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THE ROLE OF CARBON I N  REACTIONS I N  THE U-C-0-N SYSTEM 

-. 
T. B. Lindemer, J. M. Leitnaker, and K. E. Spear 

ABSTRACT 

Carbon plays a v i t a l  r o l e  i n  reactions i n  the  U-C-0-N 

system. This has been demonstrated by extensive s tudies  of 

t he  k ine t ics  and thermodynamics of react ions i n  t h e  system 

from 1400 t o  2000°C, including those of U02 w i t h  carbon, UC 

w i t h  nitrogen, and UC2 w i t h  nitrogen. Carbon'can e i the r  ac t  

as a reductant or can control  t h e  react ion r a t e .  It can 

control  t h e  r a t e  of reactions e i the r  by diffusion processes, 

by t h e  d is t r ibu t ion  of f r e e  carbon within t h e  so l id  reactants,  

by t h e  formation of compounds more r ich  i n  carbon, or  by 

t h e  formation of a nonequilibriumtype of f r e e  carbon. In  

a l l  cases, t he  ro l e  of carbon i s  dominant. 

INTRODUCTION 

The major component of fu ture  high-performance nuclear fue l s  w i l l  

, be  one or  more of ' the compounds o r  so l id  solutions i n  t h e  U-C-0-N system. 

There a r e  two major areas of technical  i n t e re s t  i n  t h i s  system: t h e  

f u e l  cycle and t h e  chemical s t a b i l i t y .  Several t yp ica l  chemical reac- 

t ions  have been studied between 1400 and 2000°C t o  determine basic  

k ine t i c  and thermodynamic properties:  t h e  reaction of U02 with carbon, 

UC with nitrogen, UN with graphite,  and UC2 with nitrogen. 

Carbon plays an important ro l e  i n  t h e  k ine t ics  of these reactions.  

It ac t s  as a reductant with U02. It controlled the , r eac t ion  r a t e  in- 
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UC2-N2 reactions by a diffusion process and by i t s  i n i t i a l  d i s t r ibu t ion  

as f r e e  carbon. I ts  re jec t ion  i n  t h e  UC-N2 react ion led  t o  t h e  forma- 

t i o n  of UC2. Additionally, carbon can p rec ip i t a t e  i n  a nonequilibrium 

form of f r e e  carbon. This discussion w i l l  review several  s tudies  that  

permit these conclusions. 

EXPERIMENTAL TECHNIQUES 

The general experimental methods used i n  the  k ine t ic  s tudies  a r e  

described below, while techniques pa r t i cu la r  t o  a spec i f ic  study a re  

described i n  t h e  discussion of tha t  study. In  many of t he  s tudies ,  t he  

uranium compound was avai lable  as f u l l y  dense spheres w i t h  diameters of 

500 pm. These were reacted f o r  d i f fe ren t  times, and t h e  outer diameters 

of  t he  spherical ly  symmetrical phases involved i n  the  react ion ,were 

determined on equator ia l  cross sections of 25 spheres a t  each time by a 

metallographic method.’ The pr inc ipa l  data obtained were r t h e  radius 

of t he  sphere a t  zero t i m e ,  and r, the  radius of t h e  reactant  core a t  

0’ 

time t. These measurements were used i n  models that  ex i s t  i n  t he  l i t e r a -  

t u r e  for reactions i n  so l id  spheres. The model for a react ion controlled 

by diffusion through the  product layer  i s2  

i n  which k 

control  by a mechanism at  t h e  in te r face  between t h e  core and the  product 

takes t h e  form3 

i s  i n  units of square centimeters per  second. A model f o r  D 

r 0 - r = k I t ,  
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i n  which k i s  i n  units of centimeters per second. A model f o r  control  

at  t h e  surface is4 

I 

ro L rl - ($--)3] = 3 kSt , ( 3 )  

i n  which k i s  i n  units of centimeters per second. A p lo t  of t he  le f t -  

hand s ide of Eqs. (l), ( 2 ) ,  and (3) versus time f o r  a series of experi- 

S 

ments a t  a given temperature and incremental t i m e  in te rva ls  w i l l  of ten 

exhibit  l i n e a r i t y  f o r  t h e  left-hand-side function fo r  one of the  models; 

t h e  p lo t s  f o r  t he  other two models w i l l  be nonlinear. These character- 

i s t i c s  provide one means f o r  eliminating ce r t a in  mechanisms from consid- 

erat ion as r a t e  control l ing.  

