p r o c e s s e s  making the  same ar t ic les .  Roman numerals I and 

11 represent  d e f e c t i v e s  and nondefect ives  respect ively.  All a r t i c l e s  produced in  s h o p s  A and B 

are co l lec ted  i n  a common b in ,  e a c h  of the  a r t i c l e s  having  a s m a l l  marking spec i f ic  to  the shop 

from which i t  came.  On the  b a s i s  of a sample of size N w e  wish to  determine i f  t h e  percentage  

defect ive i n  shop  A i s  the  s a m e  as i t  is in s h o p  B. T h e  sample  of size N is taken from a common 

bin containing a large number of a r t i c l e s  from both shops.  If the  true proportion of a r t ic les  in  

category AZ is p l l  whi le  p 1 2 ,  p 2 1 ,  and p Z 2  represent  the proportions of t h e  other  a r t ic les ,  then the  

probability a s s o c i a t e d  with the  table  is given by the general  term of the multinomial expansion of 

(P, 1 + P1 2 + P , ,  + P 2 J N ,  that  i s ,  

N !  " 1 1  " 1 2  " 2 1  "22 
P =  n 1  1!  n l Z !  n z l !  nZ2. , Pll P l 2  P21 P 2 2  ' (2.1.1) 
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2.2 T w o  Binomial Samples, or One Variate (Response) and One Way of Classif icat ion (Factor) 

P e r h a p s  a more rea l i s t ic  way i n  which our table may b e  constructed under a s imilar  set of 

c i rcumstances  would b e  i f  n l .  a r t i c l e s  from shop A and n 2 .  a r t i c l e s  from shop B were examined €or 

the proportion of defec t ives .  In th i s  c a s e ,  o f  course,  the a r t ic les  which had been  manufactured 

would not  be taken from the same bin, but  rather shop A would h a v e  i t s  bin and shop B would have  

i t s  bin. 

If the  probability tha t  shop A will produce defec t ives  is given b y  p ,  and the probability that  

shop B will  produce d e f e c t i v e s  is given by p,  1, then the probability of the arrangement in t h e  

table  is e q u a l  t o  the probability of f inding n 1  

n Z 1  defec t ives  i n  a sample of s i z e  n2 .  in  shop  B.  

defec t ives  from a sample  of size n l .  in  shop  A and 

T h i s  probability may b e  written a s  the general term of the  product of two binomials, namely 

” 2 1  “ 2 2  “ 1  .! n l l  n 1 2  ’2.‘ 

1 p11 p12 1 , p21 p 2 2  ’ P =  
“ 1  l !  “ 1  2 ’  2 1.n2 2 ’  

2.3 One Hypergeometric, or T w o  Ways of Classif icat ion 

(2.2.1) 

A third way in which t h e  d a t a  in  our tab le  might occur  is perhaps  the most  ar t i f ic ia l  of t h e  

three s t ruc tures  which we wil l  d i s c u s s .  I t s  ar t i f ic ia l i ty  comes not  from the  fact  that  such  a s t ruc-  

ture d o e s  not  occur  in  real  l i fe .  Rather ,  s u c h  a s t ructure  occurs  less frequently than the two 

s t ructures  a l ready d iscussed .  T h e  c l a s s i c a l  example of s u c h  a s t ruc ture  occurs  in  the “lady 

tas t ing  tea” experiment proposed by Sir Ronald Fisher .  In th i s  case we not only f ix  the  total  

sample s i z e ,  but w e  also fix t h e  va lues  in  a l l  t h e  marginals. How might th i s  come about? 

Here the experimenter h a s  two types  of  ob jec ts  of known frequencies ,  l e t  u s  s a y  n l .  and n2 . ,  

He te l l s  h i s  subjec t  that there  a re  among t h e  N o b j e c t s  which he i s  present ing to  him n l .  o f  type 

A and n 2 .  of type B. He then a s k s  h i s  subjec t  to identify t h e s e  o b j e c t s  accordingly. The  proba- 

bility that  the s u b j e c t  will p lace  n 1  

are  fixed in  t h i s  way is given b y  the underlying hypergeometric distribution a s  follows: 

observat ions in the f i r s t  cell given that  t h e  marginal t o t a l s  

(2.3.1) 

. I  

where n. = n l .  and n a 2  = n 2 . .  

T h e  three underlying dis t r ibut ions represented by  Eqs. (2.1.1), (2.2.1), and (2.3.1) account  for 

almost a l l  contingency tab les  which a r e  encountered i n  experimental s i tua t ions .  
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3. DEGREES OF FREEDOM 

At this  point, i t  might b e  appropriate  t o  spend a l i t t l e  time d i s c u s s i n g  t h e  degrees  of freedom 

which a r e  a s s o c i a t e d  with t e s t s  of hypotheses  concerning t h e  d a t a  i n  contingency tables .  T h e  

rule for determining the  number of degrees  of freedom a s s o c i a t e d  with any cont ingency table  of 

whatever s t ructure  is: the  number of degrees  of freedom i s  e q u a l  to the  total  number of cells in 

the tab le ,  minus the  number of independent  l inear  cons t ra in ts  on the observat ions,  minus t h e  num- 

ber of free parameters to  be  es t imated  from the da ta .  In the case of a 2 x 2 table  consider  t h e  

s i tuat ion for the three s t ruc tures  which we d i s c u s s e d  above. 

3.1 O n e  M u l t i n o m i a l  

T h e  total  number of c e l l s  is 4, the  number of independent  parameters  to be es t imated  from the  

d a t a  is 2 ,  and the number of l inear  cons t ra in ts  on t h e  observat ions is 1. How d o e s  th i s  come 

about? T h e  sum of t h e  p i j ’ s ,  p ,  , + p , ,  + p ,  , + p , , ,  i s  1. T h i s  i s  true. However, t h e s e  four  

p . . ’ s  are  not independent  of one  another because  they a re  s u b j e c t  to the two following constraints :  

p , .  + p, .  = 1 and p .  , + p . ,  = I, so  that  there  are only two independent  parameters  ple(or p,.) and 

p.  
n Z 1  + n:!,  = N .  

1 1  

(or p .  2) to  be es t imated  here .  T h e  one l inear  cons t ra in t  on the observat ions is that n1  + n ,  + 

3.2 T w o  B i n o m i a l s  

In the case of two binomials  there is only one independent  parameter  to  be es t imated  from the 

da ta ,  and there are  two l inear  cons t ra in ts  on the  observat ions.  T h e  independent parameter comes  

from the fac t  t h a t  one  s e t  of marginal to ta l s  is f ixed,  leav ing  n o  parameters  to  be es t imated  here. 

However, t h e  other s e t  of marginal to ta l s  is variable and must  be es t imated  s u b j e c t  t o  the con- 

s t ra in t  1 3 . ,  + p . ,  = 1. T h e  two l inear  cons t ra in ts  a r e  n,, + n 1 2  = n l .  and n 2 ,  + n Z 2  = n2.. 

3.3 O n e  H y p e r g e o m e t r i c  

In th i s  case there  a re  no independent  parameters  to b e  es t imated  from the  data .  Ins tead  there  

are  four cons t ra in ts  on the  d a t a ,  three of which are independent. T h e  va lues  i n  the two rows and 

two columns are constrained by their respec t ive  t o t a l s ,  but the f a c t  that  both s e t s  of marginal 

totals  a r e  also cons t ra ined  t o  add to  N reduces  the  number of independent  cons t ra in ts  t o  3. 

In 6\11 three cases we have  four c e l l s  and a combination of three l inear  cons t ra in ts  or inde- 

pendent  parameters  t o  be  est imated from the  data .  T h u s  the  number of degrees  of freedom is equal  

to  one :,n all th ree  cases. T h i s  is one very in te res t ing  r e s u l t  in  t h e  two-way table .  Another perti- 

nent  and in te res t ing  f a c t  which we may refer t o  now in p a s s i n g  i s  tha t  i n  the  two-way tab le  a l l  

three s t ructures  resu l t  in  the same large-sample x 2  t e s t  of the nul l  hypothes is .  T h e s e  two r e s u l t s ,  

which are perhaps a bi t  of mathematical  good fortune, may b e  the c a u s e  of s o m e  of the confusion 

assoc ia ted  with the interpretat ion of d a t a  in  two-way tables .  
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4. STRUCTURE OF r x s CONTINGENCY TABLES 

Let  i = 1 ,  2 ,  ..., r des igna te  rows and j = 1 ,  2 ,  ..., s des igna te  columns.  

n . .  r s  N !  
P =  n n Pi;’ . 

1=1 j = l  r s  

Number of degrees  of freedom: r s  - [(r - 1) + ( s  - l)] - 1 = (r - l)(s - 1) . 

4.2 r Multinomial Samples 

S r S 

n . .  
1 1  r s Pij 

n . . !  i= 1 j = 1  11 

P =  n ni , !  n -. 
Number of degrees  of freedom: r s  - ( s  - 1) - r = (r - l)(s - 1). 

4.3 One Hypergeometric 

S r r S 

E n . .  = n .  n . . = n  11 . I  1 ni. = E n.j = * 
11 

j =  1 i= 1 i= 1 j =  1 

r S 

Number of deg rees  of freedom: r s  - (r + s - 1) = ( r  - l)(s - 1). 

(4.1.1) 

(4.2.1) 

(4.3.1) 
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5 .  THE NULL HYPOTHESIS IN THE TWO-WAY TABLE 

5.1 One Multinomial 

The composi te  hypothes is  w e  s h a l l  be  in te res ted  in t e s t i n g  i s  that  the  two var ia tes  a r e  inde- 

pendent ,  that  i s ,  H,: p . .  = pi, p . , a g a i n s t  the a l te rna t ive  H f H , ,  where pi. and p . .  (for i _= 1, 2 ,  ‘ I  . I  1 

..., r and j = 1, 2, ..., s) are  arbitrary pos i t ive  parameters  s u b j e c t  to  the cons t ra in ts  

T h i s  i s  analogous t o  the hypothes is  of no correlat ion ( p x y  = 0) in a bivariate normal population. 

Under H c ,  the  likelihood function i s  given by 

i= 1 j =  1 r s  

II II nij! 

5.2 r Multinomials 

(5.1.1) 

We have  r independent  s a m p l e s  of fixed sizes n l , ,  n2 . ,  ..., nr., with p . . ,  t h e  probability of an 
‘ I  

observat ion i n  cell (ij), s u c h  that  

E p . .  = p .  = 1. 
I j  I .  

i 

T h e  composi te  hypothes is  of in te res t  is tha t  p . . ,  for any j ,  i s  independent  of i ;  that  i s ,  the  
11 

probability of an observat ion be ing  in the  j th  posi t ion of row i i s  the same for a l l  i .  T h i s  may be  

spec i f ied  as 

rYo: p . .  = p . a g a i n s t  H f H , ,  
1 1  - 1  

where p . ( j  =- 1, ..., s) is a n  arbitrary pos i t ive  parameter s u b j e c t  to the constraint  
, I  

1;p  . = 1. 
.I 

i 

T h i s  is referred to  as the  hypothes is  of “homogeneity.” It i s  analogous to and a general izat ion 

of t h e  hypothes is  of equal i ty  of means  for r homoscedas t ic  univar ia te  normal populat ions.  F o r  

random samples  from normal populat ions,  N ( p i ,  c2), i = 1, 2 ,  ..., r, the  usua l  hypothes is  of in- 

te res t  i:s: 

T h e  s tandard  t e s t  of t h i s  hypothes is  is the  F t e s t  of equal i ty  of means.  
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T h e  likelihood function under t h e  hypothes is  of homogeneity of r multinomial s a m p l e s  is 

(5.2.1) 

5.3 One Hypergeometric 

In this  c a s e ,  the likelihood function given by (4.3.1)  is unchanged, and t h e  null hypothesis  is 

one of “ independence” or “inability t o  discr iminate .  ” T h e  ques t ion  posed under t h i s  s t ructure  

i s  s p e c i f i c ,  as i n  the  case of t h e  “lady tas t ing  tea”  experiment. 

Note that  if we were  t o  s ta r t  with (4.1.1) and le t  H,: p j j  = pi, p.;, and then find t h e  condi- 

tional probability under H ,  s u b j e c t  to  n, and n . being  f ixed,  th i s  probability would b e  t h e  hyper- 

geometric given by (4.3.1). 
.I 

6. TESTS OF HYPOTHESES IN THE TWO-WAY TABLE 

In the year 1900,  Karl Pearson  proposed a s  a criterion for tes t ing  hypotheses ,  s u c h  a s  t h o s e  

mentioned above,  the s t a t i s t i c  

r s ( n . .  - N P . . ) ~  11 

X ’ =  
N p . .  

i = 1  j = l  ‘ I  

Pearson  sugges ted  that  in the limit, as N becomes large,  th i s  s t a t i s t i c  h a s  t h e  x‘ distribution 

with rs  - 1 degrees  of freedom. H e  further sugges ted  tha t  the number of degrees  of freedom re- 

mains  unchanged when t h e  p . .  a re  es t imated from the  data .  T h i s  we  now know is wrong. F i s h e r  

(1922, 1924) pointed out  Pearson’s  error and went  on to  give a proof of the limiting distribution of 

Xz which avoids  most of t h e  mathematical complexi t ies  in  Pearson’s  proof. A fully rigorous proof 

of the l imit ing dis t r ibut ion of X 2  is given by Cramer (1946). Cramer a s s u m e s ,  among other things,  

that  t h e  p . .  are est imated by the method of maximum likelihood. 

11 

11  

The maximum likelihood es t imates  of p . .  under the null hypothes is  a re  found to be p . .  = 
11 ‘ I  

ni n j / N 2 ,  s o  that  the usua l  form of t h i s  s t a t i s t i c  for cont ingency t a b l e s  is . .  

n .  n . 

N 

I .  . ]  

T h i s  s t a t i s t i c ,  we  s a y ,  i s  dis t r ibuted i n  the l imit ,  a s  N becomes la rge ,  as  x 2  with (r 

degrees  of freedom. 
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T h e  most  pertinent quest ion a t  th i s  point  i s ,  “Is the same x 2  t e s t  to  be u s e d  for a l l  th ree  

structure:;?:’ T h e  answer i s ,  “Yes ,  when N i s  large.” However, t h i s  is not so for small  samples .  

When the sample  size N is smal l ,  F i s h e r  (1934) recommends that  t h e  e x a c t  probabi l i t ies  obtained 

from the ‘hypergeometric dis t r ibut ion (4.3.1) be  used.  

mendation is t h a t  a loss of power may resul t  if t h e  hypergeometric probabi l i t ies  a r e  computed 

when the  d a t a  ac tua l ly  arise from a s i n g l e  or  from severa l  multinomial samples .  

The  grea tes t  object ion t o  F isher ’s  recom- 

K. D.. Tocher  (1950) h a s  proposed a modification of F isher ’s  e x a c t  t e s t  tha t  is most  powerful, 

in the Neyman-Pearson s e n s e ,  for one-tailed t e s t s  with d a t a  from any of the three s t ructures .  T h e  

modification is bes t  i l lustrated by an example. 

Consider  t h e  hypothet ical  example (Table  2) involving the  frequency of fai lure  due  to  cracking 

of spec imens  i n  30-day t e s t s  on 24 large indus t r ia l  boi lers .  T h e  observat ions a r e  c l a s s i f i e d  as 

cracked and uncracked,  and  a l s o  according to  the  addition or nonaddition of tannin to the feed-  

water. 

T a b l e  2. Hypothet ical  Example 

Uncracked Cracked Total  

+Tannin 9 2 11 

-Tannin 7 

To ta l  16 

- 
13 6 

8 24 

- - 

T h e  nul l  hypothes is  is tha t  the fai lure  of t e s t  spec imens  is not  influenced by the  addition of 

tannin t o  the boiler feedwater. 

level .  ‘The two p o s s i b l e  s e t s  of da ta  which devia te  more from the  nul l  hypothes is  a r e  

Given t h e s e  d a t a ,  we wish to make a one-tai led t e s t  a t  the  5% 

10 1 11 11 0 11 
6 7 13 and 5 8 13 . 

16 8 24 16 8 24 

In Fisher’s  e x a c t  t e s t ,  w e  add the  probabi l i t ies  of t h e  three t a b l e s  as computed from the  hyper- 

geometric. T h i s  g ives  

1 1 + + 
2! 6! 7! 9! 6! 7! IO! 5 !  8 !  ll! 

8 !  ll! 13! 16! 

24! 

= 0.12833 + 0.02567 + 0.00175 

= 0.15575. 

T h i s  va lue  is regarded as the  s ign i f icance  probability. 
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In Tocher’s modification we compute the  total  probability of a l l  more extreme c a s e s ,  that  i s ,  

0.02567 + 0.00175 = 0.02742 

If the numbers 0.15575 and 0.02742 are both below the  s t a t ed  s igni f icance  level  0 .05 ,  reject  the 

hypothesis.  If they are both above 0.05, accep t  it. If one  i s  above and one  is below, a s  in th i s  

example, w e  ca l cu la t e  

0.05 - 0.02742 

0.12833 
= 0.17595 . 

Now, draw a random number between 0 and 1. If t h i s  number is less than 0.27595, we reject;  i f  

greater, we accept .  (Rationale:  If H ,  i s  rejected only when the  two most  extreme cases occur,  

the significance leve l  i s  0.02742. The  third most extreme c a s e ,  represented by the da t a ,  occurs 

with probability 0.12833. Tocher’s modification dec la re s  a s  “s igni f icant”  a fraction, 0.17595 of 

the c a s e s  in which the observed da ta  are  encountered.) The  Pearson  chi-square s t a t i s t i c  for 

t hese  da t a  is X 2  = 2.098. Inasmuch as  the square  root of a chi-square variable with one  degree  

of freedom is distributed a s  a normal variable with zero mean and uni t  var iance ,  the probability is 

P ( x 2  => 2.098) = 2 P ( x  2 1.448) = 0.148. For comparison with the  exac t  procedure w e  must con- 

s ider  only one ta i l  of the  normal distribution, s o  that  P(x 2 1.448) = 0.074. 

6.1 Yates’ Correction for Continuity 

T h e  distribution of the Pearson  X 2  s t a t i s t i c  is discontinuous.  When a l l  expec ta t ions  a r e  

smal l  the chi-square approximation may be poor. T h e  correction proposed by Yates  (1934) 

amounts to reading the  chi-square table not a t  X: but a t  a point between Xi and the value of X 2  

immediately below X i  in the d i sc re t e  series of va lues .  The  formula for the  2 x 2 tab le  is well  

known and need not be repeated here. If i t  is applied to the da t a  in Tab le  2 ,  the resu l t ing  s t a -  

t is t ic  i s  Xz = 1.028, and the  probability i s  P ( x 2  2 1.028) = 2 P ( x  > 1.014) = 0.310. T h e  corre- 

sponding probability for the one-tailed t e s t  is P(x > 1.014) = 0.155. The following table gives 

comparable probabili t ies for a one-tailed t e s t  of the d a t a  in Table  2: 

Test  One-Tai led Probabi I i ty 

F i s h e r  e x a c t  

X 2  uncorrected 

Xf corrected 

0.156 

0.074 

0.155 

Caution: If a number of X 2  va lues ,  each  with one degree  of freedom, are added to form a total  X 2 ,  

the  individual va lues  should not be  corrected for continuity. The  total X 2  may be corrected,  after 

i t  h a s  been obtained, by a procedure given by Cochran (1952). Also see Pas te rnack  (1966) and 

Grizzle (1967). 
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6.2 Cochran’s Recommendations Concerning Analyses of Two-way Tables 

1. T h e  2 x 2 table:  F o r  N < 20, or 20 < N < 40 and t h e  s m a l l e s t  expectat ion l e s s  than 5 ,  u s e  

Fisher’s  e x a c t  tes t .  For N > 40 u s e  X 2 ,  corrected for continuity i f  t h e  s m a l l e s t  expec ta t ion  

i s  l e s s  than 5. 
2. T a b l e s  with degrees  of freedom between 2 and 60 and all expec ta t ions  less than 5: For  smal l  

N ,  u s e  F isher ’s  e x a c t  tes t .  Otherwise u s e  X 2 ,  cons ider ing  whether the  cont inui ty  correction 

is needed.  

3. T a b l e s  with degrees  of freedom more than 60 and all expec ta t ions  l e s s  than 5: Try to  obtain 

the e x a c t  mean and var iance of X ’, and u s e  the normal approximation to  the  e x a c t  distribution. 

See H.aldane (1937). 

4. T a b l e s  with more than one degree of freedom and some expectat ions greater than 5: U s e  X 2  

uncorrected for continuity. 

5. Continuous data:  To t e s t  goodness  of f i t ,  group the d a t a ,  u s i n g  enough cells t o  k e e p  the ex- 

pec ta t ions  down t o  1 2  per c e l l  for N = 200, 20 per  cell for N = 400, 30 per  cell for N = 1000. 

P o o l  a t  the  t a i l s  so  t h a t  t h e  minimum expectat ion i s  n o  smaller  than 1. 

7. A L T E R N A T I V E  ANALYSES T O  THE T R A D I T I O N A L  CHI -SQUARE 

In  recent  y e a r s  many authors  h a v e  d i s c u s s e d  a n a l y s e s  of cont ingency t a b l e s  other than t h e  

traditional Pearson  chi-square ana lys i s .  T h e s e  a l te rna t ives  fa l l  into two major ca tegor ies ,  

namely, (1) the  logi t  transformation in  conjunction with s tandard l e a s t  s q u a r e s  and (2) the  l ikel i -  

hood rat io  tes t .  

7.1 The  Logi t  Transformation 

This, method w a s  proposed by Woolf (1955) and elaborated on by P l a c k e t t  (1962), Gart (1962), 

Goodman (1963, 1964), Lindley (1964), and others .  I t  may b e  demonstrated for t h e  2 x s table .  

L e t  n i j  be  the  observat ion i n  the ith row and j th  column of a 2 x s cont ingency tab le ,  where  

i = 1, 2 and j = 1, 2 ,  ..., s. If we  take 

then 

S 

X 2  = U j ( Z j  - a2 
j =  1 

(7.1.1) 

is dis t r ibuted asymptot ical ly  as x 2  with s - 1 degrees  of freedom, where 
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(7.1.2) 

j =  1 

Equation (7.1.1) may a l s o  be  written as  

S 

x2 = 1 u.z? - 
I 1  

u .  
I 

j =  1 
(7.1.3) 

Example: T h e  d a t a  in Table  3 a r e  taken from Table  9.54 on page  292 of 0. L. Davies’  text 

Statistical Methods in Research and Production. “ T h e s e  d a t a  show t h e  number of t imes  pis ton 

rings have  failed in e a c h  l e g  (North, Centre ,  South) of two groups of compressors  a t  a n  I.C.I. 

factory. T h e  compressors  are apparently ident ical  and a r e  oriented the  same way in  the  Compres- 

sor House.  

the f i rs t  s t a g e  of compression,  and t h e  upper cylinder with the second s tage .  T h e  South l e g  i s ,  

in  every  case adjacent  t o  t h e  drive.” I s  the probability of failure of a pis ton ring independent  of 

Each  l e g  c o n s i s t s  of two cy l inders  arranged vertically: the lower cyl inder  d e a l s  with 

compressors  and locat ion i n  compressor  (leg)? 

Table  3. Fai lure of P is ton  Rings by Locat ion  and Compressors  

Compressor  

Group North L e g  Cen te r  L e g  South L e g  Tota l  

1 

2 

17  

36  

1 7  

24 

Total  53  4 1  

12 46 

60 120 

72 166 

- - 

Arithmetic necessary  for ca lcu la t ing  logi t  t e s t  s t a t i s t i c s :  

17 17 12 
x =-‘ 

60 . 1 36’ x 2  =- 

z 1  = -0.75031; z 2  = -0.34494; z3 = -1.60943. 

1 1 1  1 1 1  1 1 1  

u1  17 36 u 2 17 24 u 3  12 60 
- = _  +-= 0.08660;- =-+-= 0.10049;--=-+-=0.1 . 

u1  = 11.54736; u2 = 9.95124; u3 = 10.0 . 
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.3 3 3 

ui = 31.499; ujzi = -28.191; E u . 2  = 33.587 
I 1  

j = :  1 j =  1 j =  1 

Logit X 2  = 8.357; Pea r son  X 2  = 8.760 . 

7.2 The Likelihood-Ratio Test 

T h i s  t e s t ,  proposed by Wilks (1935), h a s  been invest igated by Woolf (1957), Chakravarti  and 

Rao (1959), and Kullback, Kupperman, and Ku (1962). In their 1962 papers ,  Kullback, Kupperman, 

and Ku resort  t o  a n  information theory approach and def ine a minimum discrimination information 

s t a t i s t i c  (M. D. I. S.) with the  following pr opet t ies :  

1. distributed asymptotically a s  chi-square under t h e  null  hypothesis  and a s  noncentral  chi-square 

under the al ternat ive hypo thes i s ,  with appropriate deg rees  of freedom and noncentrali ty 

p ar ame t e r  , 

2. addi t ivi ty ,  

3. convexity.  
A 

T h i s  s t a t i s t i c  is 21 = -2 In A,  where A i s  the l ikelihood ratio. Fo r  the r x s contingency table ,  

A ' '  
I S 

21 = ,E, 2 n i j  In nii + 2N In N - 2ni, In ni. - 2n.i In n , i .  
1 = 1  I=] I =  1 j =  1 

(7.2.1) 

If th i s  appea r s  to b e  a formidable a l ternat ive to the  Pearson X 2  s t a t i s t i c ,  the authors give u s  

reassurance by present ing tab les  of 2y  In y for va lues  of y from 1 to 10,000. 

Applying the l ikelihood rat io  approach to the data  in Tab le  3 y ie lds  

2 3  2 2ni j  In n i j  = 1154.177; 2 N  In N = 1697.180 ; 
i = 1  j = 1  

2 3 

2ni. In ni. = 1501.233; 2n.i In n.i = 1341.204 . 
I= 1 j =  1 

The three comparable t e s t  s t a t i s t i c s  a r e  

A 

21 = 8.920,  

logit  X 2  = 8 . 3 5 7 ,  

Pea r son  X 2  = 8 .760 .  

In e a c h  c a s e  t h e  probability of observing a value of chi-square greater than X 2  is P(xz > x 2 )  < 
0.02. If w e  were t e s t i n g  a t  a 5% s igni f icance  leve l ,  w e  would re jec t  the hypothesis  of independ- 

e n c e  between compressor groups and locat ion of  the leg. Tha t  is t o  s a y ,  u s ing  any of t h e s e  pro- 

cedures  w e  would conclude tha t  the  performance of the two compressor groups is not  the s a m e  a t  

all the legs.  
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8. PARTITIONING OF CONTINGENCY TABLES 

Assume,  for one  moment, tha t  in the piston-ring example there w a s  reason t o  bel ieve,  prior to  

experimentation, that  the performance of the  compressor  groups is t h e  same a t  the north and center  

l e g  but  different a t  the south  leg. Can we t e s t  t h e s e  hypotheses  u s i n g  the same s e t  of data? 

T h i s  ques t ion  often a r i s e s  in  the ana lys i s  of var iance,  where too ls  a re  ava i lab le  for partition- 

ing  the sum of s q u a r e s  a s s o c i a t e d  with the t e s t  of a hypothesis  concerning t h e  equal i ty  of s means 

into a t  most  s - 1 orthogonal sums of squares .  With e a c h  of the  s - 1 s u m s  of s q u a r e s  so derived 

a hypothesis  may be  tes ted .  Moreover, the total  sum of s q u a r e s  with s - 1 degrees  of freedom is 

equal  t o  the sum of a l l  i t s  orthogonal par ts .  

Applicat ions of an analogous technique to cont ingency t a b l e s  a r e  given by Lancas te r  (1949), 

Irwin (1949), Kimball (1954), and Kastenbaum (1960). T h e  t e s t  s t a t i s t i c  proposed by t h e s e  authors  

i s  the s tandard P e a r s o n  X’. Kullback, Kupperman, and Ku (1962) show how the same addi t ive  

par t i t ions may be tes ted  with the minimum discrimination information s t a t i s t i c .  

Example: Par t i t ion of d a t a  in  Table  3. 

Pearson  X’: 

Compressor Group North L e g  Center L e g  T o t a l  

1 

2 

Total  

17  

36 

53 

17  34 

24 60 

4 1  94  

North and 

Center L e g s  South L e g  T o t a l  Compressor Group 

1 

2 

Total  

34 

60 

94  

12  46 

60  120  

72 166 

(166)* [(17)‘ (17)’ (34)’l x‘ x +--- = 1.017 ( p  > 0.3) , 
(46)(120) 53 41 94 

(166)’ [(34)’ (12)‘ (46)’j x’ = -+--- = 7.743 ( p  < 0.01) , 
(46)(120) 94 72 166 

1.017 + 7.743 = 8.760 = P e a r s o n ’ s  X‘ . 

M. D. I. S. : 

h h 
21, = 0.879 ( p  > 0.3), 21, = 8.041 ( p  < O . O l ) ,  

0.879 + 8.041 = 8.920 = 2?. 
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In e a c h  case we would conclude  that  performance of t h e  compressor  groups w a s  the s a m e  for the 

north and center  l e g s  but different a t  the south leg. 

Alternatively, the cont ingency table  may be partitioned i n t o  the  same component par ts ,  with 

the s tandard P e a r s o n  X 2  a n a l y s i s  on  e a c h  part. T h i s  procedure will not  resu l t  in  additive X 2 .  

However, th i s  approximate partition is adequate  for most  t e s t s  of s ign i f icance .  Moreover, i t  h a s  

not been shown tha t  t h e  addi t ive  partition is really preferable  to t h e  approximate partition in small 

samples .  T h i s  property of addi t ive par t i t ions,  in fac t ,  may be  the  principal motivation for much of 

the work on cont ingency t a b l e s  which h a s  appeared in t h e  l i terature  in  the  p a s t  15 years .  Con- 

s ider  only tha t  s t a t i s t i c i a n s  have  known for a long  time about  a random variable whose  distribu- 

tion may be  spec i f ied  by the chi-square probability dens i ty  funct ion,  and that  the  sum of s u c h  

random variables  i s  a l s o  dis t r ibuted as chi-square.  Add t o  th i s  the knowledge that  a t e s t  s t a t i s t i c  

e x i s t s  which i s ,  a t  l e a s t  asymptot ical ly ,  dis t r ibuted a s  chi-square.  Immediately you s t imula te  t h e  

des i re  to add things up or to s e p a r a t e  things i n t o  their component par ts .  

9 .  CONTINGENCY TABLES OF MORE THAN TWO DIMENSIONS 

Except  for some brief re ferences  in  two or three s t a t i s t i c a l  t ex ts ,  the s u b j e c t  of multidimen- 

s iona l  cont ingency tab les  w a s  a l l  but ignored until 15 y e a r s  ago. Indeed,  in  h i s  tex t  which w a s  

published in  1954, 0. L. D a v i e s  r a i s e s  and summarily d i s m i s s e s  t h e  three-dimensional case a s  

follows: "Such examples  may be  t reated by  an extension of the methods already explained which 

the reader  will have  no diff icul ty  in  making if he  h a s  understood the pr inciples .  " Unfortunately, 

things a re  not as s imple  a s  D a v i e s  i n d i c a t e s  they might be.  

T h e  t ransi t ion from two dimensions t o  three dimensions n e c e s s i t a t e s  a full understanding of 

the underlying s t ruc ture  of the da ta ,  a clear and c o n c i s e  idea  of what  null hypotheses  a re  to b e  

tes ted ,  and knowledge of t h e  appropriate es t imators  a s s o c i a t e d  with t h e s e  nul l  hypotheses  in  

order to c a l c u l a t e  t h e  corresponding t e s t  s ta t i s t ic .  Contrary to Davies '  bel ief ,  new conceptual  

problems a r e  posed i n  going from two-way to three-way tables .  

from three- to higher-dimensional cont ingency t a b l e s  d o e s  not p o s e  any new problems. 

On the  other hand,  the  extension 

T h e  iheory of multidimensional cont ingency t a b l e s  is presented i n  the  many references c i ted  

I s h a l l  briefly present  some of t h e  highl ights  and ind ica te  some of the  m o r e  in the bibliography. 

important references.  Notation: 

L e t  l l i j k  denote  the  observed frequency and p . .  the probability of having  an observat ion in 

ce l l  ( i j k )  of a three-way tab le ,  where i = 1, 2, ..., r d e s i g n a t e s  TOWS, j = 1, 2, ..., s d e s i g n a t e s  

columns, and k = 1, 2 ,  ..., t d e s i g n a t e s  layers .  Also,  l e t  the  marginal f requencies  b e  denoted by 

11 k 

S r t  r t r t 



35 

r s t  

For a s ingle  multinomial sample of s i z e  N ,  corresponding summations over the  p . .  

denoted,  and 

a r e  similarly 
Ilk 

9.1 Hypotheses Concerning the Two-way Marginals of a Three-way Tab le  

P a i r w i s e  independence: 

H,:  p . .  = p .  p . (independence of I and J )  , (9.1.1) 
I ] .  I . .  .]. 

H o :  

H,: p ,  jk  = p. j .  p , .  

Pi.k - pi.. p . , k  ( independence of I and K )  , 

( independence of  J and K )  

9.2 Hypotheses Which Have No Analog in a Two-way Tab le  

Condit ional  independence (par t ia l  independence): 

Pijk Pi.k p.jk Pi.k p.jk 

p..k p. .k '..k p. .k 
> Or Pijk = H,: __ --. - - 

(9.1.2) 

(9.1.3) 

(9.2.1) 

Equation (9.2.1) i s  t h e  hypothes is  of condi t ional  independence of I and J given K .  T h i s  condition 

is analogous to the hypothes is  of zero  par t ia l  correlation between I andJ i n  a three-variate normal 

population. It d o e s  not  imply the independence of I and K or of J and K .  However, i f  I is inde- 

pendent  of K and J i s  independent  of K ,  and if (9.2.1) a l s o  holds ,  w e  have the condition of mutual 

independence: 

Mutual independence: 

H ~ :  Pijk = pi.. p.j. p . .k  ' 

Multiple independence: 

(9.2.2) 

H,: p . .  = p . .  p (independence of K and I J )  . (9.2.3) 1]k I ] .  . .k  

T h i s  condition is analogous to the hypothesis  of zero multiple correlation in  a three-variate normal 

population. It implies  independence between I and K and between J and K .  The converse ,  how- 
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ever ,  i s  not true. T h a t  is to s a y ,  (9.2.3) implies  (9.1.2) and (9.1.3), bu t  (9.1.2) and (9.1.3) d o  not 

imply (9.2.3). 

I t  w a s  a t  th i s  point  in l a t e  1954 tha t  Professor  Roy and I found a need for addi t ional  theoreti- 

cal concepts .  For, in  t h e  s p e c i a l  case of the multivariate normal population, not  only d o e s  zero 

multiple correlat ion imply zero  correlation between all  pa i r s  of var iables ,  bu t  a l s o  conversely.  

Obviously t h i s  did not  hold for a three-variate cont ingency table. Therefore  the  quest ion we posed  

to o u r s e l v e s  w a s ,  “What s e t  of condi t ions e x i s t s  which,  when superimposed on  the condi t ions of 

independence between p a i r s  of var iables ,  will joint ly  yield t h e  condition of multiple independence?” 

T h e  answer  t o  t h i s  quest ion was:  

“No three-factor interaction”: 

hro: P r s t  P i j t  P i sk  p r j k  = P i s t  P r s k  Pijk  * ( 9.2.4) 

Equation (9.2.4) is a general izat ion of t h e  condition proposed by Bar t le t t  in 1935 for the 2 x 2 x 2 

and t h e  2 x 2 x 3 tab les .  

There h a s  been  cons iderable  d i s c u s s i o n  i n  t h e  l i terature  of the p a s t  ten y e a r s  concerning t h i s  

hypothesis .  For a summary of the  theory and philosophy concerning some of t h e  hypotheses  which 

may be  tes ted  in  a three-way table ,  t h e  reader  i s  referred to t h e  paper  by B. N.  Lewis  (1962). T h i s  

paper  a l s o  g ives  techniques  for a n a l y s i s  of d a t a  in  multidimensional cont ingency tab les .  In addi- 

tion the recent  work of Bhapkar  and Koch (1961, 1965,  1966) s u g g e s t s  that  other  hypotheses  might 

be more re levant  and appropriate  for cer ta in  t y p e s  of cont ingency tab les .  F o r  de ta i led  reading on 

the subjcect of multiway cont ingency t a b l e s  see Bart le t t  (1935), Norton (1945), Simpson (1951), 

L a n c a s t e r  (1951), Roy and Kastenbaum (1956), Roy and Mitra (1956), Kastenbaum and Lamphiear  

(1959), Lancaster  (1960), Darroch (1962), Kullback, Kupperman, and Ku (1962), P l a c k e t t  (1962), 

Birch (1963), Goodman (1963), and Goodman (1964, Ann. Math. Stat is t . ;  1964,  J. Am.  Sta t i s t .  

Assoc . ) .  

analyz ing  d a t a  in  multidimensional cont ingency t a b l e s ,  see the  paper by P. N.  R i e s  and Harry 

Smith (1963). 

For a numerical demonstration of t h e  techniques  (other than higher-order interact ions)  of 

Some of the d i f f icu l t ies  which 0. L. Davies  c h o s e  t o  d i s m i s s  i n  h i s  s ta tement  which I quoted 

ear l ier  may be  pointed up i n  remarks s u c h  a s  th is  o n e ,  extracted from Goodman (1964, J .  Am. 

Stat is t .  Assoc.): “In 1951 Lancas te r  s u g g e s t e d ,  on heur i s t ic  grounds, a rather s imple procedure 

for t e s t i n g  the hypothes is  of zero three-factor interact ion.  Unfortunately, the  dis t r ibut ion of the  

t e s t  s t a t i s t i c  s u g g e s t e d  by Lancas te r  is not  necessar i ly  dis t r ibuted as supposed ( i .e . ,  as chi- 

square  asymptot ical ly)  . . . . Lancas te r ’s  s ta tement  which h a s  been quoted by Kendall and Stuart 

(Vol. 2 ,  1961,  p. 584) and by Snedecor (1958) tha t  t h i s  t e s t  and Bart le t t ’s  a r e  “asymptot ical ly  

equal”  i s  i n  error.” 
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10. SPECIAL TOPICS IN CONTINGENCY TABLES 

10.1 Missing and “Mixed-Up” Values 

T h e  problem of  contingency tab les  with miss ing  or misc lass i f ied  va lues  h a s  been considered 

by B r o s s  (1954) and Watson (1956). In h i s  paper, Watson presents  an i terat ive procedure, s imilar  

to  the “missing-plot” technique i n  ana lys i s  of var iance,  for es t imat ing  the miss ing  va lues  in  t h e  

contingency tab le  prior t o  performing the s tandard Pearson  X 2  t es t .  Kastenbaum (1958) demon- 

s t ra ted  that  expl ic i t  a lgebraic  formulas c a n  b e  found for cer ta in  s e t s  of miss ing  va lues  in con-  

tingency tables .  T h i s  problem h a s  been s tudied,  e laborated on, and generalized by Goodman 

(1968), Bishop (1%8), Bishop and Fienberg (1968), and Causs inus  (1964, 1965,  1966). Other re- 

c e n t  invest igat ions in  th i s  a r e a  are  Asano (1965) and Mote and Anderson (1965). 

10.2 Consumer Preference 

An interest ing s t ructure  for cont ingency tab les  is d i s c u s s e d  by Anderson (1959) i n  a problem 

involving consumer preference s tudies .  One lot  of e a c h  of th ree  var ie t ies  (v l ,  v 2 ,  vg)  of s n a p  

beans  w a s  displayed in re ta i l  s tores ,  and each of 123 consumers  w a s  asked  to  rank t h e  beans  

according to  f i rs t ,  second,  and third choices .  T h e  ac tua l  d a t a  a re  given i n  T a b l e  4. T h e  

question i s ,  “Does the usua l  X 2  t e s t  of independence of ranks and var ie t ies  with four degrees  of 

freedom apply?” T h a t  i s ,  d o e s  e a c h  variety h a v e  the  s a m e  chance  (5,) of receiving a given rank, 

regard less  of rank? T h i s  is not  t h e  usua l  problem of a contingency tab le  with fixed border to ta l s ,  

b e c a u s e  repeated sampling i s  not  a random rearrangement of 3 x 1 2 3  i tems subjec t  to border re- 

s t r ic t ions.  F o r  i = 1, 2, ..., r var ie t ies  and j = 1, 2,  ..., r ranks,  Anderson s h o w s  that  the appro- 

priate t e s t  s t a t i s t i c  for n consumers  is 

which is dis t r ibuted asymptotically as  x’ with (r - 1)‘ degrees  of freedom. 

Table  4.  Consumer Rankings of  Three Var ie t ies  o f  Snap Beans 

Rank 2 R a n k  3 T o t a l  Variety Rank 1 

V 42 64 17 123 

3 1  1 6  76 123 
v 2  

50  43 30 123 
v 3  

Total  123 123 123 369 

( 10.2.1) 



10.3 Markov Chains 

T h e  s t ructures  for cont ingency tab les  which we have d i s c u s s e d  involve some assumpt ions  of 

independence of s u c c e s s i v e  sample  observat ions.  There  frequently a r i s e  prac t ica l  s i t u a t i o n s  in  

which t h e s e  assumpt ions  are not  valid. One class of s u c h  s i tua t ions  involves  dependent  observa-  

t ions resul t ing from rea l iza t ions  of s t a t e s  of a s imple  s ta t ionary Markov cha in  (Bil l ingsley,  1961). 

In th i s  s i tua t ion  the  matrix of t ransi t ion probabi l i t ies  i s  given by  a s t o c h a s t i c  matrix which i s  

square  and whose  row to ta l s  add to  1. The  corresponding frequencies  form a square  contingency 

table. Analyses  of s u c h  d a t a ,  including t e s t s  of hypotheses  of a spec i f ied  matrix of t ransi t ion 

probabi l i t ies ,  Markovity, and homogeneity of s e v e r a l  rea l iza t ions  of Markov c h a i n s  a r e  given by 

Kullback, Kupperman, and Ku (1962). T e s t s  auxi l iary t o  x 2  in  Markov c h a i n s  a r e  given by Gold 

(1 96 3). 

10.4 Measures of Association 

T h e  two a r e a s  of s tudy  covered by the broad t i t l e  of “ s t a t i s t i c a l  inference” are hypothes is  

tes t ing  and est imat ion.  I have  devoted a l l  my time to  the former and none to the la t ter .  In con- 

tingency tab les  the lack of independence should  give some indicat ion of the degree  of assoc ia t ion .  

Measures of assoc ia t ion  in contingency tab les  have  been  proposed for a t  l e a s t  as  long as t e s t s  of 

hypotheses .  Indeed they have  been used  and abused  rather widely in  the  social s c i e n c e s .  

I s h a l l  not go into th i s  a r e a  in  detai l .  T h e  s e r i e s  of papers  by Kruskal  and Goodman (1. Am.  

Stat is t .  Assoc. 1954,  1959,  1963) on measures  of assoc ia t ion  for c r o s s  c lass i f ica t ion  and the 

recent  papers  by Goodman (1963) on interact ions in  multidimensional contingency tab les  provide 

an exce l len t  his tory and summary of the  subjec t .  T h e  most  recent  paper on t h i s  s u b j e c t  is by 

Mosteller (1968). 

10.5 Bayesian Analysis 

Fina l ly ,  as if no t  t o  b e  outdone, cont ingency t a b l e s  have  most recent ly  been  given considera-  

tion by the  Bayes ian  s t a t i s t i c i a n s .  Lindley (1964) and  Good (1965) descr ibe  how d a t a  from a 

multinomial dis t r ibut ion and ,  in  par t icular ,  d a t a  in  the form of a contingency table  may be  s tudied  

us ing  a !prior dis t r ibut ion of parameters  and e x p r e s s i n g  the resu l t s  in the  form of a poster ior  dis-  

tribution of the parameters .  Gart  (1966) s h o w s  how a Bayes ian  argument may b e  u s e d  for choosing 

a c r i t i ca l  region for the  e x a c t  t e s t .  



39 

RECENT BIBLIOGRAPHY ON CONTINGENCY TABLES 

Compiled by 
Marvin A. Kastenbaum 

1968 

Berkson, J., “Application of Minimum Logit x 2  Est imate  t o  a Problem of Grizzle  with a Notation 

Bhapkar, V. P . ,  and Gary G. Koch, “Hypotheses  of ‘No Interaction’ in  Multidimensional Contin- 

on the Problem of No Interact ion,”  Biometrics 24(1), 75-96. 

gency T a b l e s , ”  Technometrics 10(1), 107-23. 

Bishop,  Yvonne, and S. Fienberg,  “Incomplete Two-Dimensional Contingency T a b l e s , ”  unpub- 
l ished manuscript. 

