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ABSTRACT

Non-linear phenomena in a classical plasma are treated in this paper.
The plasma is regarded as a collection of particles (electrons and ions)
and quasi-particles (plasmons, phonons, photons, etc.). The interaction
between particles and quasi-particles is described by an interaction
Hamiltonian which is written in terms of creation and annihilation opera-
tors. The transition probability for any process may be calculated from
the usual formulas of guantum mechanical perturbation theory. These
quantum mechanical methods provide a straightforward method for deriving
quasi~linear equations and the corrections to them due to wave-wave inter-
actions and wave-particle scattering. The derivation of conservation
laws and H-theorems is particularly simple.

Kinetic eguations for a plasma are derived which in various limits
reduce to the Wyld-Pines, Balescu~Lenard, Boltzmann and quasi-linear
equations.

A variety of non-linear interactions of plasma waves i1s discussed.
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CHAPTER 1. INTRODUCTION

It is natural and sometimes necessary to use quantum mechanics to
discuss the phenomena of solid state plasma physics. Howevgr, the sub-
Jject matter of this work is that of gaseous plasmas where gquantum
effects are negligible and classical physics is quite adequate.

In such circumstances it may seem eccentric to employ quantum
mechanics and then to discard the quantum corrections by taking the
clasgsical limit. Indeed, this is the more difficult approach to the
simple problems of plasma physics, but when the more difficult
problems involving non-linear interactions are considered a guantum
mechanical viewpoint has certain advantages. It i1g useful to view

the waves in a plasma as being composed of quasi-particles, the quanta
of the waves. These guasi-particles interact with the particleg of
the plasma and with each other. These interactions are described in
terms of an "interaction Hamiltonian," a "vertex function" or a "matrix
element” for the interaction. This language i1s useful even when all
calculations are made classically. In some cases the quantum mechan-
ical calculations are more straightforward and less difficult than the
corresponding classical calculations.

The subject matter of this work has been discussed from a clas-
slcal viewpoint in the reviews of Kadonmsev,l Vedenov2 and Tsytovich.3
That is, we shall be concerned with non-linear effects in a plasma.

We shall suppose that the non-linear effects are small, so that the
linear theory is a good first approximation. We shall not discuss
strong turbulence although progress has recently been made in this

4
fileld.



There is a large body of literature in which Green's function techniques
of gquantum statistical mechanics are applied to plasma physics.5’6’7’8
These technigues seem to be applicable only to plasmas in thermal
equilibrium. For that reason they are not very useful in the study
of gaseous plasmas where the plasmas of most interest depart appreci-
ably from thermal equilibrium.

The work in this paper is more closely related to that of Pines
and Schrieffer9 who gave a gquantum mechanical derivation of the quasi-
linear equations which were originally derived classically by Drummond
and Pineslo and by Vedenov, Velikhov and Sagdeev.ll Pines and
Schrieffer found interaction Hamiltonians for particles and plasmons
(the quanta of plasma oscillations) and particles and phonons (the
gquanta of ion sound waves). They used these together with the Fermi
Golden Rule to write equations for the rate of change of the particle
and quasi-particle distribution functions. In the classical 1imit
these equations reduced to the classical quasi-linear equations. It
is clear from the derivation of these equations that Landau damping or
growth can be described as the competition between absorption and
stimulated emission of quasi-particles by particles. Another useful
feature of this derivation is that terms due to spontaneous emission,
which are often overlooked in classical derivations, appear quite
naturally.

Wyld and Pinesl2 used the Fermi Golden Rule to write eguations
Tor the rate of change of the particle distribution functions due to
collisions. They assumed that the matrix element for a coulomb colli-
sion, 4ﬂe2/a?, must be modified by the factor eml(Ein where ¢ is the

dielectric function of the plasma,‘ﬁg is the momentum transfer and hw



is the energy transfer in the collision. When the classicai limit is
taken, the equation of Wyld and Pines reduces to the BalesculS—Lenardl4
eguation or the Boltzmann eguation depending on just how the limiting
process was carried out. The Balescu-Lenard equation had previously
been derived by more tedious arguments than the one just described.

These papers by Pines and Schrieffer and by Wyld and Pines were
important because they showed the ease with which equations describing
classical plasmas could be derived by the perturbation theory formulas
of quantum mechanics. Also, they gave insight into the physics behind
the equations.

A quantum mechanical theory of non-linear phenomena in a very
strong magnetic field was given by Walters and Harris.15’16 The field
was assumed to be so strong that the electron motion was essentially
one-dimensional. The electrons were described by the fluid equations
for a cold plasma. A Hamiltonian was found which gave the fluid equa.~
tions as the Hamiltonian eguations of motion. The Hamiltonian was
written in terms of creation and annihilation operators for plasmons.
The non-linear terms in the fluilid eguations gave rise to tefms in the
Hamilteonian describing three plasmon interactions; that 1s terms con-
taining products of three creation or annihilation operatoré. An ion-
plasmon interaction Hamiltonian was also derived. Using the Fermi
Golden Rule, equations were derived for the rate of change of the ion
and plasmon distribution functions. The threeQPlasmon interaction of
Walters and Harris had previously been derived classically by Aamodl
and Drummond.17