Other techniques were used t o  obtain k ine t i c  information from t h e  

thermodynamic s tudies .  The intermediate stages of a react ion that even- 

t u a l l y  a t ta ined  equilibrium were followed by t h e  techniques of chemical 

analysis  and Debye-Scherrer x-ray powder d i f f rac t ion .  In one case, t h e  

thermodynamic information developed from these s tudies  could be used t o  

show t h e  existence of a nonequilibrium but k ine t i ca l ly  s t ab le  form of 

carbon. 

U02 - C REACT1 ON 

The reaction of UO;! spheres and graphi te  was studied between 1400 

and 1'750°C ( ref .  5 ) .  

s t a r t i n g  mater ia l  commonly used for  making other nuclear fue l s  and 

because carbon i s  generally used as a reductant i n  the  process. 

and graphi te  were reacted i n  a ro ta t ing  tungsten crucible  t o  maintain 

dynamic contact between graphite and the  spheres. 

This react ion i s  important because U02 i s  a 

The U02 

The react ion yielded 



4 

two qui te  d i f f e ren t  morphologies, depending on i n i t i a l  heating conditions. 

These r e s u l t s  a r e  i l l u s t r a t e d  i n  Fig. 1. 

i n  which the  U02 maintained contact w i t h  t h e  surface of the sphere u n t i l  

The configuration i n  Fig. l(b), 

Fig. 1. Symmetrical (a) and Nonsymmetrical (b) Configurations 
Observed i n  t h e  Reaction of U02 and Carbon. 
90 min. Cracks r e s u l t  from quenching at  the  end of t h e  experiment. 
i s  t h e  core phase, UC2 i s  the outer phase, and some graphi te  p a r t i c l e s  
adhere t o  the  outer surface.  =OX. Etchant: 1:1:1 solut ion of water, 
acet ic ,  and n i t r i c  acids.  

( a )  17OO0C, 60 min, (b)  175OoC, 
U02 
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t he  react ion was nearly complete, was  obtained by heating the  reactants  

t o  temperature a t  a rate grea te r  than 50°C/min. 

which has a spherical ly  symmetrical layer  of UC2, was obtained by a 

heating rate of 25"C/min or l e s s .  

The other configuration, 

The i n i t i a l  heating r a t e  apparently 

a f f ec t s  t h e  i n i t i a l  nucleation and growth of the  UC2 on t h e  surface of 

t h e  sphere. 

5 times f a s t e r  than t h a t  f o r  the uniform reaction, a f a c t  t h a t  has 

po ten t i a l  importance i n  t h e  design of a process f o r  the production of 

nuclear fue l .  

The conversion r a t e  f o r  t h e  nonuniform reaction was  2 t o  

The overa l l  chemical conversion must occur by some sequences of 

mechanisms, a l l  of which are e i the r  diffusion processes or in te r face  

reactions.  There are i l l u s t r a t e d  schematically i n  Fig. 2. An example 

of an in te r face  reaction a t  the  surface of t h e  sphere i s  the  solut ion 

of graphi te  i n to  UC2. 

through t h e  UC2 t o  t h e  interface between UC2 and U02, where reaction 

produces UC2 from U02. 

by t h e  reaction i s  postulated t o  go i n t o  so l id  solut ion i n  the  UC2, where 

This i s  followed by diffusion of t he  carbon 

In the  symmetrical reaction, t h e  oxygen released 

it diffuses  t o  t h e  surface and reacts  with graphite t o  form CO. 

.The mechanism controll ing i n  the symmetrical configuration of 

Fig. 2 was deduced by comparing the results from the  symmetrical and non- 

symmetrical reactions.  This comparison indicated that 'the diffusion of 

oxygen through the UC2 was t h e  rate-controll ing s tep.  