Bishop,  Yvonne, “ F u l l  Contingency T a b l e s ,  L o g i t s  and Split Contingency T a b l e s , ”  unpublished 
manuscript. 

Fienberg, S. E., and P a u l  W. Holland, “Empty C e l l s  in  Contingency T a b l e s , ”  unpublished manu- 
scr ip t .  

Goodman, L e o  A . ,  ‘*Independence, Quasi-Independence, and Interact ions i n  Contingency T a b l e s  
With or Without Missing Values ,”  unpublished manuscript. 

Hamdan, M. A., “On t h e  Structure of the Tetrachoric  Ser ies ,”  Biometrika 55(1), 261-62. 

Hamdan, M. A., “Optimum Choice of C l a s s e s  for Contingency T a b l e s , ”  J .  Am. Statist. Assoc.  
63(321), 291-97. 

Ireland, C. T. ,  and S. Kullback, “Contingency T a b l e s  with Given Marginals,” Biometrika 55(1), 
179- 88. 

Mosteller, Frederick,  “Associat ion and Est imat ion in Contingency T a b l e s , ”  J .  Am. Statist. 
Assoc.  63(321), 1-28. 

1967 

Assakul ,  K., and C. H. Proctor ,  “ T e s t i n g  Independence i n  Two Way Contingency T a b l e s  with 

Chernoff, Herman, “Degrees of Freedom for Chi-Square,” Technometrics 9(3), 489-90. 

Cox, D. R., and E. Lauh,  “A Note on the Graphical Analysis  of Multidimensional Contingency 

Grizzle ,  James E., “Continuity Correction in  t h e  X Z - T e s t  for 2 x 2 T a b l e s , ”  Am. Statistician 

Ives ,  K. H., and  J. D. Simmons, “A Correlation Measure for Nominal Data ,”  Am. Statistician 

Mardia, K. V., “Some Contributions to Contingency-Type Bivariate  Distr ibut ions,”  Biometrika 

Data Subject  to  Misclassif icat ion,”  Psychometrika 32(1), 67-76. 

T a b l e s , ”  Technometrics 9(3), 481-88. 

21(4), 28-32. 

21(5), 16-17. 

54, 235-50. 

Naylor, Alfred F . ,  “Small Sample Considerat ions in  Combining 2 x 2 T a b l e s , ”  Biometrics 23(2), 

Rudolph, G. J., “A Quasi-Multinomial T y p e  Contingency Table ,”  S. African Statist. J .  1, 59-65. 

349-56. 



40 

1966 

Armitage, P . ,  “ T h e  Chi-square T e s t  for Heterogeneity of Proportions After Adjustment for Strati-  
f ication,” J .  Roy. S ta t i s t .  SOC. B 28(1), 150-63. 

Bennett ,  B. M., and C. Horst ,  Supplement to Tab les  for Tes t ing  Significance in a 2 x 2 Contin- 
gency  Table,  Cambridge University Press. 

Bhapkar, V. P., “ A  Note on t h e  Equivalence of T w o  T e s t  Criteria for Hypotheses  in  Categorical  
Data ,”  J .  Am. S ta t i s t .  Assoc.  61(313), 228-35. 

Bhat,  B. R.,  and S. R. Kularni, “Lamp T e s t s  of Linear and Loglinear Hypotheses  in  Multinomial 
Experiments ,”  J .  Am. Stat is t .  Assoc. 61(313), 236-45. 

31(1) ,  67-73. 
Cas te l lan ,  N.  J . ,  “On the Estimation of the Tetrachoric Correlation Coefficient,” Psychometr ika 

Causs inus ,  H., “Remarks on Estimation Problems and Tes t ing  in  Truncated Contingency T a b l e s , ”  
Compt. Rend.  262, 293-95. 

Causs inus ,  H., “On the  Analys is  of Certain Contingency Tab les , ”  Compt. Rend. 262, 551-54. 

Chapman, D. G., and R o s a  C. Meng, “ T h e  Power of Chi-square T e s t s  for Contingency T a b l e s , ”  
J .  Am. S ta t i s t .  Assoc .  61(316), 967-74. 

Cox, D. E.?., “A Simple Example of a Comparison Involving Quantal Data ,”  Biometrika 53, 215-20. 

Gart, J .  J . ,  “Alternative Analyses  of Contingency T a b l e s , ”  J .  Roy. Stat is t .  SOC. B 28(1), 
164-’.79. 

Lancas te r ,  H. O., “Forerunners  of the Pearson  x 2 , ”  Australian J .  Stat is t .  8, 117-26. 

Mantel, N . ,  “Models for Complex Contingency T a b l e s  and Polychotomous Dosage Response  
Curves,”  Biometrics 22(1), 83-95. 

Pas te rnack ,  Bernard S., and Nathan Mantel, “A Deficiency in the Summation of Chi Procedure ,”  
Biometrics 22(2), 407-8. 

Quensel,  C. E.,  “On T e s t s  of Independence and Evaluation of the Magnitude of the Dependence 
Between Two Categorized Data ,”  Skand. Aktuarietidskr. ,  Haft. 3-4, 199-217. 

Slakter, R4. J., “Comparative Validity of the  Chi-square and Two Modified Chi-square Goodness-  
of-Fii T e s t s  for Small but Equal Expected F requenc ie s , ”  Biometrika 53, 619-22. 

Weiler, H.,  “A Coeff ic ien t  Measuring the Goodness  of F i t , ”  Technometr ics  8(2), 327-34. 

1965 

Asano, C.,  “On Es t imat ing  Multinomial Probabi l i t i es  by Pool ing  Incomplete Samples ,”  Ann. 
Inst .  Stat is t .  Math. (Tokyo) 17(1), 1. 

Bhapkar, V. P., and G. G. Koch, “On the Hypothes is  of ‘No-Interaction’ in  Three-way Contingency 
Tab les , ”  Ins t i t u t e  of S t a t i s t i c s ,  Vniv. of North Carolina,  Mimeo Se r i e s  No. 440. 

Bhapkar, V. P., and G. G. Koch, “Hypotheses  of No Interaction in  Four-Dimensional Contingency 
T a b l e s , ”  Inst i tute  of S ta t i s t i c s ,  Vniv. of North Carolina,  Mimeo Se r i e s  No. 449. 

Birch, M. W. ,  “ T h e  Detection of Pa r t i a l  Association 11: T h e  General C a s e , ”  J .  Roy. Stat is t .  Soc. 
B 27, 111-23. 

Causs inus ,  H.,  “On Truncated Contingency T a b l e s , ”  Compt. Rend. 261, 5303-6. 

F l e i s s ,  J .  L., “Es t imat ing  the Accuracy of Dichotomous Judgments ,”  Psychometr ika 30(4), 469-79. 

Good, I. J . ,  The Es t imat ion  of Probabili t ies;  an E s s a y  on Modern Bayes ian  Methods, MIT Research  
Monograph No. 30. 



41 

Haynam, G. E. ,  and F. C. Leone ,  “Analys is  of Categor ica l  Data ,”  Biometrika 52, 654-60. 

Katti ,  S. K., and A. N. Sas t ry ,  “Biological Examples of Small Expected Frequencies  and the Chi- 

Lancas te r ,  H. O., and T.  A. I. Brown, “Sizes  of the x2  T e s t  in  Symmetrical Multinomials,” 

Square T e s t ,  ” Biometrics 21(1), 49-54. 

Australian J .  Stat is t .  7, 40-44. 

Lewontin, R. C., and J. F e l s e n s t e i n ,  “ T h e  Robus tness  of Homogeneity T e s t s  in 2 x n Tab les , ”  
Biometrics 21(1), 19-33. 

Mote, V. L. ,  and R. L. Anderson, “An Investigation of the Effect of Misclassification on the  
Proper t ies  of X 2 - T e s t s  in the Analys is  of Categorical  Data ,”  Biometrika 52. 

21(1), 86-98. 
Radhakrishna, S., “Combination of R e s u l t s  from Several 2 x 2 Contingency Tab les ,  ” Biometrics 

Sachs ,  L., “The  Comparison of Two  Percentages  - Independence T e s t s  for Multifold Tab les , ”  
Biometrische 2. 7, 55-60. 

Slakter, M. J . ,  “A Comparison of the  Pea r son  Chi-square and Kolmogorov Goodness-of-Fit T e s t s  
with Respec t  to Val id i ty ,”  J .  Am. Stat is t .  Assoc .  60, 854-58. 

Watson, G. S., “Some Bayes ian  Methods Related to x’,” BUZZ. Znst. Intern. Stat is t .  41, book 1, 
64-76. 

1964 

Allison, Harry E . ,  “Computational Forms for Chi-square,” Am. Stat is t ic ian 18(1), 17-18. 

Bennett ,  B. M., and E. Nakamura, “Tables  for Tes t ing  Significance in a 2 x 3 Contingency Tab le , ”  
Technometr ics  6(4), 439-58. 

26, 313-24. 
Birch, M. W. ,  “ T h e  Detection of P a r t i a l  Assoc ia t ion ,  I: The  2 x 2 Case , ”  J .  Roy. Stat is t .  SOC. B 

Bross ,  I. D. J . ,  “Taking  a Covariable into Account,” J .  Am. Stat is t .  Assoc. 59(307), 725-36. 

Causs inus ,  H . ,  “On a Simple Assoc ia t ion  Coefficient for 2 x 2 Tab les ;  Comparison Between 
Several Tab le s  by Means of It ,” Compt. Rend. 259, 3171-74. 

Chew, Victor, “Application of the Negative Binomial Distribution with Probabili ty of Misclassifi-  
ca t ion , ”  Virginia J .  Sci. 15(1), 34-40. 

Goodman, L e o  A.,  “Simultaneous Confidence Limits for Cross-Product  Rat ios  in Contingency 
Tab les , ”  J .  Roy. Stat is t .  SOC. B 26(1), 86-102. 

Goodman, L e o  A., “Simple Methods for Analyzing Three-Factor Interaction in  Contingency T a b l e s  ,” 
J .  Am. S ta t i s t .  Assoc .  59, 319-52. 

Goodman, L e o  A.,  “Interactions in Multidimensional Contingency Tab les ,  ” Ann. Math. Stat is t .  
35(2), 632-46. 

Goodman, L e o  A.,  “Simultaneous Confidence Intervals for Cont ras t s  Among Multinomial Popula- 
t ions ,”  Ann. Math. Stat is t .  35(2), 716-25. 

Harkness,  W. L. ,  and L. Katz,  “Comparison of the Power Funct ions  for the T e s t  of Independence 

Heuze, G., “Equivalence Rela t ions  in  Contingency Tab les , ”  Compt. Rend. 258, 5349-51. 

Lancas te r ,  H. O., and M. A. Hamdan, “Est imat ion of the Correlation Coefficient in  Contingency 

Lindley, D. V. ,  “ T h e  Bayes ian  Analysis of Contingency Tab les , ”  Ann. Math. Stat is t .  35(4), 

in 2 x 2 Contingency T a b l e s , ”  Ann. Math. Stat is t .  35(3), 1115-27. 

T a b l e s  with Poss ib ly  Non-Metrical Charac te rs ,”  Psychometr ika 29, 383-91. 

1622-43. 



42 

P lacke t t ,  R. L., “The  Continuity Correction in 2 x 2 T a b l e s , ”  Biometrika 21,  parts 3 and 4 ,  

Put ter ,  Joseph ,  “ T h e  x 2  Goodness-of-Fit  T e s t  for a C l a s s  of C a s e s  of Dependent Observa t ions ,”  

327-38. 

Biometrika 51, 250-52. 

Romier, G. ,  “Automorphisms and Algebra of Contingency Tab les .  Algebraic Characterization of 
Par t ia l ly  Balanced Block Des igns ,”  Compt. Rend. 258, 5345-48. 

Somers,  R. H., “Simple Measures  of Association for the Tr ip le  Dichotomy,” J .  Roy. Stat is t .  Soc. A 
127(3), 409-15. 

Biometrics 24(4), 832-39. 

S izes  of 10  to  500,” Proc .  Koninkl. Ned. Akad. Wetenschap., Ser. A 67(IV) 441-66. 

Ta l l i s ,  G. M.,  “ T h e  U s e  of Models in the Analysis of Some C l a s s e s  of Contingency Tab les , ”  

Westenberg, J . ,  “Nomograms for Tes t ing  Significance in a 2 x 2 Contingency Tab le  for Sample 

1963 

Bennett ,  B. M. ,  and E. Nakamura, “Tab les  for Tes t ing  Significance in a 2 x 3 Contingency Tab le , ”  
Technometr ics  5(4), 501-11. 

Birch, Fil. W. ,  “Maximum Likelihood in Three-way Contingency T a b l e s , ”  J .  Roy. S t a t i s t .  SOC. B 
25( I.), 220-33. 

Darroch, J. N. ,  and S. D. Silvey, “On T e s t i n g  More Than One Hypothes is ,”  Ann. Math. Stat is t .  
34(2), 555-67. 

Diamond, Earl  L., “ T h e  Limiting Power of Categor ica l  Data  Chi-square T e s t s  Analogous to 
Normal Analys is  of Variance,”  Ann. Mafh. Stat is t .  34(4), 1432-41. 

Edwards, A. W. F . ,  “ T h e  Measure of Association in  a 2 x 2 Tab le , ”  J .  Roy. Stat is t .  SOC. A 126(1), 
10 9- 1 4. 

Feldmati, S. E.,  and E. Klinger,  “Short Cu t  Calculation of the F isher -Yates  Exac t  T e s t , ”  
Psychometr ika 28(3), 289-91. 

F inney ,  D. J., R. L a t s c h a ,  B. M. Bennet t ,  and P. H s u ,  Tab le s  for Tes t ing  Significance in a 2 x 2 

Gold, Ruth A., “ T e s t s  Auxiliary to  x 2  T e s t s  in a Markov Chain ,”  Ann. Math. Stat is t .  34(1), 

Contingency Table, Cambridge University Press. 

56- 74. 

Good, I. J . ,  “Maximum Entropy for Hypothes is  Formulation, Espec ia l ly  for Multidimensional Con- 
t ingency T a b l e s  ,’’ Ann. Math. Stat is t .  34(3), 911-34. 

Goodman, L e o  A.,  “On Methods for Comparing Contingency Tab les , ”  J .  Roy. Stat is t .  SOC. A 
126(1), 94-108. 

SOC. B 25(1), 179-88. 
Goodman, L e o  A.,  “On Placke t t ’ s  T e s t  for Cont ingency Table  In te rac t ions ,”  J .  Roy. S ta t i s t .  

Goodman, L e o  A., and W. H. Kruskal,  “Measures  of Assoc ia t ion  for Cross  Class i f ica t ion  III: 
Approximate Sampling Theory,”  J .  Am. Stat is t .  Assoc .  58,  310-64. 

Ku, H. H., ‘‘A Note on  Contingency T a b l e s  Involving Zero  Frequencies  and the 21  T e s t s , ”  
Teclinornetrics 5( 3),  398-400. 

Mantel, Nathan, “Chi-square T e s t s  with One Degree of Freedom: Extens ions  of the Mantel- 
Haensze l  Procedure,”  J .  Am. Stat is t .  Assoc .  58, 690-700. 

Newel l ,  D. J . ,  “Misc lass i f ica t ion  in 2 x 2 T a b l e s , ”  Biometrics 19(1), 187-88. 

Okamato, Masashi ,  “Chi-square Stat is t ic  B a s e d  on the  Pooled Frequencies  of Several Observa- 
t ions ,”  Biometrika 50, 524-28. 



4 3  

R i e s ,  P. N., and Harry Smith, “The U s e  of Chi-square for Preference T e s t i n g  i n  Multidimensional 

Solari, M. E., “The  Distribution of t h e  Chi-square T e s t  of F i t  S ta t i s t ic ,”  S ta t i s t ic ian  13, 263-67. 

Walsh, John E . ,  “ L o s s  i n  T e s t  Efficiency Due to Misclassif icat ion for 2 x 2 T a b l e s , ”  Biometr ics  

Problems,”  Chem. Eng.  Progr., Symp. Ser. 59(42), 39-43. 

19(1), 158-62. 

1962 

Bennett, B. M., “Note on an E x a c t  Test for the  2 x 2 Contingency T a b l e  Using  the Negat ive 

Daly, C., “A Simple T e s t  for T r e n d s  in a Contingency T a b l e , ”  Biometr ics  18(1), 114-19. 

Darroch, J .  N., “Interact ions in  Multi-Factor Contingency T a b l e s , ”  J .  Roy. Stat is t .  SOC. B 

Fisher ,  Sir Ronald A., “Confidence Limits for a Cross-Product  Rat io ,”  Austral ian J .  Sta t i s t .  

Binomial Model,” Metrika 5, 154-57. 

24(1), 251-63. 

4(1), 41. 

Gart, J .  J . ,  “Approximate Confidence Limi ts  for Rela t ive  R i s k s , ”  J .  Roy. S ta t i s t .  SOC. B 24(2), 
454-63. 

Gart, J .  J.,  “On the  Combination of Relat ive R i s k s , ”  Biometr ics  18(4), 601-10. 

Kincaid, W. M., “ T h e  Combination of 2 x m Contingency T a b l e s , ”  Biometr ics  18(2), 224-28. 

Kullback, S., M. Kupperman, and H .  H. Ku, “An Application of Information Theory t o  the  Analys is  
of Contingency T a b l e s  with a Table  of 2N In N ,  N e 1(1)10,000,” J .  R e s .  Natl. Bur. Std. ,B 
66,  217-43. 

Kullback, S., M. Kupperman, and H. H. Ku, “ T e s t s  for Contingency T a b l e s  and Markov Chains ,”  

L e w i s ,  B. N., “On the Analys is  of Interaction in  Multi-Dimensional Contingency T a b l e s , ”  J .  Roy. 

P l a c k e t t ,  R. L . ,  “A Note on Interactions i n  Contingency T a b l e s , ”  J .  Roy. Stat is t .  SOC. B 24(1), 

Technometr ics  4(4), 573-608. 

Stat is t .  SOC. A 125(1), 88-117. 

162-66. 

T a l l i s ,  G. M., “The Maximum Likelihood Estimation of Correlation from Contingency T a b l e s , ”  
Biometr ics  18(3), 342-53. 

Young, D. H., “Two Alternat ives  to the  Standard x 2  T e s t  of the Hypothesis  of Equal  Cel l  Fre-  
quencies ,”  Biometrika 49 ,  107-16. 

1961 

Berger, Agnes,  “On Comparing In tens i t ies  of Associat ion Between Two Binary Charac te r i s t ics  i n  

Bhapkar, V. P . ,  “Some T e s t s  for Categorical  Data ,”  Ann. Math. Stat is t .  32(1), 72-83. 

Bi l l ingsley,  P . ,  S t a t i s t i c a l  Inference for Markov P r o c e s s e s ,  S ta t i s t ica l  Research  Monographs, 

Two Different Populat ions,”  J .  Am. Stat is t .  Assoc.  56, 889-908. 

vol. 2, T h e  University of Chicago P r e s s .  

l ian J .  Sta t i s t .  3(2), 48-63. 

and  Some Supplementary Data ,”  J .  Roy. Stat is t .  SOC. A 124(3), 412-20. 

Claringbold, P. J . ,  “The  Use  of Orthogonal Polynomials  in t h e  Part i t ion of Chi-square,” Austra-  

Friedlander, D., “A Technique  for Est imat ing a Contingency Table ,  Given the Marginal T o t a l s  

Gregory, G., “Contingency T a b l e s  with a Dependent Class i f ica t ion ,”  Austral ian J .  Sta t i s t .  3(2), 
42-47. 



44 

Grizzle, James  E., “A New Method of T e s t i n g  Hypotheses  and Est imat ing Parameters  for t h e  
Logis t ic  Model,” Biometrics 17(3), 372-85. 

Kendall, M. G., and A. Stuar t ,  The Advanced Theory o f  Statistics, vol. 2, London, England: 
Char les  Griffin and Company. 

Okamato, M., and G. Ishi i ,  “ T e s t  of Independence i n  In t rac lass  2 x 2 T a b l e s , ”  Biometrika 48, 
181-90. 

Rogot, E., “A Note  on Measurement Errors  and Detect ing R e a l  Differences,”  J .  Am. Statist. Assoc.  
56, 314-19. 

Statist. 28, par t  3 ,  259-70. 
Schull, William J. ,  “Some Problems of Analys is  of Multi-Factor T a b l e s , ”  Bull. Inst. Intern. 

Yates ,  I?., “Marginal P e r c e n t a g e s  in  Multiway T a b l e s  of Quantal  D a t a  with Disproportionate Fre-  
quencies ,”  Biometrics 17(1), 1-9. 

1960 

Bennet t ,  B. M., and P. H s u ,  “On the Power Funct ion of the Exac t  T e s t  for t h e  2 x 2 Contingency 

Gridgenian, N. T . ,  “Card-Matching Experiments: a Conspec tus  of Theory,”  J .  Roy. Statist. Soc. A 

Ishi i ,  G., “ In t rac lass  Contingency T a b l e s , ”  Ann. Inst. Statist.  Math. (Tokyo) 12, 161-207; cor- 

Table ,”  Biometrika 47, 393-98. 

123(1), 45-49. 

rect ions,  p. 279. 

Kastenbaum, M. A., “A Note on the Additive Par t i t ion ing  of Chi-square in Contingency T a b l e s , ”  
Biometrics 16(3), 416-22. 

Kupperrnan, Morton, “On Comparing Two Observed Frequency Counts ,”  Appl. Statist.  9(1), 37-42. 

Lancas te r ,  H. O., “On Tests on Independence in  Several  Dimensions,”  J .  Australian Math. SOC. 
1 ,  2141-54. 

Robertson, W. H., “Programming Fisher ’s  E x a c t  Method of Comparing T w o  P e r c e n t a g e s , ”  Tech- 
nonietrics 2(1), 103-7. 

1959 

Anderson, R. L., “ U s e  of Contingency T a b l e s  in the Analysis  of Consumer Preference Studies ,”  
Biometrics 15(4), 582-90. 

Chakravarti,  I. M., a n d  C. R. Rao ,  “ T a b l e s  for Some Small Sample T e s t s  of Signif icance for 
P o i s s o n  Distr ibut ions and 2 x 3 Contingency T a b l e s , ”  Sankhya 21, par t s  3 and 4, 315-26. 

Goodman, L e o  A., and W. H. Kruskal, “Measures of Associat ion for C r o s s  Class i f ica t ion  11: 
Fuxther Discuss ion  and  References ,”  J .  Am. Statist. Assoc.  54, 123-63. 

Haldane,  J .  B. S., “ T h e  Analys is  of Heterogeneity, I,” Sankhya 21, par ts  3 and 4, 209-16. 

Hoyt, C. J . ,  P. R.  Krishnaiah,  and E. P. Torrance ,  “Analys is  of Complex Contingency Data ,”  

Kastenbaum, M. A., and D. E. Lamphiear ,  “Calculat ion of Chi-square to T e s t  the No Three-Factor  

J .  E x p t l .  Educ. 27, 187-94. 

Interact ion Hypothes is ,”  Biometrics 15(1), 107-15. 

Kullback, S., Information Theory and Statistics, Wiley, New York. 

Kupperman, Morton, “A Rapid Signif icance T e s t  for Cont ingency T a b l e s , ”  Biometrics 15(4), 
625-28. 



4 5  

N a s s ,  C. A. G., “ T h e  x 2  T e s t  for Small Expectat ions in  Contingency T a b l e s ,  with Spec ia l  Ref- 

Silvey, S. D., “ T h e  Lagrangian Multiplier T e s t s , ”  Ann. Math. S ta t i s t .  30(2), 389-407. 

Somers, Robert H., “ T h e  Rank Analogue of Product-Moment Par t ia l  Correlation and Regression,  

e rence  to  Accidents  and Absenteeism ,” Biornetrika 46,  365-85. 

with Application to  Manifold, Ordered Contingency T a b l e s , ”  Biometrika 46,  241-46. 

Steyn, H. S., “On X 2 - T e s t s  for Contingency T a b l e s  of Negat ive Binomial Type ,”  Stat is t .  Neer- 
Zandica 13,  433-44. 

Weiner, Irving B., “A Note of the U s e  of Mood’s Likelihood Rat io  T e s t  for Item Analyses  Involv- 
i n g  2 x 2 T a b l e s  with Small Samples ,”  Psychometr ika 24(4), 371-72. 

1958 

Blalock, H. M . ,  Jr . ,  “Probabi l is t ic  Interpretations for the Mean Square Contingency,”  J .  Am. 
Sta t i s t .  Assoc .  53,  102-5. 

Kastenbaum, M. A., “Estimation of Relat ive Frequencies  of Four Sperm T y p e s  i n  Drosophila 
melanogaster,” Biometr ics  14(2), 223-28. 

Mitra, S. K., “On the Limiting Power Funct ion of the  Frequency Chi-square T e s t , ”  Ann. Math. 
Stat is t .  29, 1221-33. 

Snedecor, G. W., “Chi-square of Bart le t t ,  Mood and Lancas te r  i n  a 2 3  Contingency T a b l e , ”  
Biometr ics  14(4), 560-62. (Query) 

1957 

Bross ,  Iiwin D. J . ,  and Ethe l  L. Kasten,  “Rapid Analysis  of 2 x 2 T a b l e s , ”  J .  Am. Sta t i s t .  Assoc. 

Corsten,  L. C. A., “Part i t ion of Experimental Vectors Connected with Multinomial Distr ibut ions,”  

52, 18-28. 

Biometrics 13(4), 451-84. 

Med. 11, 73-78. 
Edwards,  J.  H., “A Note on the Prac t ica l  Interpretation of 2 x 2 T a b l e s , ”  Brit. J .  Prevent .  Soc ia l  

Lancas te r ,  H. O., “ S o m e  Proper t ies  of the Bivariate  Normal Distribution Considered in the  Form 
of a Contingency T a b l e , ”  Biometrika 44,  289-92. 

Mote, V. L. ,  ‘&An Investigation of the  Effect  of Misclassif icat ion of the Chi-square T e s t s  in t h e  
Analys is  of Categorial  Data ,”  unpublished Ph.D. d isser ta t ion ,  North Carolina S ta te  Col lege,  
Raleigh,  N.C. (a lso Institute of S ta t i s t ics  Mimeo Series  No. 182). 

Roy, S. N.,  Some A s p e c t s  of Multivariate Analysis ,  Wiley, New York. 

Sakoda, J.  M., and B. H. Cohen,  “Exact  Probabi l i t ies  for Contingency T a b l e s  Using  Binomial 
Coeff ic ients  ,’ ’ Psychometr ika 22( l ) ,  83-86. 

Woolf, Barnet ,  “ T h e  L o g  Likelihood Rat io  T e s t  ( T h e  G-Test). Methods and T a b l e s  for T e s t s  of 
Heterogeneity in Contingency T a b l e s , ”  Ann. Human Genet. 21,  397-409. 

1956 

Fishman,  J .  A., “A Note on Jenkins’  ‘Improved Method for Tetrachoric  r,’” Psychometr ika 20(3), 

Good, I. J . ,  “On the Est imat ion of Small Frequencies  i n  Contingency T a b l e s , ”  J .  Roy. Stat is t .  

305. 

SOC. B 13(1), 113-24. 



46 

Gridgernan, N. T . ,  “A Tas t ing  Experiment,” Appl. Stat is t .  15(2), 106-12. 

Leander,  E .  K., and D. J .  F inney ,  “An Extension of the U s e  of the  x 2  T e s t , ”  Appl. Stat is t .  

Mainland, D.,  L .  Herrera,  and M. I. Sutcliffe,  “Sta t i s t ica l  T a b l e s  for U s e  with Binomial Samples  - 
Contingency T e s t s ,  Confidence Limi ts ,  and Sample Size Es t imates ,”  New York University 
Col lege  of Medicine, New York. 

5(2), 132-36. 

Roy, S. N.,  and Marvin A. Kastenbaum, “On the  Hypothesis  of No ‘Interaction’ i n  a Multiway Con- 

Roy, S. N., and S. K. Mitra, “An Introduction to Some Non-Parametric Genera l iza t ions  of Analys is  

Watson, G. S., “Missing and ‘Mixed-up’ Frequencies  in  Contingency Tab les , ”  Biometrics 12(1), 

t ingency Tab le , ”  Ann. Math. Stat is t .  27(3), 749-57. 

of Variance and Multivariate Analys is ,”  Biometrika 43 ,  parts 3 and 4,  361-76. 

47-50. 

1955 

Armitage, P . ,  “ T e s t s  for Linear Trends  in Proportions and Frequencies ,”  Biometrics 11(3), 

Armsen, P. ,  “ T a b l e s  for Significance T e s t s  of 2 x 2 Contingency Tab les , ”  Biometrika 42,494-505. 

Cochran, W. G., “A T e s t  of Linear Function o f  t he  Deviations Between Observed and Expected 

Haldane, J. B. S., “Substi tutes for x 2 , ”  Biometrika 42, 265-66. 

Haldane ,  J. B. S., “A Problem in the Significance o f  Small Numbers,” Biometrika 42, 266-67. 

Jenkins ,  W. L. ,  “An Improved Method for Tetrachoric r,” Psychometr ika 20(3), 253-58. 

Kastenbaum, Marvin A.,  “Analys is  of Data  in Multiway Contingency T a b l e s , ”  unpublished doctoral  

Les l ie ,  1’. H., “A Simple Method of Calcu la t ing  the Exac t  Probabili ty in 2 x 2 Contingency Tab les  

Mitra, S. K., “Contributions to  the Stat is t ical  Analys is  of Categorical  Data ,”  North Carolina In- 

Roy, S. N.,  and Marvin A. Kastenbaum, “A Generalization of Analysis of Variance and Multivariate 

375-- 86. 

Num’bers,” J .  Am. S ta t i s t .  Assoc .  50, 377-97. 

disser ta t ion,  North Carolina State Col lege ,  October 1955. 

with Small Marginal To ta l s , ”  Biometrika 42, 522-23. 

s t i t u t e  of S t a t i s t i c s  Mimeograph Series ,  No. 142, December 1955. 

Analysis to Data  Based  on Frequencies  in  Qual i ta t ive  Categorical  o r  C l a s s  Intervals ,” North 
Carolina Ins t i t u t e  of S ta t i s t i c s  Mimeograph Series ,  No. 131, June  1955. 

Roy, S. Pi., and S. K. Mitra, “An Introduction to Some Non-Parametric Generalizations of Analys is  
of Variance and Multivariate Analysis ,” North Carolina Znstitute of S ta t i s t i c s  Mimeograph 
Ser ies ,  No. 139 ,  November 1955. 

Sekar, C. Chandra,  S. P. Agarivala,  and P. N. Chakraborty, “On the Power Function of a T e s t  of 
Significance for t h e  Difference Between Two Proportions,” Sankhya 15 ,  part  4 ,  381-90. 

Stuart, Alan, “ A  T e s t  of Homogeneity of the Marginal Distributions in  a Two-way Class i f ica t ion ,”  
Biometrika 42, 412-16. 

Woolf, Barne t ,  “On Es t imat ing  the Relation Between Blood Group and D i s e a s e , ”  Ann. Human 
Genet. 19, 251-53. 

Yates ,  F. ,  “A Note on the Application of the Combination of Probabi l i t i es  T e s t  to a Se t  of 2 x 2 
Tab les , ”  Biometrika 42, 401-11. 

Ya tes ,  F., “The  U s e  of Transformations and Maximum Likelihood i n  the  Analys is  of Quantal  Ex- 
periments Involving Two Trea tments ,”  Biometrika 42, 382-403. 



47 

1954 

Bross ,  Irwin D. J . ,  “Misclassif icat ion i n  2 x 2 T a b l e s , ”  Biometrics 10(4), 478-86. 

Cochran, W. G., “Some Methods for Strengthening the Common Chi-square T e s t s , ”  Biometrics 
10(4), 417-51. 

Dawson, R. B., “A Simplified Expression for the Variance of the xz Function on a Contingency 
Table ,”  Biometrika 41, 280. 

Goodman, L e o  A., and W. H. Kruskal, “Measures  of Associat ion for Cross  Class i f ica t ion ,”  J .  Am. 
Statist. Assoc.  49, 732-64. 

Kimball, A. W.,  “Short-Cut Formulas for the Exac t  Par t i t ion of Chi-square in Contingency T a b l e s , ”  
Biometrics 10(4), 452-58. 

McGill, W. J., “Multivariate Information Transmission,”  Psychometrika 19(2), 97-116. 

1952 

Cochran, William G., “ T h e  x 2  T e s t  of Goodness  of F i t , ”  Ann. Math. Statist. 23(3), 315-45. 

Dyke, G. V., and H. D. Pa t te rson ,  “Analysis  of Fac tor ia l  Arrangements when t h e  Data  Are Pro- 
port ions,”  Biometrics 8, 1-12. 

1951 

Lancas te r ,  H. O., “Complex Contingency T a b l e s  Trea ted  b y  the Part i t ion of Chi-square,”  J .  Roy. 
Statist. SOC.  B 13, 242-49. 

Simpson, C. H., “The Interpretation of Interaction i n  Contingency T a b l e s , ”  J .  Roy. Statist. SOC. B 
13, 238-41. 

1950 

Tocher ,  K. D., “Extension of the  Neyman-Pearson Theory of T e s t s  to Discont inuous Variates ,”  
Biometrika 37, 130-44. 

1949 

Hsu, P. L., “The  Limiting Distributions of Funct ions  of Sample Means and Application to T e s t i n g  
Hypotheses  ,” Proceedings of the Berkeley Symposium on Mathematical Statistics and Proba- 
bility (1945, 1946), University of California P r e s s ,  Berkeley and L o s  Angeles. 

Irwin, J .  O., “A Note on the  Subdivision of Chi-square into Components,” Biometrika 36, 130-34. 
Lancas te r ,  H.  O., “The Derivation and Part i t ion of Chi-square i n  Certain Discrete  Distr ibut ions,”  

Biometrika 36, 117-29. 

1948 

Yates ,  F . ,  “The  Analysis  of Contingency T a b l e s  with Groupings B a s e d  on  Quantitative Charac-  
te rs ,”  Biometrika 35, 176-81. 



48 

1947 

Barnard, G. A., “Significance T e s t s  for 2 x 2 T a b l e s , ”  Biometrika 34, 123-38. 

Pearscln, E .  S., “The Choice  of S ta t i s t ica l  T e s t s  I l lustrated on the Interpretation of Data  C l a s s e d  
in  a 2 x 2 Table ,”  Biometrika 34, 139-67. 

1946 

Cramer, H., Mathematical Methods of Statistics, Princeton University P r e s s ,  p. 424. 

1945 

Norton, H. W., “Calculat ion of Chi-square for Complex Contingency T a b l e s , ”  J .  Am. Statist. Assoc.  
40, 251-58. 

1937 

Haldane,  J .  B. S., “The  E x a c t  Value of the  Moments of the  Distribution of x 2  Used as a T e s t  of 
Goodness  of F i t ,  when Expecta t ions  Are Small,” Biometrika 29, 133-43. 

1935 

Bartlett,  M. S., “Contingency T a b l e  Interact ions,”  J .  Roy. Statist. SOC. S u p p l .  2, 248-52. 

Wilks, S. S., “ T h e  Likelihood Test of Independence i n  Contingency Tables , ’ ’  Ann. Math. Statist. 
6. 190-96. 

1 934 

Fisher ,  R. A . ,  Statistical Methods for Research Workers, Edinburgh, 5th and  subsequent  ed i t ions ,  

Yates ,  F., “Contingency T a b l e s  Involving Small Numbers and the  x 2  T e s t , ”  J .  Roy. Statist.  SOC. 

Oliver and Boyd Ltd., s e c t .  21.02. 

Suppl.  1 1, 217-35. 

1924 

Fisher ,  R. A., “The  Conditions Under Which Chi-square Measures the Discrepancy Between Ob- 
s e w a t i o n  and Hypothesis ,”  J .  Roy. Statist.  SOC. 87, 442-50. 

1922 

Fisher ,  R. A., “On the Interpretation of Chi-square from Contingency T a b l e s ,  and the  Calculat ion 
of P,” J .  Roy. Statist.  Soc. 85, 87-94. 

1900 

Pearson ,  Karl, “On the Criterion that  a Given System of Deviat ions from the Probable  i n  t h e  C a s e  
of a Correlated System of Variables  I s  Such that  I t  Can B e  Reasonably Supposed t o  Have  
Arisen f rom Random Sampling,” Phil. Mag. [SI 50, 157-72. 



49 

INDEX 

Agarivala, S. P., C. Chandra Sekar, and P. N .  Chakraborty, 1955 
Allison, Harry E., 1964 
Anderson, R.  L., 1959 
Anderson, R. L . ,  and V. L .  Mote, 1965 
Armitage, P . ,  1955, 1966 
Armsen, P., 1955 
Asano,  C . ,  1965 
Assakul ,  K.,  and C. H. Proctor,  1967 

Barnard, G. A., 1947 
Bartlett ,  M. S., 1935 
Bennett, B. M., 1962 
Bennett, B. M., D. J. F inney ,  R. La t scha ,  and P. Hsu ,  1963 
Bennett ,  B. M., and C. Horst ,  1966 
Bennett ,  B. M., and P. Hsu, 1960 
Bennett ,  B. M., and E. Nakamura, 1963, 1964 
Berger, Agnes, 1961 
Berkson, J . ,  1968 
Bhapkar, V. P., 1961, 1966 
Bhapkar, V. P., and G. G. Koch, 1965, 1968 
Bhat,  B. R., and S. R. Kularni, 1966 
Bill ingsley,  P., 1961 
Birch, M. W., 1963, 1964, 1965 
Bishop, Yvonne, 1968 
Bishop, Yvonne, and S. F ienberg ,  1968 
Blalock, H. M . ,  Jr . ,  1958 
Bross ,  Irwin D. J.,  1954, 1964 
Bross ,  Irwin D. J.,  and Ethel L. Kasten,  1957 
Brown, T. A. I., and H. 0. Lancas te r ,  1965 

Cas te l lan ,  N. J . ,  1966 
Causs inus ,  H., 1964, 1965, 1966 
Chakravarti,  I. M., and C.  R. Rao ,  1959 
Chakraborty, P. N . ,  C. Chandra Sekar, and S. P. Agarivala, 1955 
Chapman, D. G., and Rosa  C. Meng, 1966 
Chernoff, Herman, 1967 
Chew, Victor, 1964 
Claringbold, P. J.,  1961 
Cochran, W. G., 1952, 1954, 1955 
Cohen, B. H., and J .  M. Sakoda, 1957 
Corsten,  L. C. A., 1957 
Cox, D. R.,  1966 
Cox, D. R., and E. Lauh,  1967 
Cramer, H., 1946 

Daly,  C., 1962 
Darroch, J .  N.,  1962 
Darroch, J. N., and S. D. Silvey, 1963 
Dawson, R. B.,  1954 
Diamond, Earl  L.,  1963 
Dyke, G. V., and H. D. Pa t t e r son ,  1952 

Edwards,  A. W. F., 1963 
Edwards,  J. H. ,  1957 



50 

Feldman, S. E., and E. Klinger, 1963 
Felsente in ,  J . ,  and R. C. Lewontin,  1965 
Fienberg,  S., and Yvonne Bishop,  1968 
Fienberg ,  S. E., and P a u l  W. Hol land,  1968 
Finney,  I). J . ,  R. L a t s c h a ,  B. M. Bennet t ,  and P. Hsu ,  1963 
Finney,  1). J., and E. K. Leander ,  1956 
Fisher ,  Sir Ronald A . ,  1922,  1924, 1934, 1962 
Fishman,  J .  A . ,  1956 
F l e i s s ,  J .  L., 1965 
Friedlander, D., 1961 

Gart, J .  J., 1962,  1966 
Gold, Ruth  A. ,  1963 
Good, I. ,J.,  1956,  1963,  1965 
Goodman, Leo  A . ,  1963, 1964, 1968 
Goodman, Leo A . ,  and W. H. Kruskal, 1954,  1959,  1963 
Gregory, G., 1961 
Gridgeman, N .  T., 1956,  1960 
Grizzle, J a m e s  E., 1961,  1967 

Haldane,  J .  B. S., 1937, 1955,  1959 
Hamdan, M. A . ,  1968 
Hamdan, M. A . ,  and H. 0. Lancas te r ,  1964 
Harkness ,  W. L . ,  and L. Katz ,  1964 
Haynam, G. E., and F. C. Leone,  1965 
Herrera, L . ,  D .  Mainland, and M. I .  Sutcliffe, 1956 
Heuze,  G., 1964 
Holland, P a u l  W., and S. E. Fienberg,  1968 
Horst, C., and B.  M. Bennet t ,  1966 
Hoyt, C. J., P. R. Krishnaiah,  and E. P. Torrance,  1959 
Hsu,  P. IL., 1949 
Hsu, P . ,  and B. M. Bennet t ,  1960 
Hsu, P . ,  D. J .  F inney ,  R. L a t s c h a ,  and B. M. Bennet t ,  1963 

Ireland, (3. T., and S. Kullback, 1968 
Irwin, J .  O., 1949 
Ishi i ,  G., 1960 
Ishii, G., and M. Okamato, 1961 
Ives,  K. H., and J .  D. Simmons, 1967 

Jenkins ,  W. L. ,  1 9 5 5  

Kas ten ,  .Ethel L . ,  and Irwin D. J .  B r o s s ,  1957 
Kastenbaum, M. A . ,  1955,  1958,  1960 
Kastenbaum, M. A. ,  and D. E. Lamphiear, 1959 
Kastenbaum, M. A . ,  and S. N.  Roy, 1955, 1956 
Kat t i ,  S. K., and A. N. Sastry,  1965 
Katz, L.., and W. L. Harkness ,  1964 
Kendall, M. G . ,  and A. Stuart ,  1961 
Kimball, A. W., 1954 
Kincaid, W. M. ,  1962 
Klinger, E., and S. E. Feldman,  1963 
Koch, G. G., and  V. P. Bhapkar ,  1965,  1968 
Krishnaiah, P. R. ,  C. J. Hoyt, and E. P. Torrance,  1959 
Kruskal, W. H., and L e o  A. Goodman, 1954, 1959,  1 9 6 3  



51 

Ku, H. H., 1963 
Ku, H. H., S. Kullback,  and M. Kupperman, 1962 
Kularni, S. R., and B. R. Bhat ,  1966 
Kullback, S., 1959 
Kullback, S., and  C. T. Ireland, 1968 
Kullback, S., M. Kupperman, and H. H. Ku, 1962 
Kupperman, Morton, 1959, 1960 
Kupperman, M., S. Kullback, and  H. H. Ku, 1962 

Lamphiear, D. E., and M. A. Kastenbaum, 1959 
Lancas te r ,  H. O., 1949, 1951, 1957, 1960, 1966 
Lancas te r ,  H. O., and T. A. I. Brown, 1965 
Lancas te r ,  H. O., and M. A. Hamdan, 1964 
La t scha ,  R., D. J .  F inney ,  B. M. Bennet t ,  and  P. Hsu ,  1963 
Lauh, E., and  E. R. Cox, 1967 
Leander,  E. K., and  D. J .  Finney,  1956 
Leone, F. C. ,  and G. E. Haynam, 1965 
Leslie, P. H., 1955 
Lewis ,  B. N., 1962 
Lewontin, R. C., and J .  Fe l sen te in ,  1965 
Lindley, D. V., 1964 

Mainland, D., L. Herrera ,  and  M.  I .  Sutcliffe, 1956 
Mantel, Nathan, 1963, 1966 
Mantel, Nathan, and  Bernard S. Pas ternack ,  1966 
Mardia, K. V., 1967 
McGill, W. J . ,  1954 
Meng, R o s a  C., and D. G. Chapman, 1966 
Mitra, S. K., 1955, 1958 
Mitra, S. K., and S. N. Roy, 1955, 1956 
Mosteller, Frederick,  1968 
Mote, V. L. ,  1957 
Mote, V. L., and  R. L. Anderson, 1965 

Nakamura, E., and  B. M. Bennet t ,  1963, 1964 
Nass ,  C. A. G., 1959 
Naylor, Alfred F., 1967 
Newell, D. J . ,  1963 
Norton, H. W., 1945 

Okamato, Masashi,  1963 
Okamato, M., and G. I sh i i ,  1961 

Pas te rnack ,  Bernard S., and  Nathan Mantel, 1966 
Pat te rson ,  H. D., and  G. V. Dyke, 1952 
Pearson,  E. S., 1947 
Pearson ,  Karl, 1900 
Placke t t ,  R. L., 1962, 1964 
Proctor, C. H., and K. Assakul ,  1967 
Put ter ,  Joseph ,  1964 

Quensel ,  C. E., 1966 

Radhakris hna, S., 1965 
Rao, C.  R., and  I. M. Chakravart i ,  1959 
Ries ,  P. N., and Harry Smith, 1963 



52 

Robertson, W. H., 1960 
Rogot, E., 1961 
Romier, G., 1964 
Roy, S. N., 1957 
Roy, S. N., and Marvin A. Kastenbaum, 1955, 1956 
Roy, S. N.,  and S. K. Mitra, 1955, 1956 
Rudolph, G. J.,  1967 

Sachs ,  I>., 1965 
Sakoda, J .  M. ,  and B. H. Cohen,  1957 
Sastry,  A. N., and S. K. Katti ,  1965 
Schull, 'William J.,  1961 
Sekar, C .  Chandra, S. P. Agarivala,  and P. N. Chakraborty, 1955 
Silvey, 13. D., 1959 
Silvey, S. D., and J. N. Darroch, 1963 
Simmons, J. D., and K. H. Ives ,  1967 
Simpson, C. H., 1951 
Slakter, M. J. ,  1965, 1966 
Smith, Harry, and P. N. R i e s ,  1963 
Snedecor, G. W., 1958 
Solari, HI. E., 1963 
Somers, Robert  H., 1959, 1964 
Steyn, H. S., 1959 
Stuart, Alan, 1955 
Stuart, A. ,  and M. G. Kendall ,  1961 
Sutcliffe, M. I., D. Mainland, and L. Herrera, 1956 

T a l l i s ,  G. M., 1962, 1964 
Tocher,  K. D., 1950 
Torrance., E. P., C. J .  Hoyt, and P. R. Krishnaiah, 1959 

Walsh, John E., 1963 
Watson, G. S., 1956, 1965 
Weiler, H., 1966 
Weiner, I rving B., 1959 
Westenberg, J., 1964 
Wilks, S. S., 1935 
Woolf, Barne t ,  1955, 1957 

Yates ,  F., 1934, 1948, 1955, 1961 
Young, D. H., 1962 



LECTURE IV: CONFIDENCE REGIONS 

Marvin A. Kastenbaum 

1.  AN EXAMPLE OF STATISTICAL INFERENCE 

L e t  X , ,  X , ,  . . . , X n  b e  a sequence  of n independent  random variables ,  X i  having  the normal 

distribution N ( x i ;  p, u2).  If 

x = - ( X ,  + x, + . . . + X,) , 
n 

then the random variable 

2 = \/;;(sl- p ) / u  

h a s  a s tandardized normal probability dens i ty  function, N(z;  0 , l ) .  A l so  i f  2 E a, where 

G =  lz;--co< z < a l l ,  

and 

A ,  = {z; z < z,1 

and 

A = l z ;  z >  z21 
2 

for z1 < z 2 ,  then 

With simple algebraic  manipulation i t  fol lows tha t  

Prob (2 E ( A 1  u A, )" {  = Prob { z ,  $ fi(x - p ) / u  =< z21 
- 

= Prob {z,u/fi -< ( X  - p) 2 z2u/\/;;1 (1.2) 

T= Prob {E - z 2 u / f i ~  p 5 - z , c J I ' ~ ~ ~  . 