Quartum mechanical calculations of the interaction of three

guasi-particles have been made for the case of a plasma with no magnetic



field by Krishanl8 and by Krishan and Selim.l9 Calculations of three
and four plasmon interactions in an unmagnetized plasma have been made
by Zakharov.z

In a recent paper Ross2l has considered wave-particle and wave-
wave interactions from a quantum mechanical viewpoint. His starting
point is the shielded coulomb matrix element discussed above. By
examination of this in the neighborhood of frequencies which satisfy
c(q,») = 0 ne is able to interpret the matrix element in terms of a
quasi-particle propagator and a particle-quasi-particle vertex. Having
obtained the particle-quasi-particle vertex, he adopted the point of
view that the interaction of plasma waves is mediated by the particles
and calculated the matrix elements for three wave interactions and
wave-particle scattering. He limited the calculations to the quasi-
one dimensional problem of a plasma in a very strong magnetic field.

He also used the formalism of temperature dependent Green's functions
which seem to be applicable to plasmas in thermal equilibrium only.
However, when he reached the point in the calculations at which results
were expressed in terms of particle distribution functions, these dis-
tribution functions were allowed to be arbitrary and the equatlons

were assumed to be still valid. The point of view of Ross is very
close to that of the writer and our results are in agreement.

Attention should alsoc be directed to the paper of Gailitis et al.22
Although the calculations are classical, the language is guantum mechan-
ical. The paper deals with the interaction of plasmons, phonons and
photons in an isotropic plasma.

The plan of this work is the following: In the second chapter

we introduce the dielectric tensor of the plasma. The dielectric



tensor, which is familiar to classical plasma physicists, is derived
guantum mechanically in such a way as to emphasize the similarity in
the classical and quantum mechanical derivations. The second quantiza-
tion formalism is introduced in this chapter. A knowledge of the
second gquantization formalism which is sufficient for understanding
this work may be obtained from Davidov.23 We also discuss the linear
theory of propagation of waves in a plasma, the damping and growth
of these waves and the concepts of positive and negative wave energies.
In Chapter 3 we guantize the electromagnetic field in the plasma
28 has previously been done by Alekseev and Nikitin24 and by Kihara,
Aono and.Dodo.z— Our formulation is somewhat better suited to the
purposes of this work. We slso derive the particle-quasi-particle
interaction Hamiltonian. The picture of the plasma which we have at
the end of this chapter is that the plasma consists of a collection of
particles and quasi~particles which interact only weakly. This is the
picture developed in the early papers of Bohm and Pines.6 We should
point out that the picture is not completely consistent since motion
of the particles is involved in the quasi-particle excitations as well.
This lack of consistency is not likely to cause problems in' the weakly
non-linear systems considered here. The particles can te divided into
the twd classes!l The '"resonant particles” and the "non-resonant parti-
cles.” The resonant particles are those which can emit and absorb
quasi-particles and are a small minority in a weakly turbulent plasma.
The non-resonant particles oscillate under the influence of' the fields
of the wave. They contribute to the energy and momentum of the wave,

but after the wave has passed they return fto their original state.
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These results are used in Chapter 4 to derive the guasi-linear
equations. This derivation is essentially the same as that of Pines
and Schrieffer.9 We discuss the conservation theorems and the H-
theorem for these equations. The one-dimensional guasi-linear equations
are sufficiently simple that their consequences can be examined in
some detalil and we do this, generally following Drummond and Pinele
and Vedenov, Velikhov and Sagdeev.ll The quasi-linear equations are
not adequate to explain the phenomenon of oscillatory damping observed
by Malmberg and Wharton.26 We give a qualitative explanation of this
phenomenon. Quantitative theories have been published by O'NeilZ? and
by Al'T'shul' and Karpman.28

In Chapter 5 we look more critiecally at the interaction of a
particle with a plasma. The particle, of course, ianteracts with the
fluctuating fields. These may be calculated by the dressed test
particle method of Rostoker29 and Ichamaru.so The relation between
the scattering by fluctuating fields, the two-particle scattering via
a screened coulomb potential and the emission and absorption of quasi-
particles is clarified. The scattering of photons by a plasma is quite
similar to the scattering of particles, so it is convenient to consider
the two processes together. The enhanced scatiering of electromagnetic
waves by a plasma as the plasma approaches a state of instabilitysl is
explained in terms of stimulated emission of plasmons.

In Chapter 6 we review the previously mentioned Wyld-Pines equa-
tion.12 Building upon the insight gained in Chapters 4 and 5 we see
wnat must be done to this equation to make it applicable to weakly
unstable plasmas. This leads us to what we believe are equations

which preserve the essential features of the Wyld-Pines equation and



the quasi-linear equations. The derivation is-'in the same spirit as
the derivation of the Wyld-Pines equation and elementary derivatlons
of the Boltzmann equation. Kinetic theory being the slippery subject
that 1t 1s, we would not be so presumptuous as to claim that our equa-
tions are logically unassailable. They do seem to be as plausible and
probably more transparent than other eguations which have been pro-
posed. Only the first order interaction vetween particles and fluctu-
ating fields is included in the equations discussed in this chapter.
Higher order interactions are discussed in the next chapter.

In Chapter 7 we return to the point of view that the fundamental
interactions are the particle-quasi-particle interactions and proceed
to build from these the three-wave and wave-particle scattering inter-
actions by the formulas of second and third order perturbation theory.
We feel that in this chapter the advantages of the quantum mechanical
approach are most apparent.