The cause of t he  faster reaction i n  t h e  nonsymmetrical configuration 

was a l s o  deduced.5 The oxygen released a t  the  interface between U02 and 

UC2 diffuses  through the  U02 neck t o  the  surface of t he  sphere, where it 

reac ts  with carbon t o  form CO. This process must be f a s t e r  than t h e  
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2 [ClUCP + uo, - uc, + 2 [OI 
"02 

Fig. 2.  Schematic Representation of Symmetrical (Lower) and Nonsym- 

The proposed mechanisms occurring during the  react ion a r e  shown. 
metr ical  (Upper) Configurations Observed i n  t h e  Reaction of t h e  U02 and 
Carbon. 

diffusion of oxygen through the UC2, and the  conversion i s  therefore  

more rapid.  

controll ing s teps  observed under the  conditions presented here.  

The e f f ec t  of gra in  s i z e  i s  not believed t o  change the rate- 

Quantitative data  was obtained f o r  t h e  uniform react ion by t h e  metal- 

lographic technique described e a r l i e r .  .The average measurements f o r  r 

and ro a t  each time were used i n  the  

spheres. The slope, 5, of the  p l o t  

t h e  Arrhenius r e l a t ion  t o  obtain the  

model for control  by diffusion i n  

a t  each temperature was f i t t e d  t o  

ac t iva t ion  energy, 90 kcal/mol. 
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The methods and r e su l t s  of this  invest igat ion compare most c losely 

w i t h  those of Ainsley -- e t  a1.6 They studied the react ion of pe l le t ized  

powder mixtures of U02 and carbon under vacuum from 1300 t o  1550°C and 

concluded that  t he  diffusion of e i the r  carbon or oxygen was rate con- 

t r o l l i n g .  

f i r s t -order  r a t e  constant. 

They obtained an ac t iva t ion  energy of 92 kcal/mol f o r  the 

In summary, po ten t ia l ly  useful  information has been found i n  the 

study of the react ion of U02 and carbon. For example, t he  conversion 

process i s  2 t o  5 times f a s t e r  i f  contact can be maintained between the  ' 

U02 and carbon during the reaction. For microspheres, t h i s  could be 

accomplished by heating the reactants  t o  temperatures at  a minimum r a t e  

of 50"C/min. 

fac tor .  ) I The reaction is  faster under these conditions, apparently 

because the  oxygen migrates more rapidly through the  oxide than it does 

through t h e  dicarbide. 

(Rapid heating t o  temperature seems t o  be a determining 

UC2-N2 REClCTION 

The reaction between uranium dicarbide microspheres and nitrogen 

was studied from 1500 t o  1700°C ( r e f .  7 ) .  This react ion was considered 

f o r  severa l  reasons. F i r s t ,  it belongs t o  a general  c lass  of reactions 

tha t  involve the  conversion of metal carbides w i t h  nitrogen t o  produce 

a carbonitride so l id  solution. This carbonitride,  w i t h  plutonium carbo- 

n i t r i d e  i n  so l id  solution, i s  a po ten t i a l  high-performance nuclear fue l .  

Second, t h i s  study complemented a concurrent study that was being 

performed on t h e  thermodynamics of the U(C,N) system. 

production of uranium carbonitride from oxides, control  of t h e  quantity 

of carbon used i s  not as c r i t i c a l  as for e i the r  pure UN or pure UC. 

Third, i n  t he  
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The experimental procedure and t y p i c a l  r e su l t s  w i l l  be described 

b r i e f ly .  The apparatus used f o r  these experiments consisted bas ica l ly  

of a small graphite f luidized bed i n  a system that allowed the  preheating 

of the  nitrogen and t h e  maintenance of a constant nitrogen pressure of 

380 t o r r .  The UC2 spheres were dropped in to  t h e  bed a t  zero time; about 

200 t o  1000 spheres were removed w i t h  a carbon bucket a f t e r  each of 

eight equal-time increments. These spheres were examined by the tech- 

nique described ear l ie r ’  t o  obtain t h e  conversion as a function of time. 