F o r  z 2  = -zl = 1.96, the  t a b l e s  of the  cumulative normal distribution (Tables  l a  and  b) show that  

Prob 1-1.96 =( \/;;(x - p ) / u  5 1.961 

Prob {x - 1.96 o/fi$ p 5 x + 1.96 =/ \ /K t  
- 1 . 9 6  

= 1 -J- yz) dz - la f(2) dz 
co 1 . 9 6  

(1.3) 

m - 1 . 9 6  

1 . 9 6  
= 1 - 2 s  f(2) dz = 1 - 2 f(z) dz = 0.95 . 
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If 0 is known, e a c h  of the  random var iab les  2 - 1.96 o/d'F and ? + 1.96 ~/f i  i s  a s ta t i s t ic . '  

T h e  interval  [x - 1.96 5/6, x + 1.96 ~/ t / r ; ]  is c a l l e d  a random interval. 

T h e  probability s ta tement  spec i f ied  by (1.3) may be  read as follows: Prior t o  the  performance 

of an experiment, t h e  probability is 0.95 tha t  the  random interval  [x - 1.96 cr/f i ,  x + 1.96 c/\h] 

inc ludes  the unknown fixed point  (parameter) p. 

Up to t h i s  point the d i s c u s s i o n  h a s  been a probabi l is t ic  one i n  the s e n s e  tha t  t h e  determina- 

tion of a probability dens i ty  function for x and a random interval  a r e  merely e x e r c i s e s  i n  proba- 

bility. T h e  appl icat ion of  t h e s e  concepts  to t h e  rea l iza t ions  of a n  experiment can resu l t  i n  

s t a t i s t i c a l  inferences.  
- 

Suppose a n  experiment yields  X, = x l ,  x 2  = x 2 ,  . . . , X n  = xn,  with a sample  value of X given 

by X = (x, + x 2  + . . . + xn)/n. If both F and u a r e  known, the interval  [ j T  - 1.96 D/\&, j7 + 1.96 

u/u%] will have  known end points .  It should be  obvious that  0.95 i s  not  the probability that  t h i s  

spec i f ic  interval  inc ludes  the parameter p. In fact ,  e i ther  11 is in th i s  interval  or i t  i s  not  i n  t h i s  

interval. 

However, the fac t  that ,  prior to t h e  performance of the  experiment, there w a s  a probability of 

0.95 tha t  the  random interval  [? - 1.96 e/$, x + 1.96 c/d;] would include the parameter p ,  

l e a d s  one  to have  t h e  s a m e  degree  of fai th  i n  t h e  s p e c i f i c  interval  [X - 1.96 ~/fi, 51+ 1.96 e/$]. 

T h i s  fa i th  or confidence i n  t h e  observed interval  [ST - 1.96 a/& T + 1.96 a/\/;;] is t h e  reason i t  

is refemed to as a 95% confidence interval .  T h e  number 0.95 is ca l led  the confidence coefficient. 

T h e  confidence coef f ic ien t  is e q u a l  to t h e  probability tha t  t h e  random interval  inc ludes  t h e  param- 

e te r .  One may, of c o u r s e ,  obtain 90 or 99% confidence in te rva ls  for  p. 

If c i s  not  known, the end points  of the  random interval  would not  b e  s t a t i s t i c s .  Although t h e  

probability s ta tement  about  t h e  random interval  remains val id ,  a sample  would not yield an interval  

with known end points .  

appear  t o  b e  feas ib le .  Fortunately,  a method d o e s  e x i s t  for bypass ing  th i s  obs tac le .  

T h a t  i s ,  when D is unknown a s t a t i s t i c a l  inference about  p d o e s  not 

2. CONFIDENCE INTERVALS FOR A MEAN 

L e t  X I ,  X,, . . . , X n  b e  a s e q u e n c e  of n independent random variables ,  X i  having  t h e  normal 

distribution N(xi; p,  5') with both p (-a< p < a) a n d  u2 (0 < D 2  < a) unknown. Let ? and S 2  = 

c ( X i  - ;?)'/(n - 1) denote  respect ively the  mean and var iance of X,, . . . , X n .  T h e  problem is t o  

find a confidence interval  for p. 
It c a n  b e  shown (1) tha t  fi(x - p)/crhas  the normal dis t r ibut ion N ( 0 ,  l), (2) t h a t  (n - 1 ) S 2 / c 2  

h a s  a chi-square dis t r ibut ion with n - 1 d e g r e e s  of freedom, and (3) that  fi(? - p ) / u a n d  

(n - 1 ) S 2 / d  a r e  independent .  I t  c a n  also be  shown that  a random var iab le  T may b e  def ined i n  

terms of 'two s u c h  var iab les .  In f a c t ,  

~ 

'A s t a t i s t i c  is a funct ion of random var iab les  which d o e s  not depend upon a n  unknown parameter .  
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h a s  a t distribution with n - 1 degrees  of freedom, whatever t h e  va lue  of u2 z 0 (see Appendix, 

Sect. 9 of  th i s  lecture). 

For a given posi t ive integer  ( n  - 1) and a probability of 0.95, s a y ,  two values  a and b ( a  < b) 

c a n  be  found from a table  of t h e  cumulat ive t distribution ( T a b l e  2) s u c h  tha t  

Prob  ( a  < T < bj = Prob ( a  < *(? - p) /S < b\ = 0.95 . (2.2) 

Since the p.d.f. of t h e  random variable  T i s  symmetric about t h e  ver t ical  a x i s ,  a and b are  conven- 

tionally c h o s e n  s o  that  a : -h ,  b > 0. If, for a = -h, the  probability of th i s  event  i s  written i n  

the form 

Prob {F - b S / f i <  p < 1 + hS/\ /n(  = 0.95 , (2.3) 

then the  interval  [E - b S / f i ,  57 + bS/\/;;] is a random interval having  probability 0.95 of includ- 

ing  t h e  unknown fixed point  (parameter) p. If the experimental va lues  of X I ,  X 2 ,  . . . , X n  a r e  x l ,  

x 2 ,  . . . , x n ,  with 

where 

then the interval  [(X - bs/\ /n),  (X + h s / f i ) ]  i s  a 95% confidence interval for p ,  for every c2 > 0 
( s e e  Table  2). 

Example: If n = 10, F = 3.22, s = 1.233, then the interval  

F3.22 - (2.262)(1.233)/m, 3.22 + (2.262)(1.233)/n]  , 

or (2.34, 4.10), is a 95% confidence interval  for p, where b = 2.262. 

3. CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO MEANS 

T h e  random variable  T may b e  u s e d  to  obtain a confidence interval  for the  difference p 1  - p 2  

between the  means  of two independent normal dis t r ibut ions,  N ( x ;  p l ,  nZ) and N(y;  p 2 ,  u2) ,  which 

have  t h e  same (but unknown) var iance,  uz * 

L e t  X I ,  X,, . . . , X ,  and Y , ,  Y , ,  . . . , Y ,  b e  two s e q u e n c e s  of independent  random variables  

having respect ively the  probability dens i ty  funct ions N ( x ;  pl, 02)  and N ( y ;  p 2 ,  c2) .  Denote the  
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means o f  the  two s e q u e n c e s  by x and L and the  var iances  by Sf  and S t  respect ively.  T h e s e  

four s t a t i s t i c s  a r e  mutually independent. Moreover, 57 and 

means  p ,  and p 2  and var iances  a 2 / n  and 0 2 / m  respect ively.  Accordingly, their  difference ?i - y 
is normally dis t r ibuted with mean p l  - p 2  and var iance  u 2 / n  + a 2 / m .  Then t h e  random variable  

a r e  independent ly  dis t r ibuted with 

(X - r> - ( p ,  - p 2 )  

h a s  the normal dis t r ibut ion N ( 0 ,  1). Furthermore ( n  - l)S:/g2 and (m - 1)S$’02 have  independent  

chi-square dis t r ibut ions with n - 1 and m - 1 d e g r e e s  of freedom respec t ive ly ,  so that  their  sum 

h a s  a chi-square dis t r ibut ion with n + m - 2 d e g r e e s  of freedom. I t  follows tha t  t h e  random 

vari a bl e 

[(X - F) - ( p ,  - p 2 ) 1 / 4 2 z L 7 z  
T =  

0 2 ( n  + m - 2) 

h a s  a t (distribution with n + m - 2 d e g r e e s  of freedom. 

A s  in  the ear l ie r  par t  of th i s  d i scuss ion ,  a pos i t ive  number b c a n  be found such  that 

P r o b  ( -b  < T < b\ = 0.95. 

If 

(3 .2)  

(n  - 1)s ;  + (m - 1)s; 

( n  + m - 2)  J s, = (3.3) 

t h i s  probability may be written 

€’rob ((57 - E;) - bS, < (‘p, - p,) < (i - r) + bS, ] = 0.95 . 

It follows that t h e  random interval  {(x - F) - bS,, (2 - Y) + bS, 1 h a s  a probability 0 .95  of in- 

c luding the unknown fixed point  p l  - p 2 .  As usual ,  the experimental  va lues  of t h e  means  and 

~~ 

‘If XI and X ,  a re  independent  random va r i ab le s ,  Var(X1 + X , )  = Var(X1 - X 2 )  = Var X ,  + Var X,. 
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variances  will provide a 95% confidence interval for p I  - p2 when the variances of the two inde- 

pendent normal distributions are unknown but equal. 

Example: 

n = 1 0 ,  m = 7 ,  X = 4.2,  7 = 3.4 ; 

S: = 54.44,  = 37.33, d =  jT - 7 = 0.8; 

g(54.44) + 6(37.33) 1 1 
15 10 7 

(- +-) = J11.559= 3.4 ; 

degrees  of freedom = 15,  b = 1.753 . 

T h e  90% confidence interval  for p - p , is 

(-5.16, 6.76) . 

W e  s h a l l  not consider  the diff icul t ies  encountered when the  var iances  are  unequal.  It will b e  

suff ic ient  to  s a y  tha t  e x a c t  confidence intervals  a r e  difficult  to  eva lua te  when th is  s i tuat ion pre- 

vails.  One approach to t h i s  problem yie lds  the  Behrens-Fisher  solut ion.  F o r  m = n 

and 

h a s  a t distribution with 2(n - 1)  deg rees  of freedom. 

4. CONFIDENCE INTERVALS FOR A VARIANCE 

Consider  a s equence  of n independent random variables  X1,  X,, . , , , X n  which have  the 

normal dis t r ibut ions N ( x i ;  p, D').  T h e  random variable  

n 

Y = (Xi - p ) Z / d  
i= 1 

h a s  a chi-square probabili ty densi ty  function with n degrees  of freedom (see Appendix, Sect.  9). 

For a given probabili ty,  s a y  0.95, and for the  fixed posi t ive integer  n ,  values  of a and b (0 < a < b) 

may be determined from the table  of t h e  chi-square distribution (Table  3 )  so that  

Prob ( a  < Y < bl = 0.95 , 
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or 

i= 1 

or 

If p is known, then both Z ( X ,  - p j 2 / b  and Z ( X i  - p)‘/a a r e  s t a t i s t i c s .  Moreover, [z(Xi - p)’ /b ,  

X ( X ,  -. ~ ( ) ~ / a ]  i s  a random interval  having  probability of 0.95 of including the unknown parameter w’. 

When the random experiment h a s  been run, then the particular interval  [ z ( x i  - p)’/b, z(xj - ~ ) ~ / a ]  

i s  a 95% confidence interval  for 0’. 

What i s  t h e  s i tua t ion ,  however, when p is unknown? 

T h e  fact  tha t  (n - l ) S 2 / 0 2  h a s  a ch i -square  dis t r ibut ion with n - 1 d e g r e e s  of freedom, what- 

ever  the va lue  of p, impl ies  tha t  in ferences  c a n  be made about t h e  unknown variance CJ’ even  though 

p is unknown. 

With some preass igned  probability, s a y  0.98, a and b (0 < a < b) c a n  b e  found from t a b l e s  of 

the ch i -square  dis t r ibut ion so that  

Prob  {a < (n - 1)S2/u2 < b )  = 0.98 . (4.2) 

One convention for s e l e c t i n g  a and b is to do so in  s u c h  a way tha t  

W la  f(y) d y  = J- f(y) d y  = 0.01, 
b 

(4.31 

o r  

Prob ((n - 1 ) S 2 / n 2  < a )  = 0.01 = Prob ((n - 1)S2/u2 > 61 

(see Table  3). Then  

.Prob ((n - 1)S2/b < o‘ < (n - l ) S 2 / a j  = 0.98 , (4.4) 

s o  that  [(n - 1)S2/b,  (n - l)S’/’a] i s  a random interval  having probability 0.98 of including t h e  

fixed but  unknown parameter u 2 .  After a random experiment  i s  performed and X, = x l ,  . . . , Xn = 

xn with 

s 2  = Z ( X i  - X)’/(n - 1) , 

t h e  98% confidence in te rva l  for C J ~  i s  

[(n - l)s’/b, (n - l)s’/a] . 
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Ex amp l e  : 

n = 9. s 2  = 8.58 

T h e  90% confidence interval  for u2 is given by 

8(8.58) S(8.58) 
k G ’ K I 9  

or (4.43, 25.12), where b = 15.507 and a = 2.733. 

5 .  CONFIDENCE INTERVALS FOR THE RATIO OF TWO VARIANCES 

L e t  X 1, . . . , Xn and Y 1, . . . , Y m  b e  two s e q u e n c e s  of independent  random var iab les  having 

probability dens i ty  funct ions N ( x ;  pl, mi) and N ( y ;  p 2 ,  D:)  respect ively.  L e t  t h e  m e a n s  of the  

two s e q u e n c e s  b e  denoted by x and ? and the var iances  by 

n 

s; = (Xi - 57)2/(n - 1) 
i= 1 

and 

s2 = 

j =  1 

rn ( Y j  - Y)2/(rn - 

The random var iab les  (n - l)S;,’m: and (rn - l )Si /o;  a r e  independent  and have  chi-square distri- 

butions with n - 1 and rn - 1 degrees  of freedom respect ively.  I t  follows, therefore, that  the  

random variable 

h a s  an F dist r ibut ion with parameters n - 1 and rn - 1 ( s e e  Appendix, Sect .  9). 

va lues  of n and rn, and with a preass igned  probability 0.95 (say), two numbers a and b (0 < a < b) 

c a n  be  determined from t a b l e s  of the  F distribution (Table  4a and b),  so tha t  

Thus ,  for given 

S ;/cJ; 
Prob {a <=< b] = 0.95 , (5.2) 
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Accordingly, [ a S t / S ; ,  bS; /S : ]  is a random interval  having  probability 0 .95 of including t h e  fixed 

but  unknown parameter ai/a:. 

If t h e  experimental  v a l u e s  of X , ,  . . . , X ,  and Y , ,  . . . , Y ,  are  x,, . . . , xn and y l ,  . . . , y m  re- 

spec t ive ly ,  and if  

23; = Z ( X i  - sr)2/(n - 1) 

and 

2;: = Z ( y j  - y)2/(m - 1) , 

then the interval  [ a s i / s ; ,  b s i / s t ]  is a 95% confidence interval  for the ratio . - i /~ :  of the two un- 

known v,ariances. 

Example: F ind  t h e  90% confidence interval  

ti = 10, m = 5, s; = 20.0, s: = 30.0, 

for (o:/.-:) given that  

( s ; / s ~ )  = 1.5 . 

where 

g(f) df = sa, g(f) df = 0.05 . 
b 

F g , 4  < a )  = Prob 
9 , 4  

g(f) df = Prob 

= 1 -sa  g(f) df - 1" g(f)  df , 
0 b 

= Prob (F4,9 = 0.05 

(5 .3)  

(5.4) 

(5 .5)  

1 1 
a 3.63 

-= 3.63, a = - . 

Similarly b = 6.00 . 
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6. CONFIDENCE REGIONS FOR A VECTOR OF p MEANS 

Define the  p-dimensional random variable x ’ ~  as the vector 

x ‘ =  [ x  1’ x 2 ,  * .  . , xpl  

whose e lements  are  jointly dis t r ibuted as  the  p v a r i a t e  normal dis t r ibut ion 

where 

and 

2 = E { [ x  - E(x) ]  [ x  - E(x) l  ’ 1  

On t h e  b a s i s  of a sample  of size n from th is  population, 

- - -, x = [Fl, x 2’  . . . t x p l  

where 

n 
Fi = l / n  x.. 

‘ 1  
j =  1 

for a l l  i = 1, 2 ,  . . . , p ,  and t h e  dispers ion matrix 2 by 

es t imate  

for -a< x ( 0 3 ,  (6.1) 

(6.3) 

the mean vector p ’  by 

3The  notat ional  convent ions  in  mult ivar ia te  a n a l y s i s  a r e  s u c h  tha t  the  u s e  of lower-case l e t t e r s  for 
random var iab les  a s  w e l l  a s  rea l iza t ions  of random var iab les  is a lmost  mandatory. 
used  to  d e s i g n a t e  mat r ices .  

Upper-case  le t te rs  are  
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where 

for a l l  1: and k = 1 ,  2, . . . , p. 

The  confidence region for p is the  volume enc losed  by t h e  p d i m e n s i o n a l  hyperel l ipsoid 

where I.' 

of freedom (0 5 - -  /3 5 1). T h e  r isk incurred by fa l se ly  a s s i g n i n g  t h e  point  bl, p z ,  . . . , p,) t o  t h i s  

region i s  l O O ( 1  - p)%. 

is the upper l O O ( 1  - p)% point  of the  F distribution with p and n - p d e g r e e s  
( 1 - P ;  P ,  n - p )  

7. CONFIDENCE REGIONS FOR A BIVARIATE VECTOR OF MEANS 

When P = 2, the random vector x ' =  ( x l ,  x 2 )  i s  dis t r ibuted as  a bivar ia te  normal with mean 

vector p , ' =  ( p l ,  p 2 )  and d ispers ion  matrix 

:c= [:: 1;j 
Est imate  p ' b y  

and 2 by 

(7.1) 

where 

(7.3) 
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T h e  confidence region for p i s  the area enc losed  by t h e  e l l i p s e  

(7.4) 

T h e  risk incurred by ass igning  t h e  point  (p , ,  p 2 )  t o  th i s  region is l O O ( 1  - p)%. 
An example of severa l  such  confidence e l l i p s e s  calculated f r o m  d a t a  col lected on human 

chromosomes and plot ted by the  CALCOMP pen and ink plotter i s  presented i n  F ig .  1. 

O W  DWG. 65-141 1 

Fig. 1. Confidence Regions for the Mean Vectors of Chromosome Arm Lengths,  C e l l  811, F.10. 
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9 .  A P P E N D I X  

9 . A  The Chi-square Distribution (x2): See Table  3 

Let Z , ,  Z,, . . . , Zn b e  a sequence  of n independent  random variables  e a c h  dis t r ibuted as 

N(z; 0, 1). T h e  probability dens i ty  function of the  random variable  

i s  

= o  

T h e  corresponding cumulat ive distribution function is 

for y > 0, 

for y _< - 0.  

T h i s  distribution i s  known as the x 2  dist r ibut ion.  It conta ins  one parameter n ,  which is denoted 

as  the  number of d e g r e e s  of freedom. 

9.6 The t Distribution: See Table 2 

L e t  .Z b e  a random variable which i s  N(z;  0, l), and l e t  Y be a random variable  dis t r ibuted as 

chi-square with n d e g r e e s  of freedom; and l e t  Z and Y b e  independent .  The  probability dens i ty  

function of the random variable  

Z 
1”=- 

V f v G  

is 

for -m<  t < m. 
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T h e  corresponding cumulative distribution function i s  

T h e  t dist r ibut ion i s  completely spec i f ied  by the patameter n, t h e  number of degrees  of freedom 

assoc ia ted  with the random variable  Y having the  chi-square distribution. 

9.C The F Distribution: See Table 4a and b 

Consider two independent  chi-square var iables  U and Y having  n 1  and n 2  degrees  of freedom 

respect ively.  T h e  probability dens i ty  function of the random variable  

i s  

= o  

T h e  corresponding cumulat ive distribution function is 

for 0 < f < a, 

e lsewhere .  

T h e  F dist r ibut ion is completely determined by two parameters  n1 and n2, which a re  the d e g r e e s  of 

freedom a s s o c i a t e d  t h e  two chi-square var iables .  
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TABLE 1 a. THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION 

F(2) = Pr(Z 5 21 = - e-= '2 d x  for -4.99 I 2 i 0.00. 
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Example: F(-1.96) = 0.02500 

.4801 
'4404 
'4013 
,3632 
.3264 
'2912 
.2578 
.2266 

'I977 
'1711 

.I469 

.1251 

.1056 

.08851 
'07353 

'04947 
.04006 
.o3216 
.02559 
-02018 
-01.578 

-06057 

'01222 

.476I 
-4364 
'3974 
'3594 
.3228 

.2877 

.2546 

.2236 
"949 
,1685 

.I446 

.123o 
,1038 
.o8691 
.07215 

Q5938 
.04846 
.03920 
'03 I44 

.Or970 

'OIIqI 
'01539 

.O' 9387 

.0'7143 

.0'5386 

.0'4025 
-0' 2980 
-02 2 186 
.o' 1589 
'0' I I44 
.os 8164 
'0'5770 

.oJ 2803 

.o) 1926 

.o1 1311 

.04 8842 

. 0 4  5906 
. 0 4  3908 
.04 2561 
.04 1662 
.04 I* 
.os 6807 
.os 4294 
*os 2682 
.os I660 
.os 1017 
.ob6173 
.06 371 I 

*O' 4041 

'472 1 
'4325 
.3936 
'3557 
'3192 
4 4 3  
'251.1 
2206 
.1922 
.IO& 

.I423 
'I210 
'I020 

'07078 
.OB534 

.0582 I 
w746 
.03836 
'03074 
.02442 
.Or923 
.01500 
.OII60 

dn 
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2. 

'0 

'I 
.2 

'3 
'4 

'5 
.6 
'7 
.8 
'9 

I '0 
1.1 

I .2 

1 '3 
1 '4 

1.5 
I .6 
"7 
I .8 
"9 

2.0 
2 '1  

2.2 

2.3 
2.4 

2.5 
2.6 
2'7 
2.8 
2'9 

3'0 
3.1 
3'2 
3'3 
3'4 

3'5 
3.6 
3'7 
3.8 
3'9 

4 '0 
4'1 
4'2 
4'3 
4'4 

4.5 
4.6 
4'7 
443 
4'9 

TABLE 1 b. THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION 
1 z  

F ( z )  = P r ~ z  5 = - J e - x 2 / 2 d x  f o r  0.00 <_ z L 4.99. 
fi -m 

'00 
- 

.5000 
,5398 
'5793 
,6179 
.6554 

4j9 I5 
'7257 
'7580 
,788 I 
,8159 

-84x3 
.SO43 
4849 
9 ~ 3 2 0  
'9'924 

'93319 
'94520 
'95543 
'96407 

'97725 
.98214 
,98610 

.97128 

.98928 
'9' I802 

'9'3790 
.9' 5339 
'9'6533 
.9' 7445 
'91 8 '34 

'9' 8650 
.9' 0324 
'9' 3129 
'9' 5 166 
'9' 663 I 

.9' 7674 
'93 8409 
.93 8922 
.9' 2765 
.94 5190 

-9' 6833 
'9' 7934 
.9' 8665 
'9' 1460 
'9' 4587 

.95 6602 
'95 7888 

.96 2067 
9 6  5208 

'9' 8699 

'01 
-~ - 

.5040 
5438 
5832 
,6217 
+59' 

.6950 
'729' 
.761 I 
'79'0 
,8186 

,8438 
,8665 
4869 
'90490 
'92073 

.93448 
,94630 
,95637 
.96485 
'97193 

,97778 
,98257 
,98645 
,98950 
'9' 2024 

'9' 3963 
'9' 5473 
'9'6636 
'9'7523 
.9'8193 

'9' 8694 
.9J 0646 
.93 3363 
'9' 5335 
.9' 6752 

'9' 7759 
'9' 8469 
'9' 8964 
.9' 3052 
.9' 5385 

'9' 6964 

'9' 8723 
'9' I837 
'9' 4831 

.95 6759 
'9' 7987 

.96 2453 
,965446 

.94 8022 

'9' 8761 

'02 
~~ 

,5080 
'5478 
.5871 
,6255 
.6628 

4985 
'7324 
.7642 
'7939 
4 2 1 2  

,8461 
,8686 
,8888 
'9' 658 
.92220 

'93574 
,94738 
'95728 
96562 
'97257 

.9783I 

.98300 
,98679 
,98983 
'9' 2240 

,924132 
.9' 5 0 4  
'9' 6736 
'9' 7599 
'9'8250 

.9' 8736 
'93 0957 
'9' 3590 
.93 5499 
9 3  6869 

'93 7842 
.9' 8527 
'9' 0039 
.9' 3327 
.9'5573 

'9' 7090 
.9* 8106 
.9'8778 
'9' 2199 
'9' 5065 

.95 6908 

.96 2822 

.96 5673 

.95 8081 

.95 8821 

.03 

'5 I 2 0  

'5517 
'5910 
,6293 
.6664 

'7019 
'7357 
'7673 
'7967 
.8238 

4485 
.8708 
,8907 
'90824 
,92364 

.93699 
,94845 

.90638 
'97320 

'98341 
'98713 
'9'0097 
'9'245' 

'9'4297 
.9' 5731 
'9' 6833 
.9'7673 
'9' 8305 

'9' 8777 
'9' I260 

'9' 5658 
'9' 6982 

.9' 7922 
9 3  8583 
.94 0426 
.94 3593 
.9' 5753 
'9' 721 I 
9 4  8 186 
'94 8832 
'9' 2545 
'9s 5288 

.95 7051 
9'8172 
.9s 8877 
.9#3 I73 
.96 5889 

-~ 

'95818 

.97882 

.933810 

'04 

,516v 
'5557 
'5948 
4J33 1 
,6700 

'7054 
.7389 
'7703 
'7995 
,8264 

%508 
'8729 
4925 
93988 
'92507 

'94950 
'95907 
967 I 2 

'97932 

.98745 

.9'0358 
'9' 2656 

'9'4457 
.9* 5855 
'9' 6928 
'9' 7744 
.9'8359 

'9' 8817 
'9' I553 
'9' 4024 

'9' 709' 

'9' 7999 
.93 8637 
.9' 0799 
.9' 3848 
'9' 5926 

.9+ 7327 
'9' 8263 
.94 8882 
'95 2876 
.95 5502 

-9' 7187 
'95 8258 
'9' 893' 
.96 3508 
.96 6094 

~~ 

'93822 

.97381 

'98382 

'9' 581 I 

.OS 

'5199 
'5590 
,5987 

+736 

.?OX8 

.7422 
'7734 
,8023 
,8289 

,6368 

,853 1 

4749 
49-14 
'91149 
.92647 

'93943 
'95053 
'95994 
,96784 
'97441 

,97982 

.06 

'5239 
,5036 
4w26 
.6406 
6772 

- 

'7'23 
'7454 
'7764 
,805 I 
,8315 

4554 
.8770 
,8962 
'9'309 
'92785 

,94062 
'95154 
.90080 
96856 
'97500 

. ( I l l  

'5319 
'5714 
,6103 
.64Ro 
,6844 

'7190 
'7517 
.7823 
.8106 
.8305 

,8599 
8810 
4997 
.91621 
,93056 

'94295 
'95352 
.9O246 
'96995 
'97615 

.98124 

9'0613 
'9' 2857 

.9'4614 

.9' 5975 

'9' 78'4 
'9' 7020 

'9' 841 I 

'9' 8856 
.93 1836 
.9' 4230 
'9' 5959 
'9' 7197 

.9' 8074 
'93 8689 
'9' I 158 
'9' 4094 
.9' 6092 

.9' 7439 

.9' 8338 

.9' 8931 
'9' 3 I93 
'9' 5706 

'9'7318 
.9'8340 
.95 8983 
.96 3827 
.96 6289 

'9'0863 .92 I 106 
.9' 3053 '9'3244 

.9'4766 @G+ 

.926v93 9' 207 

'92 7882 '9' 7948 
'9'8462 '9' 851 I 

.9'7110 '9'7197 

'9' 8893 '9' 8930 
.9'2II2 .9'2378 

'9' 6103 .93 6242 
'9' 4429 '9' 4623 

'9' 7299 '9' 7398 

'9' 8739 '9' 8787 
938146 .9'8215 

.9+ 1504 '94 1838 
9' 4331 '9' 4558 
,946253 '9'6406 

.9' 7546 '9' 7649 

.9' 8409 '9' 8477 

.9' 8978 .9'0226 

.95 3497 '9' 3788 

.95  5902 '9' Go89 

.9' 7442 '9' 7561 
,958419 '9' 8494 
.g6 0320 .g6 0789 
.964131 '9*4420 
.g6 6475 9 6652 

'9' 13-11 '9' 1576 
.923431 .9'3613 

'92 506v .9'5201 
920319 .9'0427 
'9' 7282 '92 7305 
'9' 801 2 '9' 8074 
'9' 8559 '91 8605 

'9' 8965 .9' 8999 
'9' 2636 '93 2886 
.9'4810 '9'4991 
'93 6376 '9' 6505 
.9' 7493 '9' 7585 

'9' 8834 '9'8879 

.9' 4777 .9'4988 

.9' 7748 '9' 7843 

'93 8282 '93 8347 

'9' 2 I 59 '9' 2468 

9'6554 .9'6696 

'9' 8542 '9' 8605 
'9' 0655 '9' 1066 
.95 4066 '9' 4332 
'95 6268 .956439 

.95 7675 '9' 7784 

.95 8566 '9' 8634 

.g6 4696 4958 

.966821 .966981 

.96 I235 .96 1661 



68 

n 

I 

2 

3 
4 
5 
6 
7 
8 
9 

IO 

I1 
I2 

I3 
14 
1.5. 

16 

TABLE 2. DISTRIBUTION OF t 

P = Probability. 
'9 -8  - 7  -6  ' 5  '4 '3 '2 . I  ' 0  

'158 '325 ' 5 1 0  
-142 .289 ,445 
'I37 '277 '424 
-134 -271 '414 
'132 .267 a408 

-131 .265 '404 
'130 a263 '402 
'130 '262 '399 
'129 '261 -398 
a129 -260 '397 

-129 '260 '396 
,128  '259 '395 
'128 '259 '394 
.1z8 - 2 5 8  -393 
.128 ' 2 5 8  '393 

-128 .258 '392 

' 72.7 
-61 7 
'584 
.569 
'559 

'553 
* 549 
'546 
'543 
'542 

540 
'539 
'538 
'537 
'536 

'535 

1'000 

-816  

.74' 
' 7 2 7  

.718 

. T I 1  

.706 
'703 
.TOO 

.697 
,695 
'694 

'765 

-692 
.691 

.690 

.689 
-688 
-688 
.687 

-686 
*686 
~ 6 8 5  
e685 
e684 

.684 
.684 
.683 
-683 
.683 

-681 

'677 
'679 

'674 

1.376 1.963 3'078 6.314 
1.061 1.386 1.886 2.920 
-978 1.250 1.638 2.353 
'941 1.190 1.533 2-132 
.920 1.156 1.476 2.015 

-906 1'134 1'440 1.943 
~ 8 9 6  1.119 1.415 1.895 
.889 1.108 1.397 1.860 
e883 1.100 1.383 1.833 

-876 1.088 1.363 1-796 
-873 1.083 1.356 1.782 

.868 1.076 1.345 1.761 

.866 1.074 1.341 

.865 1.071 1.337 1.746 
a863 1.069 1.333 1.740 
-862 1.067 1'330 1.734 
-861 1.066 1.328 1.729 
-860 1.064 1'325 1 '725 

-859 1.063 1.323 1 . 7 2 1  

.858 1.061 1.321 1-717 

'857 1.059 1.318 1 - 7 1 1  

-856 1.058 1-316 1.708 

e856 1.058 1.315 1.706 

.855 1.056 1-313 1.701 

-854 1.055 1.311 1.699 
-854 1.055 1*310 1.697 

.848 1.046 1.296 1.671 
-845 1.041 1.289 1.658 
~ 8 4 2  1.03G 1 .282  1.645 

'879 1'093 1-37?, 1'812 

a870 1'079 1'350 1 '771 

e858 1.060 1.319 1'714 

-855 1'057 1'314 1.703 

.851 1'050 1'303 1.684 

P = 1 - P r  1 - b < T < b I = Pr I T < -bl + Pr 17 > +b t 

' 02  '01 '001 

12.706 31.821 53.657 636.619 
4'303 6.965 9'925 
3'182 4'541 5.841 
2'776 3'747 4.604 
2.571 3.365 4'032 

2.447 3'143 3'707 
2.365 2.998 3'499 
2.306 2.896 3'355 

2.228 2.764 3'169 

2-301 2.718 3.106 
2.179 2.681 3 0 5 5  
2.160 2.650 3.012 

2.131 2.602 2.947 

2*120 2.583 2.921 
2.110 2.567 2.898 

2.821 3'250 

2.145 2.624 2'977 

2'101 2 ' 5 5 2  2.878 
2.093 2'539 2.861 
2.086 2.528 2.845 

2.080 2.518 2,831 
2.074 2.508 2.819 
2.069 ~ 5 0 0  2.807 

2.060 2.485 2.787 

2.056 2-479 2.779 

2.048 2.467 2.763 
2.045 2.462 2.756 
2.042 2.457 2'750 

2.064 2'492 2.797 

2 ' 0 5 2  2'473 2.771 

2 '021 2'423 2'704 
2'000 2'390 2.660 
1.980 2.358 2.617 
1.960 2.326 2-576 

31.598 

6.859 

5'959 
5'405 
5'041 
4.781 
4'587 

4'437 
4'3'8 
4.221 
4' 140 
4'073 

4'01 5 
3 965 
3'922 
3'883 
3 850 

3.819 
3'792 
3'767 
3'745 
3'725 

3'707 
3.690 
3'674 
3'659 
3' 646 

12.941 
8.610 

3.551 
3' 460 
3'373 
J'291 

- b o b T  

= 2 lm f ( t )  dt 
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TABLE 3. DISTRIBUTION OF xz 
P = Probability. 

~ 8 0  - 7 0  ' 5 0  '30 ' 2 0  'IO ' 0 5  ' 0 2  '01 '001 
- 

I 

3 
4 
5 

6 
7 
8 
9 
10 

I 1  

I2 

'3 
14 
1.5 

16 
1 7  
15 
'9 
2 0  

P I  

2 2  

23 
24 
25 

26 
27 
28 
29 
30 

-0315; 

* I 1 5  

'297 
'554 

.872 
1'239 
1.646 
2.088 
2 .558 

3'053 
3'57'  
4.107 
4.660 
5 ' 2 2 9  

5.812 
6.408 
7'01.5 
7'633 
8.260 

8-897 
9'542 

10' 196 
10.856 
11'524 

12.198 
12'879 
13'565 

' 0 2 0 1  

14.256 
14'953 

.03628 '00393 *or58 
'0404 *IO3 ' 2 1 1  

'185 '352 'j84 
'429 ' 7 1 1  1.064 
' 7 5 2  1.145 1.610 

1.134 1.635 2.204 
1.564 2.167 2.833 
2.032 2.733 3'490 
2.533 3'325 4.168 
3'059 3'940 4.865 

3609 4'575 5'578 

4'765 5'892 7'042 
4.178 5.226 6.304 

5.368 6.571 7.790 
5-985 7.261 S.547 

6.614 7.962 9312 
7 .255  8.672 10.085 
7.906 9.390 10.865 
8.567 10.117 11.651 
9'237 10.851 12.443 

9'915 I I ' 5 9 l  13'240 
10.600 12.338 14.041 
11'293 13.091 14.848 
11.992 13.848 15.659 
12.697 14.611 16.473 

14.125 16.151 18.114 

15'574 17.708 19.768 

13'409 15'379 17'292 

14.s47 16,928 18.939 

16.306 In.493 20'599 

-0642 . I ~ S  '455 1.074 1,642 2.706 3.841 5.412 6.635 10.827 
'446 '713 1.386 2.408 3 ' 2 1 9  4.605 5 . ~ 9 1  7.824 9.210 13'815 

r.oo5 1.424 2.366 3.665 4.642 6.251 7.815 9.837 11.345 16.268 
1.649 2.195 3.357 4.878 5.9X9 7'779 9'4x8 11.668 13.277 18.465 
2'343 3.000 4351 6.064 7.289 9.236 11.070 13'3x8 :5.086 20.517 

3'070 3'828 5'348 7'231 8.558 10.645 12.592 15'033 16.812 22'457 
3.822 4.671 6.346 8.3X3 9.803 12 .017  14.067 16.622 18.475 24.322 
4'594 5-527 7.344 9'524 II.O;O 13.362 15.507 18.168 20.090 26.125 
5.380 6.393 8.343 10.656 1 2 . 2 4 2  14.6Xj 16.919 19679 21.666 27.877 
6.179 7.267 9.342 1 1 . 7 8 1  13'442 15.987 18.307 21.161 23'209 29.588 

6.989 8.148 1o.341 12.899 14631 17.275 19.675 22.618 24'725 31.264 

8.634 9'926 12.340 15.119 16.985 19-812 22.362 25'472 27.688 34'528 
9.467 10.821 13.339 16.222 1 8 . 1 5 1  21.064 23685 26.873 29141 36.123 

10.307 11.721 14.339 17.322 19.311 22.307 24'996 28.259 30.578 37.697 

1 1 . 1 5 2  12.624 15.338 18.418 20.465 23542 26.296 29'633 32.000 39.252 
12.00~ 13'531 16.338 19.511 21.615 24.769 27.587 30'995 33'409 40.790 
12.857 14.440 17.338 20.601 2 ~ 7 6 0  25'989 28.869 32'346 34-805 42.312 
13.716 15.352 18.338 21.689 23.900 27'204 30.144 33'687 36.191 43.820 
74.578 16.266 19'337 22.775 25.038 28.412 31.410 35,020 37.566 45'315 

15 .4~5 17.182 20'337 23.858 26.171 29.615 32.671 36.343 38.932 46.797 
16.314 18.101 21.337 24'939 27.301 30'813 33'924 37'659 40.289 48.268 
17.187 19.021 22.337 26.018 28.429 32'007 35'172 38.968 41.638 49'728 
18.062 19.943 23'337 27.096 20.553 33.196 36.415 40.270 42.980 51.179 
18.940 20.867 24.337 28.172 30'675 34.382 37.652 41.566 44.314 52*620 

7'807 9'034 11.340 14.011 15 .812  18.549 21.026 24'054 26.217 32'909 

19.820 21.792 25.336 29.246 31.795 35'563 38.885 42.856 45.642 54'052 
2 0 7 0 3  22,719 26.336 30.319 32.912 36.741 40'113 44.140 46.963 55'476 

22'475 24.577 28.336 32.461 35.139 3yOX7 42.557 46.693 49'5x8 58..%02 
23'364 25 .508  23.336 33'5,zo 36.250 40.256 43'7;3 47.962 5o.Si)z 59.703 

21.588 23'647 27'336 31.391 34.027 37.916 41.337 45'419 48.278 56.893 

- _ _  .- - -  
For Iirger values of n,  the expression 42,y*-4/2n- I may k used as a normal deviate with unit variance, remembering that 

the probability for x' corresponds with that of a single tail of the normal curve. 

0 Y 
& 
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LECTURE V: DISTRIBUTION-FREE TESTS 

W. E. Lever 

1 .  INTRODUCTION 

T h e  purpose of th i s  lec ture  will be  to acquaint  you with some of the poss ib le  u s e s  of dis t r i -  

bution-free t e s t s .  Roughly speaking ,  a dis t r ibut ion-free t e s t  i s  one which d o e s  not make any  

assumptions about  the  p r e c i s e  form of t h e  populat ions which a r e  being sampled.  However, in  

many cases t h e  underlying dis t r ibut ion funct ions must  b e  assumed t o  be cont inuous and/or to 

have  the same form or  to be  symmetr ical  about  t h e  s a m e  point. 

T h e  reason that  we  d o  not  need to make e x t e n s i v e  assumptions about the dis t r ibut ion func- 

tions is that  the  magnitudes of t h e  observat ions a r e  not  used  direct ly  i n  the tes t .  Instead,  w e  

u s e  the ranks,  frequency, or some other  s u c h  at t r ibute  of the original observat ions t o  provide t h e  

information used  by t h e  t e s t  s t a t i s t i c .  

Given t h e s e  types of measurements ,  distribution-free t e s t s  are usual ly  concerned with 

medians,  ranges ,  e tc . ,  ins tead  of t h e  parameters  of t h e  distribution. 

However, i f  the  experimenter h a s  def ini te  a priori knowledge of the parametric form of t h e  

distribution from which h i s  observa t ions  a r i se ,  h e  should definitely u s e  t h e  c l a s s i c a l  t e s t  pro- 

cedures  and not  the distribution-free t e s t  procedures. 

2. ADVANTAGES AND DISADVANTAGES OF DISTRIBUTION-FREE TESTS 

Now distribution-free t e s t s  have  s e v e r a l  advantages  and d isadvantages  in  relation t o  c l a s s i c a l  

t es t ing  procedures. Some of t h e  advantages  a re  as follows: (1) Distribution-free t e s t s  are usua l ly  

much e a s i e r  to der ive ,  s i n c e  they can  b e  der ived by  u s e  of combinatorial formulas ins tead  of t h e  

complex mathematics  usua l ly  needed to der ive t h e  c l a s s i c a l  t e s t s .  (2) T h e  computations needed  

for distribution-free t e s t s  are usual ly  much e a s i e r  than for the c l a s s i c a l  t e s t s ,  and they a r e  

usual ly  much fas te r  to apply for smal l  and moderate samples .  (3) Since distribution-free 

t e s t s  ar'e based on fewer and less e labora te  assumptions than the classical t e s t s ,  they c a n  

be legitimately applied t o  a much larger  class of populations. (4) If the assumption of 

cont inuous dis t r ibut ions i s  violated,  both the  fact  and the  degree of the  violat ion become 

readily apparent from t h e  e x i s t e n c e  of ex tens ive  t ied observat ions in the observed data .  