In Chapter 8 we return to classical physics and consider the
interaction of a few monochromatic waves. The Hamiltonian formulation
derived in previous chapters is of considerable utility here. What had
appeared in previous chapters as problems in guantum mechanical per-
turbation theory now appears as the problem of non-linearly coupled
clagsical oscillators. This aspect of non-linear plasma theory is

. 32
closely related to the problems of non-linear optics.



CHAPTER 2. THE DIELECTRIC TENSOR AND WAVE PROPAGATION
For many purposes in plasma physics it is convenient and suffi-
ciently accurate to consider the plasma as a dispersive medium charac-
terized by a dielectric tensor Z?aiw). In this chapter we shall give
a quantum mechanical derivation of the dielectric tensor and discuss
its use in the study of wave propagation.

2.1 Conductivity and Dielectric Tensors

Our starting point is the Hamiltonian for a particle of species

s in an electromagnetic field.

)(i's:“é%: o . s A’(;&’>|2+es¢(%’> (2.1)

c
where A and ¢ are the vector and scalar potentials of the field. We

write
A= K; + Kl (2.2)
$=0_ +0 (2.3)

—_
where AO and ¢O are the potentials for the zero order electric and
magnetic fields. We may also include in eS¢ any gravitational or fic-
titious fields which it is convenient to consider. The potentials K}
4

and ¢l are regarded as small perturbations. We shall divide )ﬁ”‘into
s

zero, first and second order parts.

s >(so+ )%sl * %sz | (2.4)
1 -

2
€g —
e - 2.6
)Zs 2m ¢ Al t ey ¢o (2.5)
€s -3 €g =L

)1;1 = - g (p - =% Ao) Ay + el ¢l (2.86)
Ho o 25

s, = Zmy © Al (2.7)

Since }{12 is guadratic in the small perturbation A

R 17 it will be neg-

lected in the following.



We shall usually work in the coulomb gauge, so

V-2 =0 (2.8)

>

We expand Kl(Qit) and B(X,t) in a Fourier series in a box of

volume V and assume the usual periodic boundary conditions. Thus

= > Il B la):}?

A (xt) =2 A(gt) e (2.9)
q

and

= - d_5 X -

E (1) = [ == 70" 8 (51) (2.10)

with similar equations for B(X,t) and ¢(a;t).
Now, let‘xsa(§3 be a solution of
— ﬂx, / :'\A\“ “
M ox () =5 (D7 (2.11)
The subscript a denotes the quantum numbers associated with the energy

elgenvalue Esa and eigenfunction'xsa. We now go over to the second

guantization formza.lism.25 Let
—> e
Ys(x,t) =3 csa(t) xsa(x) (2.12)
+

and interpret Csa and Csa as ammihilation and creation operators for
particles of species s in the state a. The Hamiltonian for particles

of species s is

_ 5 - o 1%
H, = /// d"x ¥+ ,}{S Yo=H o+ H,+H, (2.13)
where
-+
H =2 E ¢ ¢ (2.14)
S0 a sa sa sa
e .
N + s = ,\ —» 1g-X -
oy = L% g Csat Csa {- c Al<q’t) salfve ‘ &
o e e
* X
+ e, ¢l(q,t) < a') e’? I a2>} (2.15)

where ¥ = (; - aAO/c)/mS is the velocity operator. HsZ comes from
)féz and is neglected.

We assume that the operators CSa and CZa obey the Fermion commuta-

tion relations
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[Csa’ Cs'a[—_|+ - [C;a’ C;'a]+ =0 (2.18)
[Csa’ CZ'a].+ = dgst T anr (2.17)
where [A,§]+ = AB - BA. Of course, the ions may be Bosons rather than
Fermions. However, when we take the classical limit, as we always
will, it will notl make any difference, so for convenience we shall
always treat both electrons and ions as Fermions.

The change with time of any operator is given by the Heisenberg

equations of motion.

oPp
FE

- . . +
In particular let us consider the operator Csb' C

== [,7] = = (#p - Pn) (2.18)

b Using Egs.

(2.13), (2.14) and (2.15) for H and the commutation relations Egs.

(2.16) and (2.17) we find

2 + "t o+ i +
gt Csb' Csb T [Hso’ Csb' Csb] T3 [Hsl’ Csb' Csb]

i "
=5 (Bgpr - By Cgpr Cy
leg + [ 1 = - 121)3? ,
t LT {Csa Cop - o B(@t)<lave b'>
! >

+ 0 (g,t) <b leig.; la >} (2.19)

Now, we shall define

+

F (o',b,t) =5 B, < a|csb,

. 5 B, csb\ a > (2.20)

where Pa is the probability that the system is in the state |a >. .

Note that Fs(b',b,t) is both a quantum mechanical and an ensemble

+ :
average ol the operator Csb' Csb' As will be made clear later

Fs(b’,b,t) is closely related to the classical distribution function

ié(&izit). By averaging Eq. (2.19) we obtain the equation obeyed by
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rd B .
258 1 .
at (b',b,t) = 7 (E_Sb' - hsb) F (D';b)t)
ieg . i} 1 N . - 18? ,
4 %zé F_ (2,0,t) [“{;‘ A<alVe b >

|a >]} » (2.21)

This is the quantum mechanical analog of the Vlasov equation.