A representat ive p a r t i c l e  observed f o r  each of t h e  d i f f e ren t  times 

i s  shown i n  Fig. 3. The core consis ts  of uranium dicarbide, the  in te r -  

mediate layer  i s  uranium carbonitride,  and t h e  outer layer  and dark pre- 

c ip i t a t e s  a re  f r e e  carbon. The prec ip i ta tes  formed on f r e e  carbon that  

was present i n  the o r ig ina l  UC2 microspheres t o  the  extent of about 

1 vol  4. 
A p a r t i c l e  was  occasionally observed t h a t  contained l i t t l e  or no 

in t e rna l  f r e e  carbon, as shown i n  Fig. 4.  This sphere was obtained from 

the same sample as that shown i n  Fig. 3 that  was  reacted f o r  1080 min. 

The carbon prec ip i ta tes  only on the outer surface of t h e  sphere, appar- 

en t ly  because no f r e e  carbon was present in te rna l ly  t o  provide precipi ta-  

t i o n  s i t e s .  The react ion r a t e  t o  form U(C,N)  i n  t h i s  type of mater ia l  

i s  about ha l f  that  of the  normal pa r t i c l e ,  as can be seen by comparing 

t h e  thickness of t h e  U(C,N)  layer  i n  t h e  two d i f fe ren t  spheres. 

Each of t h e  mechanisms postulated t o  occur i n  the  conversion must 

be examined t o  determine if it i s  the  one control l ing the  react ion.  

These are shown schematically i n  Fig. 5 and can be divided in to  two 

classes:  diffusion processes and in te r face  reactions,  including those 
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PHOTO 93793 

Fig. 3 .  Near-Equatorial Cross Sections of Approximately 5OO-pm-OD 
UC;! Spheres Reacted w i t h  Nitrogen a t  1700°C f o r  the Indicated Times. 
outer  layer  and i n t e r n a l  prec ip i ta tes  are f r e e  carbon, t hd  core is  UC2, 
and t h e  intermediate layer  i s  U( C,N) . UOX.  Etchant: 1: 1:l solut ion 
of water, ace t ic ,  and n i t r i c  acids .  

The 
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Fig. 4 .  Cross Section of UC2 Sphere t h a t  I n i t i a l l y  Contained Almost 
This sphere was f r o m t h e  same sample as tha t  i n  Fig. 3 no Wee Carbon. 

t h a t  was reacted f o r  1080 min. 
E O X .  Etchant: 1:l:l solution of water, acet ic ,  and n i t r i c  acids.  

Note the  smaller amount of U(C,N) present. 

ORNL-DWG 69-6352A 

Additional Mechanisms if 
Carbon is Interconnected 
To Outside Surface 

NL + NITROGEN CARBON 

DIFFUSION OF NITROGEN CARBON 

NITROGEN CARBON - [N I  UCN 

Fig. 5. Schematic Representation of t he  Phases Present i n  t h e  
Reaction of UC;! and Nitrogen. 
the reaction are a l so  Shawn. 

The proposed mechanisms occurring during 
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a t  the surface of t h e  sphere. The in te r face  reactions shown i n  Fig. 5 

occur a t  two-phase interfaces ,  while the diffusion mechanisms involve 

the t ransport  of carbon and nitrogen i n  the system. The i n t e r f a c i a l  

mechanisms a r e  proposed t o  be ' the following:* 

A. N2 t o  nitrogen i n  t h e  outer layer  of f r e e  carbon (nitrogencarbon 1. 

a t  the  in te r face  between U( C,N) B. Nitrogen carbon to rN3U(C,N)  

and the  outer layer  of f r e e  carbon. 

a t  a l l  interfaces  between f r e e  C. Nitrogen carbon to rN3U(C,N)  

carbon and both U( C,N) and UC2. 

D. [ C l  t o  C ( f r e e )  a t  a l l  interfaces  between f r e e  carbon and both 

U(C,N)  and UC2.  

react ing with UC2 t o  form U(C,N)  and [ C ]  a t  t h e  E *  [ N1 U( C, N )  

in terface between U(C,N) and UC2. 