Checks  of th i s  sor t  a r e  not ava i lab le  t o  the experimenter t o  a d v i s e  him that a parametric 

assumption h a s  been violated. (5) Generally, distribution-free t e s t s  have a much wider 

range of poss ib le  measurements  which can b e  used .  

Now that  w e  h a v e  cons idered  some of t h e  good points  of distribution-free t e s t s ,  l e t  u s  con- 

s ider  some of their  d i sadvantages .  (1) When a large number of s imilar  t e s t s  a r e  to b e  conducted 

us ing  a computer rather than a d e s k  ca lcu la tor ,  c l a s s i c a l  t e s t s  will usual ly  b e  fas te r  to  d o  a t  a l l  

sample s i z e s .  (2) General ly ,  distribution-free t e s t s  have  d e c r e a s i n g  s t a t i s t i c a l  eff ic iency relat ive 

to c l a s s i c a l  t e s t s  a s  t h e  sample  size becomes large.  (3) Problems c a n  a r i s e  with t h e  choice  of 
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a reject ion region for  t h e  tes t ,  s i n c e  the point probability of a distribution-free t e s t  s t a t i s t i c  

d o e s  not  necessar i ly  i n c r e a s e  as  the t e s t  s t a t i s t i c  approaches  i t s  most  probable value.  (4) Also ,  

s ince  the  distribution of the t e s t  s t a t i s t i c  is usual ly  d iscre te ,  a value of t h e  t e s t  s t a t i s t i c  for a 

preassigned leve l  of s ign i f icance  a may not e x i s t .  

T h e  advantages and d isadvantages  we have  j u s t  considered a r e  very important factors  to be  

considered when choosing between a distribution-free t e s t  and a c l a s s i c a l  t e s t ,  but poss ib ly  the 

most important factor  is the sample  s i z e .  T h i s  is true for t h e  following reasons:  For small  

samples  (e.g., N _< ~ lo), distribution-free t e s t s  are e a s i e r  to apply, a s  indicated before, and only 

s l ight ly  less ef f ic ien t  even if all t h e  assumptions of t h e  c l a s s i c a l  t e s t  a r e  met. B u t  a t  t h e s e  

sample s i z e s ,  violat ions of the  assumptions for t h e  c l a s s i c a l  t e s t s  generally have their most 

se r ious  e f fec ts  and a r e  most l ikely to go undetected.  Thus ,  u n l e s s  o n e  h a s  some a priori 

knowledge that  a l l  the  assumpt ions  a re  valid for t h e  c l a s s i c a l  t e s t ,  the wise  choice  would 

usual ly  appear  to be  a distribution-free tes t .  For larger  samples  (e .g . ,  N > 30), some distribution- 

free t e s t s  s t i l l  compare favorably with c l a s s i c a l  t e s t s ,  but  many a r e  time consuming. Also,  i n  

cont ras t  to  c l a s s i c a l  t e s t s  w h o s e  assumptions a r e  met, their ca lcu la ted  or tabled probabi l i t ies  

may only b e  approximate. In addi t ion,  t h e  violat ions of t h e  assumptions for t h e  c l a s s i c a l  t e s t s  

wil l  have  become apparent, and in  many cases their e f fec t  may have  been negl igible  due  to the  

properties of the  cent ra l  limit theorem. T h u s  for la rge  samples  the  w i s e  choice  would be  the 

c l a s s i c a l  tes t .  

In the  remainder of t h i s  lecture  I wil l  try to point  ou t  some of the  common types  of distribution- 

f ree  t e s t s ,  so tha t  you will have  an indicat ion where they c a n  b e  applied. In e a c h  procedure con- 

s idered ,  I will cons ider  t h e  rat ionale  behind t h e  procedure, t h e  nul l  hypothesis  (i.e.,  t h e  hypothes is  

to b e  tes ted) ,  the  n e c e s s a r y  assumpt ions ,  and the treatment of t ied observat ions.  

3.  SIGN TEST 

T h e  s ign  t e s t  i s  a very s imple and e a s i l y  appl ied distribution-free t e s t  for t h e  equal i ty  of the 

medians of  two dis t r ibut ions.  It requires  that  t h e  observat ions from the two dis t r ibut ions occur  

in pa i r s  and that  we be able  to a t  l e a s t  observe  the  s ign  of t h e  difference of these  two observa-  

tions. 

T h e  rat ionale  for t h e  s i g n  t e s t  is a s  follows: Suppose we have two random variables  A and B 

and that  n pairs  of observat ions are taken on A and B. Then if the medians of t h e  dis t r ibut ions 

of A and B are  the same,  the observed va lues  of the  differences A i  - Bi c a n  be  e i ther  plus  or 

minus with probability );. L e t  r b e  the  number of p l u s  or minus s i g n s ,  whichever is fewer. Then  

the probability of obtaining r or fewer of t h e  appropriate s i g n s  i f  t h e  medians a r e  t h e  same is 
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Thus ,  i f  1 7 ~ 2  a /2 ,  where n i s  t h e  leve l  of s ign i f icance ,  w e  would re jec t  the hypothesis  tha t  t h e  

medians a r e  equal .  

Formally the  nul l  hypothes is  i s  that  for every difference A I  - B I ,  

P ( A ,  > Bi) = P ( A ,  < Bi) = 5, , 

that  i s ,  the d is t r ibu t ions  of A i  and Bi h a v e  equal  medians.  

F o r  the nul l  hypothes is  to hold, we must  assume tha t  P ( A ,  = B,)  = 0, that  i s ,  there  are n o  

zero differences.  Also ,  t h e  d i f fe rences  A ,  - B ,  must  b e  assumed to  be independent .  

However, e v e n  i f  the assumption that  P ( A i  = B,)  = 0 holds ,  the  lack  of prec ise  measurements  

may lead  to some zero d i f fe rences .  If th i s  d o e s  happen,  the most accepted procedure for handl ing 

th i s  s i tua t ion  i s  t o  a s s i g n  half of t h e  zero  d i f fe rences  p lus  s i g n s  and half minus s i g n s ,  dropping 

one zero  difference i f  there  i s  an odd number of them. 

F o r  an example of t h e  appl icat ion of t h e  s i g n  t e s t  we will u s e  problem 7.3, p. 201, of Brownlee 

(1960). T h e  example is a s  follows: 

In a trial of two types  of rain gages ,  6 9  of type A and 1 2  of type B were dis t r ibuted a t  random 

over a cer ta in  area. In a cer ta in  period 1 4  s torms  occurred,  and t h e  average amounts  of rain 

found on  the  two t y p e s  o f  g a g e s  were as  shown in t h e  accompanying table. Now s u p p o s e  w e  wish 

Storm 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10  
11 

1 2  
1 3  

14 

1 . 3 8  

9 .69  

0.39 

1.42 

0.54 

5.94 
0.59 
2.63 

2.44 
0.56 

0 .69  

0.71 

0.95 
0 . 5 0  

1.42 

10.37 

0.39 
1 .46  

0.55 

6.15 

0.61 
2.60 

2.68 
0.53 

0.72 
0.72 

0.93 
0 .53  

Sign of A - B 

to t e s t  a t  the 5% leve l  o f  s ign i f icance ,  by u s e  of the  s i g n  t e s t ,  tha t  t h e  two g a g e s  are giving t h e  

s a m e  resu l t s .  

To apply t h e  s ign  t e s t  w e  must  b e  able  to assume tha t  t h e  probabi l i ty  of a zero difference is 

zero and tha t  t h e  differences a re  independent. Both of t h e s e  assumptions a re  reasonable ,  s i n c e  

the gages  would b e  measuring cont inuous var iables  and t h e  measurements  a r e  based on different 

storms. Note tha t  i n  th i s  case we d o  not  make  t h e  assumption that  t h e  distribution of p o s s i b l e  

m e  asurernents is symmetrical. 
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Now there  a r e  2 p lus  s i g n s ,  11 minus s i g n s ,  and 1 zero  difference.  Then t h e  probability that 

we would only find 2 p lus  s i g n s  out  of 13 differences (we disregard t h e  one zero difference)  is 

given by 

9 ,  = 
(:113)(+)13 = 0.011 < 0.05/2 

i= 0 

Thus  in  th i s  case we would re jec t  the hypothesis  that  t h e  two rain g a g e s  give the same resu l t s .  

Sign t e s t s  a re  a l s o  avai lable  for t e s t i n g  trend i n  loca t ion ,  trend i n  dispers ion,  and cyc l ica l  

trend. 

4. SIGNED RANK TEST 

T h e  next  procedure we will consider  i s  again a t e s t  b a s e d  on paired observat ions,  but in  this 

case w e  will consider  the rank of the  differences i n  addition to  t h e  s ign  of the  difference. T h i s  

is done  by ranking the  absolu te  va lues  of the  differences and then ass igning  the  s ign  of the dif- 

ference to t h e  rank. 

T h e  rationale behind the s igned  rank t e s t  i s  as follows: Consider  two random variables  A and 

B which are sampled in  pairs .  Ei ther  i f  the dis t r ibut ions of A and B a r e  the  same or i f  they a r e  

j u s t  symmetrical about  the same point, then there a r e  2" p o s s i b l e  w a y s  the  s i g n s  could be  ass igned  

to the observed ranks, where n is the number of differences.  Thus ,  i f  t h e  dis t r ibut ions are the  

same or a r e  symmetrical about  the same point, we would expec t  t h e  sum of t h e  ranks with p l u s  

s i g n s  to b e  about  the same a s  t h e  sum of the  ranks with negat ive s i g n s ,  in  absolu te  value. 

For  t h e  t e s t  s t a t i s t i c  le t  T be the absolu te  value of the sum of the  ranks with p l u s  or minus 

s igns ,  whichever is smaller .  We will re ject  the hypothesis  that  t h e  two populations are the s a m e  

or that  they a re  symmetrical about  the same point i f  the  probability of a value of T l e s s  than or 

equal  to the  observed T i s  l e s s  than a /2 ,  where a is the leve l  of s ignif icance.  T a b l e s  of c r i t i ca l  

va lues  of T a r e  given by Wilcoxon, Katti,  and Wilcox (1963) for 5 =< n 5 50. 

Formally, the  null hypothes is  i s  that  t h e  medians and t h e  means of the two dis t r ibut ions a r e  

equal ,  i f  t h e  assumpt ions  are true. 

T h e  n e c e s s a r y  assumptions for th i s  t e s t  a r e  as  follows: T h e  two dis t r ibut ions have ident ica l  

form, differing a t  most  in  locat ion,  or the two dis t r ibut ions are  both symmetrical. Also we require 

that  the n d i f fe rences  be independent  and  tha t  t h e  probability of a zero difference be zero. T h i s  

la t ter  assumption can b e  accomplished by assuming tha t  t h e  two dis t r ibut ions are both cont inuous.  

If t ied differences occur  through a lack  of s u f f i c i e n t  measurement precis ion,  then the  pro- 

cedure i s  as follows: If there  i s  a n  even number m of zero differences,  consider  them as  occupy- 

ing  the m lowes t  ranks. T h e n  give e a c h  the midrank of th i s  group (m + 1)/2, and a s s i g n  half  of  

them a plus  s ign  and half a minus s ign.  If  there  is an odd number of zero differences,  disregard 

one of them, and reduce t h e  sample  s i z e  to n - 1. 
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If nonzero differences a re  t ied in  absolu te  magnitude, t h e  number of e a c h  group should  b e  

given the  midrank of t h e  group and t h e  s ign  of i t s  corresponding difference. 

As a n  example of t h e  s igned  rank tes t ,  l e t  u s  again u s e  t h e  example  u s e d  for the  s ign t e s t  

with the additional assumpt ion  that  both dis t r ibut ions are  symmetrical. Then the differences and 

their ranks a r e  a s  follows: 

Storm A - E  R a n k  of A - E 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

-0.04 
-0.68 

0 

-0.04 

-0.01 

-0.21 
-0.02 

-0.02 
-0.24 

+O. 03 
-0.03 
-0.01 
L O .  02 
-0.03 

-9.5 
-13 

-9.5 
-1.5 

-11 
4 

-4 

-12 
t 7  
-7 
-1.5 
'4 

-7 

Then the  t e s t  s t a t i s t i c  T is: 

T = + 4  + 7 = 1 1  

Then by checking  t h e  Wilcoxon, Katti,  and Wilcox tab les ,  i t  can  b e  s e e n  that  t h e  c r i t i ca l  va lue  oE 

T i s  17; thus 

P(T 5 ~ 11) < 0.05 . 

So again w e  re jec t  t h e  hypothes is  that  t h e  g a g e s  give equal  resul ts .  

5. THE RANK SUM TEST 

T h e  rank procedure to b e  considered in  th i s  s e c t i o n  i s  again a method of comparing a s p e c t s  of 

the dis t r ibut ions of two random variables  A and B. 

sidered,  the d a t a  a r e  not  assumed to a r i s e  in  pairs .  In th i s  procedure we rank the n observed va lues  

of A and the m observed va lues  of B (n and m are not  necessar i ly  e q u a l )  a s  i f  they a r e  one popula- 

tion. 

observed va lues  of B. 

But  unlike the two previous s i tua t ions  con-  

Then  we b a s e  our t e s t  procedure on the sum of the  ranks of t h e  observed va lues  of A or t h e  

The  rat ionale  behind t h i s  procedure i s  a s  follows: If two random samples  a re  drawn from the  
s a m e  population, then they may be regarded as  a s ingle  random sample  of size m + n which h a s  

been div:ided i n  some random manner in to  s u b s a m p l e s  of s i z e s  n and m. T h u s  a n y  a s s i g n m e n t s  of 

n ranks to  one population A and m ranks to  population B are  equal ly  l ikely i f  t h e  two s a m p l e s  
came from the same population. F o r  a t e s t  s t a t i s t i c  l e t  T be the  sum of r a n k s  from the  smaller  
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sample  or, i f  t h e  s a m p l e s  a r e  of e q u a l  s i z e ,  the smaller sum of ranks for the two populations. 

Then if t h e  probability tha t  a value of T c a n  occur less than or equal  to the  observed value of 

T is less than a/2,  given tha t  all ass ignments  o f  n ranks  to population A and m ranks  to  popula- 

tion B a r e  equal ly  l ikely,  we will re jec t  the hypothesis  tha t  A and B have  t h e  s a m e  distribution. 

Cri t ical  values  of T c a n  be found in  Wilcoxon, Katti,  and Wilcox (1963). 

Formally, the nul l  hypothes is  is tha t  each  of the 

pairs  of rank ass ignments  are equally likely. T h i s  implies  t h e  nul l  hypothesis  that  t h e  distribu- 

tions of t h e  random var iab les  A and B a r e  ident ical .  

T h e  necessary  assumpt ions  for t h i s  procedure are: T h e  m + n observat ions are  random and 

independent. Also,  t h e  two dis t r ibut ions must have  the same form, and t h e  two dis t r ibut ions a r e  

cont inuous ( the probability of t i e s  occurring is zero). 

If t i e s  do occur a s  t h e  resu l t  of imprecise  measurements ,  they a r e  only a problem when t h e  

group of t ied v a l u e s  lies i n  both samples .  When a group of t ied observat ions occurs  totally within 

one sample,  they should b e  arbitrarily ranked as  if they were not  tied. If the  t ied group occurs  i n  

both samples ,  the  most  frequently recommended procedure is to a s s i g n  e a c h  member of the  t ied 

group the  midrank of t h e  group. 

For  a n  example of t h e  appl icat ion of t h e  rank s u m  t e s t ,  l e t  u s  u s e  problem 7.4, p. 202, of 

Brownlee (1960). The  example i s  as follows: 

A group of m i c e  a re  a l loca ted  to individual c a g e s  randomly. T h e  c a g e s  a re  a l located,  i n  

equal  numbers, randomly, to two t reatments ,  a control A and a cer ta in  drug B.  All animals  a r e  

infected,  in a random s e q u e n c e ,  with tuberculosis .  Given that  t h e  drug i s  not toxic ,  we wish to  

t e s t  the hypothesis  that  t h e  drug had  no ef fec t  a t  the  5% leve l  of s ignif icance.  T h e  d a y s  the  mice 

died and their ranks  are a s  follows (one mause got lost): 

Control, A 

Day of Death 

5 
6 

7 

7 
8 
8 

8 

9 

12 

Rank 

1 
2 
4 
4 
8.5 
8.5 

8.5 
13 

15.5 

Drug, B 

Day of Death 

7 
8 
8 
8 

9 

9 

12 

13 

14 
17 

Rank 

4 
8.5 
8.5 
8.5 

13 
13 

15.5 

17 
18 

19 
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Then t h e  s t a t i s t i c  T is t h e  sum of t h e  ranks  of A ,  so that  

7 = (1 + 2 + 4 + 4 + 8.5 + 8.5 + 8.5 + 13 + 15.5)  

= 6 5 .  

Then by checking t h e  Wilcoxon, Kat t i ,  and Wilcox t a b l e s ,  we  find that  t h e  c r i t i ca l  va lue  of 7 for 

m = 9 and n = 10 is 69 .  T h u s  P(T 5 65) < 0.05, and we re jec t  the  hypothes is  tha t  t h e  drug  had  no 

effect .  

6 .  A K-SAMPLE PROCEDURE FOR UNMATCHED DATA - ONE-WAY CLASSIFICATION 

Up to t h i s  point e a c h  of t h e  procedures  considered h a s  d e a l t  with comparisons of t h e  dis t r i -  

butions o f  two random variables .  So now l e t  u s  consider  some appl icat ions of distribution-free 

procedures to t h e  comparison of K dist r ibut ions.  In t h i s  sec t ion  we will consider  unmatched d a t a  - 

what is generally c a l l e d  a one-way c lass i f ica t ion .  In t h e  next  sec t ion  we wil l  consider  a two-way 

c lass i f ica t ion .  

T h e  one-way c lass i f ica t ion  procedure which we will consider  is an extension of t h e  rank sum 

t e s t  for unmatched d a t a  considered i n  t h e  previous sec t ion .  T h u s  t h e  rat ionale  behind i t  wi l l  b e  

similar t o  t h e  rat ionale  behind the  rank sum t e s t .  T h a t  i s ,  suppose  N random and independent  

observat ions were taken on C random var iab les  and they were ranked f rom 1 to N regard less  of 

what population they came from. Then ,  i f  the  C random var iab les  a r i s e  from t h e  same population, 

the  expected sum of ranks  for t h e  observat ions on e a c h  of t h e  C random var iab les  would b e  

n,(N + 1)/2, where n, is the number of observat ions on the i th  random variable  and ( N  + 1)/2 is 

the average rank for a l l  N observat ions.  

Now l e t  R ,  b e  the  s u m  of the  observed ranks  of t h e  observat ions on the i th  random variable .  

If the  C random var iab les  c a m e  from t h e  s a m e  population, then t h e  differences 

Ri - n;(N f 1) /2  

should be  small .  Then,  us ing  th i s  idea ,  two of the  s t a t i s t i c s  which h a v e  been proposed to t e s t  

the hypothes is  tha t  the  C random var iab les  have  a r i sen  f rom the  s a m e  population a r e  a s  follows: 

C 

:j = [Ri - ni(N + 1)/21* , 
i= 1 

and 

Exact  t a b l e s  for S have  been  computed by Kruskal  and Wallis (1952) and Rijkoort (1952) for 

C = 3 ,  4 ,  or 5 and for e q u a l  sample  sizes on e a c h  random variable of ni = 2 ,  3 ,  4, or 5 for C = 3 ,  



79 

ni = 2 or 3 for C = 4 ,  and  nj = 2 for C = 5. Also,  e x a c t  t a b l e s  for H have  been computed by 

Kruskal and Wallis (1952 and 1953) for C = 3 and n i  5 5, t h e  ni not  necessar i ly  equal .  Also,  for 

large va lues  of ni, i = 1, . . . , C, H is dis t r ibuted approximately as a chi-square random variable  

with C - 1 d e g r e e s  of freedom. 

Formally, t h e  nul l  hypothes is  is tha t  the C random variables  all come from the same population. 

T h e  n e c e s s a r y  assumptions for th i s  procedure a r e  that  the  observa t ions  a re  drawn randomly 

and independently from cont inuously dis t r ibuted populations. T h e  cont inuous distribution require- 

ment is one  way of forcing t h e  probability of a t i e  to b e  zero.  Also,  i f  t h e  approximate chi-square 

t e s t  i s  to  be u s e d ,  a l l  t h e  ni must be  large enough for the central  limit theorem to apply. 

If t i e s  occur ,  a s s i g n  e a c h  group of t ied v a l u e s  the  midrank of t h e  t ied group. Then if there  

a r e  ti t ied va lues  i n  a group, a d j u s t  H i n  t h e  following manner: 

H 
H ' =  

1 - C ( t Q  - t i ) / ( N 3  - N) 

F o r  a n  example of t h e  appl icat ion of the  K-sample procedure for unmatched da ta ,  we will u s e  

the  example on p. 284 of Bradley (1960). T h e  example is as  follows: 

Suppose that  s p e e d  of reading is t o  b e  tes ted  under three degrees  of illumination, a t  5% leve l  

of s ignif icance.  Nine s u b j e c t s  are s e l e c t e d  a t  random from a common population, and three sub-  

j e c t s  are randomly ass igned  to  e a c h  condition of illumination ( A ,  B ,  C). For  some reason,  one 

subjec t  fails to complete  the  experiment. T h e  resu l t s  and their ranks  are given in  t h e  following 

tables:  

Resul t  R a n k  

A B C A B C 

22 36 39 1 4 6 
31 37 44 2 5 7 
35 51 3 8 

Sum 6 9 2 1  

Since  the s u b j e c t s  h a v e  been randomly s e l e c t e d  and t h e  response  is cont inuous,  the assump- 

t ions  s e e m  to b e  sa t i s f ied .  

Then  after ranking t h e  e ight  observa t ions  a s  one population, w e  find the  rank s u m s  for the 

three condi t ions to b e  6, 9 ,  and 21 respect ively.  Also,  we find their  respec t ive  expected rank 

sums,  under the  hypothesis  of one  dis t r ibut ion,  to  b e  3(8 + 1)/2, 2(8 + 1)/2, and 3(8 + 1)/2. 
Thus  t h e  t e s t  s t a t i s t i c  H i s  given by 

1 2  (6 - 27/2)' (9  - 9)' (21 - 271'2)' +- + 
3 

H = -  [ 
8 x 9  3 2 

= 6.25 



Then by consul t ing t h e  Kruskal  and Wallis t a b l e s ,  we find tha t  given the nul l  hypothesis :  

P(H 2 6.25)  = 0.011 i; 0.05 

Thus  w e  would r e j e c t  t h e  nul l  hypothes is  that  t h e  speed  of reading i s  the  same under t h e  three  

degrees  of illumination. 

7 .  A K-SAMPLE PROCEDURE FOR MATCHED DATA - TWO-WAY CLASSIFICATION 

In th i s  next  c a s e ,  i n s t e a d  of e a c h  treatment being applied to different s u b j e c t s ,  e a c h  t reat-  

ment wil l  be  appl ied to every subjec t .  T h u s  every observat ion will depend on two c l a s s i f i c a t i o n s .  

This  method differs  from t h e  t e s t  considered in  t h e  previous s e c t i o n ,  s i n c e  t h a t  test considered 

only one c lass i f ica t ion ,  t h e  treatment. 

In t.his procedure, t h e  appl icat ion of a treatment t o  t h e  s u b j e c t  must  be done i n  s u c h  a manner 

that  the  response  for another  treatment appl ied to  t h e  s a m e  subjec t  wil l  not  b e  affected.  T h i s  

requirement i s  needed  s i n c e  we will b e  in te res ted  in  s e e i n g  whether t h e  r e s p o n s e s  for the var ious 

t reatments  will b e  t h e  same over  e a c h  subjec t .  T h e  rat ionale  behind t h i s  procedure is as  follows: 

Suppose tha t  we  have  m s u b j e c t s  and n t reatments  and  that  e a c h  of the  n t reatments  is appl ied to 

every subjec t .  Now s u p p o s e  w e  rank the  n t reatments  over e a c h  s u b j e c t  separa te ly ;  then we wil l  

have  m :sets  of ranks  from 1 t o  n. 

Then i f  a s u b j e c t  responds in  a n  e q u a l  manner to  e a c h  treatment, although t h i s  response  may 

b e  different f rom s u b j e c t  to subjec t ,  w e  would e x p e c t  the sum of t h e  ranks  for e a c h  treatment to 

be m(n i- 1)/2. T h e  va lue  (n 

subject .  

1)/2 i s  t h e  average rank for e a c h  t reatment ,  averaged within a 

Now l e t  Ri be  the sum of the  ranks  for a treatment; then one s t a t i s t i c  which h a s  been  proposed 

for t e s t i n g  t h e  effect  of t h e  treatment on the s u b j e c t s  is as follows: 

i= 1 

If the hypothes is  that  t h e  t reatments  have  an e q u a l  effect  on a s u b j e c t  i s  true, then w e  would e x -  

pec t  the  va lue  of S to  b e  smal l ,  s o  that  we  would reject  the  hypothesis  for large v a l u e s  of S. F o r  

small  va lues  of m and n, cr i t ica l  va lues  of S have  been tabled by Kendall (1955), and for larger  

va lues  of m and n, 12S/mn(n - 1) h a s  been shown to have  approximately a x 2  distribution with 

m - 1 degrees  of freedom. 

Formally, the  nul l  hypothes is  is as  follows: For  e a c h  subjec t ,  t h e  random var iab les  which 

represent  the r e s p o n s e s  of t h e  s u b j e c t  to  the t reatments  have  t h e  same distribution. But  t h i s  

d o e s  not  imply tha t  the  r e s p o n s e s  for t h e  t reatments  on different s u b j e c t s  have  the  same dis t r i -  

bution. 

T h e  n e c e s s a r y  assumpt ions  for t h i s  procedure a r e  a s  follows: T h e  s u b j e c t s  a r e  independent  

and t h e  observat ions on  e a c h  s u b j e c t  a r e  randomly s e l e c t e d ;  that  i s ,  t h e  t reatments  a r e  appl ied i n  



81 

a random order. Also ,  t h e  response  dis t r ibut ion for e a c h  s u b j e c t  is assumed to  b e  cont inuous.  

T h i s  implies  that  t h e  probability of tied observat ions on a subjec t  is zero. 

If, through a l a c k  of measurement precis ion,  t i e s  d o  occur ,  t h e  following procedure is recom- 

mended. F o r  e a c h  subjec t  a s s i g n  t h e  t ied group the midrank of tha t  group. A correction for t h e  

s t a t i s t i c  S when t i e s  occur  is as follows: L e t  tij b e  the number of t ied observat ions i n  the ith 

group of t i e s  within the  jth subject .  Then  u s e  t h e  corrected s t a t i s t i c  

r m 1 

- 
12(n - 1) 

For an example of t h e  appl icat ion of the  two-way c lass i f ica t ion  procedure we wil l  u s e  t h e  

example on p. 292 of Bradley (1960). T h e  example is a s  follows: 

Each  of three  s u b j e c t s  performs a well-learned t a s k  three time;, e a c h  time under t h e  inf luence 

of a different drug. Performance is timed, and t h e  experimenter w i s h e s  to t e s t  t h e  hypothesis  

tha t  n o  subjec t ’ s  performance t imes were influenced more by one drug than by another, a t  a 5% 

leve l  of s ignif icance.  T a b l e s  of t h e  t imes and of their  ranks a r e  as  follows: 

T i m e  T i m e  Rank 

Subject Drug I Drug I1 Drug I11 Drug I Drug I1 Drug I11 

A 4.76 1.30 7.91 2 1 3 

B 14.51 10.27 35.84 2 1 3 
C 82.11 82.09 82.14 2 1 3 

Sum 6 3 9 

T h e  assumption of cont inuous response  dis t r ibut ions seems valid i n  t h i s  c a s e ,  s i n c e  we a r e  

measuring time. 

assumptions seem t o  be  valid. 

So i f  the  observat ions have  been s e l e c t e d  i n  the  proper manner, the necessary  

Now af ter  w e  have  ranked t h e  t imes of e a c h  subjec t  separa te ly ,  we  find that  t h e  sums of t h e  

Also  we find tha t  t h e  expec ted  rank sum for e a c h  drug, ranks for the three  drugs a r e  6 ,  3 ,  and 9. 

under the  hypothes is  of equal  e f fec ts ,  would b e  

m- 3 = 3 ( y )  = 6 . 

Thus  t h e  t e s t  s t a t i s t i c  S is given by 

S = (6 - 6)’ + (3 - 6)*  + (9 - 6)’ = 18 . 
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Then by consul t ing  Kendal l ’s  e x a c t  t a b l e s ,  i t  c a n  be  found that ,  given t h e  nul l  hypothesis ,  

1’(S 2 18) = 0.028 < 0.05 . 

Thus  we would re jec t  t h e  hypothes is  tha t  t h e  drugs  produce equal  e f fec ts .  

8. CONCLUSION 

T h e  group of dis t r ibut ion-free t e s t  procedures  which w e  have  j u s t  considered i s  a smal l  but 

useful  s u b s e t  of t h e  s e t  of distribution-free procedures. 

We a l s o  have  procedures  ava i lab le  for various kinds of t rends ,  runs of e v e n t s ,  conf idence  

controls ,  and s e v e r a l  other s i tua t ions .  T o  read about  many distribution-free procedures I s u g g e s t  

you read Wright Air Development Divis ion (WADD) Technica l  Report 60-661, Distribution-Free 

Statistical T e s t s ,  by J a m e s  V .  Bradley, ava i lab le  a t  t h e  Y-12 Technica l  Library. T h i s  report a l s o  

conta ins  e x t e n s i v e  bibl iographies  a t  t h e  end of e a c h  chapter .  
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LECTURE VI: LINEAR REGRESSION 

T. L. Hebble  

1 .  INTRODUCTION 

T h e  concept  o f  l inear  regression is concerned with the  relat ionship between a measured te -  

s p o n s e  Y and a function of known cons tan ts  (x,, . . . , x ) and unknown parameters (P I ,  . . . , p,). 
T h i s  re la t ionship i s  often written in  t h e  form 

P 

where e is the error in  measuring Y .  T h e  word “linear” means  t h a t  Y is a l inear  function of the 

p ’ s  and not  necessar i ly  of t h e  x’s. If we  know P I ,  . . . , p, we could  predict the response exac t ly  

by the  above funct ional  (true) re la t ionship.  However, in general ,  we  d o  not know t h e  p’s, and it 

is des i rab le  to find some function of the  observat ions Y which provides a “good” es t imate  of 

P I ,  . . . , p,. 
Examples  of l inear  regression occur  frequently i n  chemical  k ine t ics ,  thermodynamics, and  

virtually a l l  a r e a s  of phys ics .  

b l e s  s u c h  a s  temperature, flow rate ,  and c a t a l y s t  concentration. Although t h e s e  var iables  are not  

exact ly  known, t h e  errors  a s s o c i a t e d  with measuring them a r e  negl igible  re la t ive to the  errors i n  

measuring t h e  response.  

T h e  fixed cons tan ts  a re  usual ly  spec i f ic  va lues  of process  var ia-  

W e  s h a l l  confine ourse lves  t o  a d i s c u s s i o n  of parameter es t imat ion,  confidence interval  e s t i -  

mation, and some t e s t s  of hypotheses  assoc ia ted  with l inear  regression.  Since a heavy rel iance 

is placed on the  u s e  of matr ices ,  a short  review of t h e  fundamentals  of mat r ices  is given i n  t h e  

Appendix (Sect .  7 of t h i s  lecture) .  

1.1 Notation 

Every effort is made to conform to t h e  notation of previous lec tures ,  but i n  cer ta in  i n s t a n c e s  

tradition d i c t a t e s  that  other  notation b e  employed. In addition to capi ta l  l e t te rs  (other than t h o s e  

in  boldface) I s h a l l  u s e  t h e  le t ter  e t o  des igna te  random var iab les .  Cons tan ts  and t h e  real izat ion 

of random var iab les  are denoted by lower-case le t te rs .  Also,  parameter es t imates  which a r e  indi-  

ca ted  by a A (“hat”) or 

va lues  of random variables .  

A 
( t i lde)  ( such  a s  @ and g2) a r e  e i ther  random variables  or numerical 

2 .  LINEAR REGRESSION 

2.1 Definition of Problem 

Consider  a random variable  Y which is functionally re la ted t o  known c o n s t a n t s  xl, . . . , xp 
and unknown parameters P I ,  . . . , p, by 

83 
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Y = p l x l  + P 2 x 2  + . . . + p p x p  -t e , 

where e i s  a random var iab le  represent ing measurement error. L e t  t h e  probability densi ty  function 

(p.d.f.) o f  Y b e  given by 

Assuming tha t  t h e  e x p e c t e d  va lue  of e,  E(e ) ,  is equal  to zero,  we may wri te  

+ P P X P  E ( Y )  = p l x l  + . . . 

T h e  x’s a r e  p r o c e s s  var iab les  or independent  var iab les ,  and Y is the  response  or dependent  

variable.. T h e  6’s are  c a l l e d  t h e  regression coef f ic ien ts ,  parameters ,  or e f fec ts .  

A s  a n  example,  we  might cons ider  tha t  for some p r o c e s s ,  eff ic iency Y is related to tempera- 

ture according t o  

I’ = p i x l  + P2.2 + e ’ 

where x 1  = temperature, x 2  = x 1 2 ,  and e is measurement  error. In th i s  model, the unknown param- 

e te rs  p ,  and p,  a r e  t h e  l inear  and quadrat ic  e f f e c t s  of temperature on eff ic iency.  

Now expand th is  i d e a  of a s ingle  experiment  with two parameters  in  the model to  n experiments  

with p parameters  i n  t h e  model. T h a t  i s ,  we  have  n equat ions  and p unknowns i n  which e a c h  

equat ion represents  an experiment  and the Y’s and e’s represent  random variables:  

1 + p p x , ,  + e l  
E’ = p  

1 1x11 + . . .  

Y 2 p l x , ,  + .  . . + p p x 2 p  + e 2  
(2.1.1) 

The  expec ted  va lue  of  t h e  response  for t h e  ith experiment  is 

E ( Y i )  = pixii + . . . + p x .  , p  (i = 1 ,  . . . , n). 

It is convenient  and cer ta inly less cumbersome to convert  to matrix notat ion.  

become 

Thus  E q s .  (2.1.1) 

where 
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Matrices and vec tors  a r e  denoted by boldface le t ters .  T h e  superscr ip ts  denote  order and will be  

omitted when the  context  is clear .  

T h e  X matrix may be  prese lec ted  a s  prescr ibed by an experimental  des ign ,  or t h e  X matrix 

may be j u s t  a col lect ion of s imilar  experiments .  It is important that  the va lues  of x a r e  known 

cons tan ts ,  or a t  l e a s t  the  errors  a s s o c i a t e d  with measuring them are negligible. 

3. ESTIMATION OF PARAMETERS 

Two general  methods of parameter es t imat ion a s  appl ied to l inear  regression are  presented.  

F i r s t ,  the  method of l e a s t  squares  is d i s c u s s e d  under the  assumptions:  

E(e) = 0 ,  E(ee ’ )  = CJ’I , 

where 0 is an n x l  vector  of z e r o s  and I is the identity matrix. T h e  prime (’) ind ica tes  the  

t ranspose.  Second, t h e  method of maximum likelihood is d i s c u s s e d  under t h e  assumption that  

e N ( 0 ,  u21), that  i s ,  tha t  e h a s  a multivariate normal distribution. 

In the second c a s e ,  e a c h  ei (i = 1, . . . , n) h a s  a normal distribution with mean 0 and  var iance  

c2. Also,  t h e  var iance-covariance matrix 0’1 implies  tha t  the  ei a r e  mutually independent  (in a 

s t o c h a s t i c  s e n s e ) ,  s i n c e  t h e  covariance e lements  are 0. 

3.1 Method of Least  Squares 

A technique of parameter es t imat ion which h a s  a s t rong  mathematical and intui t ive foundation 

i s  the method of l e a s t  squares .  For a given function f(x, @) and a response y ,  the s e t  of parame- 

t e r s  @ is found so that  t h e  residual  sum of s q u a r e s  is a minimum: 

n 
residual sum of s q u a r e s  = E [yi - f i ( x ,  P)]’  . 

i= 1 

(3.1.1) 

Here x is the vector  of l e v e l s  of the  independent  var iab les  which corresponds to  the ith experiment. 

Equation (3.1.1) represents  t h e  sum of squared deviat ions between the observat ions and the 

function. 

In terms of our problem, we may wri te  for the  residual  sum of squares  

(3.1.2) 

Note tha t  in  Eq. (3.1.2) w e  must  res t r ic t  ourse lves  to  l inear  funct ions of @, whereas  i n  Eq. 

(3.1.1) f ( x ,  @) may be virtually any function. If e ’ e  i s  divided by n - p ,  the degrees  of freedom 

for error, we  obtain the residual  mean square:  

1 ”  1 ,  residual  mean square = - E e? = - e e 
n - p .  I =  1 ’ n - P  
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Since we have  va lues  for y (the outcome of t h e  experiment) and x ( the known l e v e l s  of the inde-  

pendent var iables) ,  we  need  only t o  find p so  that  e ’ e  i s  a minimum. To do t h i s  we  different ia te  

e ‘e  with respec t  to  e a c h  p,  s e t  t h e  resul t ing equat ions  equal  to  zero,  and s o l v e  for p. Thus:  

and the  par t ia l s  with respec t  to  t h e  p ’ s  a r e  

. . . . ,  

In matrix notat ion,  

de ’e  
- -2X‘(Y - xp, = -2X‘Y + 2X’XP.  (W 

A 
T h e  value of /3 for which de’e/dp = 0 is denoted and is c a l l e d  t h e  leas t - squares  es t imate  of p. 
T h e  equat ions (de’e/dp) = 0 = X’XP - X’Y a r e  ca l led  t h e  normal equat ions .  Premultiplying both 

s i d e s  of the  normal equat ions  by (X’X)-’, w e  have’  

A 

A (x’x)- ‘(X,X)P = (x’x)-’x’Y i f  1 X’X/ f 0 ,  

and hence  

A A  
I,B = p = (x’x)-’x’Y , 

T h e  method of l e a s t  s q u a r e s  d o e s  not  provide a n  es t imate  of u2.  An es t imate  of u2 ,  denoted  
A A 
u2, c a n  b e  found by subs t i tu t ing  f3 for i n  the equat ion for t h e  residual  mean square:  

It c a n  be shown tha t  th i s  es t imate  i s  unbiased ,  that  i s ,  that  E ( & 2 )  = 02. 

‘The ,matrix (X’X)-’ is not  def ined for I X ’ X I  = 0. 
which impl ies  tha t  t h e  p x p X’X matrix is a l s o  of rank p .  

To avoid t h i s ,  w e  s t a t e  t h a t  x must  b e  of rank p ,  
A p x p matrix of rank  p is nonsingular .  
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3.2 Example 

Suppose we cons ider  the  s imple  l inear  model 

Y i  = pixil + P , x i 2  + ei f o r i = 1 , 2 ,  . . . ,  n .  

There a r e  n observat ions and p = 2 parameters. To generate  a n  intercept  P I ,  l e t  x i  = 1 for all 

i = 1 ,  . . . , n. Sett ing xiz = x i ,  th i s  model may be  rewritten as 

Y i  = p ,  + @,xi + ei f o r i = l ,  . . .  , n .  (3.2.1) 

Now 

Since  

then 

f l C ( X i  - X), n Z ( x ;  - s7)2 

(X’X)-1 = 

Thus 

A 1 p = (X’X)-1 X’Y = 

A 

The elements  of /3 can  b e  reduced to  

A A p 1 = y - p 2 s l  

and 
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T h e  unbi,ased es t imate  of D‘,  the  residual  mean square ,  is 

In the foIegoing example t h e  summation over i is understood to go from 0 t o  n. 

For a numerical example,  cons ider  the  problem presented  in  Graybill’ i n  which we wish t o  

predict t h e  d i s t a n c e  that  a par t ic le  t rave ls  i n  time x. Suppose the  t i m e  is measured accurately 

relat ive to d i s t a n c e  and we measure the d i s t a n c e  the par t ic le  t rave ls  a t  s e v e r a l  points  i n  time. 

time, x 1 1  2 3 4 1 0  1 2  18 

d i s t a n c e ,  d I 9 1 5  19  20 45 55 78 

Assuming that  the par t ic le  t rave ls  a t  cons tan t  veloci ty ,  t h e  model [see (3.2.1)] i s  

d,i = p ,  + p , x i  + ei ( i  = 1 ,  2, . . . , n )  , 

where p ,  i s  t h e  posi t ion of t h e  par t ic le  a t  t = 0 and  p,  is the  veloci ty  of the part ic le .  Thus ,  i f  

Y i s  the  vector of d i s t a n c e s  and X i s  t h e  matrix of t imes,  

Y’Y = 12 ,201  , 2’ = 2.22 . 

3.3 Gauss-Markov Theorem 

The major propert ies  of P as a n  est imator  of P a r e  given i n  an important theorem ca l led  t h e  
A 

Gauss-Msmkov theorem. T h i s  theorem s t a t e s  tha t ,  under the following assumptions:  

1. 

2. E ( e )  = 0, 
3 .  E(ee ’ )  = ~ ’ 1 ,  

the  l e a s t - s q u a r e s  es t imate  6 provides  t h e  b e s t  l inear  unbiased es t imate  of p. T h e  word “ b e s t ”  

means that  t h e  var iance of pi is a minimum when compared with a l l  other linear est imators  of pi. 
(Note that  here  “ l inear”  refers  t o  a l inear  function of the observat ions.)  Since the dis t r ibut ion of 

the residual  e w a s  not  spec i f ied ,  P cannot  be compared with all es t imators .  

Y(nxl) = X ( n x P )  PbX1) + e(nx1), where X i s  of rank p - n, 

A 

A 

A 

‘F. A. Graybi l l ,  An Introduction to Linear S ta t i s t ica l  Models,  vol. 1, McGraw-Hill, New York, 1961. 
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T h e  Gauss-Markov theorem may be  extended t o  all  l inear  funct ions of 6. For  a given p x 1 
vector of cons tan ts  r, the  b e s t  l inear  unbiased es t imate  of r’p i s  given by 

A r’p = r’(X’X)- X’Y , 

3.4 Parameter Est imat ion by Method of Maximum Likelihood 

T o  employ the  method of maximum likelihood as  a means  of est imat ing parameters, w e  must  

a s s u m e  that  t h e  jo in t  probability densi ty  function (p.d.f.) i s  known. When t h e  p.d.f. is considered 

to be  a function of t h e  parameters ,  i t  i s  ca l led  the  likelihood equat ion,  and  for a given “random” 

sample,  t h e  es t imates  of t h e  parameters which maximize t h i s  equat ion a r e  ca l led  maximum l ike-  

lihood es t imates .  

In terms of our  regression problem, a s s u m e  t h a t  

e N(O, 0‘1) . ( 3.4.1) 

A s  mentioned ear l ier ,  (3.4.1) implies  tha t  each  ei (i = 1 ,  . . . , n) is normally dis t r ibuted with mean 

0 and var iance c2 and tha t  the ei a r e  mutually independent. T h i s  joint  p.d.f. and h e n c e  the 

likelihood equation L may b e  written a s  

1 
L = f (e ;  p, c2) = exp(-e’e/2c2)  . 

(271cJ 2)n’ 2 

(3.4.2) 

We now wish to find t h o s e  es t imates  of p and o2  which maximize (3.4.2). To accomplish t h i s ,  it  

will be  e a s i e r  to work with t h e  logarithm of the likelihood function: 

In L = In f ( e ;  p, m 2 )  

(Y - XP)’(Y - xp) n 
- _ -  --In 27a2 . 

2 2a2 

The va lues  which maximize (3.4.3) also m a x i m i z e  (3.4.2). 

To obtain t h e s e  e s t i m a t e s ,  the par t ia l s  of Eq. (3.4.3) with r e s p e c t  to  e a c h  parameter are 

found. T h u s  for /3, 

d l n L  1 
- [X’Y - x’xpl , ap ~2 

and for u2,  

(3.4.3) 

Setting t h e  above  par t ia l s  equal  to zero and so lv ing  for t h e  parameters ,  we  have  

p  ̂ = (x ’x ) - ’x ’Y  
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and 

- 1  A 
cJ2 =- (Y - XP)’(Y - Xb) . 

n 

Note thlat the maximum likelihood es t imate  of B is the s a m e  a s  t h e  leas t - squares  es t imate  of p. 
A s  indicated ear l ie r ,  

and 

That  i s ,  the  unbiased  es t imate  of CJ‘ is 

Under t h e  assumpt ions  

1. e - N(0, 0 I), 
2.  Y = XP + e, where X is of rank p 5 - n ,  

the est imators  p a n d  IT’ h a v e  s e v e r a l  important propert ies .  Among t h e s e  a re :  

1. /3 - N [ P ,  c 2(X’X)- ’1 (multivariate normal) ,  

2. minimum variance unbiased ,  

3 .  (n  - p ) u 2 / c 2  

4. P a n d  IT’ are  independent .  

They also have  t h e  propert ies  of being cons is ten t ,  complete ,  suff ic ient ,  and eff ic ient .  