We now linearize Eq. (2.21) by writing

pnd y ] - ™ t
P (o,0',t) = Feog (b) Of'bb' +F (b'o,t) (2.22)
and treating F”l’ E; and ¢1 as small perturbations. Note that since

+ . . . . .
Csb CSb is the number operator for particles ofspecies s and state b,

Fso(b) can be interpreted as the ensemble average number of particles

of species s in state b. The linearized quantum Vlasov equation is

Al

(b7,0,t) = == (B, - E

1
sbr ~ Bop) Fog (07,D,%)

s . ,
+ Z, [Fso (b) - Fo (b )J
4 - -

ol
FL® @<l 707 o

1
-~ i%iQ ’
+ 8, (3t) <ble® \b'>] (2.23)
Next, we shall assume that the time dependence of Fsl’ Ez and ¢1
is given by
- -iwt + nt
Fo K, B Ve I (2.24)

where the positive infinitesimal 1 has been introduced to make the
perturbations vanish at t = - », As will be seen it leads to the
Landau prescription for avoiding singularities in integrals. ZEq.

(2.23) can now be solveu with the result
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so(b) ” Fso(b')

1 =z -
Faplo7,b,0) = s o - (Es

sl

b " Esb') + inh

1 -, - %
5 [— A (qu) < o] Vert¥|p >

_—%
! >
+ ¢1(a;w) <pletT* |ypr %] (2.25)

This will be used to calculate the current in the plasma. A

current density operator is defined by

. 1 >
TGt =g e vl (Gt 2 (V4 9) v, (%1)

~t * 1 e -
- % 55 2V “sb* Csv Xsb' 2 (v + VS *sb (2.26)

) & 4 > 5
whnere we have used v to denote a velocity operator which operates on

_) .
the function to its left. The Fourier transform of J(iit) is

3 s
a’x Agex -
ot = [ AT gy

. R IS T TR | 1R 7o > (2.27)
B Sk)'% 2V  “sb' “sb Ve +e v ’

and its average is

- = - >
€g

TS - o (1 | @ -igex ~igex =
<Hgt) >=nz, 2 = Fo,b,t) <v'l e e Vv >
(2.28)
where <. . . .> denotes the guantum mechanical and ensemble average of

Eq. (2.20). The part of <J> proportional to the perturbing fields will

be denoted by <53KE£ )>. It is obtained by replacing FS in Egqg. (1.28)

by F_, as given by Eq. (2.25). It is convenient to express Kz and ¢l
in terms of the electric field E& by using

- iw =

= -1 .29

£, (q,) - A - 1) (2.29)
from which

- iq-E-
p(dw) = "%'zl (2.30)
> - 99 -
A - — .43y .
A () = =— (T ) E) (2.31)
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We may now write

— S e = =
<y (q,0)>= £, o(q,q',w) B1(q*5w)

where
2 inl .
o —> D . E - _E
G(Q;q':w> = - é % %, +€s So(b) SO(b')‘
I s > o %ZV hi'_ (LSb ‘i?b_')) + inh
| Vet T X Ty >>{-§72~ <b|e+lq x lb'>

1 > iqlex T
+ = <bl v e d lb'> '[ﬁ?_ _E_%?_
q

W

(2.32)

(2.33)

This is quite general. We have made no assumptions about the homo-

geneity or isotropy of the plasma. All of the difficulties are con-

cealed in the matrix elements. We shall now make simplifying assump-

tions which permit us to reduce Bg. (2.33) to a more useful form.

First, we shall assume that K; and ¢o are zero. Then

1 2 o2t v 2
}{so st p T 2m
- -, el Bd 1 .12:‘)
X (%) =% 2 (%) = <X lk > - et X
sb sk ,Vﬁf‘
~ 1 > T o
S P
s ZE-
. ) hB k2
sk ZmS
~y >
D dgieX jeo, o
<X le |k' > 0/E1£3 e
w2 lq"X T s h ) '
<k‘ve 'k‘ *’ms (k+q)Cf}_€)E’t F‘-’l
-3 - la?‘y}*{) 1_%‘}‘{‘> > T
. - - > [+ . .
&k"Ve + e e ' ):m (KE)-—EDO/??'.*_
s -2

Using these results in Eq. (2.33) gives

‘>

F(GdL0 = o om F(dw)

where

(2.40)

(2.41)



1k

.2 . -
1e X - T
g (o) =-28 85 P - T (R - )
s¥ V z
o o DEKE L m | ¥ 3| + imn
T 2m ™ -9 il
S S
> - = =
n = 1 nk g (7 . DK g
Mg " 9 { Mg { g% “ “"ms) (2.42)

Now, we shall replace FSO(E3 by the corresponding velocity distribu-
tion fso(;3 where ¥ = hﬁyms. Also we shall let the volume of the

system become infinite and use

5 Vfdév (2.43)
—E) V - w

The conductivity tensor now takes the form

. 2 > - -
- o e 5 fso(;> - fso(v - ng/mg)
o (gw) = - x4 =0 a~v Y
W - q-v—l———g-——-wJ.- in
2m
o B S —
- -
(v--D) [V w-T- D) (2.44)
s q