The diffusion mechanisms a r e  postulated t o  be these: 

F. [ C ]  d i f fusing from the  in te r face  between UC2 and U(C,N)  through 

t h e  U(C,N)  or  UC2 t o  adjacent f r e e  carbon s i tes .  

diffusing from t h e  sphere surface through t h e  U(C,N)  
G *  r N I U (  C,N) 

t o  the in te r face  between UC2 and U(C,N)  . 
diffusing t o  t h e  in te r face  between UC2 and U(C,N) H- [N]LJ(C,N) 

from adjacent interfaces  of f r e e  carbon and U( C,N) . 
I. Nitrogen diffusing through t h e  t h i n  outer layer  of f r e e  carbon. 

Mechanisms C and H a r e  ra ther  unique i n  t h a t  one of them may be r a t e  

control l ing i f ,  and only i f ,  the  f r e e  carbon served as an interconnected 

path f o r  N2 t o  d i f fuse  from the  surface t o  the in t e r io r  of the  sphere. 

The k ine t ic  models used f o r  t he  analysis of the r e su l t s  fo r  con- 

version versus time permitted t h e  elimination of many of these possible 

Brackets indicate  a species i n  so l id  solut ion.  * 



mechanisms as t h e  ones control l ing the  conversion process. Plots  of t h e  

functions of Eqs. (l), ( 2 ) ,  and (3) a r e  shown i n  Fig. 6, which indicates  

t h a t  t he  mechanism controll ing the  react ion occurs a t  t he  in te r face  

between U(C,N) and UC2. 

region. It was concluded tha t  mechanism F, t he  diffusion of [C] from 

the  in te r face  between UC2 and U(C,N) t o  t h e  f r e e  carbon s i t e s  c loses t  

t o  t h e  UCz-U(C,N) interface,  was control l ing during t h e  conversion of 

UC2 ( r e f .  7). For the  spheres shown i n  Fig. 3, these s i t e s  a re  a t  or 

near the  interface.  For spheres lacking t h e  in t e rna l  s i t e s ,  such as 

shown i n  Fig. 4 ,  t h e  nearest  f r e e  carbon s i t e  i s  the surface of t h e  

sphere. 

Only mechanisms E, F, and H can occur i n  t h i s  

The uniform in t e rna l  d i s t r ibu t ion  of f r e e  carbon i n  t h e  microsphere 

therefore  affected the  reaction r a t e .  This d i s t r ibu t ion  maintains an 

approximately constant carbon-to- carbon separation during t h e  e n t i r e  

conversion process. This permits an approximately constant f l u x  of car- 

bon via Fick's f i r s t  l a w .  The flux, i n  cubic centimeters of carbon per  

square centimeter of interface between U(C,N) and UC2 per  uni t  of time, 

limits the  r a t e  of conversion of UC2 t o  the region near t he  in te r face  

of UC2 and U(C,N). The reaction would, therefore,  follow Eq. ( 2 )  even 

though the  diffusion of carbon was controll ing the  react ion.  The act iva-  

t i o n  energy f o r  t h e  diffusion of carbon was obtained f o r  t h i s  system 

from the  Arrhenius r e l a t ion  and t h e  least-square slope, kI, of p lo t s  

such as t h a t  shown i n  Fig. 6. The slopes a t  1500, 1600, and 1700°C and 

a N2 pressure of 380 torr were f i t t e d  t o  t h e  Arrhenius equation t o  give 

k = 95.6 eq[-78,000/RT] cm/s . ( 4 )  I 
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Fig. 6. The Time-Dependent Plots  of the Functions i n  Eqs .  (l), (2 ) ,  
and (3) for t h e  Reaction a t  1700°C of Nitrogen a t  380 Torr with UC2 
Containing Free Carbon (Run A-5164-54). 

Carbon i s  consequently involved i n  two important e f f ec t s  on the  

react ion of UC2 and N 2 .  

t i o n  by t h e  diffusion of carbon; t h e  second ef fec t  r e su l t s  from the  

number and d is t r ibu t ion  of s i t e s  avai lable  fo r  t h e  prec ip i ta t ion  of  

carbon. Increasing the  number of si tes was observed t o  r e s u l t  i n  an 

A s  has been shown, one i s  control  of t h e  reac- 

increase i n  the react ion r a t e .  