A A  

A 

A 

A A  

chi -square  dis t r ibut ion with n - p degrees  of freedom, 

4. TESTING THE REGRESSION MODEL 

4.1 Test  for L a c k  of Fit 

Regression a n a l y s i s  a s  presented c a n  a l s o  b e  employed when t h e  relat ionship is not known or 

when w e  wish to approximate a more complicated express ion .  A s  mentioned ear l ie r ,  e‘e represents  

the residual  (error) sum of s q u a r e s  if the  funct ional  re la t ionship i s  known. However, if i t  is n o t  

known or we wish t o  approximate a complicated function, e‘e c o n t a i n s  t h e  sum of s q u a r e s  t h a t  is 

due to  t h e  inabi l i ty  of t h e  model to fit t h e  d a t a  or simply lack  of fit. That  is, 

[ res idua l  sum of s q u a r e s  (RSS)] = [error sum of s q u a r e s  (ESS)] 

+ [ lack of fit sum o f  s q u a r e s  (LFSS)] 

We may t e s t  th i s  lack of f i t  i f  there  a r e  multiple observa t ions  at o n e  or more va lues  of x or if 

there  is a s e p a r a t e  independent  es t imate  of 0’. (By “multiple observat ions” i s  meant  tha t  t h e  

experiment is repeated and not  j u s t  cont inued by extending a s i n g l e  experiment.) 
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In terms of matr ices ,  

h h 
ere = ( Y  - XP)’(Y - ~ b )  = Y’Y - ~ ’ x ’ Y  , 

A 
where Y ’Y is the  total sum of s q u a r e s  and B ’ X T  is the sum of s q u a r e s  due  to regression.  T h u s  

LFSS = Y’Y - 8 ‘X‘Y - ESS . 

T h e  error sum of s q u a r e s  i s  computed by “pooling” (combining) t h e  sum of s q u a r e s  about  the 

mean a t  e a c h  v a l u e  of x for which there a r e  multiple observat ions.  For example,  if there a r e  k 

observat ions made a t  a particular va lue  x, then the sum of s q u a r e s  about  7, the  mean of the  

response  a t  x, i s  computed according to the familiar 

where 

n 

T h e  number of degrees  of freedom is k - 1. 

If  there a re  4 dis t inc t  v a l u e s  of x and there a re  ki ( 2 1 )  - i n  the ith group ( i  = 1 ,  . . . , d) ,  then 

the error  sum of s q u a r e s  is obtained by summing over  all values .  T h u s  

and h a s  n - d d e g r e e s  of freedom. Now, s i n c e  ESS and LFSS are  independent  and are dis t r ibuted 

x 2  with n - 8 and 8 - p degrees  of freedom, respect ively,  the rat io  

(4.1.1) 

For convenience,  th i s  t e s t  may b e  out l ined by u s i n g  T a b l e  1. 

If the rat io  (4.1.1) e x c e e d s  t h e  prese lec ted  percentage point  of t h e  Snedecor F dist r ibut ion,  

the  model i s  not a n  adequate  representat ion of the d a t a ,  and a new model should b e  found. If the  

ratio i s  not s ignif icant ,  there  is no reason to reject  the  model. On the  o ther  hand,  there  is n o  

reason to assume that  t h e  model i s  correct  or even that  i t  is t h e  b e s t  model. 

T h e  quest ion often a r i s e s  a s  t o  whether t h e  res idua l  mean square  c a n  rep lace  the  error mean 

square  for tes t ing  var ious hypotheses  i f  t h e  lack of fit is not  s ignif icant .  T h e  purpose of us ing  

t h e  residual  mean square  is t o  i n c r e a s e  t h e  degrees  of freedom for error and thereby reduce t h e  

value from t h e  F table .  There  i s  n o  clear-cut  answer,  and the c h o i c e  is lef t  up  to the individual. 
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T a b l e  1. Analys is  o f  Var iance 

Degrees of Sum of 

Freedom Squares  Mean Square F R a t i o  Source 

T o t a l  n Y ’Y 

Regress ion  P P^’X‘Y j ’X’Y ’/p 

R e s i d u a  1 n - p  Y‘Y -a^ ,X ,Y  - (Y’Y - ’X’Y) 
1 

n - P  

Compare [see Eq. (4.1.1)] 
L a c k  of f i t  4 - p  LFSS L F S S / ( ~  - p) 

Error  n - 8  E S S  ESS/(n - 4) 

4.2 Comparison of Models Us ing  R2 

A second measure  of t h e  e f fec t iveness  of t h e  regression model is the square  of the  multiple 

correlation coeff ic ient  R: 

where 

- 1 ”  
Y =-  Y i ,  

n .  
I =  1 

Y’Y = total  s u m  of squares ,  

A 
‘X‘Y = regression sum of squares .  

T h i s  is the proportion of t h e  t o t a l  sum of s q u a r e s  (adjusted for the  mean) which is accounted for 

by the model and should b e  u s e d  t o  compare different  models  u s i n g  the  s a m e  d a t a .  In general ,  

for n 2 - 2p, a va lue  of R 2  < 0.85 i n d i c a t e s  a poor model. An R 2  > 0.90 i n d i c a t e s  a good model, 

and hopefully R 2  > 0.95. It should be  recognized tha t  when p = n ,  R 2  = 1, and when p i s  la rge  

relat ive t o  n - p, R 2  i s  close t o  1. 

5. C O N F I D E N C E  I N T E R V A L S  

5.1 Confidence Intervals About 

Under t h e  assumption tha t  e rv N ( 0 ,  c21), we can  p lace  confidence in te rva ls  about  individual  

es t imates  of P or joint ly  about  a l l  ,#. Earl ier  i t  w a s  s t a t e d  t h a t  s i n c e  

e N ( 0 ,  u21) , 
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then 

A 
Thus t h e  var iance of Pi  ( i  = 1, . . . , p) is given by &’cii, where cii is the ith diagonal  e lement  of 

(X’X)-’. T h e  lOO(1 - a)% confidence interval  about pi is 

where t 

the  confidence interval  s ta tement  s a y s  nothing about  t h e  remaining coeff ic ients .  It is wrong to 

compute a s imilar  confidence interval  for e a c h  coeff ic ient  and then consider  all s imultaneously.  

T h e  proper jo in t  confidence interval  for all pi (i = 1, . . . , p) i s  given by the following inequality: 

is t h e  1 - a point of t h e  t distribution with n - p degrees  of freedom. However, 
(n-p .  1-a) 

A vector of c o n s t a n t s ,  P,  is s a i d  t o  lie within the jo in t  interval  if it  s a t i s f i e s  the  above inequal i ty .  

In a p-dimensional s p a c e  def ined by the p parameters, t h i s  inequal i ty  generates  a p-dimensional 

hypere l l ipse.  

In terms of the numerical example presented ear l ier ,  the individual 95% confidence intervals  
A on p, and p,  (for n = 7, P = 2, f ( s  , o .95 )  - - 2.57, 0’ = 2.22) a r e  

[5.71 - 2.57 4- =< pl  =< 5.71 + 2.57 4(-] 
and 

1 [4.02 - 2.57 d2.22)(0.00415) =< p, =< 4.02 + 2.57 4(2.22)(0.00415) 

respect ively.  T h e  joint  confidence interval  on p1 and p,  simultaneously is an e l l i p s e  in  the 

s p a c e  of PI  and p,. 
T h e  corresponding lOO(1 - a)% confidence interval  about  a linear function of the p i  is given by 

where r is a p x 1 vector  of known cons tan ts .  F o r  example,  i f  

the  95% confidence interval  about  
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is 

[(!5.71 - 4.02) - 2.57\/(2.22)(0.418) 5 (p ,  - p,) =< (5.71 - 4.02) + 2.!574-)] , 

or 

L-6.15 I - (p ,  - p,) 5 9.531 . 

5.2 Confidence Interval About E (Y)  

T h e  l.OO(1 - a)% confidence interval about 

i s  similar in  form to Eq. (5.1.1): 

where x o  is a vector of cons t an t s  representing spec i f i c  va lues  of the independent variables.  

confidence in te rva l  g ives  u s  a measure of how we l l  we know the mean value of the response  a t  a 

given s e t  of l eve l s  of the independent  variable.  By plotting the response  aga ins t  one independent 

variable,  the above in te rva l  genera tes  a confidence band about the regress ion  curve.  

This  

5.3 Confidence Interval About Mean of Future Observations 

A confidence in te rva l  may b e  placed about t he  mean of one or more future observations.  Sup- 

pose n experiments have been completed and the leas t - squares  es t imate  of @ h a s  been  computed. 

It is now des i rab le  to  perform k addi t iona l  experiments at a particular s e t  of x’s, s a y  xo. T h e  

lOO(1 - a)% conf idence  interval about the  mean y o  of these  k proposed experiments is given by 

A. 
were defined ear l ier  under Sect.  3 .4 .  When k = 1 ,  we have  the  

( n - p , l - a )  
where PI, X, G 2 ,  and t 

confidence in te rva l  about a s ing le  future observation. 

6. SOME COMMENTS ON STEPWISE REGRESSION 

Most computer programs which generate leas t - squares  e s t ima tes  of parameters in  l inear re- 

gression belong to a class commonly referred to as s t epwise  regression programs. In general ,  

s t e p w i s e  regress ion  programs build models by success ive ly  adding  s ing le  parameters t o  the  pre- 
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viously determined model according to some scheme.  T h e  criterion of s u c h  a program might be  t o  

add t h a t  parameter which c a u s e s  the  grea tes t  reduction in  the  residual  sum of squares .  Of course,  

there must  be  some ul t imate  model which is prescribed i n  t h e  input .  If the  c h o i c e  of all models  

su i tab le  for your d a t a  i s  a s u b s e t  of the  s u c c e s s i v e  models that  a r e  built and i f  the  building 

criterion i s  compatible with your problem, t h e  concept  of s tepwise  regression may be of some use .  

However, in  most  c a s e s ,  the  v a s t  amount of output of such  a program c l o u d s  the important informa- 

tion to b e  gained from i t s  u s e .  An exce l len t  account  of the various types  of regression programs 

is given in  Draper and  Smith.3 

T h e  t t e s t s  in  the printed output  of most  programs represent  t e s t s  made on individual coeffi- 

c i e n t s  and do not  provide a jo in t  t e s t  of a l l  parameters. 

T h e  numerical output  from one program may differ subs tan t ia l ly  from t h e  corresponding output 

of another program. T h i s  c a n  b e  attributed primarily t o  the  u s e  of different matrix inversion sub- 

rout ines .  If the  X’X matrix is nearly s ingular ,  the r e s u l t s  may b e  wild. When in  doubt ,  the b e s t  

way to check th i s  is t o  compare (X‘X)- l  X’X with the ident i ty  matrix. A second reason for differ- 

i n g  outputs  is in connection with computing the sums of s q u a r e s  assoc ia ted  with e a c h  parameter. 

T h e s e  va lues  depend on t h e  order in  which they were ca lcu la ted  ( u n l e s s  t h e  X’X matrix i s  diagonal). 

A competent  s ta t i s t ic ian  should b e  consul ted before u s i n g  t h e s e  s u m s  of squares .  

T h e  Sta t i s t ics  Section u s e s  s p e c i a l  computer programs which a r e  based on the University of 

California BIMD s e r i e s  and a r e  a l tered to  meet  our spec i f ic  n e e d s  and philosophy. 

are equal ly  as  good i f  no t  bet ter .  

Other programs 

7. A P P E N D I X  

Fundamentals of Matrices 

An n x rn matrix is a rectangular array of numbers having n rows and rn columns (n, rn = 1, 
2, . . .). Thus  

. . .  I 

T h e  x.. (i = 1, . . . , n; j = 1, . . . , rn) are  cal led t h e  e lements  of t h e  matrix, the f i rs t  le t ter  (or 

number) in  t h e  subscr ip t  referring to t h e  particular row and t h e  second le t te r  (or number) referring 

to t h e  particular column. T h e  size of a matrix i s  ca l led  t h e  order. T h u s  X is of order “n by rn” 

I J  

3N. Draper and H. Smith, Applied Regress ion Analys is ,  Wiley, New York, 1966. 
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and i s  written X ( R X m ) .  T h e  order is usual ly  omitted when t h e  context  is c lear .  If rn = 1 the  

matrix isL a column vector; if n = 1 the matrix i s  a row vector. A matrix of order 1 x 1 i s  a s c a l a r .  

A matrix is square when n = rn, and a symmetric matrix i s  a square  matrix i n  which x.. = x.. 

(i, j =  1, . . . ,  n). 
11 11 

T h e  s e t  o f  e lements  {xiii (for i = 1, . . . , n) cons t i tu te  the  main diagonal .  A diagonal  matrix 

i s  one  i n  which only the  d iagonal  e lements  differ from zero. If a l l  t h e  d iagonal  e lements  are equal  

to  1, s u c h  a matrix is ca l led  t h e  ident i ty  matrix. 

Basic Operations Using Matrices 

T h e  t ranspose of A ,  denoted A' (or AT), i s  the matrix A with the rows and columns inter-  

changed. T h u s  l a . . ] '  = [ a j i ] .  Note that  (A')' = A. 
11 

T h e  addition of  two mat r ices  of the  same order is performed by adding t o  e a c h  e lement  of one  

matrix t h e  corresponding e lement  of t h e  second matrix: 

In  mult ipl icat ion,  matrix B is premultiplied by A if the  sequence  A B  is preserved.  If BA,  B is 

postmultiplied by A. T h e  matr ices  A ,  B a r e  s a i d  to be conformable for multiplication if t h e  number 

of columns in  A i s  e q u a l  to  the number of rows i n  B when A i s  postmultiplied by B. If A is pre- 

multiplied by B the number of rows in A must  b e  equal  to the  number of columns i n  B. If A and B 

are of order n 1  x r n ,  and n 2  x r n 2 ,  respec t ive ly ,  and rn, = n 2 ,  then t h e  product A B  i s  of order 

n 1  x rn2.  

row of A by the corresponding e lement  of the j t h  column of B and summing t h e  resu l t ing  rn, products. 

T h u s  

E a c h  e lement  of C = AB,  s a y  c i j ,  is obtained by  multiplying every e lement  of the ith 

m l  

c . .  = aikbkj  . 
' I  

k= 1 

Note tha t  A B  d o e s  not  necessar i ly  e q u a l  BA. 

The inverse  of a nonsingular  square  matrix A, denoted A- ' ,  is defined to b e  that  matrix 

which s a t i s f i e s  

(A)(A- ') = I ( ident i ty  matrix) . 

Matrix A is nonsingular  if the  determinant, IA I ,  i s  no t  equal  to  0. 

Properties of Matrices 

A matrix of order rn x n i s  s a i d  to  b e  of rank r ( for  0 =< r 5 rn 5 n) i f  r represents  the  order of 

the  l a r g e s t  submatrix which is nonsingular .  
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L e t  Y b e  a n  n x 1 column vector of cons tan ts  and A b e  a n  n x n matrix. Then 

n n  

is c a l l e d  a quadrat ic  form in the y’s.  T h i s  quadrat ic  form is s a i d  to b e  posi t ive def ini te  (posi t ive 

semidefini te)  i f  and only i f  Y’AY > 0 (Y’AY 2 - 0) for all vectors  Y f 0. T h e  matrix A is a l s o  s a i d  

to b e  pos i t ive  def in i te  (posi t ive semidefinite). 

A matrix i s  s a i d  to b e  orthogonal i f  A‘A = I ,  that  i s ,  i f  

n n  E ,E aiiaji = o . 
i = i  ] = I  



LECTURE VII: NONLINEAR ESTIMATION 

John J .  Beauchamp 

1. INTRODUCTION 

In t h i s  lecture  we present  a brief introduction to  the subjec t  of nonl inear  es t imat ion.  T h i s  

d e a l s  with the  relat ionship between a n  observable  random variable  and o n e  or more independent 

(nonrandom) var iables ,  when that  re la t ionship c a n  b e  expressed  i n  a nonlinear functional form. 

T h i s  case a r i s e s  when def ini te  information is ava i lab le  about t h e  form of t h e  relat ionship between 

t h e  ranldom variable  or response  and the  independent  variable. When s u c h  information i s  avai lable ,  

we  usu,ally prefer t o  fit the  more r e a l i s t i c  model rather than a l inear  model which might be  less 

rea l i s  t ic .  

In t h e  lecture  on l inear  regression w e  d i s c u s s e d  the  fitting, by l e a s t  s q u a r e s ,  of models which 

were l inear  in t h e  parameters of in te res t ,  t h a t  is, models of the  type 

Y = p  o + p , z , + . . . + p  P P  z + t ,  (1) 

where 1‘ c a n  represent  the  observable  random variable; Z1 , . . . , Z 

t h e  b a s i c  independent  var iab les  X , , . . . , X ,  ; and t can  represent  t h e  “experimental  error” 

a s s o c i a t e d  with Y .  Example: 

c a n  represent  any functions of 
P 

Y = p ,  X ,  + /3, X :  s i n  X ,  + t . 

In t h i s  case Z1 = X ,  and Z ,  = X i  s i n  X , .  A s  we have  s e e n  from t h e  ear l ie r  lec ture  the  est imat ion 

of t h e  parameters  P o ,  . . . , P p  in  equat ions  of the  form given by (1) i s  wel l  understood. 

Suppose tha t  we  assume a funct ional  form which explains  the  observa t ions  apart  f rom experi- 

mental  error, that  is, 

Y = f(4, e ) +  t , ( 2 )  

or 

where 

8 = (0, , . . . , H p ) ’  (4) 

is t h e  vector  of unknown parameters  to  b e  es t imated  and 

is t h e  vector  of known or controlled independent  var iables ,  There  a r e  n observa t ions  on t h e  random 

variable  Y corresponding t o  a n  observed va lue  of the vector of independent  var iab les  6. T h e s e  

observa t ions  a r e  denoted by 

98 
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where 

for u = 1, 2,  . . . , n. T h e  actual  observed va lues  of Y u  a r e  denoted by y u ,  u = 1, 2, . . . , n. Our 

a i m  is to obtain t h e  least-squares  es t imate  of 8, that  i s ,  obtain a va lue  of 8 t h a t  minimizes  

When t h e  function f is nonlinear i n  t h e  e lements  of 19, then S(8) may h a v e  multiple or re la t ive 

minima, whereas  i f  f is of the  form given in  Eq.  (1) then t h e  leas t - squares  e s t i m a t e s  of t h e  

parameters a r e  unique and also t h e  b e s t  l inear  unbiased es t imates  for t h e  case when the  random 

var iab les  a r e  assumed t o  b e  independent  with constant  variance. I t  should be  noted that  t h e  

leas t - squares  es t imators  of 8 a r e  equiva len t  t o  t h e  maximum likelihood es t imators  of I9 when t h e  

addi t ional  assumption i s  made tha t  t h e  6" a r e  normally distributed, s i n c e  minimizing S(8) with 

respec t  t o  0 c a n  be  shown t o  b e  equiva len t  to  maximizing the  likelihood function with respec t  to 

8. T h i s  c a n  eas i ly  b e  s e e n  by examining the  likelihood function, which,  for t h i s  c a s e ,  can  be  

written a s  
n 

2. GEOMETRY OF LEAST SQUARES 

Before we present  some of the  procedures  to  es t imate  the vector  8, w e  want t o  examine the  

geometry of t h e  s i tuat ion s o  tha t  we  may apprec ia te  some of t h e  diff icul t ies  that  may a r i s e  i n  

nonlinear estimation. T h e  contours def ined by S(@ = constant  may be  examined in  two different 

ways. W e  may examine them in a s u b s p a c e  of the sample s p a c e  c a l l e d  t h e  est imat ion s p a c e ,  

which c o n s i s t s  of all points with coord ina tes  given by 

tha t  i s ,  i t  is the  locus of a l l  points  with coordinates  given by (9) a s  I9 t a k e s  on a l l  poss ib le  

values .  If the  function f is l inear  i n  8, then the  estimation s p a c e  is a hyperplane with dimension 

equal  t o  p .  In addition, the  l i n e s  of cons tan t  8 a r e  equally s p a c e d  and orthogonal. If f is non- 

l inear  in  8, then one or both of t h e s e  condi t ions may not be  met. In Fig.  1 we have shown the 

sample  s p a c e  and est imat ion s p a c e  for three  s imple models. Figure l a  is a s imple l inear  model, 

Fig.  l b  i s  intr insical ly  l inear  s i n c e  i t  i s  l inear  af ter  a transformation of the  parameter, and Fig.  

IC disp lays  a model which i s  intr insical ly  nonlinear s i n c e  i t  is not p o s s i b l e  t o  convert i t  in to  a 

form l ike  Eq. (1). If we le t  $ = e' in  Fig.  16  then i t  becomes l ike  Fig.  l a .  
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Fig. 1. Sample Space for Three Different Regression Models. 
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Another re la ted method of examining contours  of constant  S(8) is t o  examine t h e s e  contours in  

t h e  parameter s p a c e  or 8 space .  If t h e  function f is linear, then t h e  contours  of cons tan t  S(8) in  

t h e  parameter s p a c e  cons is t  of concentr ic  e l l ipses .  If the  function f is nonlinear, then the  contours 

a r e  often elongated or banana-shaped. In addition, the contours for t h e  nonl inear  model may have  

multiple loops surrounding many s ta t ionary va lues  which provide a l te rna t ive  minima for S(8). 

Example: Consider  the  model 

- 0 , E  - 0 ,  6 

*, - 81 
- 8,e 

+ E .  Y =  *le  

If 8, and 8, a r e  interchanged, t h i s  l e a v e s  t h e  model unaltered. Therefore ,  i f  the  minimum for S ( 0 )  
is a t ta ined  a t  (O1, 6,) = ( e , ,  e,), t h e  s a m e  minimum value for S(t9) is given a t  ( O , ,  d 2 )  = ( e 2 ,  e , ) ,  
so t h a t  a double solution ex is t s .  

A *  A h  

3. METHODS OF ESTIMATION 

We wil l  now d i s c u s s  some methods which may b e  used  t o  find t h e  leas t - squares  es t imate  of t h e  

vector  8. T h e s e  methods make u s e  of o n e  or  both of the  following: (1) t h e  gradient or  s t e e p e s t  

d e s c e n t  method and (2) the  Gauss-Newton or  linearization method. Both of t h e s e  methods a r e  

i te ra t ive  and involve the choice of a vector  8 ( O )  of ini t ia l  es t imates  of t h e  parameters. T h e s e  

in i t ia l  es t imates  may be  intel l igent  g u e s s e s  or preliminary es t imates  b a s e d  on some avai lable  in- 

formation. Hopefully, t h e s e  ini t ia l  va lues  wil l  be  improved upon i n  t h e  s u c c e s s i v e  iterations. 

A 

3.1 Gradient or Steepest Descent Method 

We wil l  need the following definition before d iscuss ing  the  gradient o r  s t e e p e s t  descent  

method: 

Definition: L e t  g(x) b e  a real-valued function, where x i s  a vector  in  p-dimensional Eucl idean 

space .  T h e  gradient of g is then defined as  

o g =  - ag - , ... , ””)’ . 
(axl ax, a X I J  

. 

Hence  we note  that  og is vector valued and ind ica tes  a direction. If x(O) is some fixed point in  

the  p-dimensional space ,  then we c a n  show tha t  Vg(x(O)) points  in  t h e  direct ion from x(O) in  which 

g i n c r e a s e s  most rapidly. Therefore  -vg(x(O)) points  i n  the  direct ion from x(O) in  which g de- 

c r e a s e s  most rapidly. 
A 

F o r  our problem, l e t  8 ( v )  b e  the  es t imate  of the vector 8 a t  t h e  vth i terat ion;  then the  gradient 

method would find a new es t imate  of 8 by 
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A A 

where X is a posi t ive constant .  T h i s  procedure is repeated with e(”  ” )  t ak ing  the  p lace  of e ( ” ) .  
T h e  calculat ion proceeds i n  th i s  way unt i l  i t  is hal ted by s o m e  arbitrary rule. Some s top  when 

the  residual  sum of squares  i s  suff ic ient ly  smal l ,  some s top  when t h e  e lements  of 8 (” + 
- d ( v )  

a r e  suff ic ient ly  small ,  and some s t o p  a f te r  a fixed number of i terat ions.  However, there  is no 

generally accepted  s topping rule. 

T h e  gradient method h a s  t h e  advantage that  i t  is e a s y  t o  compute and i t  g ives  rapid improve- 
A 

ment i n  reducing S(@ when (I(’) is far from t h e  minimum. T h i s  method also h a s  some disadvantages ,  

though, and some of t h e s e  d isadvantages  are: (1) the  s t e p  s i z e  from i terat ion to  i terat ion must be  

determined; tha t  is, the  value of t h e  c o n s t a n t  X in  (12) must b e  determined, and t h i s  h a s  produced 

many var ia t ions of the  method; (2) convergence can  b e  very s low near  t h e  minimum value of 

S(8); and (3) the  direction of s t e e p e s t  d e s c e n t  i s  not unique under a change  of s c a l e .  

T h e  third disadvantage may b e  understood by consider ing the  following example: 

Example: T h e  two models whose  regression equat ions a r e  given by 

and 

for i = 1 ,  2 ,  . . . , n ,  differ only i n  a change  of scale of the  parameter 8,. Let 

and 

then by comparing the  vectors  -vS1 (8 )  and -vS2(8) i t  can e a s i l y  be  s e e n  tha t  t h e s e  two vectors  

do not h a v e  the  s a m e  direct ion in  t h e  8 s p a c e .  F o r  example, let n = 3 ,  y ,  = 2 ,  y ,  = 1, y ,  = 2, 5,  = 1.5, 

5, = 1.0,. 5 ,  = 0.5, 8 ,  = 5 ,  and 8, = 1 ;  then 

--vSl(8) = (-1.47562, 3.25976) 

and 

--os2(e) = (0.51263, -5.05388), 

which d o  not have  the  s a m e  direct ion i n  t h e  8 space .  
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3.2 Gauss-Newton or Linearization Method 

T h e  Gauss-Newton or l inear izat ion method of es t imat ing t h e  parameters  in  nonlinear regres- 

s ion  u s e s  t h e  resu l t s  of l inear  l e a s t  s q u a r e s  in  a success ion  of s t a g e s  and h a s  been referred to  

by some a s  l inear  regression for nonl inear  models. T h e  f i rs t  s t e p  i n  t h i s  method involves  the  

expansion of f(tU, 0) in Eq. (6) in  a Taylor  s e r i e s  expansion about  t h e  point  

estimates of t h e  elements  of 8 and curtai l ing th i s  expansion af ter  the  l inear  terms in  t h e  ele- 

ments  of 8. T h a t  i s ,  the  function f(tu, 6) is approximated by t h e  following l inear  function: 

of ini t ia l  

L e t  

then i t  c a n  b e  s e e n  that  the  model in  Eq. (6) is of the  form, approximately, 

T h a t  is, i t  is of the l inear  form given in  Eq. (1) to  the  se lec ted  order of approximation. Then, near  

e(’),  i t  should be  true that  $0) = S(@, where s(6) is S(8) when [(eu, 8) is approximated by (13), 

namely, 

n D 

u =  1 i =  1 

where 

d o )  = (y, - fro) , . . . , y n  - fr))’ , 
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Since  S(0) i s  a quadrat ic  form in 8, i t  c a n  be  minimized with 
\ I] (0) = (Z(0) ’  z(o))-l ( Z ( O ) ’ , ( O ) )  , 

if the  inverse  of Z(O)’z(O) e x i s t s .  A new es t imate  of the vector 8 i s  found from 
A 

O ( ’ )  = g n ( O ) + i ( O )  . (17) 
A A A 

U s i n g  8 ( l )  in  the  p lace  of 8 (O), the  above  s t e p s  a r e  repeated again.  L e t  8 ( v )  b e  the  vector of 

e s t i m a t e s  of 8 on t h e  v th  iteration; then 

T h e  above  procedure i s  repeated in  t h i s  way until i t  i s  hal ted by s o m e  arbitrary s topping  rule. A s  

w a s  mentioned i n  t h e  d iscuss ion  on t h e  gradient  method, there  a r e  numerous s topping  rules  that  

may b e  adopted. T h e  i terat ive l inear izat ion method f o r  es t imat ing t h e  e lements  of 8 h a s  the  

advantage  that  (1) i t  c a n  s o l v e  our es t imat ion problem in one i terat ion i f  f is l inear  and (2) i t  

usual ly  converges rapidly when we a r e  c l o s e  to  t h e  minimum, s i n c e  that  i s  where the  quadrat ic  

approximation t o  S(8) should b e  rather good. However, th i s  procedure may a l s o  h a v e  some draw- 

b a c k s  in  tha t  (1) i t  may converge s lowly,  (2) i t  may osc i l la te  widely, and (3) i t  may fail t o  con- 

verge a t  a l l  when i t  a t tempts  to  take  too  la rge  a s t e p  in  the  parameter s p a c e .  T o  combat some of 

t h e s e  def ic ienc ies  there have  been numerous modifications proposed to circumvent t h e s e  problems. 

One of t h e s e  modifications t a k e s  only a fraction of the  p ( v )  vector and a d d s  to  8 (v), that  i s ,  

t a k e s  very short  s t e p s  in  the  parameter s p a c e .  For s o m e  problems t h i s  h a s  been qui te  effect ive 

in  achiev ing  convergence to  a minimum of S(8). 

A A 

3.3 Ma rquardt’ s Corn prorni se 

D. W .  Marquardt h a s  developed a modification of the  l inear izat ion method tha t  also h a s  con- 

nec t ions  with the  gradient method. Marquardt’s method represents  a compromise between t h e  

l inear izat ion method and the  s t e e p e s t  d e s c e n t  method and appears  to  combine t h e  b e s t  features  

of both while  avoiding their  limitations. S ince  the  gradient and l inear izat ion methods each  give 

a correction vector for t h e  vector of in i t ia l  es t imates  of the  parameters, t h e  Marquardt algorithm 

provides a method for interpolat ing between t h e s e  two vectors and also for obtaining a su i tab le  

s t e p  s i z e .  T h e  b a s i c  idea behind t h i s  algorithm is that  if t h e  l inear izat ion approximation y ie lds  

a function S(8)  which is a good approximation to  S(8) only in  a cer ta in  neighborhood of the  current 

i t e ra te  on 8, then $8) should be  minimized only within that  neighborhood and not globally. Intui- 

tively, t h i s  should b e  a bet ter  procedure than merely continually ha lv ing  the  correct ion vector 

found by the  linearization procedure, s i n c e  th i s  vector  may be  pointing near ly  90’ away from the 

optimum loca l  direction, which is t h e  direct ion found by the  gradient or s t e e p e s t  d e s c e n t  method. 

T h e  complete  reference on Marquardt’s algorithm is given in  the  l i s t  of references.  There have  

a l s o  been numerous nonlinear es t imat ion procedures developed for cases when f is of a particular 

form, for example, i f  f is a sum of exponent ia l  terms. However, s i n c e  i t  would be  difficult to  
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d i s c u s s  a l l  of them, we will only give a reference to  a n  ex tens ive  bibliography on the  general 

s u b j e c t  of nonlinear estimation tha t  covers  many of t h e s e  s p e c i a l  techniques.  T h i s  bibliography 

i s  found a t  t h e  end of the chapter  on nonl inear  estimation i n  t h e  book by Draper and  Smith which 

is a l s o  l i s t e d  in  the  references. 

4. ESTIMATES OF VARIANCES 

In order to  obtain es t imates  of the  var iances  and covariances  of our  leas t - squares  es t imates  
A 

of t h e  e lements  of the vector 8, which we denote  by 8 (’), some approximation must be  used ,  s i n c e  

i t  is generally impossible  to  obtain e x a c t  express ions  for t h e s e  var iances  and covariances.  If we 

a s s u m e  tha t  the  observat ions y , ,  u = 1, 2, . . . , n, a r e  observed v a l u e s  of n independent random 

var iab les  e a c h  having a cons tan t  var iance  d, then the  covariance matrix of 8 (v) may be  approxi- 

mated by 

A 

where Z ( v )  is the  n x p matrix of par t ia l  der ivat ives  of the function f with respec t  to  the  elements  

of 8 evalua ted  a t  8 (’), which h a s  been def ined earlier. In order to  e v a l u a t e  t h i s  covariance matrix 

the  cons tan t  c2 is est imated by 

A 

C+z = S(8( ” ) ) / (n  - p )  , (20) 

where S(e^(”)) is the  residual  sum of s q u a r e s  evaluated a t  e h ( ’ ) .  By subs t i tu t ing  k2 into (19), t h e  

es t imated  var iance of 
A 

is found as  the  i th  diagonal element of the  resu l t ing  matrix. 

5. INITIAL ESTIMATES 

T h e  i terat ive procedures tha t  have  been d i s c u s s e d  above all require in i t ia l  es t imates  of the 

parameters 8 , ,  . . . , O P .  It is important tha t  as  much prior information a s  poss ib le  b e  used  t o  

make t h e s e  s ta r t ing  values  as  rel iable  a s  possible .  With good in i t ia l  va lues  i t  wi l l  often be  

poss ib le  for a n  i terat ive method t o  converge to  a solut ion fas te r  than would otherwise b e  possible .  

In addi t ion,  good s ta r t ing  va lues  may protect  aga ins t  the  convergence of t h e  i terat ive scheme to 

a n  unwanted s ta t ionary point of S(0) when multiple minima e x i s t  o r  if s e v e r a l  local minima exis t ,  

one  of which i s  the  absolu te  minimum. Parameter  values  which may b e  phys ica l ly  impossible  or 

which d o  not provide the  true minimum of S(0) may resul t  from s u c h  unwanted points. One way t o  

he lp  avoid s u c h  difficulties is t o  s e t  up a grid of points in  the  parameter s p a c e  where S(8) i s  

evaluated.  From th is  s e t  of va lues  of $0) i t  will usual ly  b e  p o s s i b l e  t o  see what the  form of t h e  

sum of s q u a r e s  sur face  i s ,  and i t  may a l s o  reveal  that  multiple minima a r e  possible .  In any c a s e ,  

the  grid point a t  which S(8) i s  s m a l l e s t  c a n  b e  used  as  a s ta r t ing  point of a n  i terat ive procedure, 

or a reduced grid c a n  b e  examined i n  t h e  b e s t  neighborhood, to obtain a bet ter  s ta r t ing  point. 

Frequent ly  i t  is poss ib le  t o  obtain in i t ia l  es t imates  of the  parameters  i n  a nonlinear regression 

model by a graphical or v i sua l  examination approach. In order to  demonstrate  how the  approach 

c a n  b e  used  we consider  the  model given by 
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Fig. 2. Regression Curve and Data  U s e d  to Obtain Init io1 Est imates o f  8 ,  and 8,. 

for u = 0,  1, 2, . . . , 10. In F ig .  2 a plot of the  observed data  points  (tu, y,) i s  given a long  with 

a smooth hand-drawn curve to  approximate the  function E ( Y )  in  Eq. (21). T h e  hand-drawn curve 

appears  to approach a n  asymptote  of about  8.5 a s  [ increases .  

could b e  taken a s  Oy' = 8.5. In order to  obtain a n  ini t ia l  es t imate  of O 2  we u s e  that  point where 

E ( Y )  a c h i e v e s  about one-half of i t s  maximum value  and then read off t h e  va lue  of 4 where th i s  

occurs ,  which i s  denoted by [*, that  i s ,  find 5 when E ( Y )  = 4.25. Many o ther  points  could have 

been u s e d  for t h i s  s t e p ,  but t h i s  point w a s  chosen  s i n c e  E ( Y )  i s  equal  to  8 , / 2  a t  t h i s  point, which 

implies  that  e 

Therefore  a n  in i t ia l  es t imate  of 8 ,  
A 

-025* 
= 0.5. W e  then e s t i m a t e  O 2  by 

-In 0.5 e":.) 
4* 

A 

From Fig,. 2,  E* = 1.25 and 8 1') = 0.55. Although we a r e  unable  to  make any  s ta tements  about the  

s t a t i s t i c a l  properties of 8 io) and  8 :'), they a r e  eas i ly  found and c a n  h e l p  in  choos ing  a particular 

region of t h e  8 s p a c e  where we e v a l u a t e  S(8). In addition, t h e s e  graphical  e s t i m a t e s  could b e  used  

as in i t ia l  es t imates  in  the  i te ra t ive  est imat ion procedures descr ibed ear l ier .  

A A 
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LECTURE VI I I :  ANALYSIS OF VARIANCE 

David G. G o s s l e e  

1. INTRODUCTION 

Repeated observa t ions  generally exhib i t  variation d u e  to changing condi t ions,  observers ,  

mater ia l ,  and other fac tors .  T h e s e  fac tors  c a n  seldom, if ever ,  b e  controlled e a s i l y  and inexpen- 

s ively.  T h u s  many fac tors  a r e  controlled by t h e  experimental  d e s i g n ,  and other fac tors  a re  con- 

trolled in  a probabi l is t ic  s e n s e  by randomization and repl icat ion.  A properly des igned  experiment 

a l lows  eff ic ient  a n a l y s i s  of t h e  variation due  to  s p e c i f i c  factors  and  unbiased es t imat ion  of the  

e f f e c t s  of fac tors  control led by des ign .  

Sir Ronald F i s h e r  (1925) originally def ined a n a l y s i s  of var iance as “separat ion of var iance  

ascr ibable  to o n e  group of c a u s e s  from t h e  var iance ascr ibable  to  other  groups.” T h e  a n a l y s i s  of 

var iance is a s t a t i s t i c a l  method that  h a s  been widely u s e d  for many y e a r s  s i n c e  i t s  development 

by F isher .  T h u s  many books and journal papers  contain t h e  theory, method, d e s i g n s ,  pr inciples ,  

ca lcu la t ions ,  and examples  n e c e s s a r y  for intel l igent  u s e  of t h e  method. Many programs for com- 

puters  e x i s t  to  perform t h e  ca lcu la t ions  for  a variety of d e s i g n s .  

In previous l e c t u r e s  in  t h i s  s e r i e s  the a n a l y s i s  of d i s c r e t e  observa t ions  and distribution-free 

tests were deve loped  and  descr ibed.  The  a n a l y s i s  of var iance is a method of analyzing cont inuous 

observat ions assuming tha t  the error term distribution i s  Gaussian.  T h e  des ign  fac tors  c a n  be 

quant i ta t ive or  qual i ta t ive.  

T h e  development of l inear  regress ion  also w a s  given i n  a previous lecture  u s i n g  the general  

l inear  hypothes is  theory. T h e  a n a l y s i s  of var iance c a n  b e  der ived from t h e  theory, although a 

diff iculfy a r i s e s  s i n c e  t h e  des ign  matrix is singular  and  not  of full tank.  T h i s  c a n  b e  overcome by  

reparameterization o r  by  u s e  of t h e  general ized i n v e r s e  (Kempthorne 1952,  Graybill 1961,  and  

Searle  1966). 

I will s p e a k  of  s i n g l e  observa t ions  on  a n  experimental uni t  s u c h  as t h e  diameter of a reactor  

fuel pe l le t  or of “one a t  a time” a n a l y s e s  of multiple measurements  which could include,  for 

example, o ther  measurements  on  t h e  pellet. Methods of ana lyz ing  multiple measurements  inc lude  

the a n a l y s i s  of covar iance  and multivariate a n a l y s i s  of variance. 

2. MODELS 

T h e  a n a l y s i s  of var iance  is used to ana lyze  observa t ions  i n  experiments  and surveys  i n  s o c i a l ,  

phys ica l ,  and biological  s c i e n c e s .  T h e  variation might be  considered i n  some inves t iga t ions  as  

variance per se, whi le  i n  others  i t  might b e  considered a s  the variation c a u s e d  by e f f e c t s  of fac tors  

on the  mean leve ls .  T h e  models for the  two cases a r e  cal led variance components  and  fixed 

models  respect ively.  T h e  mixed model which conta ins  both fixed and  random effects wil l  no t  b e  

d i s c u s s e d  . 
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2.1 Variance Components Model 

Interest  in  t h e  relat ive variation or var iance due  to different s o u r c e s  is typical  i n  genet ic  

s tud ies .  T h e  variation d u e  to inheri tance (genotypic variation, c~i) is compared with the variation 

due to t h e  interact ion of inheri ted t ra i t s  with the  environment (phenotypic variation, mi). The 

calculat ion of c~i and 

invest igat ion of the precis ion of manufacturing operat ions.  

will be descr ibed  in  Sect. 3. Other examples  a re  common, s u c h  a s  the 

T h e  l e v e l s  of a factor  a r e  assumed to be  random samples  from a population of l e v e l s ,  and w e  

are  in te res ted  in  making a n  inference about  t h e  var iance among l e v e l s  from t h e  sample to t h e  

population. In t h e  gene t ic  s tudy  i t  might b e  assumed t h a t  herds  of cows were  sampled  randomly 

and that c o w s  within h e r d s  were sampled randomly, Likewise ,  it  might b e  assumed in a production 

s tudy tha t  types of machines  were randomly sampled and that  machines  of a given type  were ran- 

domly sampled. 

T h e  a n a l y s i s  of variance for random models  is u s e d  to answer ques t ions  s u c h  as: 

1. What proportion of var iabi l i ty  is d u e  to inheri ted t ra i ts?  That  is, what is t h e  es t imate  of 
cJ; / (cJ;  + ai)? 

2. In how many generat ions will t h i s  ratio s tab i l ize?  

3. How much variation is c a u s e d  by nonhomogeneous raw mater ia l  re la t ive  t o  t h e  variation caused  
by differences among machines? 

4. What is t h e  optimum al locat ion of  effort on mater ia l ,  machines ,  operators ,  and  t ra ining to  reduce 
t h e  variation in  product? 

2.2 Fixed Model 

T h e  f ixed model is assumed if w e  a r e  in te res ted  i n  the ef fec t  d u e  to a treatment compared with 

a control or  i n  t h e  differences among s e v e r a l  treatment effects .  T h e s e  differences can b e  e x p r e s s e d  

as var iances  and  ana lyzed  by t h e  a n a l y s i s  of variance. If we  trained operators  by severa l  different 

methods we might w i s h  to t e s t  whether d i f fe rences  among t h e  programs were s ignif icant  i n  order  to 

t e s t  hypotheses  on t h e  e f fec t iveness  of  training programs. T h a t  i s ,  we  a r e  primarily in te res ted  i n  

tes t ing  differences among m e a n  leve ls .  

3. CALCULATIONS 

T h e  a n a l y s i s  of var iance is obtained by decomposing t h e  sum of s q u a r e s  of the observat ions 

into meaningful component s u m s  of squares .  Each  sum of s q u a r e s  is divided by t h e  corresponding 

degrees  of freedom to obtain a var iance,  usual ly  termed a mean square.  

Given y l ,  y , ,  . . . , yn  as rea l iza t ions  of t h e  random variable  Y ,  we wish  to subdiv ide  the total 

sum of squares ,  cy,?, i = 1, 2 ,  . . . , n,  where the  y’s represent  measurements  on a random sample of 

experimental uni ts .  T h e  t reatments  a r e  a l located to  t h e  uni t s  by a restr ic ted randomization pro- 

cedure.  T h e  par t icular  set of restr ic t ions determines the experimental design.  T h e  model is d e -  

termined by t h e  design and  t h e  assumptions.  
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T a b l e  1.  Summary of Measurements in  a One-way C lass i f ica t iona  

- 
Group 1 Group 2 . . .  Group i . . .  Group t 

Y f l  

y t  2 

y t 3  

. . .  Y i  1 

Y i  2 

Yi 3 

. . .  Y l 1  y 2  1 

y12  y ,  2 . . .  . . .  

. . .  . . .  ' 1 3  ' 2  3 

Y t j  . . .  Y i  j . . .  

y t r  

Y t .  

. . .  Y i r  . . . Y l r  y 2 r  

Y l .  y 2 .  

- 
- - - - . . .  Y i .  . . .  (Group mean 

(Grand mean - 
y . .  

"The tab le  natural ly  h i d e s  t h e  randomlzat ion scheme.  T h e  experimental  un i t s  shou ld  b e  
a s s k n e d  t o  the  groups randomly. 

