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ABSTRACT

The TSF-SNAP reactor is being used at ORNL as a realistic
source for investigations of the light-weight shields required
for space power systems. As part of this program, experimental
and analytical determinations have been made of the energy and
angular distribution of neutrons leaving an area roughly equal
to 10% of the reactor lower surface. The agreement between exper-
iment and Monte Carlo calculations was found to be quite good when
the reactor was described in sufficient detall in the calculations.
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The TSF-SNAP reactor installed at the Tower Shielding Facility (TSF)
at ORNL is to be uséd as a realistic source for experimental investigations
of the light-welght shields reguired for space power systems. As one
of the initial steps in the program using this reactor, experimental
and analytical determinations have been made of the neutron radiation
leaving the lower surface of the reactor. These determinations were
made in some detall, obtaining the energy and angular distribution of

neutrons leaving an area roughly equal to 10% of the reactor lower surface.
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The reactor is a modified SNAP-2 reactor designed by Atomics
International, Inc. It is fueled with fully enriched 23°U mixed with
ZzrH moderator, reflected with Be, and cooled with WeK. Thirty-seven®
fuel-moderator elements, each 1-1/b-in.-diam. by 12-1/4~in.-long, are
densely packed in a hexagonal arfay within a 9-in.~diam by 16-in.-long
pressure vessel. The beryllium neutron reflector surrounding the core
vegsel .contains the four control drums. The relative power distribution3
was determined by séanning individual fuel elements for fission product
gammas , and the absolute fission rate was determined from uranium-foil
activation.

Figure 1 shows the reactor in the experimental configuration, along
with thé detector collimator, but without the eylindrical stainless

steel heat-and-weather shield which normally surrounds the sides and

*The actual final loading uses 36 SNAPTRAN-V elements and one stainless
steel rod with a small quantity of boron carbide in the center position.
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Fig. 1. TSF-SNAP Reactor with NE-213 Detector Collimator.



top of the reactor. The reactor was suspended vertically from a boom
so that it could be rotated about its own axis and be lowered or raised
through a distance of 36 in.

The detector collimator was a lead-water shield 48 in. in diameter
and 59 in. long containing a 2- by 2-in. NE-213 organic scintillator.
The collimator was mounted on a support mechanism that permitted the
shield to be rotated in a vertical plane about the horizontal axis of
the detector and move in a line passing through and perpendicular to
the vertical axis of the reactor. The collimator in the shield was
designed using Monte Carlo calculationsh to limit the background contri-
bution (from scattered and transmitted neutrons) to less than 5% of the
foreground contribution. The opening of the collimator was square in
cross section and of the shape and size shown in Fig. 2. (The NE-213
detector was cylindrical but was used with the beam incident on its
curved surface; therefore, the detector exhibits a square profile.)

Neutron spectra were obtained with the axis of the detector colli-
mator making angles of 0°, 18° 12', 25° 50', and 36° 52' (cosines of
1, .95, .9, and .8) with respect to the vertical axis of the reactor,
with the axis of the collimator looking at the center of the bottom of
the pressure vessel. The detector collimator was also moved horizontally
so that the axis of the collimator looked at points 7 and 1Lk em along
the radius of the reactor, and measurements were repeated for three of
the above angles. For all the measurements the detector, looking along
the axis of the collimator, was 56 in. from a horizontal plane passing

through the bottom of the reactor pressure vessel.
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A previous report5 described the basic calculational techniques
being used and some preliminary results which were obtained assuming
that the reactor control drums were fully inserted, that the fuel region
of the core was homogenous, and that perfect detector collimation was
used. The data reported here were obtained with the above assumptions
modified and include absolute comparisons with experimental data.

At the time these calculations were started, the best available
guess as to the actual final reactor configuration was that the central
fuel element would be replaced with a solid Be cylinder and that this
configuration would be critical with two control drums fully inserted
and two control drums withdrawn 30°. Accordingly, these assumptions
were made for the calculations. The axial geometry of the calculational
model is shown in Fig. 3, and an x-y cross section is shown in Fig. k.
Also, collimator response functions which were obtained by independent
calculationsu were 1included in these calculations. Details of the above
modifications, including listings of the computer codes and inputs, are
given in a separate report. In addition, it was found that some detftectors
were being perturbed by a vessel support ring which was not included
originally. This ring was added,Y mocked up as shown in Fig. 5, using
the same material as the reactor vessel.

Ten different detector configurations were selected to provide
the basic data for comparisons of experiment and calculation. These
positions are described in Table I and shown in Fig. 6.

The x, y, and z coordinates give the spatial location (in em.) of
the detector with respect to a coordinate system with origin on the

centerline of the lower reactor face. The u, v, and w coordinates give
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TABLE I. COLLIMATED DETECTOR POSITIONS AND DIRECTIONS
Detector
No. b'd Yy Z v w
1 0 0 k2.2 0 ~1.0
2 0 Lk ko2 135.09 ~.31225 ~0.95
3 0 61.983 127.98 -.43589 -0.9
n 0 7.0 1k2.2 0 -1.0
5 0 1k.0 k2.2 0 -1.0
6 0 85.32 113.76 ~.6 -0.8
T 0 68.983 127.98 -.43589 -0.9
8 0 92.32 113.76 -.6 -0.8
9 0 75.983 127.98 ~.43589 ~0.9
10 0 99.32 113.76 -.6 -0.8
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Fig. 6. Detector Positions - TSF-SNAP Experiments.
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the x, y, and z direction cosines, respectively, of the direction the
collimator was pointing.

The Monte Carlo estimation was actually done by forcing the
neutron's last flight to pass through a virtual point on the colli-
mator centerline 51.1 cm. closer to the reactor. The solid angle
calculation used the distance to the detector given in the table and
the relative response of the collimator was given as a function of
the angle between the neutron flight and the collimator axis.

Figures T through 16 show neutron energy spectra at detector
positions 1 through 10, respectively, as measured experimentally and
as calculated. The calculations for detectors 8, 9, and 10 included
the support ring as shown in Fig. 5; all other calculations were done
without this ring. As can be seen, the absolute agreement is quite
good, the total areas under the calculated and experimental spectra

differing by less than 10% for all ten cases.
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