UC-N;! REACTION 

Several observations were made about t he  k ine t ics  of t h e  react ion 

between UC and nitrogen during a thermodynamic study of t he  UC-UN so l id  

solut ion from 1500 t o  1900°C (ref.  8 ) .  

exposed t o  a given pressure of nitrogen i n  a graphite furnace and then 

The -325 mesh, arc-melted UC was  
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analyzed by chemical and Debye-Schemer techniques. 

study a re  understood more readi ly  by reference t o  t h e  U-C-N quasi- 

equilibrium diagram of Fig. 7. 

f o r  i t s  formation are unfavorable i n  these experimental s i tua t ions .  ) 

The r e s u l t s  of t h i s  

(U2C3 i s  not shown because the  k ine t ics  

ORNL-DWG 67-4169 

C 

U N 

Fig. 7. The U-C-N Quasi-Equilibrium Diagram a t  1700°C and a Pressure 
of 0.5 a t m .  
f i c u l t  i n  t he  present experiments. 

U2C3 i s  not shown because i t s  formation is k ine t i ca l ly  dif-  

The react ion proceeded i n  at least three  stages. In  the  first.  and 

most rapid stage, t he  UC reacted t o  form the  high-carbon U(C,N) solut ion 

t h a t  i s  i n  equilibrium with UC2. 

was  formed from UC reacted with t h e  adjacent UC t o  form UC2, as shown i n  

Fig. 8, but formed l i t t l e  or no f r e e  carbon. 

after t h e  UC had reacted t o  form t h e  U(C,N) and UC2. 

reacted with nitrogen t o  form addi t ional  high-carbon U(C,N) and free 

The carbon re jec ted  when t h e  U(C,N) 

The second s tage began 

The UC2 then 



Fig. 8 .  The Microstructure Observed During the F i r s t  Stage of t h e  
Reaction of UC and Nitrogen. 
phase layer  i s  a UCz-U(C,N) mixture, and the  inner phase i s  e s sen t i a l ly  UC. 
Etchant: 1:1:1 solut ion of water, ace t ic ,  and n i t r i c  acids .  200X. 

The outer phase is  U(C,N), t h e  i r r egu la r  

carbon. 

converted. 

and slowly formed t h e  nitrogen-rich U(C,N) composition i n  equilibrium 

with carbon and nitrogen. 

t h e  d i f fus ion  of the  nonmetal atoms, fo r  the x-ray r e su l t s ,  which are 

representative of t h e  surface of the  material, always indicated more 

combined nitrogen i n  the U(C,N) than d id  t h e  r e s u l t s  of chemical analysis .  

The th i rd  s tage of t h e  reaction began a f t e r  t h e  UC2 had been 

The U(C,N) reacted w i t h  nitrogen t o  r e j e c t  more fkee carbon 

This t h i r d  s tage appeared t o  be controlled by 

These re su l t s  seem t o  f i t  the  pa t te rn  established i n  the  previous 

experiments. 

p rec ip i ta t ion  of f r e e  carbon. 

t i o n  of t h e  UC2 i n  t h e  first stage of t he  react ion.  

of t he  react ion i s  a l s o  revealing. 

Again, a primary fac tor  i n  the  react ion appears t o  be the  

It i s  considerably slower than t h e  forma- 

The stepwise nature 

It i s  apparent t h a t  t h e  usual prac t ice  
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of writ ing a chemical equation f o r  t h e  overa l l  reaction, 

UC + x/2 N2 -+ U(C1,,Nx) + xC, reveals l i t t l e  about t he  way the react ion 

ac tua l ly  takes place o r  about the  intermediate phases that  may form. 

ACTIVE CARBON 

Another in te res t ing  phenomenon i s  the  form of t h e  f r e e  carbon t h a t  

prec ip i ta tes  i n  some of these reactions between t h e  carbide and nitrogen. 