For example, given n observat ions from t groups with r un i t s  in e a c h  group, we let y . .  represent  
11 

the  jth measurement  in  the  ith group (Table  1). T h e  following algebraic  ident i ty  demonstrates  a 

meaningful decomposition : 

t r  t t r  

yj7i = ny.". + r (7;. - F,.)* + E ( y i j  - . 
1 = 1  j = 1  i= 1 j = l  

T h e  corresponding model for th i s  one-way c lass i f ica t ion  is: 

E ( Y )  = p + ri , 

y . .  = p + r; + e . .  . 
' I  1 1  

T h u s  a measurement is represented a s  a l inear  combination of t..e mean p,  ,.e ef fec t  of the ith 

group Ti, and t h e  error e i j .  T h e  summary a n a l y s i s  of var iance i s  shown i n  T a b l e  2. T h e  expected 

mean s q u a r e s  ind ica te  t h a t  t h e  s t a t i s t i c s  s;  and sg can b e  u s e d  to t e s t  hypotheses  and make 

es t imates  on t h e  parameters  CT: and 7;. 

In a previous lec ture  we learned t h a t  the ratio of two independent  random var iab les  each  having 

a chi-square dis t r ibut ion is a random var iab le  having  a n  F distribution. In t h i s  a n a l y s i s  of variance 

and 
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T a b l e  2. Summary of Analysis  of Variance Calculat ions 

c 

E x p e c t e d  Mean Squares  Source of Degrees  of Mean 
Variat ion Square Random Model F i x e d  Model Freedom Sum of Squares  

T o t a l  n = rt i: i Ifj 
j=1 i = l  

Mean 1 n F~ 

r t  
2 a 2  a 2  

( Y i j  -Ti,) 4 Within t rea tments  t(r - 1 )  
j=1 i=1 

a re  independently dis t r ibuted a s  chi-square with t - 1 and f(r - 1) degrees  of freedom, respect ively,  

and 

The  t e s t  of t h e  hypothesis  that  

ever ,  i f  t h e  ra t io  of in te res t  is a?,- / (a2  + a:) and not ag(a2 + r a;), then the  development of 

confidence limits on the rat io  is more complex. 

= 0 is e a s i l y  formulated s i n c e  F then reduces t o  s;/si. How- 

T h e  mean s q u a r e s  in  Table  2 for t h e  random model c a n  b e  related to  t h e  gene t ic  example by 

consider ing that  t h e  var iabi l i ty  among herds  represents  genet ic  variation and the  variability among 

c o w s  within herds  represents  phenotypic variation. It is assumed tha t  a random sample  of t herds  

and r c o w s  within herds  w a s  se lec ted .  T h e  rat io  

cT2 + a; 

can  b e  est imated by 

s; - si 
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F o r  the  fixed model w e  can  cons ider  t h e  t reatments  to  b e  the training methods mentioned ear l ier .  

Then  F = .$/si is a s t a t i s t i c  tha t  is obviously s e n s i t i v e  to variation in  t ra ining methods s i n c e  

s;  is a n  unbiased e s t i m a t e  of 

u2 + r C T ~ / ( ~  - 1 ) .  

Furthermore, the  dis t r ibut ion of F is t h e  Fisher-Snedecor distribution when C r ?  = 0.  T h u s  we c a n  

t e s t  the  hypothes is  t h a t  r = r = . . . = r t  : 0 u s i n g  F .  

4. TESTS OF HYPOTHESES 

Given a properly des igned  and conducted experiment we can  obtain eff ic ient  and unbiased 

e s t i m a t e s  of the parameters  and l inear  funct ions of the parameters  in the  model. In addition, e a c h  

l inear  combination tha t  is es t imable  h a s  a corresponding unique mean square  tha t  c a n  b e  used  to  

t e s t  t h e  hypothes is  that  t h e  l inear  function of t h e  parameters  i s  zero.  

For example,  if 

A =  r 1  - r 2 ,  

1 .  - y 2 .  ' 
- 4: = 7 

and E(&)  = A ,  then h i s  es t imable  and .s; = r 8 ' / 2  i s  a unique mean square.  A test of the hypothe- 

sis that  r - r = 0 (i.e.,  that  T~ = r 2 )  is obtained by computing F = .;/si and comparing i t  

with t h e  lOO(1 - a)  percent i le  of t h e  F dist r ibut ion with 1 and t ( r  - 1 )  degrees  of freedom, 

F,[1, t(,r - 1)). W i t h  two t reatments ,  one  degree of freedom, an equivalent  t e s t  can  b e  made by 

ca lcu la t ing  a t s t a t i s t i c  which wil l  b e  t h e  square  root of the F s t a t i s t i c .  

2 

In t h i s  c a s e ,  

F o r  three  t reatments  and two degrees  of freedom w e  c a n  construct  many p a i r s  of independent  

cont ras t s  s u c h  t h a t  the sum of s q u a r e s  for e a c h  pair is the same.  F o r  example,  for one pair we c a n  

c h o o s e  

- - - and t2 = 7 -2- - Y l .  - y 3 .  1 .  y 2 .  + 7 3 .  

and for another  pair  

Then 

and 
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are s ingle  degree  of freedom mean s q u a r e s  a s s o c i a t e d  with the corresponding cont ras t s .  It can b e  

shown tha t  

which is equal  t o  the  among t reatments  sum of squares  in  Table  2 when t = 3. 

Furthermore, e a c h  cont ras t  can  be  used  to t e s t  a hypothes is  u s i n g  the  a s s o c i a t e d  mean square.  

T h u s  the  most  meaningful pair  can be  chosen.  

T h i s  procedure can b e  general ized to more than three t reatments  and demonstrates  the manner 

in  which the F t e s t  on the equality of severa l  means is a general izat ion of the Student t t e s t  on 

two means. 

5. ASSUMPTIONS 

L e t  m e  introduce t h i s  s e c t i o n  with a quote  from Mainland (1968): “Until t h e  very last s t e p ,  

when w e  take t h e  var iance ratio ( F )  t o  a publ ished tab le ,  t h e  method h a s  n o  connect ion with the  

Gauss ian  or any other  particular frequency dis t r ibut ion.  It represents  a n e a t ,  e x a c t  and rather re- 

markable re la t ionship that  e x i s t s  i n  any group of numbers t h a t  is divided into two or more subgroups 

( c l a s s e s )  e i ther  equal  or unequal  in  s i z e . ”  
As a f i r s t  s t e p ,  the  a n a l y s i s  of var iance  tab le  is a meaningful way to summarize the  observa-  

t ions.  If, secondly ,  we c h o o s e  to e s t i m a t e  parameters  in t h e  model or  perform t e s t s  of hypotheses ,  

i n  a probability s e n s e ,  then we need to  assume t h a t  t h e  random components a r e  independently and 

normally dis t r ibuted about zero mean and with common variance. 

Normality is often jus t i f ied  af ter  examining data .  Repeated observat ions on ident ica l  mater ia l  

can b e  analyzed to  t e s t  t h e  assumption of normality. Also ,  t h e  res idua ls  from t h e  model c a n  b e  

ana lyzed  in  a s imilar  manner. T h e  res idua ls  a r e  t h e  d i f fe rences  between t h e  observed va lues  and 

the corresponding es t imated  va lues .  F o r  example, given p and ri t o  b e  maximum likelihood e s t i -  

m a t e s  of t h e  parameters p and ri, then 

A A 

are  t h e  n res idua ls  for t h e  model previously s ta ted .  Graphical methods a r e  particularly usefu l  i n  

examining res idua ls .  

6. DESIGN OF EXPERIMENTS 

T h e  proper decomposition depends  on t h e  design.  In some cases poor planning or loss of ex-  

perimental un i t s  and observat ions c a u s e s  difficulty, and  a s ta t i s t ic ian  is sought  to  “sa lvage  some- 

thing’’ from t h e  experiment. A s ta t i s t ic ian  should b e  consul ted  to  a i d  i n  planning t h e  experiment. 

A good des ign  wil l  e n s u r e  unbiased  e s t i m a t e s  of t h e  e f fec ts  of fac tors  and an unbiased  e s t i -  

mate  of the  error variance. T h e  des ign  c a n  be  chosen ei ther  to  obtain t h e  most s e n s i t i v e  t e s t s  for 

a given effort o r  to  minimize t h e  effort for a given sensi t ivi ty .  
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T h e  pr inciples  of experimental des ign  a r e  a l s o  d i rec ted  toward ensur ing  that  t h e  assumptions 

are  val id .  T h u s  randomization i s  e s s e n t i a l  to allow u s  to assume independence of error terms, 

obtain an unbiased es t imate  of the  error var iance ,  and to make valid inferences.  

One restr ic t ion on randomization i s  a type of sampling,  termed sys temat ic ,  in  which the experi-  

mental u n i t s  are c h o s e n  in  a cyc l ic  manner so that  every kth unit  is chosen .  F o r  example,  every 

5th uni t  on a production l i n e  might b e  chosen  for tes t ing ,  every 3d plot in  a n  agricultural experiment 

might b e  se lec ted  for treatment, or every 12th name on a l i s t  is chosen for interview i n  a survey. 

Sys,tematic sampl ing  is often less expens ive ,  and t h e  means  a r e  sometimes est imated more 

accurately.  However, the  es t imate  of t h e  var iance  i s  often b iased .  In t h e  examples  mentioned 

above ,  s u c h  b i a s  would e x i s t  i f  there  w a s  a t rend in  qual i ty  of t h e  item under production, if there 

w a s  a fertility gradient  i n  t h e  agricul tural  t r ia l ,  and i f  the  l i s t  of persons  had been ordered by a 

var iable  correlated with a var iable  measured in  t h e  survey.  

if a c y c l e  e x i s t s  i n  the  s e q u e n c e  of u n i t s ,  for example, i f  t h e  uni t s  on t h e  production l i n e  came 

from f i v e  machines  and a l w a y s  i n  t h e  same sequence .  

Obviously, t h e  means  could b e  b iased  

7. TRANSFORMATIONS 

If normality cannot  b e  assumed or i f  t h e  var iance i s  not  homogeneous, a mathematical t rans-  

formation of t h e  observa t ions  can c a u s e  the assumpt ions  to b e  more nearly valid. S ince  invest i -  

gators  are  accustomed to the concept  tha t  measuring d e v i c e s  and experimental u n i t s  often perform 

transformations on the variable  of in te res t ,  the idea  of a mathematical transformation should seem 

somewhat  n atu ral. 

T h e  invest igator  very often measures  a var iab le  that  i s  functionally related to  the  var iable  of 

in te res t .  T h e  function may be  known or unknown. An example from severa l  d iv is ions  of the 

laboratory is the  measurement  of t h e  diameter  of an experimental unit, the  diameter then being 

transformed into sur face ,  volume, o r  m a s s ,  depending on the  invest igat ion.  T h e  s t a t i s t i c a l  analy-  

sis is made  on t h e  v a l u e s  m o s t  near ly  val idat ing t h e  assumptions.  

Transformations a re  u s e d  i n  a n a l y s i s  of  var iance most frequently to correct  for nonhomogeneity 

of t h e  e r ro r  var iance.  T h e  n e e d  might b e  d iscovered  by plot t ing res idua ls  or by plot t ing means and 

var iances  for subgroups of the  da ta .  Also,  s p e c i f i c  transformations a r e  proposed for cer ta in  types  

of data  on a theoret ical  or a common u s a g e  b a s i s .  

Some variance-stabi l iz ing transformations b a s e d  on s t a t i s t i c a l  theory are:  (1) square  root if 

t h e  var iance is proportional to t h e  mean, (2) logarithm i f  t h e  s tandard deviation i s  proportional t o  

t h e  mean,  and (3) inverse  s i n e  for proportions. 

Thle square  root transformation is common for counts  l e s s  than 100 and a l s o  for proportions 

less than 0.2. 

A transformation also af fec ts  t h e  addi t ivi ty  of ef fec ts  and t h e  dis t r ibut ion of t h e  error term. 

For example, the  logarithmic transformation wil l  change  a multiplicative model to an addi t ive model. 

A transformation tha t  s t a b i l i z e s  t h e  error var iance  is expected to  make t h e  distribution m o r e  nearly 

normal. A s  we learned  from a previous lecturer ,  t h e  normal distribution i s  the only dis t r ibut ion in  

which the var iance is independent  of t h e  m e a n .  
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8. MULTIPLE COMPARISONS 

In t h e  a n a l y s i s  of var iance  s i tuat ion t h e  invest igator  usual ly  h a s  some spec i f ic  t e s t s  planned 

and a l s o  w i s h e s  to  search  for s ignif icant  e f f e c t s  which could  not  b e  ant ic ipated.  Thus  the s tandard 

procedure for t e s t i n g  a few carefully posed  hypotheses  needed  to be,  and was ,  modified t o  include 

multiple comparisons.  Even  if some of t h e  spec i f ic  hypotheses  could b e  included i n  a general  

multiple comparison procedure they should b e  considered separa te ly  in  order to make the overal l  

procedure more s e n s i t i v e  or powerful. T h i s  is an example of pmviding more powerful tests by in- 

c luding  more information in t h e  procedure. 

For example,  a spec i f ic  comparison of the m e a n  of a control  group with the  mean of severa l  

t reated groups or comparison of t h e  control with each  treatment individually is more powerful than 

a multiple comparisons t e s t  among all t h e  group means. 

A multiple comparisons test is a procedure for performing all p o s s i b l e  pa i rwise  comparisons. 

If t h e  s tandard t t e s t  is u s e d ,  too many s ignif icant  resu l t s  will b e  declared. T h a t  i s ,  t h e  a c t u a l  

l e v e l  of s ign i f icance  is larger  than t h e  nominal leve l  and i n c r e a s e s  rapidly as t h e  number of con- 

t r a s t s  increases .  T h e  new methods al low multiple t e s t s  t o  be performed and maintain a chosen 

leve l  of s ignif icance.  

T h e  tex t  by Steel  and Torrie (1960) h a s  a n  exce l len t  d i scuss ion  of t h e s e  procedures. 

9 .  CONCLUDING REMARKS 

T h e  assumpt ions  a re  rea l i s t ic  in  many experimental s i tua t ions ,  and the  ana lys i s  of var iance 

method is a widely u s e d  tool for t h e  following reasons:  

1. In many s i t u a t i o n s  t h e  errors, which a r e  of ten a composi te  of severa l  s o u r c e s  of error, a r e  

random variables  which a r e  approximately Gauss ian ,  independent ,  and additive. 

2. T h e  a n a l y s i s  of var iance t e s t s  and estimation procedures  a r e  robust. T h a t  i s ,  they a r e  not  

highly s e n s i t i v e  to departures  from normality. T h i s  is particularly true for t e s t s  of hypotheses  on 

means.  Caution is in order  for t e s t s  of hypotheses  on var iances .  

3. Transformations c a n  b e  made eas i ly  on observat ions to make the  error terms approximately 

normal. 
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LECTURE IX: DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 

Toby J. Mitchell 

1. INTRODUCTION 

In i t s  widest  s e n s e ,  experimental des ign  c a n  b e  defined briefly and direct ly  as t h e  planning 

of experiments. In t h i s  lecture ,  we  s h a l l  cen ter  our  a t tent ion on experimental d e s i g n  from the  

s t a t i s t i c a l  point of  view. T h a t  is, we s h a l l  view t h e  r e s u l t s  of t h e  experiment i n  terms of some 

s o r t  of probabi l is t ic  mathematical model, and we s h a l l  see what pr inciples  of experimental de- 

s ign  emerge. 

Why h a s  t h e  s t a t i s t i c i a n  become involved in t h i s  a rea?  Generally h e  is not knowledgeable in  

t h e  subjec t  f ie ld  in  which t h e  experiment i s  being conducted, and i t  is fair  t o  a s k  why h e  feels 

a b l e  to  contr ibute  anything a t  all.  T h e  answer  is based  to  some degree on t h e  fact tha t  virtually 

all inferences concerning t h e  r e s u l t s  of experiments  are, implicitly or expl ic i t ly ,  probabi l is t ic  in 

nature. In addition, there  is an increas ing  tendency to  u s e  probabi l is t ic  models t o  descr ibe  t h e  

ac tua l  resu l t s  of t h e  experiment itself. T h i s  dual u s e  of probability to  descr ibe  not only t h e  re- 

s u l t s  of experiments  but t h e  inferences  which can  b e  made from t h e s e  resu l t s  h a s  brought the 

s ta t i s t ic ian ,  whose  b u s i n e s s  i s  applied probability, into t h e  middle of sc ien t i f ic  experimentation. 

Many experimenters, recognizing this ,  dutifully (and sometimes reluctantly) t a k e  their  d a t a  t o  a 

s t a t i s t i c i a n  from t ime t o  time. F a r  from being grateful, t h e  s t a t i s t i c i a n  is often heard t o  grumble 

b e c a u s e  h e  w a s  not consul ted when t h e  experiment w a s  s t i l l  in t h e  planning s t a g e .  Disagreeable  

or  not, t h e  s t a t i s t i c i a n  h a s  a point, and it is th is :  In order to  carry out a reasonably valid s t a t i s -  

t i ca l  a n a l y s i s  of t h e  data ,  i t  is des i rab le  f i r s t  t h a t  t h e  d a t a  b e  co l lec ted  in  s u c h  a way that  cer -  

ta in  probabi l is t ic  assumptions a r e  sa t i s f ied .  If t h i s  is not poss ib le ,  then t h e  d a t a  should b e  col- 

l ec ted  in  such  a way that  fa i lure  t o  s a t i s f y  s u c h  assumptions will not foul up t h e  inferences made 

from t h e  resu l t s .  In any case, t h e  manner of co l lec t ing  t h e  da ta ,  that  is, t h e  des ign  of t h e  ex- 

periment. is important to t h e  val idi ty  of t h e  ana lys i s .  If t h e  s t a t i s t i c a l  pr inciples  of experimental 

design a re  ignored, it is qui te  p o s s i b l e  t o  co l lec t  an enormous s e t  of d a t a  for which there  a r e  no 

known methods of making val id  inferences about t h e  resu l t s .  

Experimental des ign  is, in other  words, an integral part of t h e  whole i te ra t ive  p r o c e s s  which 

is involved in sc ien t i f ic  experimentation. Professor  George Box of t h e  University of Wisconsin 

often i l lus t ra tes  t h i s  point by means  of t h e  following diagram: 

EXPERIMENT 

CONJECTURE 

116 



117 

T h i s  diagram i l lus t ra tes  how t h e  prior knowledge of the experimenter is f i rs t  u s e d  t o  formulate a 

conjecture  about t h e  underlying physical  mechanism of t h e  sys tem h e  is studying. H e  u s e s  t h i s  

conjecture  t o  design a n  experiment, t h e  resu l t s  of which a re  then analyzed.  T h e  resu l t s  of t h e  

a n a l y s i s  he lp  him formulate a new conjecture ,  which in  turn l e a d s  t o  a new design,  and so forth, 

T h i s  i terat ive p r o c e s s  is continued e i ther  until the goals  of t h e  project h a v e  been  reached or,  

perhaps  more real is t ical ly ,  until there  a r e  no  more funds avai lable .  

J u s t  as t h e  s ta t i s t ic ian  is often qui te  ignorant of t h e  subjec t  field of t h e  experimenter, so t h e  

experimenter often l a c k s  a deep understanding of s t a t i s t i c s ,  Even  i f  h e  recognizes  t h e  importance 

of s t a t i s t i c a l  experimental design,  he may feel so intimidated by t h e  prospect  of getting involved 

with s t a t i s t i c s  tha t  h e  essent ia l ly  ignores  t h e  formal a s p e c t s  of experimental design altogether. 

Fortunately,  t h e  common s e n s e  of a good experimenter of ten l e a d s  him to behave  jus t  as  he  would 

i f  h e  knew all t h e  s ta t i s t ica l  rules. Most of t h e  b a s i c  pr inciples  of experimental design are, as 

we sha l l  s e e ,  almost obvious, and s imple adherence t o  them will generally b e  enough t o  keep t h e  

experimenter out of trouble. In some s i tua t ions ,  however, espec ia l ly  t h o s e  in  which an expl ic i t  

mathematical model is conjectured,  a more sophis t ica ted  approach i s  necessary  i f  t h e  experimenter 

is to s q u e e z e  as much information as  poss ib le  out of h i s  data .  In any c a s e ,  t h e  bet ter  h i s  experi- 

ment is des igned ,  t h e  more usefu l  information he  c a n  expec t  t o  g e t  out  of it, 

In t h i s  lecture ,  we  s h a l l  f i r s t  d i s c u s s  a few of t h e  b a s i c  “common s e n s e ”  pr inciples ,  which 

will b e  presented in connection with some of t h e  older “s tandard” designs.  W e  shal l  then con- 

s i d e r  t h e  d e s i g n s  which have  ar isen more recently in  connection with response sur face  methodology. 

2. BASIC PRINCIPLES OF EXPERIMENTAL DESIGN 

2.1 Classification of Variables 

Before beginning a d i s c u s s i o n  of b a s i c  design pr inciples ,  it  will b e  helpful to  consider  t h e  

different types  of var iables  present  in  a n  experiment. We s h a l l  c lass i fy  t h e s e  as  follows: 

1. R e s p o n s e  var iables .  T h e s e  are t h e  var iab les  which correspond to the  resu l t s  of the experi- 
ment. They  a r e  represented by the  observed d a t a  and are  not direct ly  under t h e  control of 
t h e  experimenter. There  a r e  generally many response  var iab les  corresponding t o  e a c h  
experimental run, though only a few may b e  of suff ic ient  in te res t  to b e  measured. 

2. Controlled, measurable  var iables .  
a) Variables  of interest .  T h e  purpose of the  experiment is generally to discover  what effect  

c h a n g e s  i n  t h e s e  var iab les  h a v e  on t h e  response  var iables .  Therefore  the  leve ls  of t h e s e  
var iables ,  which c a n  be  controlled by t h e  experimenter, a r e  del iberately al tered during t h e  
course  of the  experiment. 

b) Variables  which a r e  not of interest .  T h e  main reason for consider ing t h e s e  is t o  control 
them i n  s u c h  a way that  their  e f f e c t s  on the  response var iab les  will not b i a s  conclus ions  
about the  e f f e c t s  of t h e  var iables  of interest .  

3. Uncontrolled var iables .  T h e s e  var iab les  also affect  t h e  response  var iab les  and are ,  in  fact ,  
t h e  c a u s e  of the  “random error” a s s o c i a t e d  with t h e  response .  

Most s t a t i s t i c a l  models consider  an observed response  y t o  be  comp.osed of two parts: 
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1. the “true va lue”  77 of that  response ,  where 7 depends  only on t h e  l e v e l s  of t h e  controlled 
var iab les ,  and 

2. the  “random error” E c a u s e d  by t h e  uncontrolled var iables .  

Often t h e s e  two par t s  a r e  assumed to act addi t ively,  s o  t h e  b a s i c  mathematical model is of t h e  

form: 

:v= q +  E I (2.1.1) 

where 71 is some function of t h e  controlled var iab les  and E is presumed t o  b e  a random variable. 

T h e  usua l  goal of a good experimental  des ign  is t o  perform t h e  experiment i n  s u c h  a way 

that the  nature  of t h e  relat ionship between 7 and t h e  controlled var iab les  will become c lear  

in  s p i t e  of t h e  uncontrolled variation. 

2.2 Ran do m i  zation 

One of the  most  important pr inciples  of experimental  des ign  is randomization. Probably 

the s imples t  appl icat ion of t h i s  technique d e c i d e s  t h e  order i n  which t o  perform a s e t  of ex-  

perimental runs,  af ter  all other a s p e c t s  of t h e  des ign  have  been  se t t led .  If there  a r e  n runs 

in t h e  experiment, t h i s  sor t  of randomization c a n  b e  accomplished by writing t h e  in tegers  

from 1 to  n on s e p a r a t e  p i e c e s  of paper and then drawing them out of a ha t ,  one by one.  T h e  

order in  which t h e  numbers happen t o  b e  drawn s p e c i f i e s  t h e  order in  which t h e  runs a r e  t o  be  

performed. (Equivalently, a t a b l e  of random numbers could b e  used.)  

What is t h e  purpose of th i s?  F i r s t ,  we  must recognize that  n o  experiment is under perfect 

control ,  h e n c e  the  inclusion of the  random error term (E) in  t h e  b a s i c  model (2.1.1). W e  c a n  

write th i s  model in  terms of the  individual  observat ions:  

y .  = 7 .  + E .  i = l , 2  ,..., n ,  (2.2.1) 
I 1 I ’  

where ti is t h e  number of runs in  t h e  experiment. If we  now assume tha t  e a c h  E ,  depends  only on 

the s t a t e  of t h e  uncontrolled var iab les ,  which in  turn depends  only on t h e  time of t h e  i t h  run, 

then we c a n  regard the  E ’ S  as being “fixed” by t h e  c h o i c e  of t i m e s  at which the  experimental 

runs a r e  t o  b e  performed. By choos ing  t h e  order of t h e  runs we are, i n  effect, “ass igning”  t h e  

7’s t o  t h e  fixed E ’ S .  There  a re ,  in  fac t ,  n! poss ib le  ass ignments  which could b e  made. Even  

though w e  d o  not know t h e  magnitudes of t h e  errors, we c a n  a t  l e a s t  give e a c h  experimental  

arrangement a n  equal  c h a n c e  by drawing t h e  arrangement, as from a hat ,  i n  s u c h  a way tha t  t h e  

probability, prior to t h e  draw, of obtaining any particular arrangement is l /n! .  

T h e  effect of t h i s  randomization procedure is t o  ensure  a “fair  game.” F o r  example,  

suppose  the  E ’ S ,  unknown t o  us ,  i n c r e a s e  as t h e  experiment progresses .  If w e  fail t o  randomize 

the order of t h e  runs and c h o o s e  i n s t e a d  t o  d o  t h e  experiment in  t h e  most convenient  way, we  

s h a l l  unwittingly inf la te  all t h e  readings y ,  corresponding t o  the  s e t s  of condi t ions which were 

convenient for u s  t o  run toward t h e  end of the  experiment. Of course,  we  c a n  never  g ive  e a c h  
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experimental run a n  e q u a l  random error. What we c a n  d o  through randomization, however, is t o  

give e a c h  experimental run a n  equal  c h a n c e  of being a s s o c i a t e d  with any particular error from 

the  s e t  at hand. 

I t  should be  noted here  that  we  have  not, in  t h e  above,  made any assumptions about  t h e  

distribution of t h e  E’S - i n  fact ,  we  have  not even assumed that  they have a distribution. There  

a re  some experiments  in  which t h e  only probabilistic s t ructure  assumed is that  which is imposed 

by t h e  (known) randomization scheme i tself .  In other  s i tua t ions ,  when one prefers not t o  make 

any dis t r ibut ional  assumptions about the E ’ S ,  one can ,  for t e s t i n g  cer ta in  hypotheses ,  make u s e  

of nonparametric “randomization’’ tests which a re  based  only on t h e  probability s t ructure  induced 

by the  randomization. 

Usual ly  t h e  s t a t i s t i c a l  ana lys i s  of d a t a  is based  on further assumptions which include 

specifying some underlying distribution for t h e  E ’ S .  Generally the  assumption is that  the  1 e i {  
behave as i f  they were independent real izat ions of a random variable  with distribution function 

F ( E ) ,  where F is spec i f ied .  T h e  assumption of independence is cruc ia l  t o  most s t a t i s t i c a l  

ana lyses ,  more so,  in fac t ,  than t h e  correct specif icat ion of F .  In pract ice ,  one c a n  expec t  

the  assumption of independence to  b e  qui te  wrong. If, however, randomization is carried out 

and t h e  y’s a r e  ass igned  randomly t o  t h e  E ’ S ,  then (for reasons  we s h a l l  not d i s c u s s  here)  t h e  

observed y ’ s  often behave approximately a s  i f  t h e  E’S were drawn independently from some 

distribution and then tacked  onto t h e  7’s t o  give the  y ’s .  B e s i d e s  ensuring a “fair game,” 

therefore ,  randomization g ives  our statistical assumptions a firmer footing than they would 

otherwise deserve.  

So far, we have  d i s c u s s e d  randomization in  connect ion with t h e  order of performing ex- 

perimental runs. More generally, randomization involves  t h e  assignment  of treatments 

(combinations of the  controlled var iables)  t o  experimental units (e.g., in tervals  in  time). 

F o r  a n  example i n  which t h e  experimental uni ts  a r e  not j u s t  time intervals ,  l e t  u s  

consider  a hypothet ical  experiment which h a s  to d o  with the  spinning of s t raw into gold. We 

s h a l l  suppose  there  a r e  two processes ,  A and B, for doing t h i s ,  and we wish  t o  t e s t  ex-  

perimentally to see which process  is superior. W e  may s e l e c t  20 b a l e s  of s t raw,  s a y ,  and 

we dec ide  t o  put 10 of t h e s e  through process  A and 10 through process  B. Which 10 b a l e s  

should we a s s i g n  t o  process  A? By t h e  principle of randomization, we  should c h o o s e  a t  

random one of t h e  

possible  s u b s e t s  of b a l e s  out of 20, so  that  e a c h  s u b s e t  h a s  an equal  c h a n c e  of being 

se lec ted .  In particular, randomization wil l  ensure  that  a particularly “well-nourished” ba le  

(i.e., one which would provide, under e i ther  process ,  more gold than most of i t s  fellow b a l e s  

on t h e  same process)  h a s  the  s a m e  c h a n c e  of being ass igned  to process  A as t o  process  B. 
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Similarly, a ‘(dud” b a l e  would have  a n  equal  c h a n c e  of being a s s i g n e d  t o  e a c h  of t h e  two 

processes ,  thus  ensur ing  a fair game. 

we would apply randomization once  more t o  determine t h e  order of performing t h e  runs. 

Once t h e  b a l e s  had been ass igned  t o  the two processes ,  

In more complex experiments ,  t h e  appropriate randomization procedure is not so  obvious. 

In general ,  i t  is helpful  t o  think of e a c h  experiment as  being sys temat ica l ly  designed up t o  

a cer ta in  point, af ter  which we throw up  our hands  and randomize. In t h e  above example, for 

ins tance ,  we careful ly  spec i f ied  tha t  

1. there  are t o  b e  2 0  b a l e s  of s t raw i n  all, 

2. 1 0  b a l e s  a r e  t o  b e  ass igned  t o  e a c h  process .  

T h e  restr ic t ions (2.2.2) correspond to  our sys temat ic  design.  T h e  des ign  is not completely 

specif ied,  however, unt i l  we  determine 

1. t h e  assignment  of b a l e s  t o  processes ,  and 

2. t h e  order of the  experimental  runs. 

(2.2.2) 

(2.2.3) 

T h e  d e c i s i o n s  (2.2.3) a r e  made by randomization, which e s s e n t i a l l y  cons iders  all d e s i g n s  which 

sa t i s fy  (2!.2.2) and g ives  e a c h  an equal  c h a n c e  of being se lec ted .  

One of  t h e  most common mis takes  when randomizing h a s  been  t o  ignore part of t h e  class of 
des igns  which s a t i s f y  t h e  sys temat ic  requirements. T h a t  is, some d e s i g n s  which s a t i s f y  t h e s e  

requirements h a v e  n o  c h a n c e  of be ing  s e l e c t e d .  Often t h e  effect  of t h i s  is tha t  a c h o i c e  is made 

from a class of d e s i g n s  which h a s  more restr ic t ions than were designed into t h e  experiment. 

No harm j.s done unt i l  t h e  d a t a  a re  analyzed,  a t  which time t h e  experimenter e s t i m a t e s  h i s  error 

without taking in to  account  t h e  added restr ic t ions which h e  h a s  unwittingly imposed through 

faulty randomization. An example of th i s  type of mis take  wil l  b e  given la te r  in  connect ion with 

Latin square  des igns .  

2.3 Blocking 

Returning t o  our straw-into-gold example,  we  now consider  a s i tua t ion  in  which i t  is poss ib le  

to  s e p a r a t e  the  b a l e s  of s t raw into two par ts  and submit one part t o  process  A and t h e  other t o  

process  13. To k e e p  t h e  to ta l  number of t e s t s  the  same, we s h a l l  now assume a to ta l  of ten  

ba les  altogether. Assuming that  a n  individual  ba le  is more homogeneous in  “nourishment” than 

different b a l e s ,  we  c a n  now obtain comparisons between p r o c e s s e s  without regard t o  t h e  differences 

in nourishment between ba les .  E v e n  i f  a ba le  were e s p e c i a l l y  wel l  nourished compared with t h e  

others ,  that fac t  would not affect  t h e  comparison of the  two p r o c e s s e s  within tha t  bale .  By 
averaging the  differences between t h e  y ie lds  of process  A and process  B within all t h e  b a l e s ,  

we obtain an es t imate  of t h e  “true” difference which is much more prec ise  than t h e  “one bale ,  

one process”  procedure w e  d i s c u s s e d  in  Sect .  2.2, simply b e c a u s e  t h e  “between ba le”  var ia t ion 

is no longer a s s o c i a t e d  with our es t imate .  T h e  only var ia t ion d u e  t o  nourishment which is now 

assoc ia ted  with our es t imate  is that  which represents  t h e  inhomogeneity within ba les .  
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T h i s  is an example of t h e  technique known as blocking, which is simply t h e  arrangement of 

the  experimental  un i t s  into s e p a r a t e  b locks  (e.g., ba les ) ,  based  on t h e  expectat ion tha t  t h e  

variation i n  response  within blocks wil l  b e  considerably lower than  t h e  variation between 

blocks. An experiment which is t o  b e  performed by s e v e r a l  Nat ional  Laborator ies ,  for example,  

might be  designed so  tha t  the  experimental  runs performed by a s i n g l e  laboratory a r e  all 

considered part of t h e  same block,  while  t h o s e  performed by  different laborator ies  a r e  ass igned  

to  different blocks.  In t h i s  way, overal l  differences i n  resu l t s  from one laboratory t o  t h e  next  

would not b e  a s s o c i a t e d  with t h e  e s t i m a t e s  of t h e  e f fec ts  of t h e  var iab les  of in te res t ,  even  

though d a t a  from all t h e  laborator ies  a re  used  t o  obtain t h e s e  es t imates .  

W e  should remark tha t  most blocking arrangements a re  made assuming that ,  for a given 

treatment, the  mean difference in  response  from one block t o  t h e  next  is simply a cons tan t  

which depends  on the  pair of b locks  involved, but which d o e s  not depend on t h e  particular 

choice  of treatment. In other words,  t h e  mean difference i n  response  between treatment A, 

block 1, and treatment A, block 2,  is exac t ly  the  same as the  mean difference i n  response 

between treatment B, block 1 ,  and treatment B, block 2. While t h i s  assumption is seldom true 

in  pract ice ,  it  is a good f i rs t  s t e p  toward account ing for differences in  response  between 

blocks.  Though i t  is implicit in  most s tandard blocked d e s i g n s ,  t h i s  assumption c a n  b e  

relaxed if more sophis t ica ted  blocking is desired.  

One of t h e  most useful  appl icat ions of blocking h a s  to d o  with t h e  order in  which runs a re  

performed, a problem which h a s  a l ready been d i s c u s s e d  i n  terms of complete  randomization. 

If the  random errors a r e  expected t o  follow some sor t  of a time trend, i t  is often advisable  to 

s e t  up  t h e  experimental program in a sequence  of subexperiments ,  where e a c h  subexperiment 

is treated as a s ingle  block. Within e a c h  subexperiment, or block,  t h e  runs would be  performed 

in  random order. 

T h e  incorporation of blocks into a d e s i g n  belongs t o  the “sys temat ic”  phase  of des igning  

the  experiment. To ana lyze  t h e  d a t a  from a blocked des ign ,  we  need to include the  appropriate 

blocking var iab les  i n  our model. ( T h e s e  blocking var iab les  a re  generally “controlled var iab les  

which a r e  not of in te res t ,”  in  terms of the  c lass i f ica t ion  of Sect. 2.1.) When w e  d e c i d e  t o  

block ins tead  of randomizing completely, we are ,  in  effect ,  consider ing a more elaborate  model. 

Where are w e  t o  draw t h e  l ine? W e  might b e  tempted t o  get carr ied away with our blocking 

and end up making every experimental  run a s ingle  block. Such a des ign  would be  doomed, of 

course,  b e c a u s e  it complicates  t h e  model too much for the  number of runs a t  hand. (In general, 

blocking a design into b b locks  usual ly  a d d s  b - 1 parameters t o  t h e  mathematical model.) There  

a re  no  hard and f a s t  ru les  which spec i fy  when t o  s t o p  blocking and s t a r t  randomizing, but one 

useful  rule  of thumb is that  the number of parameters i n  t h e  model, including t h e  b - 1 blocking 

parameters, should b e  no greater than three-fourths of t h e  to ta l  number of observat ions.  



122 

2.4 “Fixed Variables” 

In most experiments ,  there  is a set of control lable  var iab les  which could be  var ied during t h e  

course  o f  t h e  experiment but which a re  held cons tan t ,  or “f ixed,”  t o  avoid overcomplicating t h e  

design.  T h e s e  var iab les  are often of secondary  in te res t  t o  t h e  experimenter, who holds  them 

cons tan t  so tha t  t h e  effects of t h e  var iab les  of primary in te res t  wil l  s tand  out more clear ly .  

Whille t h i s  i s  often a good i d e a ,  c a r e  must b e  taken in interpreting the  resu l t s ,  s i n c e  any 

conclusions drawn from t h e  experiment a r e  technical ly  valid only for the levels o f  the f ixed 

variab2es which pertain during the  experiment. In order t o  make a more powerful s ta tement ,  

it  is necessary  t o  a s s u m e ,  e i ther  by conjecture  or by referring t o  other d a t a ,  t h a t  the  effects of 

the  primary var iab les  on t h e  response  a r e  the  same n o  matter what t h e  l e v e l s  of the  fixed 

var iables .  In t h e  jargon of t h e  s t a t i s t i c i a n ,  t h i s  is equivalent  t o  s a y i n g  t h a t  there  is no 

interaction between the  f ixed var iab les  and the  primary var iables .  When s u c h  interact ions d o  

ex is t ,  it  is advisable  t o  “ f ree”  the  fixed var iab les  which in te rac t  with t h e  primary var iables ,  

by varying them i n  the  experiment. Though t h i s  may appear  to  overcomplicate the experiment, 

there  are des igns ,  as  w e  s h a l l  see, which are particularly good for es t imat ing  the  main e f fec ts  

and interact ions of a la rge  number of var iab les ,  a l l  of which a re  varied in  a highly sys temat ic  

fashion,  during t h e  c o u r s e  of t h e  experiment. 

2.5 Replication 

Repet i t ion,  or repl icat ion,  of a n  experiment or part of a n  experiment c a n  be a very va luable  

feature of a n  experimental  program. In des igned  experiments ,  repl icat ing some of the  experimental  

runs a l lows  t h e  experimenter t o  obtain a n  es t imate  of t h e  random error. If, for example, we  a r e  

observing yield as a function of temperature in  a chemical  react ion,  and if we t e s t  t h e  yield a t  

n different temperatures ,  then a l l  t h e  observed var ia t ion in  yield will c o m e  from two s o u r c e s :  

1. variation d u e  t o  t h e  difference in  yield from one temperature t o  another ,  and 

2. random variat ion which would b e  present  even  i f  t h e  temperature were constant .  

Without repl icat ing s o m e  points ,  that  is, making s e v e r a l  t e s t s  a t  t h e  same temperature for one or 

more temperature l e v e l s ,  w e  would not b e  a b l e  t o  t e l l  how much of t h e  to ta l  variation w a s  due  

t o  s o u r c e  1 and how much t o  source  2. T h e  var ia t ion among multiple observat ions a t  a s i n g l e  

point, however, is due  s t r ic t ly  t o  source  2,  and we c a n  get  a n  es t imate  of i t  by combining s u c h  

informatiion from all points  with repeat  observat ions.  

T h e  es t imate  of random error a r i s ing  from repeat  observat ions is val id  n o  matter what model 

is used  to f i t  t h e  data .  T h i s  es t imate  is extremely useful  i n  checking  t h e  adequacy of any 

proposed model. If, for example,  our e s t i m a t e  of random error, under t h e  assumption t h a t  t h e  

model is correct ,  is much larger  than the  es t imate  of random error from repeat  observat ions,  

then we have  ev idence  that  t h e  model is inadequate .  

Repl ica t ion  c a n  also b e  used  by t h e  experimenter t o  check  t h e  predict ive power of h i s  

conclus ions  from t h e  in i t ia l  experiment. Nothing a d d s  more weight to a theory than ev idence  

of i t s  abi l i ty  t o  predict t h e  resu l t s  of future experiments  with reasonable  accuracy.  
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2.6 Sequential Experimentation 

Virtually all experimental programs are  sequent ia l  in  nature. An in i t ia l  experiment is run, 

the d a t a  a r e  analyzed,  ten ta t ive  conclus ions  a re  drawn which ind ica te  the  direct ion of further 

experimentation, and s o  forth. In general ,  t h e  advantages  of sequent ia l  experimentation make 

it undesirable  t o  perform too  elaborate  an experiment ini t ia l ly ,  n o  matter how sophis t ica ted  or 

s ta t i s t ica l ly  appeal ing t h e  des ign  may appear. 

Unfortunately, b e c a u s e  of t h e  mathematical diff icul t ies  involved i n  consider ing t h e  des ign  

a t  e a c h  s t a g e  of a sequent ia l  experiment to b e ,  i n  effect ,  a random variable  depending on t h e  

resu l t s  a t  t h e  previous s t a g e ,  much of t h e  s t a t i s t i c a l  l i terature  h a s  s o  far ignored t h e  formal 

a s p e c t s  of sequent ia l  design.  In pract ice ,  however, it is often suff ic ient  t o  “play i t  by e a r , ”  

des igning  and ana lyz ing  e a c h  s t a g e  in  t h e  usua l  fashion (as if it were a s ingle  experiment), 

a lways ut i l iz ing the knowledge gained a t  previous s t a g e s .  Often it is helpful t o  “pool” the  

da ta  from a s e r i e s  of s t a g e s  and ana lyze  them all together  as i f  t h e  whole des ign  had been  

laid out beforehand. When th is  is done,  i t  is important t o  inc lude  whatever block differences 

there  might b e  (from s t a g e  t o  s t a g e )  as terms i n  t h e  model. 

3. SOME STANDARD DESIGNS 

3.1 Completely Randomized Design 

W e  consider  an experiment i n  which f ive  t reatments ,  A, B, C, D, and E, a r e  t o  b e  compared. 

T h e  sys temat ic  part of t h e  design s p e c i f i e s  that  e a c h  treatment is t o  b e  tes ted  three  times. 

Subject t o  t h i s  res t r ic t ion,  a random order for performing t h e  runs w a s  s e l e c t e d ,  as follows: 

E C B B D E D A D E B C A A C  (3.1.1) 

T h e  model corresponding t o  t h i s  des ign  would probably b e  of t h e  form: 

i = 1 , 2 ,  ..., 1 5 ,  (3.1.2) y . = p + f  (2) + € 2  ’ 

where p is a n  overal l  “ b a s e  leve l”  for the  response ,  t 

appears  in  t h e  i th  run, and c i  is t h e  random error. 

is t h e  e f fec t  of whatever treatment 
( 2 )  

3.2 Randomized Block Design 

Now suppose  tha t ,  ins tead  of t h e  order given in  (3.1.1), t h e  resul t  of our randomization 

happened t o  be  the  order AAABBBCCCDDDEEE. It would b e  tempting t o  a s s e r t  that  th i s  

ordering is “not random,” d iscard  i t ,  and try again, However sys temat ic  the ordering might 

appear, the  fact  would remain tha t  i t  w a s  se lec ted  fair ly  and squarely,  every other  ordering 

having been given a n  e q u a l  chance .  If w e  a s k  ourse lves  why t h i s  ordering is “not random,” 

we s h a l l  probably find tha t  the  reason we a r e  worried about the  c lus te r ing  of t reatments  is 

that, in t h e  presence  of a time trend, o n e  treatment might get all t h e  high random errors  and 
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present a f a l s e  impression of superiority. W e  c a n  s o l v e  t h i s  problem by dividing the  runs 

into three  sequent ia l ly  run b locks  and spec i fy ing  tha t  e a c h  treatment is t o  appear  in e a c h  

block exac t ly  once,  T h e  randomization procedure is now applied to give t h e  order of runs 

within blocks.  For example: 

Block Order 

A D B C E  
B A E C D  
B A D E C  

(3.2.1) 

T h i s  t y p e  of des ign  is c a l l e d  a randomized block design. 

c luster ing of t reatments  which might occur  i n  a completely randomized design.  

I t  s u c c e s s f u l l y  prevents  t h e  s e v e r e  

When t h e  blocking parameters a r e  incorporated into t h e  model (3.1.2) we  have  an appropriate 

model for t h e  des ign  in  (3.2.1): 

: t . . = p + b ; + t ( . .  11 11)  + c j j ,  i = 1, 2 ,  3 ,  
j = l , 2 ,  ..., 5 ,  

(3.2.2) 

where t h e  subscr ip t  i refers  to  the  block number and the  subscr ip t  ij refers  t o  the  j th  observat ion 

in t h e  i th  block. Again, p is a n  overal l  “ b a s e  leve l”  of response ,  f(. . is the  effect  of whatever  

treatment occurs  a t  t h e  i j th  observat ion,  and E . .  is t h e  random error at t h e  i j th  observat ion.  T h e  

three blocking parameters  b , ,  b,, and b, allow for a cons tan t  sh i f t  i n  response  from block t o  

block. 