The dielectric tensor is related to the conductivity tensor by

>, o 47d >

() =1 +—=— g (q,0) (2.45)
The dielectric constaat (or more properly, dielectric function)

is defined as

1 -~ -

e(quw) === T+ € (du) » (2.46)

Using Egs. (2.44) and (2.45) we obtain

o
£ () - f (v - B4
(@) o1 eg e (g, Jel Tl )
= g o a2
2mg
- - "hz
(q V- =) (2.47)
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which may also be put into the form

. 4nei 3 fso(;§ - fso(g?_ hﬁyms)
e(dyw) =1+ 5 —5— a“v : 5 (2.48)
ha ' W~ de VA ;%%- + i

The classical dielectric function is obtained by taking the h = 0
limit. It is

4ite =

po

(@) =1z —2 [ a%

- = .
mn.q W= qg- v+ iy

Q- 3 fso/g v

Do O

(2.49)

The matrix elements in Eq. (2.33) can also be evaluated for the
case of a plasma in a uniform magnetic field. We take the vector
potential to be

E =-¢e38 (2.50)
o Xy

This gives a uniform magnetic field in the z-direction. Then

e
1 = s 7|2 i
)120 - st P -3 AOI (2.581)
% =X kk:<>?]n,k,k>
sb SN x z Xy
(kX + k,z)

1
=TI Gn (v - yo) €

where L5 = V is the volume of the box in which the system is quantized.
Gn(y - yo) is a harmonic oscillator wave function with gquantwn number

n centered about
Tk
—
0 T (2.53)

where wcs = e B/msc is the cyclotron frequency. The components of

the velocity operator are



e
V¥ T m (px h _E”'Ao) B wcs(y-m yo) (2.54)
1
v - 2.55
y = P, (2.55)
1 .
Vo T m P, (2.56)

The energy eigenvalues are

hZKZZ
B = R LUCS (n + 1/2) + (2'57)

nkyk, st
The necessary matrix elements have been evaluated by Wa.lters.lb In
this paper we shall only need the matrix elements in the classical

limit (i.e. in the limit of large quantum numbers and f = 0. These

limiting forms are

o
<nk Lk | et ‘n', kT, kN> (2.58)
i(n-n')@ +iqy
= o J e a Yo
kx',kx)qx C{’kzv)KZ~ qz n-n'
et
<n, k, k Ielq VX‘ n', k', k">
Thw
- cs iq.
kax',kx - q, kaz',kz - | T W (2.59)

. i(r-nt' + 1) . '
[V n' Jo G ( + Pq +_V~;7~:—i— 3 e1(n-mn - 1) ¢€]

n-n' - 1
.= =
<n, k, k |e®* vt K, K>
&
e o B wag eiqy Vo
kx's ko- g, 9k, k, - g, 2l g (2.60)

- =
<n, k_, kZI et VZI n', k', k,'>
T ky 1{n-n' Foi Yy
Q.
= 1 ’J ' k J 1 4 Y °
ky's Ky = Qy k,', K, a, o n-n
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In the above equations Jn is the Bessel function of order n. Its
argument is qjy /wCS where the VJ‘iS related to the guantum number n by

1 2 ~
- m, v =hw n (2.62)
In the classical limit n and n' become infinite but thelr difference

n - n' remains finite. The angle ¢q is defined by
a + i a, = q.Lemq ; (2.83)
The matrix elements given here may be used in Eg. (2.33) to obtain the
conductivity tensor. We shall omit the rather tedious details. If

the plasma is uniform in space, then fso(n,kx,kz) must be independent

of k , and it may be shown that Eq. (2.41) holds. In the classical

limit the conductivity tensor is gilven by55

. 2 IS¢
§(d,w) = -2 s e v £ (2.84)
R § mw & W=k vV -nw _+ iy
$ e 7z es
where _
- nJd o
ooy . n ) 2
v, U {(~————— - iwv, U JJ v v, Wepe—J
L ( g ) 4 A, oo L7 A, n
A n e . S
?S~ iv, U ?‘SJJn vJ_U(Jn) Lo W g
] n 2 ,
R P -iv, UJJ ! v W
L 8 Z nn z n
- (2.65)
and
QJ'V
Ay =~ (2.68)
cs

is the argument of Jn,Jn‘ denotes the derivative of Jn with respect

to its argument and

a fSO a fSO

U= (w -9, VZ) "*5'\71‘*" + kZ V.L Mé—v—;'-*— (2.{)7)

nw v 9T g7 .

W = €s 2 20 4 (v - nw ) —E0 (2.68)
v ce

L VL 2,
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The dielectric function is given by

+ o= b _ 2 Zhe) e
(q,w) = 1 + 25 ﬁégéﬁi_ Zi; dsv fSO(Yl’VZ) fs.o(V fig 2z, vz)
R 5 2 : - qvVv + _H 2 :
hq” e Wl g LY, Zmg az + 11
2, arva
Y2 ( & g ) (2.69)

In the classical limit this becomes

st 57
c(Gw) =1+ 2 2T J (B,
m q OO

s W-d g -9, v, +1in

S
/ iy
[Z(Jcs AL qza so ] (2.70)
vy a2V 7Vz

2.2 The Relation Between the Quantum Mechanical Distribution Function

and the Density Matrix

Let us consider a plasma without zero order electric or magnetic
fields. Then the free particle eigenfunctions are given by Eq. (2.35).