The carbon can appear i n  a form t h a t  i s  chemically more ac t ive  than 

graphite.  Whether it does or not depends on t h e  reactants  and t h e  

react ion conditions. Active carbon has been observed i n  both t h e  U-C-N 

and V-C-N systems. 

The existence of ac t ive  carbon was postulated f r o m t h e  r e su l t s  of a 

The s t a r t i n g  thermodynamic study of two reactions i n  the U-C-N system.’ 

materials i n  t h e  f i rs t  react ion were UC and N2.  These reacted t o  

produce the U(C,N) s o l i d  solut ion and f r e e  carbon. 

involved UN and graphi te  and produced U(C,N)  and N 2 .  

performed under iden t i ca l  conditions of temperature and nitrogen pressure 

and, therefore,  would be expected t o  give the sane thermodynamic informa- 

t i o n  a t  equilibrium. 

The second reaction 

The reactions were 

The results of t h e  two reactions were not always ident ical ,  however. 

The data f o r  t he  equilibrium react ion 

0 

2 9 8 ’  
where were used t o  evaluate t h e  function J 

4 
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This function* i s  p lo t ted  i n  Fig. 9 versus the  mole f rac t ion  of UN. 
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-46.6 I 1 1 1 
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N/N+C 

Fig. 9;. The Quantity J:98 [Eq. (6)] as a Function of t h e  Ratio of 
of N:(C+N) fo r  t h e  Specified Reactions i n  the  U-C-N System. 

The r e su l t s  a t  1700, 1800, and 1900°C f o r  t h e  reactions UC plus N2 

and UN plus graphi te  a l l  give s t a t i s t i c a l l y  t h e  same re su l t s  f o r  t he  

equilibrium reaction. However, a deviation was observed a t  1500°C. 

If t h e  UC-UN s o l i d  solut ion were ideal and i f  the  a c t i v i t y  of car- * 
0 bon were unity, t he  quantity J298 would be iden t i ca l  t o  the  heat of 

reaction, 

means of comparing r e su l t s  a t  d i f fe ren t  temperatures s ince RTany a t  a 

pa r t i cu la r  composition w i l l  change slowly with temperature and w i l l  not 

fo r  Reaction ( 5 ) .  Such a quantity serves as a useful  0 

change a t  a l l  for an idea l  or regular solution. 
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While t h e  reaction of UN and graphite gives t h e  same re su l t s  as those 

a t  higher temperatures, t he  r e su l t s  f o r  UC and N2 give a s t a t i s t i c a l l y  

s ign i f icant ,  lower value. A t  15OO0C, t h e  carbon produced from t h e  reac- 

t i o n  of UC and N2 appears t o  be i n  a state t h a t  i s  more ac t ive  than 

graphite.  

ence of about 500 c a l  i n  J298. 

enthalpy of t he  react ion of graphi te  t o  form ac t ive  carbon. 

This more ac t ive  form of carbon causes the  observed d i f f e r -  

0 This difference i s  approximately t h e  

The evidence f o r  ac t ive  carbon has been substantiated by s tudies  of 

vanadium carboni t r ide solutions.  lo The reactions studied here were the  

same as i n  t h e  U-C-N system, except t h a t  vanadium was subst i tuted f o r  

uranium. The reactions were carr ied out simultaneously i n  a twin,  

crucible  made from graphite.  The pr inc ipa l  ana ly t i ca l  r e s u l t  obtained 

was t h e  l a t t i c e  parameter of the  carbonitride so l id  solution, as shown 

i n  Fig. 10. Note t h a t  if t h e  carbon that prec ip i ta tes  from the  react ion 

of VC and N2 i s  more ac t ive  than graphite, then thermodynamic considera- 

t ions  pred ic t  t h a t  t h e  carbonitride produced w i l l ’  be r icher  i n  carbon 

than t h e  carbonitride from t h e  react ion of VN and graphi te .  

shows t h a t  t h e  reaction of VC plus N2 always resul ted i n  a l a t t i c e  

parameter f o r  t he  carbonitride higher than t h a t  of t h e  react ion of VN 

plus graphite.  The observed difference i n  t h e  l a t t i c e  parameter was 

experimentally shown not t o  r e s u l t  from er rors  i n  determinations of t he  

l a t t i c e  parameter, t h e  k ine t ics  of t h e  addi t ion or removal of carbon or 

nitrogen, differences i n  impurity levels ,  or temperature gradients across 

t h e  twin crucible.  

i s  i n  a more ac t ive  state than graphite.  