11) 

11 

3.3 Lat in  Square Design 

A des ign  with even more sys temat ic  res t r ic t ions than the  randomized block des ign  w a s  used  

in  a n  experiment whose  purpose w a s  t o  compare t h e  e f f e c t s  of t h e  following f ive different t y p e s  

of background music  on  t h e  eff ic iency of workers i n  a d e f e n s e  plant: 

A: Country and Western 

E<: None 

C: V i e m e s e  w a l t z e s  

D: Rock and roll 

E: Sen. Dirksen 

Because  i t  is f e l t  t h a t  t h e  d a y  of t h e  week  and e v e n  the  week i tself  have  a n  effect on  worker 

efficiency, over and above  that  of t h e  background music ,  t h e  experiment w a s  careful ly  planned 

t o  ensure  that  all f ive t reatments  ( types  of music)  c a n  be  compared not only within e a c h  row 

(weeks) but also within e a c h  column (days). For example:  



125 

Day 
Week 

M T W T F  

1 A B C D E  

2 E C D A B  

3 C A B E D  

4 D E A B C  

5 B D E C A  

Inspect ion of t h e  des ign  s h o w s  tha t ,  indeed,  e a c h  treatment appears  once  i n  e a c h  row and once  

in  e a c h  column. T h i s  type of arrangement is ca l led  a Lat in  s q u a r e  design.  In t h i s  particular 

example, i t  is a n  appl icat ion of blocking with respec t  t o  two var iab les  (weeks and d a y s )  which 

are  not of direct  in te res t  but whose inf luence on t h e  response  we wish t o  account  for i n  our 

model. A s  a resul t  of us ing  t h i s  type of des ign ,  t h e  variation in  worker eff ic iency d u e  t o  

differences between d a y s  and between weeks  d o e s  not c loud u p  our e s t i m a t e s  of the  differences 

between types  of background music. 

To apply t h e  principle of randomization in  t h i s  case, we must select a s ingle  des ign  from 

all t h o s e  which s a t i s f y  t h e  requirements of a Lat in  square,  namely, that  e a c h  le t ter  should 

appear exact ly  once in  e a c h  row and once  in e a c h  column. I t  would not d o  t o  make up  a 

convenient La t in  square ,  for example,  

A B C D E  

E A B C D  

D E A B C  

C D E A B  

B C D E A  

and then “randomize” by ass igning  t h e  le t te rs  randomly t o  t h e  t reatments ,  because  t h i s  would 

restrict our se lec t ion  to a particular s u b s e t  of all 5 x 5 Lat in  squares .  If t h e  d a t a  from a des ign  

derived from s u c h  a “randomization” procedure a r e  analyzed according t o  t h e  usua l  La t in  square  

ana lys i s ,  the  es t imate  of error would probably b e  all wrong. 

T h e  usua l  model corresponding t o  a n  m x rn Lat in  square  des ign  is 

y . .  = p r  ri + c .  + t ( . .  + E i = l , 2  ,..., m ,  
j = 1 , 2 ,  ..., m ,  11 1 11) ii ’ (3.3.1) 

where p is the overal l  “ b a s e  leve l”  of response ,  ri is t h e  effect  of t h e  i th  leve l  of the  factor  

assoc ia ted  with rows,  c .  is t h e  j t h  leve l  of t h e  factor a s s o c i a t e d  with columns, t ( i j )  is the  

effect  of whatever treatment is a s s o c i a t e d  with t h e  i j th  observat ion,  and f i j  is t h e  corresponding 

random error. 

1 

Lat in  square  d e s i g n s  a r e  useful  when blocking with respec t  t o  two var iab les ,  as i n  t h e  above 

example, or when there  a re  no interact ions among t h e  var iab les  a s s o c i a t e d  with rows,  columns,  

and le t te rs .  When s u c h  interact ions a r e  present ,  however, the  resu l t s  of the ana lys i s  of a 

Latin square  des ign  c a n  be  qui te  misleading.  
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3.4 Graeco-Latin Squares 

In many c a s e s ,  the  L a t i n  s q u a r e  d e s i g n s  c a n  b e  general ized t o  include yet  another  restriction. 

Whereas with the  Lat in  square  w e  d e a l t  with three  var iab les  ( represented by rows,  columns,  and 

le t ters)  we s h a l l  now cons ider  four var iab les  ( represented by rows, columns,  La t in  le t te rs ,  and 

Greek letters). Again, our res t r ic t ions  require that  any  leve l  of any var iable  must b e  a s s o c i a t e d  

once and only once  with any  leve l  of any other var iable .  

A 4 x 4 Graeco-Lat in  square  is given below. 

Ao. BP C y  D6 

B y  A6  Da CP 

C6 Dy A P  B u  

D P  C n  B6 A y  

Note tha t  t h e  problem of construct ing a 4 x 4 Graeco-Lat in  square  is the  s a m e  as tha t  of t h e  

following parlor game: 

T a k e  t h e  four h ighes t  c a r d s  of e a c h  su i t  i n  a regular deck  of c a r d s  and arrange them in a 

4 x 4 array in  s u c h  a way that  e a c h  row and e a c h  column conta ins  exac t ly  one  card from e a c h  

sui t  (c lubs,  diamonds, hear t s ,  or s p a d e s )  and one card from e a c h  denomination (jack, queen,  

king, ace) .  

T h e  quest ion of t h e  e x i s t e n c e  of Graeco-Lat in  squares  of spec i f ied  dimension became a 

classical mathematical problem nearly 200 years  before t h e s e  s q u a r e s  were ever  ut i l ized in  

the design of experiments .  T h e  great  Swiss  mathematician Euler  (1707-83), having shown 

that  n x n Graeco-Lat in  s q u a r e s  e x i s t  when n is odd or a multiple of 4, conjectured t h a t  they 

did not ‘exist for any other  va lue  of n. In 1901,  t h e  F r e n c h  mathematician Tarry showed 

Euler’s conjec ture  t o  b e  correct  for R = 6. I t  w a s  not unt i l  1958 that  t h e  problem w a s  solved.  

Three mathematicians,  R. C. B o s e ,  S. S. Shrikande, and E. T. Parker ,  all s p e c i a l i s t s  in  the  

combinatorial a s p e c t s  of experimental d e s i g n s ,  finally proved Euler’s  conjecture  t o  b e  wrong 

in every case except  for n = 6 .  (An interest ing account  of t h i s  discovery is given in  t h e  

November 19.59 i s s u e  of Scientif ic American.) 

3.5 Balanced Incomplete Block Design 

Often t h e  number of ava i lab le  experimental uni ts  is restr ic ted in  s u c h  a way that  it is not 

possible  to apply e a c h  treatment once  within e a c h  block. A hypothet ical  example is the  

problem of having s e v e n  swimmers r a c e  in  a three- lane swimming pool. An obvious approach 

is t o  arrange t h e  race  in  s e v e r a l  hea ts .  It is not poss ib le  t o  compare all s e v e n  t reatments  

(swimmers) within e a c h  block (heat). W e  c a n ,  however, s e t  up s e v e n  h e a t s  in  such  a way that  

each swimmer swims in  three h e a t s  and competes  aga ins t  every other  swimmer exac t ly  once  

during t h e  c o u r s e  of t h e  meet. F o r  example: 
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Heat  

1 2 3 4 5 6 7  

1 2 3 4 1 2 1  
2 3 4 5 5 6 3  
4 5 6 7 6 7 7  

Swimmers 

Such an arrangement is ca l led  a ba lanced  incomplete block design, incomplete in  the  s e n s e  

that the whole s e t  of treatments does  not appear within each  block, and balanced in the  s e n s e  

that every pair of treatments appears  together in the  same number of blocks.  

3.6 Youden Square Design 

If, i n  the  comparison of swimmers in  Sect. 3.5,  w e  feel that  cer ta in  l a n e s  are generally 

more favorable than others ,  we can  arrange the hea t s  in such  a way that e a c h  swimmer, during 

the cour se  of h i s  three hea t s ,  swims once in  each  of the three  lanes .  T h i s  added restriction 

removes from the  ana lys i s  of d i f fe rences  among swimmers that part of the  variation which is 

due merely t o  d i f fe rences  among lanes .  Such a design is ca l led  an incomplete Lat in  square ,  

or a Youden square,  and is shown below: 

Heat  

1 2 3 4 5 6 7  
Lane  

1 1 2 3 4 5 6 7  

2 2 3 4 5 6 7 1  

3 4 5 6 7 1 2 3  

4. F A C T O R I A L  A N D  F R A C T I O N A L  F A C T O R I A L  DESIGNS 

4.1 Factorial Designs (General) 

One of the s imples t  des igns  for investigating the effect  of s eve ra l  var iab les  on a response  is 

the factorial  design, in  which every combination of the l eve l s  of the var iab les  of interest  is 

investigated.  If, for example, there are m var iab les  of interest  (often ca l l ed  “factors”),  and we 

cons ider  p .  l eve l s  of the j t h  factor,  j = 1 ,  2, .._ , m, then the factorial  des ign ,  which inc ludes  

every poss ib le  combination of factor l eve l s ,  c o n s i s t s  of p ,  x p, x ... x p, runs. 
I 

An advantage of factorial  des igns  is that  they are e a s y  t o  cons t ruc t  and analyze.  T h e  

regular pattern of the observations makes the da ta  e a s y  t o  “look a t .”  If, for example, we find 

that some of the  factors have  a negligible effect  on the  response ,  then the  da ta  can often be 

viewed as a replicated factorial  in  the  remaining variables.  

T h e  main d isadvantage  of factorial  des igns  is that  t he  number of runs required soon ge ts  

out of hand if the  number of var iab les  or the  number of l eve l s  of the  var iab les  becomes large.  

In Sec ts .  4.3 to  4.5, we sha l l  see how t o  reduce the  number of runs by performing only a 

spec ia l ly  se l ec t ed  s u b s e t  of t he  runs required by the full  factorial .  
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There  a re  s e v e r a l  empirical models which c a n  b e  f i t ted t o  t h e  d a t a  from a full factor ia l  

design.  One is the  “multiway” c lass i f ica t ion  model with one observat ion per c e l l ,  which is 

often d i s c u s s e d  in  connect ion with a n a l y s i s  of var iance techniques.  For  example, cons ider  

the  usua l  two-way c lass i f ica t ion  with I rows and J columns,  where 1 is the  number of l e v e l s  

of factor A and J is t h e  number of l e v e l s  of factor  B .  T h i s  i s ,  of course ,  j u s t  a n  I x J factor ia l ,  

and t h e  model is: 

y . . = p + a . + p . + y . . +  11 I I 11 € . . ,  11 i =  1 ,  2 ,  ..., I ,  
j = 1 , 2  , . . . ,  J ,  

(4.1.1) 

where y . . is t h e  observat ion at the  i th  leve l  of A and t h e  j th  leve l  of B ,  is a n  overal l  b a s e  

leve l  of response ,  ai i s  t h e  main e f fec t  of the  i th  leve l  of A ,  p.  is t h e  main effect  of the  j th  

level  of B ,  y . .  is the  interact ion of t h e  i th  leve l  of A with the  j t h  leve l  of B ,  and E . .  is t h e  

random error. (If there  were repeat  observat ions,  they would b e  used  t o  es t imate  t h e  random 

error. When there  a r e  no repeat  observat ions,  some of t h e  interact ion terms y . .  must b e  

assumed negl igible  if a n  es t imate  of error is desired.)  

11 

I 

11 11 

11 

T h e  form of t h e  model (4.1.1) c a n  e a s i l y  b e  extended t o  apply t o  any factor ia l  des ign .  

A second type of model, which is really a reparameterization of model (4.1.1), is often 

used in  connect ion with factor ia l  des igns .  T h i s  reparameterization is performed for reasons  of 

mathematical convenience  - most of t h e  individual terms i n  t h e  model a r e  not physical ly  

meaningful. In t h i s  lec ture ,  we  s h a l l  give a n  example of t h i s  model i n  t h e  3 x 3 case and let it 

go a t  tha t ,  

Suppose we are  invest igat ing two factors ,  A and B ,  e a c h  a t  three leve ls .  F o r  t h e  purposes  

of t h i s  model, w e  labe l  the  l e v e l s  0, 1, and 2 for both var iables .  Le t t ing  y . .  denote  t h e  observa-  

tion a t  t h e  i th  leve l  of A and the  j th  leve l  of B ,  we write t h e  model 
11 

Y j j  = LL + ( A ) i  + ( B > j  + ( A B ) j + ,  + ( A 8 2 ) j +  z j ,  (4.1.2) 

where t h e  subscr ip ts ,  which a r e  all in tegers  (mod 3) ,  ind ica te  t h e  “ leve ls”  of t h e  “ef fec ts”  

( A ) ,  ( B ) ,  ( A B ) ,  and ( A B 2 ) .  T h e  physical  s ign i f icance  of t h e s e  parameters s e e m s  rather abstract .  

For  example,  ( A B ‘ ) ,  is defined as (i) - (ii), where (i) is t h e  mean of the treatment combinat ions 

for which t h e  leve l  of A plus twice the  l e v e l  of B is e q u a l  t o  k (mod 3) and (ii) is t h e  mean of 

al l  treatment combinations. 

It is fair t o  a s k  why s u c h  an apparently meaningless  parameterization should be  introduced 

at all. T h e  answer c o m e s  when w e  a r e  faced  with the  problem of s e l e c t i n g  a s u b s e t  of treatment 

combinations which is t o  b e  run ins tead  of t h e  f u l l  factor ia l .  In t h i s  s i tua t ion ,  it tu rns  out tha t  

the Parameterization (4.1.2), with i t s  “modulo p” operat ions and a l l ,  is much more productive 

than (4.1.1). A more complete  d i s c u s s i o n  of t h e  “modular” model (4.1.2) is given in  Kempthorne, 

1952. 

Another model which is used  i n  connect ion with fac tor ia l  des igns  is t h e  polynomial regression 

model, which we s h a l l  d i s c u s s  la te r  with regard t o  response  sur face  des igns .  T h i s  t y p e  of model 
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1 

is more restr ic t ive than t h e  models previously d i s c u s s e d  in  that  i t  fo rces  t h e  response  to b e  

represented by a polynomial in  the  controlled var iables .  It is often extremely useful ,  however, 

espec ia l ly  in  giving an overal l  “picture” of t h e  response.  

There  are  many other kinds of models which have been  used  to  fit d a t a  from factor ia l  experi-  

ments. T h i s  is b e c a u s e  factor ia l  d e s i g n s  a rose  principally on t h e  b a s i s  of their  own merits, 

rather than from considerat ion of a particular model. In effect ,  models s u c h  as  (4.1.1) and 

(4.1.2) were constructed t o  fit the  design.  More recent  work i n  experimental des ign  theory 

h a s  tended t o  emphas ize  t h e  opposi te  approach: t h e  se lec t ion  of a des ign  t o  s u i t  t h e  current 

working model. 

4.2 2k Factorial  Designs 

A particularly important class of fac tor ia l  des igns ,  in  i t s  own right and as  a building block 

for more elaborate  d e s i g n s ,  is t h e  class of 2k factor ia ls .  Although e a c h  of the  k fac tors  t a k e s  

on only two leve ls  in  th i s  type of experiment, i t  is often remarkable how much information c a n  

be obtained through t h e  u s e  of t h e s e  des igns .  

In t h e  2k factor ia ls ,  t h e  main e f fec ts  and interact ions have  a c l e a r  phys ica l  interpretation. 

To i l lustrate ,  l e t  u s  focus our a t tent ion on a s ingle  var iable  A.  W e  see that  every combination 

of l e v e l s  of t h e  remaining var iab les  is assoc ia ted  once with t h e  low l e v e l  of A and once  with 

the  high leve l  of A (where c‘low” and “high” a re  convenient  w a y s  of referring t o  the  two l e v e l s  

of a variable). T h e  difference between the “true” responses  a t  t h e s e  two points represents  t h e  

effect  of A a t  that  particular combination of the  other  var iables .  There  a r e  N / 2  such  differences,  

where N = 2k = to ta l  number of observat ions.  We now define the  main ef fec t  of A t o  be t h e  

average of all t h e s e  differences. T h e  main e f fec t  of A i s ,  in  other words, indicat ive of t h e  

overall change i n  response  (averaged over the  whole des ign)  when A is switched from its low 

leve l  t o  i t s  high level .  T h e  main e f fec ts  of a l l  the  other var iab les  a r e  defined i n  a s imilar  

way. 

Now suppose  w e  consider  t h e  factor ia l  des ign  which corresponds only to those  observat ions 

taken a t  t h e  high leve l  of factor  A ,  and we def ine,  for t h i s  des ign ,  t h e  main effect of another 

variable B in  the  u s u a l  way. W e  then d o  t h e  same thing for t h e  factor ia l  des ign  corresponding 

to the  low leve l  of factor A .  We now have  (i)  the  main effect  of B a t  the  high leve l  of A and 

(ii) t h e  main effect  of B a t  the low leve l  of A .  T h e  interact ion between A and B is defined t o  

be one-half the  difference between (i) and (ii), that  i s ,  

1 

2 
A B  interaction =-[(i) - (ii)] . 

It is a measure of t h e  change i n  t h e  main effect  of factor B when factor A is changed from its 

low leve l  t o  i t s  high level .  

If we  were to  consider ,  ins tead ,  t h e  change  in  t h e  main e f fec t  of factor A when B is changed 

from its low leve l  t o  i t s  high level ,  we  would obtain exac t ly  t h e  same formal expression.  In 
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other words, the  A B  interact ion is happily t h e  same as the B A  interact ion.  T h e  remaining 

two-factor interact ions c a n  b e  defined in  the  s a m e  way. 

Similarly, we  c a n  def ine three-factor interact ions,  four-factor interact ions,  and s o  forth. 

For example,  the  A B C  interact ion i s  e q u a l  t o  one-half the  difference between t h e  A B  interact ion 

at  the high leve l  of C and t h e  A B  interact ion at t h e  low leve l  of C .  Equivalent ly ,  t h e  A B C  

interaction could be  def ined i n  terms of t h e  change in t h e  AC interact ion between t h e  low and 

high leve ls  of B ,  or t h e  change  i n  t h e  B C  interact ion between the low and high leve ls  of A - all 

such def ini t ions resul t  in  t h e  same formal express ion .  

T o  see what form is taken  by t h e  formal express ions  for the main e f f e c t s  and  interact ions,  

we s h a l l  consider  the  following 2 3  design:  

A B C  “true” response  

771 

72 

773 

7 4  

7 5  

- - -  

+ - -  
+ -  

t t -  

+ 
+ -  t 

+ +  
+ + +  

- 

- -  

776 

717 
- 

7 6  

(4.2.1) 

where we u s e  a minus s i g n  t o  represent  t h e  low leve l  of a factor  and a plus  s ign  

high level .  W e  note  t h a t  all poss ib le  combinat ions of l e v e l s  of the  three fac tors  a re  included 

in t h e  design.  T h e  main e f fec t  of A i s ,  by  our definition above,  

2 represent  t h e  

1 
(4.2.2) -. --j [ -%+ 772 - 773 + 774 - + q6 - q7 + 7 7 J .  

T h e  express ion  (4.2.2) c a n  be  obtained mechanical ly  by multiplying e a c h  of t h e  7’s by the  

corresponding s i g n  in  t h e  A column, taking t h e  sum, and dividing by t h e  number of p lus  s i g n s  

(4) in t h e  column. It tu rns  out that  t h e  same sort of rule c a n  be  followed to obtain t h e  express ion  

for any  interact ion without having t o  go back t o  the  b a s i c  definition. F o r  example,  t o  obtain t h e  

express ion  for t h e  A B C  interact ion w e  would f i r s t  form column A B C ,  the  i th  e lement  of which 

is t h e  product of t h e  i th  e lements  of columns A ,  B ,  and C .  T h e  ABC column is therefore: 
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ABC 

and t h e  A B C  interact ion is found by  multipling t h e  7’s by t h e  corresponding e lements  of t h i s  

column and dividing by t h e  number of p luses  (4): 

1 

4 1 2  
ABC interaction =- (-7 + 7 + v 3  - v 4  + q5 - q6 - q7 + q8) , 

Express ions  for all t h e  main e f fec ts  and interact ions c a n  be  obtained i n  t h e  s a m e  way. 

Estimates of the e f fec ts  a r e  obtained merely by subs t i tu t ing  t h e  observed { y , ]  for t h e  

!vi[ i n  the express ions  for t h e  effects .  For example,  the  estimated A B C  interact ion is: 

(4.2.3) 

Although the  dis t inct ion between t h e  true e f fec ts  (in terms of t h e  7’s) and t h e  est imated e f fec ts  

(in terms of t h e  y ’ s )  should b e  understood, we  s h a l l  often refer to both merely as  “effects .”  

Some appeal ing properties of the  es t imated  e f fec ts  are: 

1. They a r e  a l l  uncorrelated (if t h e  original observat ions a r e  uncorrelated). 

2. They  all have  var iance 402/N,  where o2 is the var iance  of the  original observat ions and N 
is the  total  number of observat ions.  T h i s  means that  for N > 4, t h e  e f fec ts  a r e  much more 
precisely determined than the  expec ta t ions  of t h e  individual observat ions.  

3. They a r e  usual ly  approximately normally dis t r ibuted,  e v e n  though the  distribution of the  
original observat ions may be  qui te  nonnormal. 

4.3 2k-’ Fractional Factorials 

T h e  principal d i sadvantage  of t h e  2 k  factor ia l  d e s i g n s  is tha t ,  for k even  moderately large,  

the number of runs required (N = 2 k )  is excess ive .  In t h i s  c a s e ,  we  often perform only a s u b s e t  

of t h e s e  runs,  where t h e  s u b s e t  is c h o s e n  so  that  the  important information (e.g., main effect  

es t imates)  is retained while less important information (e.g., high-order interact ion es t imates)  

is sacr i f iced.  

Suppose, for example, we  are consider ing four fac tors  (which we s h a l l  l abe l  1, 2, 3 ,  and 4) 

but we want t o  perform only half the  runs required by t h e  ful l  2 4  factor ia l .  L e t  u s  arbitrarily 

choose  t o  perform only t h o s e  eight  runs which correspond t o  a plus  s i g n  i n  t h e  1234 column of 
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the 2, design.  ( W e  reca l l  tha t  the  i th  e lement  of t h e  1234 column is obtained by multiplying 

the i t h  e lements  of the  1, 2, 3 ,  and 4 columns of t h e  2, d e s i g n ,  where [as in  (4.2.111 w e  

represent t h e  low leve l  of a var iable  by a minus s i g n  and t h e  high leve l  by a plus  s ign . )  T h e  

corresponding combinat ions of l e v e l s  are given by t h e  following d e s i g n  matrix: 

F a c t o r  

1 2 3 4  
Observation 

(4.3.1) 

T h i s  des ign  is a n  example of a 2 4 - '  f ract ional  factor ia l  des ign ,  where t h e  4 in  t h e  superscr ip t  

s t a n d s  for t h e  number of var iab les  and t h e  -1 indica tes  tha t  t h i s  is a 2- '  (or one-half) fraction 

of t h e  f u l l  factor ia l .  

Note that  i f  we  construct  t h e  1234 column in t h i s  des ign ,  i t  wi l l  turn out t o  b e  a column 

of p luses .  T h i s  is to b e  expected,  s i n c e  we have  del iberately chosen  only t h o s e  runs of t h e  

2, factor ia l  which h a v e  a + s ign  in  t h e  1234 column. Symbolically, we  write 

1 = 1234 , (4.3.2) 

where t h e  le t te r  I s t a n d s  for a column of pluses .  

design.  T h e  defining relat ion,  which a r i s e s  from t h e  way i n  which t h e  fract ional  factor ia l  

is constructed,  is extremely usefu l  in determining t h e  propert ies  of t h e  design.  In t h i s  lecture ,  

however, we  s h a l l  not go into th i s  important a s p e c t  of t h e  theory. 

W e  call (4.3.2) t h e  defining relation of t h e  

Now s u p p o s e  tha t  w e  u s e  column 1 of (4.3.1) t o  form t h e  l inear  combination: 

1 
4 = -  ( - Y 1  + Y ,  - Y ,  + Y ,  - Y ,  + Y ,  - Y ,  + Y J .  (4.3.3) 

I 4  

W e  might expec t  .el, by analogy with t h e  ful l  factorial a n a l y s i s ,  to b e  a val id  es t imate  of t h e  

1 effect .  To our disappointment, however, we  find tha t  e s t i m a t e s  not t h e  1 effect  but the  

sum of t h e  1 ef fec t  and t h e  234 interact ion,  where t h e  e f fec ts  a r e  as originally def ined in  

connection with t h e  ful l  2 ,  factor ia l .  Similarly, 
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es t imates  2 + 134 , 

43 es t imates  3 + 124 , 

42 

41 2 

‘I 3 

‘123  

es t imates  1 2  + 3 4  , 

e s t i m a t e s  13 + 24 , 

estimates 2 3  + 1 4  , 

es t imates  4 + 1 2 3  , 
‘2 3 

. 
(4.3.4) 

where t h e  subscr ipt  on a n  8 ind ica tes  t h e  column of p l u s e s  and minuses  which is used  t o  obtain 

that particular l inear  combination. 

W e  s a y  that  effect  1 is confounded with (or aliased with) t h e  234 interact ion,  e f fec t  2 is 
confounded with the  134  interact ion,  e tc .  Confounding i s  t h e  pr ice  of doing only half the  

runs of t h e  ful l  factorial. If, however, we  c a n  assume three-factor interact ions t o  b e  negl igible  

compared with main e f fec ts  and two-factor interact ions,  then .el, .e2, /e3,  and 4, 2 3  est imate ,  

essent ia l ly ,  t h e  main e f fec ts  1, 2, 3 ,  and 4, respect ively.  

In fac t ,  t h e  des ign  of t h i s  example w a s  chosen ,  through t h e  def ining relation (4.3.2), so  

that t h i s  sor t  of confounding would occur. In general, if we  c h o o s e  for t h e  defining relat ion 

of a half fraction of a 2k  factor ia l  

I = 1 2  ... k , (4.3.5) 

i t  wi l l  turn out tha t  (1) main e f fec ts  a re  confounded with (k - 1)-factor interact ions and (2) 

two-factor interact ions a re  confounded with (k - 2)-factor interact ions,  e t c .  

T h e  s a m e  sor t  of confounding occurs  if we choose  

I = -12 ... k , (4.3.6) 

that  i s ,  if our half fraction c o n s i s t s  of t h o s e  runs which have  a minus s i g n  i n  the  1 2  ... k column 

of the  full factorial. Had we done  t h i s  i n  our Z 4 - ’  example above,  the  confounding relat ionship 

(4.3.4) would have  been: 

estimates 

es t imates  

‘I 

42 

1 - 234 , 

2 - 1 3 4  , 

(4.3.7) 

es t imates  123 - 4 
‘123 

T h e  des ign  should,  of course,  b e  c h o s e n  in  t h e  light of whatever prior knowledge e x i s t s  

about t h e  relat ive importance of the  var iables .  T h e  experimenter wil l  attempt t o  c h o o s e  a des ign  

which wil l  confound t h o s e  e f fec ts  assumed to b e  important with t h o s e  presumed t o  b e  unimportant. 



In the  a b s e n c e  of prior information, it is generally assumed tha t  main e f fec ts  a re  more important 

than two-factor interact ions,  which a r e  more important than three-factor interact ions,  e tc .  T h i s  

kind of rat ionale  suppor ts  t h e  c h o i c e  of defining relat ions s u c h  as  (4.3.5) and (4.3.6). 

4.4 2 k - p  Fractional Factorials 

In t h e  previous sec t ion ,  w e  constructed a 2 k - 1  f ract ional  factor ia l  by deciding to perform only 

those  runs from t h e  2k factor ia l  which corresponded t o  t h e  plus  s i g n s  in  a spec ia l ly  s e l e c t e d  

column. (As  we remarked ear l ier ,  we  could jus t  as  wel l  have  chosen  t h e  half f ract ion a s s o c i a t e d  

with minus s i g n s  i n  t h e  s e l e c t e d  column.) If we  want t o  cu t  t h i s  fraction again in  half ,  w e  c a n  

s e l e c t  (another column, half of which is minus and half of which i s  plus ,  and d o  t h e  same s o r t  of 

thing. 

If w e  d o  t h i s  p t imes,  the  resul t ing des ign  is a 2 k - p  f ract ional  factor ia l ,  where t h e  k i n  t h e  

superscr ipt  refers  to the number of var iab les  and t h e  - p  refers  to t h e  fact that  w e  h a v e  a 2-P 
fraction of t h e  full factorial. T h e  number of runs i n  a 2k-p des ign  is, of course ,  2k-p. 

In t h e  original 2k des ign  there  are ,  i n  general ,  2 p  - 1 columns which, when a 2k-P 
f ract ion is taken ,  appear  in tha t  fraction as columns of all p l u s e s  or all minuses. T h i s  

means that  the  defining relation [see (4.3.2)] of a 2k-p des ign  conta ins  2p terms,  including 

I .  T h e  confounding relat ionships ,  which c a n  b e  obtained direct ly  from t h e  def ining relat ion 

(in a way which we s h a l l  not d i s c u s s  here), a r e  correspondingly more complicated than in 

the  2 k -  case. 

In th i s  lecture ,  w e  s h a l l  avoid a general  d i scuss ion  of t h e  2k-P d e s i g n s  and s h a l l  give,  

ins tead ,  methods for cons t ruc t ing  t w o  very useful  k inds  of t h e s e  des igns .  

Resolution Ill Designs 

One important class of 2 k - p  d e s i g n s  c o n s i s t s  of t h e  so-cal led “resolut ion 111” d e s i g n s  

(where the I11 refers  t o  t h e  number of var iab les  in  t h e  “shor tes t”  term of t h e  def ining relat ion,  

not count ing I ) .  Resolu t ion  I11 d e s i g n s  a r e  character ized by  the  property tha t  all main e f f e c t s  

can  be  est imated c l e a r  of one  another, but some of them are  confounded with in te rac t ions  

involving two or more factors .  If a l l  in teract ions a re  assumed negligible, then c l e a r  e s t i m a t e s  

of all t h e  main e f fec ts  c a n  b e  obtained. 

Resolut ion I11 d e s i g n s  c a n  b e  constructed simply as follows. Suppose we are  invest igat ing 

k var iab les  and we wish  t o  cons t ruc t  a resolut ion 111 des ign  in  2m runs,  m < k. W e  f i rs t  write 

down t h e  m columns corresponding t o  a f u l l  2m factor ia l  and labe l  t h e s e  columns 1, 2 ,  ... , m. 

(In what fol lows,  t h e s e  wi l l  b e  c a l l e d  t h e  “original  m columns.”)  E a c h  of t h e  remaining 

columns m i l ,  m + 2 ,  ... , k is constructed by taking some product of t h e  original m columns. 

There  are 2m - m - 1 s u c h  products, and i t  d o e s  not  matter which o n e s  w e  s e l e c t  t o  complete  

our resolut ion I11 design.  
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, 

To give a spec i f ic  example,  we  now construct  a resolution I11 des ign  in  k = 5 var iab les  

and 2m = 8 runs (m = 3): 

1 2 3 4 = 1 2  5 = 1 3  Observat ions 

- - -  

+ - -  
t -  - 

+ + -  
+ - -  

+ -  + 
- + +  

+ + +  

(4.4.1) 

T h e  original m columns correspond t o  var iab les  1, 2,  and 3 and form a 23  factor ia l  design.  T h e  

remaining var iables  (4 and 5) a r e  a s s o c i a t e d  with t h e  product of columns 1 and 2 and t h e  product 

of columns 1 and 3 respect ively.  Our design is now completely specif ied.  If we c a n  assume 

interact ions negl igible  re la t ive t o  main e f fec ts ,  t h e  es t imate  of any main effect  c a n  b e  obtained 

simply by multiplying t h e  s i g n s  i n  t h e  appropriate column by t h e  corresponding observat ions,  

adding, and dividing the  resul t  by the  number of plus  s i g n s  in  t h e  column. 

Since there  are 2m - rn - 1 products of t h e  original rn columns which c a n  b e  used  to give 

the  columns a s s o c i a t e d  with new var iab les ,  t h e  maximum number of new var iab les  which c a n  

b e  accommodated is 2m - rn - 1. T h e  to ta l  number of var iab les  in  s u c h  a s a t u r a t e d  design is 

therefore 2m - 1. T h a t  i s ,  in  t h e  a b s e n c e  of interact ion,  we c a n  invest igate  2m - 1 main 

e f fec ts  in  2m runs. 

T h e s e  des igns  a re  used  frequently i n  “screening” s i tua t ions ,  where there a r e  a large 

number of var iab les  present  and t h e  experiment is t o  ind ica te  which factors  have  the la rges t  

main effects .  

Resolution I V  Designs 

Resolut ion IV des igns  a re  character ized by t h e  property that  main e f fec ts  a r e  not confounded 

with two-factor interact ions but a re  confounded with interact ions involving three or more 

factors. Two-factor interact ions a re  confounded with e a c h  other and with higher-order 

interactions. 

T h e s e  des igns  a re  particularly usefu l  when t h e  experimenter is interested primarily i n  

es t imat ing main e f fec ts  but cannot  assume tha t  two-factor interact ions a re  negligible. 

T h e  s imples t  way t o  construct  a resolution IV design in  k var iab les  and 2m runs is 

first t o  write down a resolution I11 des ign  in  k - 1 var iab les  and 2m-‘ runs. Denot ing t h i s  

array of p l u s e s  and minuses  by D, we write a new array 
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that i s ,  t h e  lower half of array D is jus t  the  “mirror image” of the  upper half ,  i n  t h e  s e n s e  

that e a c h  s ign  i n  t h e  upper half is changed t o  the  opposite s ign  i n  t h e  lower half. At th i s  

point, we  have  a des ign  i n  2m runs but only k - 1 variables .  W e  complete  t h e  des ign  by 

adding t h e  kth column, which c o n s i s t s  of 2 m - ‘  plus  s i g n s  followed by 2 m - 1  minus s i g n s .  

A s  a n  example we s h a l l  construct  a resolution IV des ign  t o  accommodate four var iab les  

in e ight  runs .  W e  f i rs t  construct ,  a s  descr ibed above, a resolution 111 design i n  three  

var iables  and four runs: 

1 2 3 = 1 2  

+ - -  

- + -  
+ -  

+ +  + 
- 

W e  now tack  t h e  “mirror image” of th i s  des ign  onto i t se l f  t o  give: 

1 2 3  

+ 
+ - -  

+ -  
+ + +  
+ + -  

+ +  
+ -  + 

- -  

- 

- 

- - -  

The l a s t  column (for var iable  4), which c o n s i s t s  of four p l u s e s  followed by four minuses ,  is 

now constructed t o  give our resolut ion IV design:  

1 2 3 4  

+ +  
+ - -  + 
- + -  + 
+ + + +  
+ + - -  
- + + -  
+ -  + -  

- -  

- - - -  

Note that  t h i s  des ign  turns  out t o  b e  t h e  s a m e  as t h e  des ign  (4.3.1), with t h e  runs rearranged. 
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4.5 Other Fractions of 2k Factorials: The Plackett-Burman Designs 

a 

T h e  fract ional  factor ia ls  descr ibed above are  not the  only d e s i g n s  which could  b e  s e l e c t e d  as 

s u b s e t s  of t h e  2k des igns .  Much of t h e  recent  l i terature  on two-level d e s i g n s  h a s ,  i n  fact ,  been 

devoted to s tudying t h e  properties of s u c h  “irregular” f ract ions.  

One class of “irregular” des igns  which h a s  been i n  u s e  for some t ime is t h e  class of 

Plackett-Burman des igns .  T h e s e  d e s i g n s  are essent ia l ly  “main effect  p lans”  i n  tha t  they,  

l ike the  resolution 111 des igns ,  provide c l e a r  es t imates  of all main e f f e c t s  as  long as  all 

interact ions a r e  negligible. T h e  number of runs in  any Plackett-Burman des ign  is a lways  

a multiple of 4. T h i s  is less restr ic t ive than the  fract ional  factor ia ls ,  which require t h e  

number of runs t o  be  a power of 2. Methods for construct ing t h e  Plackett-Burman d e s i g n s  

c a n  b e  obtained through the  references a t  t h e  end of t h e s e  notes. 

4.6 Fractions of General Factorial  Designs 

When se lec t ing  fract ions of general  factor ia l  des igns ,  the  same b a s i c  pr inciples  apply as 

when se lec t ing  fract ions of two-level factor ia ls .  T h e  goal ,  as  usua l ,  is t o  der ive a fraction with 

the l e a s t  undesirable  confounding properties. 

T h e  mathematics is somewhat more difficult, however, and we s h a l l  not go  into it here. 

Methods for choosing fract ions of factor ia ls  of form p k ,  where p is a prime number, a r e  qui te  

well es tab l i shed  and involve t h e  u s e  of mathematical operat ions “modulo p.” When t h e  

number of l e v e l s  (p) of e a c h  of t h e  k factors  is not a prime but is a power of a prime, t h e  

problem of choosing a fraction c a n  b e  so lved  through t h e  introduction of “pseudofactors.” 

Again, we  s h a l l  not d i s c u s s  t h i s  approach here. It h a s  been only within t h e  p a s t  year  or two 

that  a n  approach h a s  been developed t o  handle  t h e  most general  problem, that  of s e l e c t i n g  

fract ions of a p ,  x p ,  x ... x p k  factor ia l ,  where t h e  p’s a r e  not necessar i ly  equal .  

4.7 Blocking Factorial  and Fractional Factorial  Designs 

W e  remark in  pass ing  tha t  there  e x i s t  methods for blocking factor ia l  and fract ional  factor ia l  

des igns ,  and t h e s e  a r e  very c l o s e l y  related to  the  methods for s e l e c t i n g  fract ions which w e  

d i s c u s s e d  above. E a c h  block i s ,  af ter  a l l ,  a fraction i n  i t s  own right. Histor ical ly ,  i n  fact ,  

fractional factor ia ls  f i rs t  a rose  as b locks  of t h e  ful l  factor ia ls ,  long before they were appl ied 

on their  own. 

5. THE M O D E L - O R I E N T E D  APPROACH TO EXPERIMENTAL DESIGN 

5.1 Notation 

In t h i s  sect ion,  it wil l  b e  convenient  t o  def ine a set of “coded” var iab les  ( x i ]  which a r e  

related to  t h e  controlled var iab les  It,] in an experiment by t h e  following type  of l inear  

transformation: 
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ti - t i o  

S I  
x I-, i =  1,  2 ,  ..., k ,  

I 
(5.1.1) 

where and Si a r e  arbitrary cons tan ts ,  c h o s e n  for convenience.  

F o r  example,  cons ider  two controlled var iab les ,  temperature ( T )  and concentrat ion (C), of 

a chemical  i n  a n  experiment involving a chemical  react ion.  T h e  des ign  

ir C 

200 1.4 

400 1.4 

200 2.0 

400 2.0 

can  b e  put into “coded” form by writing 

T - 300 C - 1.7 
x 1  = -, x 2  I- 

100 0.3 

t o  give 

-1 -1 

1 -1 

(5.1.2) 

. 

-1 1 

1 1  

which is now i n  t h e  form of a 2 2  factor ia l  des ign .  

When w e  d i s c u s s  a particular type  of des ign ,  we s h a l l  generally wri te  i t  in  terms of t h e  

coded var iables .  It should  b e  understood t h a t  t h e  coded des ign  is ac tua l ly  a representative 

of a la rge  class of d e s i g n s ,  e a c h  member of which c a n  b e  transformed into t h e  coded des ign  

by means. of t h e  appropriate coding (5.1.1). 
Without loss of general i ty ,  w e  s h a l l  also write our models in  terms of t h e  coded var iables .  

If our or iginal  model is a polynomial of degree  d in  the  (‘s, as i t  often wil l  b e ,  we  note  tha t  

the  corresponding model in  terms of t h e  x’s will  also b e  a polynomial of degree d. 

5.2 First-Order Designs 

(5.1.3) 

In recent  years ,  much of the  work in  des ign  theory h a s  departed from t h e  t radi t ional  

approach of construct ing a model t o  s u i t  a given des ign  and h a s  turned ins tead  t o  t h e  problem of 

choos ing  a des ign  t o  s u i t  a conjectured model. 

T h e  s imples t  sort of empir ical  model for t h e  response  is one  which is l inear  in  t h e  controlled 

var iables .  If our k controlled var iab les  a r e  tl, C2, ... , tk, we write 

. 
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Y ,  = P o  + P I X , ,  + P,x,, + * * e  + PkXku + E ,  u =  1, 2,  ..., n ,  (5.2.1) 

c 

. 

where t h e  x ’ s  a r e  t h e  coded va lues  of t h e  c s .  T h i s  model is c a l l e d  a first-order l inear  model, 

where “first order” refers  to  t h e  x ’ s  and “linear” refers  t o  t h e  p ’ s .  When i t  is understood 

that  t h e  model is l inear  i n  t h e  p ’ s ,  it is ca l led  simply a “first-order model.” 

What sort of des igns  a r e  s u i t a b l e  for t h e  type of model (5.2.1)? T h i s  depends on t h e  

cr i ter ia  for a “good” des ign ,  but i n  t h i s  case t h e  generally accepted  cr i ter ion requires  tha t  

t h e  des ign  should b e  c h o s e n  s o  that  t h e  var iances  of t h e  es t imated  coef f ic ien ts  (p)  a r e  

minimized. It c a n  be shown that  if the  “spread” of t h e  des ign  points  is f ixed,  where t h e  

“spread” of t h e  des ign  points  corresponding t o  t h e  i th  control led var iable  is defined as 

n 

n 
ci = ( X i ,  - Ti> , 

u =  1 

then t h e  n-run des ign  which achieves  t h e  minimum variances for all t h e  p s  simultaneously 

must b e  “orthogonal,” tha t  i s ,  

n 

(Xi, - Fi) (Xju - Fj) = 0 for all i +’j , 
i, j = l , 2 ,  ..., k .  u =  1 

Designs p o s s e s s i n g  t h i s  des i rab le  property are ,  for example,  t h e  fac tor ia l s ,  f ract ional  factor ia ls ,  

and Plackett-Burman d e s i g n s  d i s c u s s e d  above. 

If w e  i n c r e a s e  t h e  “spread”  of t h e  var iables ,  we  find t h a t  t h e  var iances  of t h e  es t imated  

coeff ic ients  decrease .  T h e  “improvement” achieved i n  t h i s  way is i l lusory,  however, s i n c e  

the model (5.2.1), which may b e  a good ZocaZ approximation t o  t h e  response  i n  a s m a l l  region 

of t h e  x s p a c e  ( space  of t h e  coded var iables) ,  usual ly  becomes less and less adequate  as t h e  

“spread” of t h e  x ’ s  increases .  It is important t o  remember that  t h e  des ign  cr i ter ia  w e  s h a l l  

d i s c u s s  a r e  often developed under the  assumption tha t  t h e  model is good. We must a lways  b e  

careful not t o  l e t  t h e s e  cr i ter ia  lead  u s  t o  a des ign  for which t h i s  assumption n o  longer holds. 

T h e  most economical  class of orthogonal first-order des igns  i s  t h e  class of s i m p l e x  d e s i g n s ,  

which c a n  b e  u s e d  t o  inves t iga te  n - 1 variables  i n  n runs. We have  already encountered some 

simplex des igns ,  namely, t h e  sa tura ted  two-level f ract ional  fac tor ia l s  of resolut ion 111 and t h e  

Plackett-Burman des igns .  Geometrically, in  the  x s p a c e ,  t h e  general  s implex des ign  c o n s i s t s  

of n points  i n  n - 1 dimensions,  arranged s o  that  all the  d i s t a n c e s  between points  a re  equal. 