The expansion Eq. (2.12) can be written as

%

ip-x
.,—3 e ~
(x,t) = % Cs’ff (t) —————— (2.71)

Vv

The expectation value of the number density of particles of species s

1]

can be written as

@ (K6)> = < ¥ G ¥, &) >

e
. L 2ot (t) ¢ = (1) > e ¥ (2.72)
T > Tsp spt+q v '
b aq
where <. . . .> denotes the quantum mechanieal and ensemble average

of Eq. (2.20). This suggests that we define a distribution function

by

e
igex

> = Z: + e
FS(X)p)t) = a} <CSID) (t) CSE’+'€ (t) > *""""V"—“"'

(2.73)

for then
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< (2,8)> = Z_} FS(E’,Et) (2.74)
P

Furthermore, the momentum distribution function is given by

— '3 - — +
<ns(p,t)> :/d‘)x Fs(x,p,t) = <Cs§ (t) cs; (£) > (2.75)

Egs. (1.74) and (1.75) are relations which any distribution function
is expected to satistfy.

Returning to Egq. (2.73), we write it as

i X
(P2 B D
ﬁs(x,p,t) = <ng = Léa-; - >
—3 -3 i( +q) X + ip-X
QD prase e Tipex >
= <C:p e »~>Z—_~> Cepig "LT-“_> 7 Csp © s(xt)
ptq
(2.76)
Now using
3 b +
o () = /_.ELL S P (x,t) (2.77)
sp v
We can write
3 1 '—9, >—>v ; ,
P (X,p,8) = [ LEL P (-3 <YILEL) WK > (2.78)
y i
The function
> ot > -
A xx,t) = < L/fs(x',t) ¥ (x,t) > (2.79)

is the density matrix. Our distribution function Fs(§:p,t) is a
Fourier transform of the density matrix. It has previously been used
34
by Von Roos.5 It is similar but not identical to the well known
distribution function of W:i_gner.‘55
. ~ R daerd . \
The Fourier transform of Fs(x,p,t) is found from Eg. (2.73) to be
- > 1 +

2 V) = e C > .
F(@B,1) = 5= < p (1) C o (1) (2.80)
We have previously defined

"l [ — + ~
bs(b ,b,t) = <Csb‘(t) csb(t)/ (2.81)

Ag the distribution function in quantum number space. It is a
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generalization of the better known distribution functions.

2.3 Wave Propagation

We shall now use the conductivity and dielectric tensors derived
in the last section to discuss wave propagation in plasmas. The

electric and magnetic fields are given in terms of the potentials by

- -

B, = V x Al (2.82)
-

= 1 2 A )

T 2t v ¢1 (2.83)

As before the subscript 1 denotes a first order perturbation. In the
usuval way it is found from Maxwell's equations that the potentials obey

the eguations

2 o

2 » - 1 d = 47 - 1 7

Via, -vI(V a) - — At ot 5T VA
c 2t
(2.84)
2 1 7 -
= - 477 . . .81

v ¢l g /l c 2t v A]_ (2.85)
Now we look for solutions in the form of a plane wave. Thus
- (g% -6t)
Kl B 5o, /’l ~ e (2.86)
and use the results of the last section to write
-3, > -y = =7
He,&) = o (q,&) * E (g, 6) (2.87)
Also, the equation of continuity
7 (4w - wAGe) =0 (2.88)

can be used to eliminate /°. When Eq. (2.45) is used it is found that

Egs. (2.84) and (2.85) can be written as

2

. 2 -

[ T+dqd+ 8 €@w)] - & -4 T@w) - 94 (289
C

q- (W) - dp =T (L) - K (2.90)

We shall find it convenient to work in the Coulomb gauge which we de-

fine by



21

3 - E(Ln) - A"l =0 (2.91)
(This is the gauge condition which replaces Eg. (2.8) in a dispersive
medium.) Then, Eq. (2.90) reduces to
7. T(q8) - dg =0 (2.92)

In general 1t is not possible to separate the waves in a plasma
into longitudinal and transverse waves; there is a coupling between
them. However, for any isotropic plasma this separation is possible,
for then the only vector available for the construction of the tensor

¢ (q,w) is q, hence ¢ must have the form

— - - —
C(Ew) = T-4F e, @)+ 2 (G0 (2.93)
4 q

where €, and €p are called the longitudinal and transverse dielectric
functions. Note that cp (4,42) is just the function defined in the
last section by Eq. (2.48) and called simply the dielectric functionm.

With this form for € Egs. (2.92), (2.89) and (2.91) become

2 —

ge (4, )P =0 (2.94)
ZY -y —> @2 & - \] —> o = .

& T+qq+ @) R LT @) e (2.95)

CZ 1 c L 1

q-E e (3,&) =0 (2.96)
1 L
Eq. (2.94) is satisfied by either ¢l =0or e =0. In either

case the right hand side of q. (2.95) vanishes, so the eguations for

and &, are uncoupled. The eguation
1 1 P
e (4, L) =0 (2.97)

. . . . s . . -
is the dispersion relation for longitudinal waves. FYor a given g

. . X . - .
it will have one or more solutions &J¢s~ . These are the frequencies
of longitudinal waves in the plasma. In general such frequencies are

indicating exponential damping or growth of the corresponding wave.
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If e_l;é 0 then ¢l = 0., Eq. (2.96) becomes

3 - E =0 (2.98)

indicating that these waves are transverse. Eq. (2.95) gives
2
-~ 2 N >
(- a4 + -;§"~ET (q,&))] A =0 (2.99)

The relation
2
2 @
- g+ =% ey (@) =0 (2.100)
C

is the dispersion relation for transverse waves. It has solutions
G)?za, . For a given'g there will be two independent polarization
directions (in the plane perpendicular to q), which have the same
frequency.