Figure 10 

The conclusion i s  t h a t  t he  prec ip i ta ted  f r e e  carbon 
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Fig. l.0. The Lat t ice  Parameter of.V(C,N) Obtained by Reacting 
Either VN and Graphite or VC and Nitrogen a t  the  Indicated Temperatures 
and Pressures. 

These observations a r e  supported by other experiments. Lewis, 

Frisch, and Margravell observed a difference of 220 cal/mol i n  t h e  com- 

bustion of pyrolyt ic  carbon annealed a t  2200 and 3600°C. Browning and 

Emmett12 made equilibrium measurements i n  the  system carbon-methane- 

hydrogen and found tha t  carbon obtained from the  decomposition of Fe3C 

had a f r e e  energy about 300 cal/mol higher than t h a t  of graphite.  

The e f fec t  of act 'ive carbon could be important i n  other systems. 

In  t h e  study of metal carbide vaporization reactions t h a t  produce f r e e  

carbon, t h e  enthalpy of formation calculated by assuming the  f r e e  carbon 

t o  be graphi te  may be as much as  0.5 kcal/mol of carbon too  negative 

unless t he  carbon could p rec ip i t a t e  on preexis t ing graphite pa r t i c l e s .  

I n  a per i tec to id  decomposition of so l ids  t h a t  gives f r e e  carbon as a 
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product, t h e  decomposition temperature would be lowered if ac t ive  carbon 

were precipi ta ted.  

CONCLUSIONS 

The r e s u l t s  of the  s tudies  reviewed i n  t h i s  paper permit t h e  fo l -  

lowing general  conclusions about spec i f ic  reactions i n  the  U-C-0-N 

system between 1400 and 2 0 0 0 ° C :  

1. The primary rate-control l ing mechanism i n  the  react ion of U 0 2  

with graphite,  UC with N2,  and UC2 with N2 was the  diffusion of a non- 

metal atom through one of t h e  uranium compounds i n  the  system. 

2 .  Carbon has a s igni f icant  r o l e  i n  these react ions.  The observed 

ef fec ts  are l i s t ed  below. 

(a )  Diffusion of carbon controls during the  conversion of UC2 by N2 

t o  U(C,N) .  

( b )  A n  i n i t i a l  d i s t r ibu t ion  of f r e e  carbon i n  the  UC2 increased t h e  

rate of t he  reaction of UC2 with N 2 .  

( c )  Carbon rejected i n  t h e  f i r s t  stage of the  react ion of UC and N2 

combines with unreacted UC t o  form UC2; f r e e  carbon appears 

only i n  t h e  later stages of t h i s  reaction. 

( d )  Below about 16OO0C,  the  f r e e  carbon produced by these reactions 

can be thermodynamically more ac t ive  than graphite.  

behavior was shown t o  a f f ec t  t h e  r e su l t s  of thermodynamic and 

l a t t i c e  parameter s tudies .  

This 

4- 

c 
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3. The physical configuration of the components i n  a system can 

have s igni f icant  e f f ec t s  on the  react ion r a t e .  The following ef fec ts  

were noted: 

(a )  I n  the  react ion of graphite w i t h  U02 spheres, t he  react ion r a t e  

was 2 t o  5 times f a s t e r  when the  U02 maintained contact w i t h  

t he  surface of t he  sphere. 

(b)  In the  react ion of UC2 w i t h  N2,  t he  i n i t i a l  d i s t r ibu t ion  of 

free carbon i n  the UC2 was observed t o  a f f ec t  t he  rate by as 

much as a fac tor  of 20. 

The reaction t o  the f i n a l  equilibrium product may occur i n  4. 

several  stages, as was  observed i n  the  react ion of UC with N 2 .  In  t h i s  

reaction, these stages involved the  appearance and subsequent reaction 

of intermediate phases or compositions. 
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