For example,  i n  two dimensions (i.e., for two var iables  x and x z )  t h e  points  of a s implex 

design form an equi la te ra l  t r iangle;  in  th ree  dimensions,  a tetrahedron. Although t h e  s implex 

des igns  a r e  eff ic ient  i n  that  t h e  number of runs is equal  t o  t h e  number of parameters t o  be  

est imated,  it should b e  remembered tha t ,  u n l e s s  they  are augmented in  some way, they  cannot  

provide a check on t h e  adequacy of t h e  model. For th i s  reason,  two-level factor ia ls  and un- 

saturated fract ional  factor ia ls  a re  often preferred as first-order des igns .  
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5.3 Second-Order Designs 

When a first-order model proves inadequate ,  i t  is often helpful t o  cons ider  a second-  

order model, tha t  is, a model which represents  t h e  response  as a quadrat ic  function i n  t h e  

X’S. In two var iab les  x 1  and x 2 ,  for example,  a second-order model would t a k e  t h e  form: 

:v = P o  + P 1 X ,  + P 2 x 2  + p l , x :  + P,,.; + P I 2 X 1 X 2  . (5.3.1) 

W e  mentioned previously that  s u c h  models a r e  sometimes used  t o  f i t  d a t a  from t h e  class of 

3k factor ia l  des igns .  Another class of d e s i g n s ,  o n e  which w a s  developed spec i f ica l ly  

for second-order models, is t h e  c l a s s  of central composite designs. 

des ign  i n  k var iab les  is made up of three b a s i c  par ts :  

1. a “cube,”  which may b e  a 2k factor ia l  or 2k-P f ract ional  factor ia l ,  

2. 2k “ s t a r  points ,”  which lie on t h e  k a x e s  (two on e a c h  a x i s ,  both a t  t h e  same d i s t a n c e  
from t h e  center  but in  different direct ions) ,  

3. “center  points ,”  which a r e  repeat  points  located a t  t h e  center  ( x l  = 0, x 2  = 0,  ... , xk = 0) 
of t h e  des ign .  

An example of a c e n t r a l  composi te  des ign  i n  t w o  var iab les  is as fol lows:  

A cent ra l  composi te  

‘ ‘cube ’ ’ 

“s ta r”  

‘ ”center  ’ ’ 

-1 -1 
1 -1 

-1 1 

1 1 

-1.414 0 
1.414 0 

0 -1.414 i 0 1.414 

0 0 

0 0 

0 0 i 0 0 

T h e  d i s t a n c e  (1.414) of t h e  s t a r  points  from t h e  center  of t h e  design (5.3.2) w a s  c h o s e n  so tha t  

the  var iance of t h e  es t imated  response  a t  any  point in  t h e  x s p a c e  depends  only on t h e  d i s t a n c e  

of that  point from t h e  center .  [Note: t h e  es t imated  response  a t  any  point x = (x,, x 2 ,  ... , x k )  

is obtainled by subs t i tu t ing  t h e  es t imated  coef f ic ien ts  ( P )  for t h e  P’s i n  t h e  model and dropping 

the  random error term.] T h i s  cr i ter ion,  which requires  equal i ty  of t h e  var iances  of t h e  est imated 

responses  on any sphere  centered  a t  t h e  origin, is ca l led  the  cr i ter ion of rotatability. W e  s h a l l  

not go in to  i t s  just i f icat ion here ,  except  t o  s a y ,  rather weakly, tha t  t h e  corresponding rotatable  

des igns  e s s e n t i a l l y  give equal  information about  t h e  response  i n  all direct ions from t h e  origin. 

A 

(5.3.2) 

. 
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Y 

T h e  need to introduce a new cr i ter ion,  s u c h  as rotatability, in  connect ion with second-order 

des igns ,  when t h e  minimization of t h e  var iances  of the  coef f ic ien ts  se rved  u s  so wel l  i n  t h e  

first-order c a s e ,  a r i s e s  b e c a u s e  t h e  la t ter  criterion is no longer appl icable .  In general ,  it is 

not poss ib le  t o  s e l e c t  a second-order des ign  which minimizes t h e  var iances  of all t h e  p ’ s  

simultaneously. In a n  attempt t o  meet t h i s  difficulty a “general ized var iance,”  which is the  

determinant of t h e  variance-covariance matrix of t h e  P’s ,  h a s  been  sugges ted  as a s i n g l e  

overall measure of t h e  var iances  of t h e  coeff ic ients ,  Minimization of th i s  general ized var iance  

is equivalent  t o  minimization of the  volume of t h e  confidence e l l ipso id  for the  P’s ,  a fact  which 

supports  its u s e  as a des ign  criterion. 

A 

A 

Another approach i n  t h e  se lec t ion  of des ign  cr i ter ia  h a s  been to consider  not t h e  var iances  

of t h e  coeff ic ients  but t h e  var iance of t h e  est imated response  function j ( x ) ,  where x is a point 

in t h e  s p a c e  of t h e  coded var iables .  Even  then,  no unique cr i ter ion h a s  been accepted.  

Some which have  been  sugges ted  are: 

1. 

2. 

3. 

Rotatability: V [ $ ( x ) ]  is a function only of r = ( x  ’ x ) l ’ * .  

Minimize max V [ ; ( x ) ] ,  where R is some “region of in te res t”  i n  the x s p a c e .  
x E  R 

Minimize w ( x )  V [ $ ( x ) ]  d x ,  where w ( x )  is some weight function which ind ica tes  the  
R 

importance of es t imat ing t h e  response  wel l  a t  the  point x .  

Other cr i ter ia  have  been introduced which consider, i n  addition to t h e  var iances ,  the  b i a s  

which might a r i s e  if the  model is inadequate .  

T h e  ex is tence  of s o  many competing cr i ter ia ,  n o  one of which is clear ly  superior ,  points 

up t h e  futility of trying t o  s e l e c t  a n  “optimum” des ign  for pract ical  use. What is general ly  

required in  pract ice  is not a des ign  which will b e  optimum with respec t  to a finely def ined set 

of cr i ter ia  but one which wil l  b e  “good” with respec t  t o  many cr i ter ia .  

G. E. P. Box and J. S. Hunter have  l i s ted  some key  propert ies  of “good” d e s i g n s  for 

polynomial models, which should s e r v e  as useful  guidelines: 

1. The des ign  should allow t h e  approximating polynomial of degree d (tentatively assumed 
t o  b e  representat ional ly  adequate)  t o  b e  est imated with sat isfactory accuracy  within 
t h e  region of interest .  

2. It should allow a check  t o  b e  made on t h e  representat ional  accuracy  of the assumed 
polynomial. 

3. It should not contain a n  e x c e s s i v e l y  large number of experimental points. 

4. It should lend i tself  to blocking. 

5. It should form a nucleus  from which a sa t i s fac tory  des ign  of higher order c a n  be  bui l t  in  
case t h e  assumed degree of polynomial proves inadequate .  

5.4 Higher-Order Designs and Designs for Nonlinear Models 

0 

J u s t  as  a quadrat ic  model c a n  be  useful  when a first-order model is inadequate, s o  c a n  c u b i c  

and even  higher-order models  b e  applied if necessary .  T h e  number of parameters i n  t h e s e  
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higher-order models becomes rather large,  however, and i t  is difficult t o  a s s o c i a t e  a c l e a r  

phys ica l  meaning with many of them. Often a more “parsimonious” parameterization c a n  be  

achieved by consider ing nonlinear models ,  tha t  is, models  which a re  no longer l inear  in  t h e  

p’s. A simple example of s u c h  a model is a sum of exponent ia ls :  

+ E ,  I u = l , 2  ,..., n .  - B1 2 x 1 ”  - P 2 2 X z u  
+ @,le Y ,  = P I  l e  

Until a few years  ago,  there  w a s  very l i t t l e  in  the  s t a t i s t i c a l  l i terature  concerning d e s i g n s  for 

s u c h  models. Some recent  ‘ ( f i rs t  s t e p s ”  a r e  indicated in  t h e  references a t  the  end of t h e s e  

notes. 

6. RESPONSE SURFACE METHODOLOGY 

6.1 Viewing the Response as a Surface 

T h e  charac te r i s t ic  concept  of response  sur face  methodology is that  of consider ing t h e  

“true” response ,  which is a funct ion of t h e  control led var iab les ,  as  a surface over t h e  s p a c e  

of t h o s e  var iables .  

T h i s  idea  is most c lear ly  understood when we cons ider  j u s t  two (coded) controlled var iab les  

x 1  and x 2 .  T h e  t r u e  response  a t  t h e  points of the  xl-x2 plane is viewed as  a sur face  hovering 

over that plane. If t h i s  response  sur face  i s  reasonably smooth, we c a n  expect  it to be  adequately 

represented by a l inear  function within a small neighborhood of any  given point ( x l o ,  x ~ ~ ) .  Over 

a s1ightl:y larger region a quadrat ic  approximation may be  necessary ,  a larger region may require 

a cubic ,  and s o  forth. T h i s  ra t ionale  is often employed to just i fy  t h e  u s e  of t h e  polynomial 

m o d e l s  descr ibed above.  

6.2 An Optimum-Seeking Method: Steepest Ascent 

W e  s h a l l  now briefly i l lus t ra te  a n  appl icat ion of experimental des ign ,  in conjunct ion with 

response  sur face  c o n c e p t s ,  t o  t h e  problem of finding t h e  point of maximum (or, equivalent ly ,  

a minimum) response.  

Suppose tha t  there  a r e  t w o  (coded) controlled var iab les  x 1  and x 2  and that  w e  wish t o  find 

the  levells of x 1  and x 2  a t  which t h e  maximum “true” response  c a n  b e  at ta ined.  We might 

first “ g u e s s ”  a point (xlo, x2J, which w e  f e e l  is near  t h e  region of maximum response ,  and 

center  a first-order des ign  about  tha t  point. T h i s  des ign  could wel l  include a few repeat  points  

a t  t h e  center ,  not only t o  provide an es t imate  of the  random error but also as a check  on poss ib le  

curvature i n  t h e  surface.  

When t h e  first-order model h a s  been fitted: 

(6.2.1) 

4 
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8 

. 

we move our next  experiments away from t h e  region of t h e  f i rs t  experiment, a long t h e  direction of 

steepest ascent, that  i s ,  the  direct ion i n  which t h e  fitted sur face  r i s e s  most sharply. T h i s  

direction c a n  be  ca lcu la ted  e a s i l y  from (6.2.1), and we have  t h a t  any point ( x l ,  x 2 )  on t h e  l ine of 

s t e e p e s t  a s c e n t  s a t i s f i e s :  

(6.2.2) 

where X is jus t  a n  arbitrary posi t ive cons tan t  which determines how far t h e  point ( x l ,  x 2 )  lies 

from t h e  center  ( x l o ,  x 2 J  of t h e  ini t ia l  experiment. T h e  u s u a l  procedure is then t o  perform 

severa l  experimental runs a t  points a long  the  l ine of s t e e p e s t  a s c e n t  (6.2.2), continuing t o  

move along that  l ine unt i l  the  observed response no longer increases .  B y  th is  time, we 

may b e  qui te  far away from t h e  original condi t ions ( x l 0 ,  x z 0 ) .  W e  now center  a new first-order 

design about the  point we  have  reached,  c a l c u l a t e  a new direct ion of s t e e p e s t  a s c e n t  leading 

away from that point, and proceed as before. 

Eventual ly ,  we s h a l l  come t o  a region for which t h e  l inear  model is no longer adequate .  

T h i s  may mean that  we are near  t h e  top of the  “hi l l”  we  have  been  climbing. At t h i s  point, 

we c a n  e a s i l y  augment a first-order des ign ,  perhaps with some “s ta r”  points, to give a 

second-order design. When the second-order model is fitted, i t  should ind ica te  t h e  locat ion of the 

point of maximum response.  A few confirming runs should then determine whether or not t h e  

ac tua l  maximum h a s  been at ta ined.  

In pract ice ,  there are other considerat ions,  s u c h  as  t h e  problem of maintaining other  responses  

within cer ta in  spec i f ica t ion  l imi t s  while  a s ingle  response  is being “optimized.” Sometimes, 

in  f a c t ,  i t  is never poss ib le  to “optimize” - one j u s t  t r i e s  t o  d o  bet ter  today than o n e  did 

yesterday.  T h e  pr inciples  involved in  t h e  s t e e p e s t  ascent  approach are  valuable ,  however, and  

have often been  appl ied with considerable  s u c c e s s .  
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LECTURE X: ELEMENTS OF STOCHASTIC PROCESSES 

V.  R. R a o  Uppuluri 

1 .  DEFINITIONS AND PRELIMINARIES 

Stochas t ic  process: An indexed family of random var iab les  X ( t )  is ca l led  a s t o c h a s t i c  process .  

T h e  parameter t belongs  t o  a s e t  T referred t o  a s  the index se t .  

If T = io ,  1, 2, . . .I, then we wil l  s a y  that  X(t) is a discrete- t ime s t o c h a s t i c  process .  When T 

is discre te  we s h a l l  write X, ins tead  of X(n). If T = (-W, M), then X ( t )  is ca l led  a continuous- 

time s t o c h a s t i c  process .  

W e  note  tha t  the  index s e t  T c a n  a t  t imes be  a n  arbitrary s e t .  For  example,  X ( t )  could b e  t h e  

height of a n  ocean  wave a t  a locat ion given by t h e  la t i tude and longitude and denoted by t .  

T h e  s p a c e  i n  which the  poss ib le  va lues  of X ( t )  l i e  is ca l led  the s t a t e  s p a c e  and is denoted by 

S. If S = 10, 1, 2, . . . I ,  we refer t o  the  s t o c h a s t i c  p r o c e s s  a s  a d iscre te -s ta te  process .  If S = (-M, 

-), then we will c a l l  X(t) a real-valued s tochas t ic  process .  If S is Eucl idean  k s p a c e ,  t h e n  X(t) 

is s a i d  t o  b e  a k-vector process .  

Generally, the  relat ionships  among the random var iab les  X ( t ) ,  t E T ,  are  spec i f ied  by giving 

the  joint  dis t r ibut ion funct ion of every f ini te  family X(t , ) ,  X(t,),  . . ., X(tn) of var iab les  of t h e  

process .  

For  the  purpose of t h i s  lecture ,  a s t o c h a s t i c  process  may b e  considered as  wel l  defined once  

i t s  s t a t e  s p a c e ,  index parameter, and family of joint dis t r ibut ions a re  prescr ibed.  

P r o c e s s  with independent increments: L e t  T = [O ,  -), and l e t  t ,  < t ,  <. . .< t, b e  a n  arbitrary 

choice  of time points. If the  random var iab les  X ( t , )  - X ( t , ) ,  X(t,) - X(t,), . . ., X(t , )  - X(t , - , )  

are  independent, then we s a y  that  X ( t )  is a process  with independent increments. 

Markov process:  L e t  T = [o, w ) ,  and le t  t ,  < t ,  <. . .< t, < t b e  a n  arbitrary c h o i c e  of t i m e  

points. A process  is s a i d  t o  b e  Markovian i f  

< < 
P[a < X ( t )  = b 1 X ( t , )  = x,, X ( t , )  = x,, . . ., X ( t , )  = x,] = P[a < X(t) = b I X(t , )  = x,] . 

In other words, a Markov process  is a process  with the  property tha t ,  g iven t h e  va lue  of X ( t ) ,  

the  va lues  of X(s), s > t ,  d o  not depend on t h e  va lues  of X(u), u < t ;  tha t  is, t h e  probability of 

any particular future behavior of t h e  process ,  when t h e  present  s t a t e  is known exac t ly ,  is not 

a l tered by addi t ional  knowledge concerning i t s  past .  

T h e  function 

t > s and A a n  interval of the  real  l ine ,  is cal led the  transition probability function and is b a s i c  

to s tudy t h e  s t ructure  of Markov processes .  

145 
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Stationary processes: A s t o c h a s t i c  p r o c e s s  X ( t )  i s  s a i d  t o  b e  strictly stationary i f  the  joint  

dis t r ibut ions of t h e  fami l ies  of random variables  [ X ( t ,  + h),  X ( t ,  + h) ,  . . ., X ( t ,  + h)]  and 

[ X ( t , ) ,  . . ., X(t,)] a r e  t h e  s a m e  for a l l  h and arbitrary s e l e c t i o n s  t , ,  t , ,  . . ., t, of T. In particular, 

the  distribution of X ( t )  i s  t h e  same for a l l  t t T .  T h i s  condition a s s e r t s  that  i n  e s s e n c e  t h e  

process  i s  i n  probabi l is t ic  equilibrium and the par t icular  t imes at which we observe  t h e  p r o c e s s  

are  of no relevance.  

A s t o c h a s t i c  process  X ( t )  is sa id  t o  be wide sense stationary or covariance stationary i f  i t  

p o s s e s s e s  f ini te  s e c o n d  moments and if Cov[X(t), X ( t  + h)] = E [ X ( t )  X ( t  + h)] - E [ X ( t ) ]  E [ X ( t  + h)]  

depends  only on  h for all t t T. 

Stationary p r o c e s s e s  are found to be appropriate models for descr ibing many phenomena that  

occur in communication theory, astronomy, biology, and economics. 

2.  EXAMPLES 

2.1 Brownian Motion Process (or Wiener Process) 

T h e  Brownian motion process  i s  a s p e c i a l  type of s t o c h a s t i c  p r o c e s s  which is t h e  most  re -  

nowned and his tor ical ly  the f i rs t  that  was  thoroughly invest igated.  As a phys ica l  phenomenon t h e  

Brownian motion w a s  discovered by the  Engl ish botanis t  Brown in 1827. 

descr ipt ion of this phenomenon w a s  f i rs t  derived f rom the l a w s  of phys ics  by Eins te in .  

cal theory was  further perfected by Smoluchowski, Fokker ,  P lanck ,  Burger, Furth, Ornstein,  

Uhlenbeck, Chandrasekhar ,  Kramers, and others. The  first c o n c i s e  mathematical formulation of 

the theory w a s  given by Wiener i n  h i s  1918 disser ta t ion  and la te r  papers .  In terms of the  general 

framework of s t o c h a s t i c  p r o c e s s e s ,  the Brownian motion p r o c e s s  i s  an example of a continuous- 

time, cont inuous-s ta te-space Markov process .  

In 1905, a mathematical 

T h e  physi-  

In 1827, Brown observed that  small  par t ic les  immersed in  a liquid exhibi t  c e a s e l e s s  ir- 

regular motions. In 1905, Eins te in  explained th i s  motion by postulat ing that  the  par t ic les  under 

observat ion a r e  subjec t  t o  perpetual  co l l i s ion  with the  molecules  of t h e  surrounding medium. L e t  

X ( t )  b e  the  pos i t ion  of the  par t ic le  a t  time t ,  and l e t  X ( 0 )  = xo. L e t  Ax, t 1 xo) be  the  condi t ional  
probability densi ty  of X ( t  + t o ) ,  given that  X ( t o )  = x o ,  s o  that  

We postulate  that  t h e  probability law governing the t rans i t ions  is stat ionary in  time; tha t  i s ,  

p ( x ,  t I x0) d o e s  not depend on t o .  Further, we assume that  

Iim p(x,  t [ xo)  = O for x f x o  , 
t +  0 

which implies  tha t  X ( t  + to) is likely to be  near  X ( t o )  for smal l  t. From phys ica l  p r inc ip les  

Einstein showed that  p(x, t I xo) must s a t i s f y  the  par t ia l  differential equation 

a p  a 2 P  --=D--, 
df dx 
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which is ca l led  the  diffusion equat ion,  D being t h e  diffusion coeff ic ient .  The  evaluat ion of D is 

based  on the formula D = 2 R T / N f ,  where R is the  g a s  cons tan t ,  T is t h e  temperature ,  N is 

Avogadro's number, and f is the coeff ic ient  of friction. By choos ing  t h e  proper scale we may 

take D = '6. Then we c a n  show that  

is the  unique solut ion of (2.1) with t h e  above boundary condi t ions.  T h u s  p(x, t 1 x o )  g ives  t h e  

probability densi ty  function of X ( t )  - X ( 0 ) .  The complete Brownian motion p r o c e s s  is given by 

t h e  following definition. 
> 

Brownian motion process  is a s tochas t ic  process  X ( t ) ,  t = 0, with t h e  following properties: 

1. X ( t )  is a p r o c e s s  with independent increments. 

2. Every increment X ( t  + s) - X ( s )  is normally dis t r ibuted with mean 0 and var iance ct; c > 0 is 

a fixed constant .  

The  physical  or igins  of the Brownian motion process  sugges t  that  the  poss ib le  real izat ions 

X ( t )  (sample paths)  whose movements result from cont inuous co l l i s ions  i n  the  surrounding 

medium are  cont inuous functions. T h e  proof of t h i s  s ta tement  requires  de l ica te  ana lys i s .  T h e  

sample pa ths  X ( t ) ,  although cont inuous,  a re  very kinky, and their der ivat ives  e x i s t  nowhere. 

T h i s  fact  is rather deep .  Using t h e  property of cont inui ty ,  we  c a n  compute some interest ing 

probabi l i t ies  a s s o c i a t e d  with the  Brownian motion. For  ins tance ,  i t  c a n  b e  shown that  

2 
dx > P[ max X ( u ) =  a1 =- 

O S u Z T  
(2.3) 

under t h e  condition X ( 0 )  = 0. 

If T,  denotes  t h e  random time (variable) a t  which X ( t )  f i rs t  a t ta ins  the  value a ,  where X ( 0 )  = 

0, it c a n  b e  shown that  

(2.4) < > 
P ( T ,  = t ) =  P[ p a x  x ( u > =  a I X ( O ) =  01 , < o =  u =  1 

which g ives  u s  the probability densi ty  function of T a .  

T h e  probability tha t  X ( t )  h a s  a t  l e a s t  one zero  in the  interval  ( t o ,  t , ) ,  given X ( 0 )  = 0, c a n  b e  

shown to be  

(2.5) 
2 

-arc  cos \ / t o / t  . 
7 

2.2 Poisson Process 

Another important example of a continuous-time ( T  = [ O ,  m)) s t o c h a s t i c  p r o c e s s  i s  t h e  P o i s s o n  

process .  The  sample  function X ( t )  counts  the number of t imes a spec i f ied  event  o c c u r s  during 

the period [0, t) .  T h u s  e a c h  sample path X ( t )  i s  represented b y  a nondecreasing s t e p  function. 
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0 ' I  '2 '3 '4 

A sample  function of a P o i s s o n  process ,  with X(0) = 0. 

Concrete  examples  of P o i s s o n  p r o c e s s e s  a r e  the following: 

1. the  number of x rays  emitted by  a s u b s t a n c e  undergoing radioact ive decay,  

2. t h e  number of te lephone c a l l s  originating i n  a given local i ty ,  

3. the  occurrence of a c c i d e n t s  a t  a cer ta in  intersect ion,  

4. t h e  occurrence of errors  in  a page of typing, 

5. the  breakdowns of a machine. 

T h e s e  examples  may b e  viewed as  P o i s s o n  p r o c e s s e s  b a s e d  on t h e  concept  of t h e  law of rare 

'We have a s i tua t ion  of severa l  Bernoulli t r i a l s  with a s m a l l  probability of s u c c e s s  a t  events .  

e a c h  t r ia l ,  where t h e  expec ted  number of s u c c e s s e s  is cons tan t .  Under t h e s e  condi t ions it i s  a 

familiar theorem tha t  t h e  a c t u a l  number of e v e n t s  occurr ing fol lows a P o i s s o n  law.  In t h e  case 

of radioact ive d e c a y  the  P o i s s o n  approximation is exce l len t  if the period of observat ion is very 

short compared with the  half-life of the  radioact ive s u b s t a n c e .  

W e  will now give a s e t  of pos tu la tes  which lead t o  t h e  fact  that X ( t )  follows a P o i s s o n  d i s -  

tribution, where X ( t )  denotes  t h e  number of e v e n t s  during [ O ,  t ) .  

Po s tu late s 

1. T h e  numbers of e v e n t s  [ X ( t , )  - X ( t , ) ]  and [ X ( t , )  - X ( t , ) ]  a r e  independent ,  where t ,  < t ,  < t , .  

2.  P [ X ( t  + h )  - X ( t )  5 XI depends  only on h and x, but not on t or on X ( t ) .  

3. T h e  probability of a t  l e a s t  one event  happening i n  a time period of duration h is 

p(h) = ah + ~ ( h )  , 

where o(h)/h t e n d s  t o  0 a s  h + 0. 

4. T h e  probability of two or more e v e n t s  happening in  time h is o(h). ( T h i s  l e a d s  to  t h e  i m -  

poss ib i l i ty  of the s imultaneous occurrence of two or more events . )  

a 

From t h e s e  pos tu la tes ,  it  c a n  be  shown that  

(at)" cat 
m! 

PIX(t)  = m] = , m =  0 ,  1, 2 ,  . .  
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d 

Often t h e  P o i s s o n  process  a r i s e s  in  a form where the t ime parameter is replaced by a s u i t a b l e  

spa t ia l  parameter, as  i l lustrated by t h e  following formal example. Consider  a n  array of points  

dis t r ibuted in  a s p a c e  E.  L e t  N ,  denote  t h e  number of points  contained in  t h e  region R of E. 

W e  postulate  that  N ,  is a random variable. T h e  col lect ion { N ,  ] of random var iab les ,  where 

R varies  over all s u b s e t s  of E ,  is s a i d  t o  b e  a homogeneous P o i s s o n  process  i f  t h e  following 

assumptions a r e  fulfilled: 

1. T h e  numbers of points  in  nonoverlapping regions a r e  independent random variables .  

2. Foi any region R of f in i te  volume, N ,  is P o i s s o n  dis t r ibuted with mean h V ( R ) ,  where V ( R )  

is t h e  volume of R.  T h e  parameter h is fixed and measures  i n  a s e n s e  t h e  intensi ty  component 

of t h e  distribution, which is independent  of the size or shape.  

Spat ia l  P o i s s o n  p r o c e s s e s  a r i s e  in  consider ing t h e  distribution of s t a r s  or g a l a x i e s  i n  s p a c e ,  

the spa t ia l  distribution of p lan ts  and animals ,  the  dis t r ibut ion of bac ter ia  on a s l i d e ,  e tc .  

W e  s h a l l  now give some more propert ies  of the P o i s s o n  p r o c e s s .  Let u s  recal l  tha t  from t h e  

definition of a continuous-time, d i scre te -s ta te  Markov process ,  with s ta t ionary t ransi t ion proba- 

bi l i t ies ,  

p i j ( t )  = P[X( t  + u )  = j [ X(u)  = il 

wil l  b e  independent of u ,  for all i, j = 0 ,  1, 2, . . . . 
T h e  P o i s s o n  process  is a Markov process  on t h e  nonnegative integers  which h a s  t h e  follow- 

ing properties: 

I. P[X(t  + h )  - X ( t ) =  1 1 X ( t )  = XI = ah + o(h), x = 0, 1, 2, . . ., 
2. RX(t + h )  - ~ ( t )  = O 1 X ( t )  = XI = 1 - ah + o(h), 

3. X ( O ) =  0. 

At t imes t h e  P o i s s o n  process  is referred t o  as t h e  completely random process ,  as it dis t r ibutes  

points  “a t  random” over the interval [0, W )  in  much t h e  s a m e  way that  the uniform dis t r ibut ion d is t r ibu tes  

points  over a f ini te  interval. In particular, t h e  probability of a n  observat ion fa l l ing  i n  a sub-  

interval is a function of its length only, and the  numbers of e v e n t s  occurring in  two dis joint  t ime 

in te rva ls  are independent random variables .  

Another i l lustrat ive example of t h e  P o i s s o n  process  is that  of f ishing.  Le t  X ( t )  denote  t h e  

number of f i sh  caught  i n  the time interval  [0, t ) .  Suppose that  t h e  number of f i sh  ava i lab le  i s  very 

large, tha t  t h e  en thus ias t  s t a n d s  no bet ter  chance  of ca tch ing  f i sh  than t h e  r e s t  of u s ,  and tha t  a s  

many f i sh  a re  likely t o  nibble a t  one ins tan t  of time as a t  another. Under t h e s e  “ idea l”  condi- 

t ions ,  the  process  ( X ( t ) ,  t 2 01 may be considered as  a P o i s s o n  process .  T h i s  example s e r v e s  t o  

point up t h e  Markov property (the chance  of ca tch ing  a f i s h  d o e s  not depend upon t h e  number 

caught) and t h e  “no premium for waiting” property, which is the  most d i s t inc t ive  property p o s s e s s e d  

by t h e  P o i s s o n  process .  It means that t h e  fisherman who h a s  j u s t  arrived a t  t h e  pier h a s  as  good 

a chance  of ca tch ing  a f i sh  in  t h e  next ins tan t  of time as  h e  who h a s  been waiting for a b i te  for  

a few hours without s u c c e s s .  
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Another example i s  afforded by problems a r i s i n g  in t h e  theory of counters .  If X ( t )  is t h e  

number of radioact ive dis integrat ions detected by a Geiger  counter  in t h e  interval  [O, t), the 

process  is P o i s s o n  as  long as  t h e  half-life of t h e  s u b s t a n c e  is large relat ive t o  t .  T h i s  provision 

ensures  that  t h e  c h a n c e  for a dis integrat ion per unit of time may b e  considered as constant  over 

time. 

Le t  T ,  denote  the  t ime (random) between t h e  kth and (k + 1)st  event .  T h e  random var iab les  

T ,  are  ca l led  the "waiting times" between s u c c e s s i v e  e v e n t s ,  and 

denotes  the  time a t  which t h e  k th  event  occurs .  

In t h e  case of a P o i s s o n  process ,  w e  have  the  following: 

Theorem: T h e  wai t ing t imes  T ,  are  independent and ident ical ly  dis t r ibuted random var iab les ,  

following an exponent ia l  distribution with parameter a .  

3. MARKOV CHAINS 

3.1 Definit ions and Preliminaries 

A discrete-time Markov chain {X, j  i s  a Markov s t o c h a s t i c  process  whose s t a t e  s p a c e  is a 

countable  or f ini te  s e t  and for which the index s e t  T is ( 0 ,  1 ,  2,  . . .). It is convenient  t o  labe! 

the  s t a t e  s p a c e  of the  p r o c e s s  by io, 1, 2, . . . I ,  and i t  is customary to  s p e a k  of X n  being in  s t a t e  

i i f  X n  = i .  

T h e  probability of X,+,  being in  s t a t e  j ,  given that  X ,  is i n  s t a t e  i (cal led a one-step t rans i -  

tion probability), is denoted by  

When the one-s tep  t ransi t ion probabi l i t ies  a re  independent of the  time var iable  ( i .e . ,  independent 

of t h e  va lue  n),  we s a y  that  t h e  Markov cha in  h a s  s ta t ionary  t ransi t ion probabi l i t ies .  In t h i s  case 

p n l n f l  = p . . ,  and p . .  is the  probability that the s t a t e  value undergoes a t ransi t ion from i t o  j i n  

one t r ia l .  It i s  customary t o  arrange the  elements  p i j  as  a matrix and t o  refer t o  t h e  matrix 
' I  ' I  1 1  

< '  . <  p =  ( p . . ,  o =  1 ,  I = -1 
[J 

as  the  t ransi t ion probability matrix of t h e  Markov chain;  we note  that  a l l  the  e lements  of t h i s  

matrix, p ; . ,  a r e  nonnegat ive and that the  sum of the e lements  in  any i th  row, 
) I  

Do 

2 P, j  , 
j= 0 

is equal  to  unity. 

T h e  Markov cha in  is completely determined when once  the t ransi t ion probability matrix P and 

the  va lue  of X ,  a r e  specif ied.  We note  that 

il 

f " 3 ,  = i o ,  X ,  = i,, X ,  = i,, . . ., xn = in>= p i  . p i  . . . . . . . p i  . (3.1.1) 
0 0 J 1 1  2 n--lZin 
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3.2 One-Dimensional Random Walks 

A 

1 

A one-dimensional random walk i s  a Markov chain whose s t a t e  s p a c e  is a f ini te  or infinite s u b -  

set (a ,  a + 1, . . ., 6) of t h e  integers ,  in  which t h e  par t ic le  ( s t a t e  of t h e  system),  if i t  is i n  s t a t e  i ,  

c a n  in  a s ingle  t ransi t ion ei ther  s tay  in  i or move t o  one of t h e  ad jacent  s t a t e s  i - 1, i + 1. If 

the  state s p a c e  is taken as t h e  nonnegative integers ,  the  t ransi t ion matrix of a random walk h a s  

the  form 

9 ,  r l  p1 0 . . .  

where 

q i + r i + p i =  1 , i =  1, 2, ..., r o + p o =  1 .  

T h e  fortune of a player engaged in  a series of c o n t e s t s  is often depicted by  a random walk 

process .  Specifically, suppose  a n  individual (player A) with fortune k plays  a game aga ins t  a n  

infinitely rich adversary and h a s  probability p k  of winning one  unit and probability qk = 1 - pk  

(k => 1) of losing one unit i n  e a c h  contes t ,  and r o  = 1. T h e  process  { X , ] ,  where X ,  represents  h i s  

fortune after n contes t s ,  is a random walk. Note that  once  state 0 is reached (i.e.,  t h e  player A 

is wiped out), the  process  remains in  that s t a t e .  T h i s  process  is also commonly known a s  t h e  

c <  gambler’s ruin.” 

If p ,  = 0 and r o  = 1, then  0 acts as a n  absorbing barrier. Once t h e  par t ic le  reaches  zero  i t  

remains there forever. If p o  > 0 and r o  > 0, then 0 is a par t ia l ly  reflecting barrier. 

A c l a s s i c a l  mathematical model of diffusion through a membrane is the  famous Ehrenfest  model, 

namely, a random walk on a f ini te  s e t  of s t a t e s  where t h e  boundary s t a t e s  a r e  reflecting. T h e  

random walk is restr ic ted t o  t h e  s t a t e s  i = - a ,  -a + 1, . . ., - 1, 0 ,  1, . . ., a with t ransi t ion 

probability matrix 

a - 1  

p . . =  a +  i 

i f j = i +  1 

’ I  [T i f  j =  i - 1 

( 0 otherwise 

T h e  physical  interpretation of th i s  model is a s  follows: Imagine two conta iners  containing a 

total of 2a bal l s .  Suppose t h e  first container ,  labeled A ,  holds k b a l l s  and t h e  second container  

B holds 2a - k b a l l s .  A bal l  is s e l e c t e d  a t  random (a l l  s e l e c t i o n s  a re  equal ly  l ikely)  from among 

t h e  total i ty  of t h e  2a b a l l s  and moved to  t h e  other container .  E a c h  se lec t ion  genera tes  a t ransi-  

tion of t h e  process .  L e t  t h e  state of t h e  system be  determined by the  number of b a l l s  in  A .  
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3.3 A Discrete Queueing Markov Chain 

Customers  arrive for s e r v i c e  and take  their p lace  in a wai t ing l ine.  During e a c h  period of 

time a s ingle  customer is served ,  provided that  a t  l e a s t  one customer i s  present .  

awai t s  se rv ice ,  t h e n  during th i s  period no serv ice  is performed. During a s e r v i c e  period new 

customers  may arrive. W e  suppose  that  the ac tua l  number of arr ivals  in  t h e  n th  period is a random 

variable 6, whose dis t r ibut ion function is independent  of t h e  period and i s  given by 

If no customer 

P(k  cus tomers  arrive i n  a s e r v i c e  period) = P([,  = k )  = a k ,  k = 0 ,  1, 2 ,  . . ., ak 2 0 ,  2 ak = 1 . 

We also a s s u m e  the random variables  6, are  independent .  T h e  s t a t e  of t h e  sys tem a t  t h e  

s ta r t  of e a c h  period i s  defined to  be  the number of cus tomers  wai t ing in  l ine for service. If t h e  

present  s t a t e  is i ,  then after a l a p s e  of one period the  s t a t e  i s  

i - l + <  i f i 2  1 
J =z , [  5 i f i = O ,  

where [ is the  number of new customers  that  arrived i n  t h i s  period while a s i n g l e  customer w a s  

serviced.  In terms of t h e  random variables  of the p r o c e s s ,  we c a n  express  t h i s  as  

'YE +, = rnax(X, - I, 0 )  + [, . 

T h e  t ransi t ion probability matrix is given by  

a. a, a 2  a3 a4 . . .  
a. a l  a 2  a3 a4 . . .  
0 a.  a l  a 2  a3 . . .  
0 0 a .  a l  a 2  . . .  
0 0 0 a.  a, . . .  

. . . . .  . . . . .  

I 

Y 

It i s  intui t ively c lear  that  if t h e  expected number of new customers ,  

that  arrive during a s e r v i c e  period e x c e e d s  1, then  cer ta inly with t h e  p a s s a g e  of t h e  t ime t h e  

length of t h e  wai t ing l i n e  i n c r e a s e s  without limit. On t h e  other  hand, if C k a k  < 1, then  w e  s h a l l  

see that the length of t h e  wai t ing l ine approaches a n  equilibrium. If Zkak  = 1, a s i tua t ion  of 

gross  instabi l i ty  deve lops .  
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3.4 S u c c e s s  Runs 

t 

1. 

Consider  a Markov chain on t h e  nonnegative in tegers  with t ransi t ion probability matrix of t h e  

form 

P o  qo  0 0 . . .  

P = [ ! ;  p ,  0 ; 0 !::: 0 . . .  

. . . .  

where qi > 0, pi > 0, and qi + pi = 1, i = 0,  1, 2, . , . . T h e  z e r o  s t a t e  p l a y s  a dis t inguished role 

in  tha t  i t  c a n  be  reached i n  one t ransi t ion from any other s t a t e ,  while  s t a t e  i + 1 c a n  b e  reached 

only from s t a t e  i. 

A s p e c i a l  case of t h i s  t ransi t ion matrix a r i s e s  when one is dea l ing  with s u c c e s s  runs resul t -  

ing from repeated t r ia ls ,  e a c h  of which admits  two p o s s i b l e  outcomes,  s u c c e s s  (S) or fa i lure  (F). 

More expl ic i t ly ,  consider  a sequence  of t r i a l s  with two poss ib le  outcomes,  S or F. Moreover, 

suppose that  i n  e a c h  t r ia l ,  t h e  probability of S is a and t h e  probability of F isp = 1 - a. We s a y  

a s u c c e s s  run of length r happened a t  trial n if the outcomes in  t h e  preceding r + 1 tr ia l s ,  includ- 

ing the  present  t r ia l  as  t h e  l a s t ,  were, respect ively,  F, S, S, . . ., S. L e t  us now labe l  t h e  present  

s t a t e  of t h e  p r o c e s s  by t h e  length of t h e  s u c c e s s  run current ly  under way. In particular, if t h e  

l a s t  t r ia l  resul ted in  a failure, t h e n  the  s t a t e  is zero.  Similarly, when t h e  preceding r + 1 t r i a l s  

i n  order had t h e  outcomes F, S,  . . ., S, t h e  s t a t e  var iable  would carry t h e  label r .  T h e  p r o c e s s  is 

clear ly  Markovian, and t h e  t ransi t ion matrix h a s  the above form with 

P n = / 3 ,  n =  0 ,  1, 2 . . .  . 

3.5 Branching Processes 

Suppose an  organism at  t h e  end of i t s  lifetime produces a random number 4 of offspring with 

probability distribution 

P ( [ =  k ) =  a k ,  k =  0 ,  1, 2, ..., 

where ak 2 0 and Z a ,  = 1. We a s s u m e  that  all offspring a c t  independently of e a c h  o ther  and  at t h e  

end of their  lifetime (for s implici ty ,  the l i fe-spans of all organisms a r e  assumed t o  b e  t h e  same) 

individually have progeny in accordance  with t h e  same probability distribution, t h u s  propagating 

their s p e c i e s .  T h e  process  { X n ! ,  where X ,  i s  the  population size a t  t h e  n t h  generat ion,  is a 

Markov chain.  T h e  t ransi t ion matrix is given by 

i 

p . .  = P(Xn+l  = j 1 X n  = i)= P ( 5 ,  +. . .+ E, = j )  , 
11 

where t h e  ['s a r e  independent ident ical ly  dis t r ibuted random var iab les .  
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3.6 A Genet ic  Model 

T h e  following ideal ized genet ics  model w a s  introduced by S. Wright t o  inves t iga te  t h e  f luctua-  

tion of gene frequency under t h e  influence of mutation and se lec t ion .  W e  begin by descr ib ing  a 

so-cal led s imple  haploid model of random reproduction, d i s regard ing  mutation pressures  and 

se lec t ive  forces ,  We a s s u m e  that  we are  dea l ing  with a fixed population of 2N g e n e s  composed 

of type a and type A individuals .  The  makeup of the  next generation i s  determined by  2N inde-  

pendent binomial t r i a l s  as  follows: If t h e  parent population c o n s i s t s  of j g e n e s  of type a and 

2N - j g e n e s  of type  A ,  t h e n  e a c h  t r ia l  r e s u l t s  in a or A with probabi l i t ies  p .  = j/2N and q .  = 

1 - 6 / 2 N )  respect ively.  Repeated s e l e c t i o n s  a re  done with replacement. By t h i s  procedure w e  

generate  a Markov c h a i n  { X , ) ,  where X n  is the number of a g e n e s  i n  the  n th  generation among a 

constant  population size of 2N elements .  The  s t a t e  s p a c e  conta ins  the  2N + 1 values  (0 ,  1, 2 ,  . . ., 
2N) .  T h e  t ransi t ion probability matrix is computed according to t h e  binomial dis t r ibut ion a s  

I J 

. P(Xntl = kj X , =  2N k 2 N -  k )  P j q j  . k ,  k, j = O ,  1, . . .  , 2N . 

4. PROPERTIES O F  MARKOV CHAINS 

4.1 n-Step Probabi l i t ies  

A Ma.rkov cha in  is completely defined by i t s  one-step t ransi t ion probability matrix and t h e  

specif icat ion of a probability distribution on t h e  s t a t e  of t h e  process  a t  time 0. L e t  pn.  denote  

t h e  probability that  the  process  goes from s t a t e  i t o  s t a t e  j in  n t rans i t ions ,  tha t  i s ,  
I J  

f 

It c a n  be shown that  

m 

p n .  = 2 p r  p s . ,  where r + s = n . ' J  kEO Ik kl 

If the  probability of the  process  ini t ia l ly  being in  s t a t e  j is pi, tha t  is, p(x - . - 1 )  = p i ,  t h e n  t h e  

probability of the  process  being in  s t a t e  k a t  t i m e n  is 

c13 

p i  = z pipyk = P ( X ,  = k) . 
j =  0 

In order to s tudy  t h e  limiting behavior of p y j  as n + m, we need to introduce some pr inciples  of 

c lass i fy ing  t h e  s t a t e s  of a Markov chain. 

4.2 Class i f ica t ion  of S ta tes  

A s t a t e  j is s a i d  to  b e  a c c e s s i b l e  from s t a t e  i i f ,  for s o m e  integer n 2 0 ,  py j  > 0. T w o  s t a t e s  

i and j ,  e a c h  a c c e s s i b l e  t o  the  other ,  are  s a i d  to communicate. A Markov c h a i n  is s a i d  to  b e  

irreducible if all s t a t e s  communicate with e a c h  other .  
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. 

We define the per iod  of s t a t e  i, written d(i), to b e  t h e  g r e a t e s t  common d iv isor  of all in tegers  

n 2 1 for which pyi > 0. (If pyi = 0 for all n 2 1 define d(i) = 0.) A Markov c h a i n  i n  which e a c h  

s t a t e  h a s  period unity is cal led aperiodic .  

L e t  fyk s tand  for the  probability that ,  in  a process  s ta r t ing  from s t a t e  j ,  the  first entry t o  

s t a t e  k occurs  a t  the  n t h  s t e p .  L e t  u s  put 

Clear ly  f j k  is the  probability that ,  s ta r t ing  from s t a t e  j ,  the  sys tem wil l  ever  p a s s  through s t a t e  k. 
T h e  s t a t e  j is s a i d  to b e  pers i s ten t  if f.. = 1 and t ransient  i f  f j j  < 1. A pers i s ten t  s t a t e  j i s  

11 

ca l led  a nul l  s t a t e  if i t s  mean recurrence time p .  = M. 
I 

An aperiodic  pers is tent  s t a t e  j with pi < M is c a l l e d  ergodic. 

4.3 L i m i t  Theorems 

Theorem: 

1. T h e  s t a t e  j is transient  if and only if 

m 

n= 0 

In t h i s  case 

for all i. 
2. T h e  (pers is tent)  s t a t e  j i s  null if and only if 

but pyi -f 0 as  n + M. In t h i s  case pyj --f 0 for a l l  i. 

3. An aperiodic  s t a t e  j (pers is tent)  is ergodic i f  and only if p j  < m. In t h i s  case a s  n --f w ,  

Pyi + fij/Pj. 

A Markov chain is s a i d  t o  be  ergodic i f  a l l  i t s  s t a t e s  a r e  aper iodic  and pers i s ten t  with f ini te  

mean recurrence times. We have  the  following important theorem. 

Theorem: In a n  irreducible ergodic  cha in  the  limits 

lim p" = u 
n+m 

Ik k 

exis t  and a r e  independent of the  ini t ia l  s t a t e  j .  Furthermore, 

for a l l  j .  
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Conversely,  s u p p o s e  that  t h e  cha in  is irreducible and aperiodic  and that  there  e x i s t  numbers 

uk 2 o sa t i s fy ing  

Then t h e  cha in  is ergodic,  the uk a re  given by 

1.1~ = lim p!' 
Ik ' 

n+m 
and uk = l / pk ,  where p k  is the  mean recurrence t ime of state k. 
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