It is common practice in plasma physics To assume that an approxi-
mate decoupling of longitudinal and transverse waves can be made even
when the plasma is not isotropic. For longitudinal waves K1 is taken

to be zero and the dispersion relation is obtained from Eq. (2.92).

For transverse waves ¢l is taken to be zero and fz is taken to satisfy
o !
W _
[ &T+3T+ — QW) - E =0 (2.101)
R i

(If this equation is satisfied then so is Eq. (2.91)). The dispersion
relation for transverse waves 1s obtained from the condition that Eq.

(2.101) have a non-trivial solution; namely

2
2 A .
DET [- " T+ 4 q+ 5 ?f(cf,a)ﬂ =0 (2.102)
c
It may be shown that this approximate decoupling of longitudinal and

transverse waves 1s a good approximation when the plasma pressure is
much less than the magnetic field pressure. 1In what follows we shall

always assume that the separation into longitudinal and tranverse
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waves is possible, either because the plasma is isotropic or because
the approximste separation is a good one. In principle this assumption
can be avoided but at the cost of some additional mathematical com~
plexity.

Now, let us return to the dispersion relation for longitudinal

waves
e (Hw) =—3-d+ T(G0) « T=0 (2.103)
q

The way ¢ was defined in the last section it may be complex even when
.z and (& are real, so for real'z and &) we shall write

—> N —> . -y
GL (q_;(*/) = CLl (q;é“’\) + 1 €L2 (q;w) (2.104)
For complex (J €, (E;b)) is to be interpreted as the analytic
continuation of & (4,(>) from the real (' axis. Now, let us write

the solubion of Eg. (2.103) as
[L:'a)g/ - szfri’ + 17—(—197/ (2.105)

and assume that

)5 <«<|n ?f”’l (2.108)
and
ERC A | << ey, Y  zaon)

Expanding €,

= 0 in a Taylor series and neglecting products of small

terms gives

€

SR iyqa,(..a_g-)ﬂ_ i (@y,) =0 (2.108)

Equating separately the real and imaginary parts to zero gives

ey 3, ﬁ_q/f) -0 (2.109)
-

Joo = - ‘L2 (q’ﬂ—qf) (2.110)

* (QELZL)
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The real part of the frequency is determined from Eq. (2.109), and
then the imaginary part is given by Eq. (2.110).

The physical significance of Eq. (2.110) can be made clear by
noting that
T = o ol (2.111)
so
. 7 = y’LlE’“Z
and

AR O GLZI‘F?IZ (2.113)

where £q. (2.45) has been used. Eq. (2.110) can be written

) = - Re = - 7 e (2.114)
qo” _;W",fp 2 (We..) TT 2w '
45 36‘) L]. .
w-0.
q

The numerator P is just the energy dissipated by the electric field of

the wave in driving the current 7. Tn the dencminator

1 |2 2
W= 5= lﬁl (2—5@61\)_& (2.115)

qo

has the following interpretation. The energy in the electric field
is |?ﬂ2/8ﬂ. This must be modified by a factor which corrects for the
kinetic energy of the oscillating particles in order to get the total
energy of the wave. The correction factor may be shown to be the
second factor in Eg. (2.115). (Reference 33, Chapter 1.)

If the energy of the wave, W, is positive then a wave will be
damped 1f P is positive indicating that the energy of the wave is
dissipated in driving the current. On the other hand P may be

negative indicating a flow of energy from the plasma particles to
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the wave. In this case g positive energy wave will grow.

It is possible for €y to be such that the energy of the wave
is negative. If this is the case a wave will grow if P is positive,
for then the plasma particles absorb energy from the wave making W
even more negative and consequently increasing the amplitude of the
wave. If P is negative the wave is damped. Asg an example of a dis-

tribution function which leads to negative energy waves consider the

two-stream distribution function

£, () =nlo/(7) +n2(/('x?—7) (2.1186)
Using this Eg. (2.49) gives
2 2
&py & py
—
e (&) =1 - - . (2.117)
A (-3 7

‘ 2

(We have assumed a single species, integrated by parts and let &)Pl =
2 —

éﬂnle?/m and 6)?2 = 4m e /m.) 1In Fig. 2.1 we have sketched « (q,6)

as a function of &J.

—— - — o ——— o mar v weeer e b — — e e

P

!
!
I

[

I
|
t=
e V /ey

Fig. 2.1 Dielectric function for the two-stream distribution
function.
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The equation ¢ = O is a fourth degree equation for &J. Tt has
four roots. If ¢ is as drawn in Fig. 2.1 all four roots are real.
Three of the frequencies &) 1 &)2 and &)4 have éQCL)el/Caﬁj positive
and so correspond to positive energy waves. The other root &)5 corre~
sponds to a negative energy wave. All of these waves are stable and
undamped. If now q - V is decreased the two roots 6)2 and C;% will
approach each other, become equal and then move off into the complex
plane. Since all of the quantities in Eq. (2.117) are real, GJZ and
G)S are complex conjugates of each other. One of the roots corre~
sponds to an exponentially growing wave. This instability, called
the two-stream instability, may be thought of as due to the coupling
of a positive and a negative energy wave. If energy is transferred
from the negative energy wave to the positive energy wave then the
amplitude of both waves will grow.

It should be noted that Egs. (2.109) and (2.110) are not valid

for the two-stream instability. In this example ¢, was identically

2
zero, and complex rather than real solutions of Eq. (2.109) were
found.

The same sort of analysis that led to Egs. (2.109) and (2.110)

can be applied to the dispersion relation for transverse waves, Eq.

(2.100). The result is

e
N CER ¢ A I (2.118)
C

and

\ 2
7 o = - LD €mo (5:5))
: —2_w? o (30)

(2.119)

4 b= Jl'Q)GJ
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This can be written as

P @B T
Jor == T =
2 1 7 o =
q el el 92, & gy (6) | |
G“:’ﬂ'qf”
(2.120)

In this case the factor necessary to obtain the total energy from the

- 2
electric field energy is &) l<9CL7 eTl/laéj . It may be obtained

from35
oA kil
= , . -4 - 2.121
" 5 w0 Pen Ty ( )
when
N -
KxB=--&-¢.% (2.122)

is used.
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CHAPTER 3. QUANTIZATION OF THE ELECTROMAGNETIC ¥IELD
IN A DISPERSIVE MEDIUM

In this chapter we shall begin by considering the plasma as a
dispersive medium characterized by a dielectric tensor E?(Ei(ﬁ)
which is the real part of the dielectric tensor introduced in the
last chapter. Waves with real frequencies can propagate in this
medium. The electromagnetic field in the plasma will be expanded
in these waves, a Hamiltonian for the system will be found and the
system quantized by the usual prescription. This leads us to a de-
scription of plasma excitations in terms of quasi-particles (plasmons,
phonons, photons, etc.). This quantization of the field in a plasma
has been treated previously by Kihara, Aono and Dodo25 by Alekseev
and Nikitin24 and others (see Reference 24 for other references).

We then derive a particle-quasi-particle interaction Hamiltonian.
The interaction of quasi-particles with particles leads to a growth
or decay of the number of quasi-particles (or eqguivalently, the in-
tensities of the fields of the waves) which in more conventional
treatments is determined from the imaginary part of <.

3.1 Quantization of the Electromagnetic Field

We now expand the potentials @ (¥,t) and A (¥X,t) in Fourier series
in a large box of volume V. (These potentials are ¢l and Kl of the
last chapter but the subscript has been dropped.) The usual

periodic boundary conditions are assumed.
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g R0 = L [ il e HE
Y 2 2 .
Ko | vk [90/ AT P

R ) ci(BX L
{% ST - Npey) | g ~HEX - Ror) (3.1)
Ko K0
E (—}?, t) = z 4y ‘ﬁcz 1/2

P BN TS L
57 Vﬂﬁr['x rYS, ) “lTo’}ﬂ_’k{f

- P,
N i(i:-x) —./L k(/’t) N A+ e“l(k‘x -fl. k/JJt)
YKo AE)O’ © k

(3.2)
In the aboveﬁ%zo, andj&gaf are Pourier coefficients. The reason for
the factors in square brackets will be made clear presently. In
Eq. (3.1) the 1 —]Zg,,'s are the frequencies of longitudinal waves
found by solving Eq. (2.109). In Eq. (3.2) the _/Z.-EG/'S are the

frequencies of transverse waves found by solving Eq. (2.118). The

polarization vectors ﬁ%?gj are solutions of

2
P eRe as v @oan i) w. :
[—k T+%Xk+ __-ué.——-._el(k,a I{ag,) up =0 (3.3)
c
They are normalized to unity. We define
c i - = S = AN g :
€17 o (K, &) =up < (¥,2) W (3.4)

It is this transverse dielectric function which must be used in Eg.
(2.118) when solving for,ijz(x,
7
We now calculate the time averaged energy in the electromagnetic

field. TFor A = O there is no magnetic field and

1 3 2 1 3 2 .
Up =5 | @x<E > = 2 dx<i\7¢‘ > (3.5)

is the energy in the electric field of longitudinal waves. The
angular brackets indicate a time average over a period which is long

in comparison with the periods of oscillation. Using Eq. (3.1) in
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Eg. (3.5) and carrying out the integration and time averaging gives

hil >
_ E k,o” + .
Uy, = £ B2 o o (5.6)

-2
K, o’ l o e
4 Jq'k,a”

As was discussed in the last chapter, it is necessary to correct the
. . ) € pa e & "l é)
electric field energy of each of the waves by the factor &/ 2 .ElL/

p ) &) in order to get the total energy. Making this correction gives

| . » '
fr, = L 2o PR o ko (3.7)
=
2,

for the total energy in longitudinal waves. Here

S

9
57 W N
Yo = (ch eLl)‘n“kcf’ _ta (3.8)

2
‘ Py, Z‘JELJ.‘J?_RG/
is the sign of the correction factor. It is positive for positive

energy waves and negative for negative energy waves. Note that in

this development.Jq_E? is a positive frequency. The factor in the

G_J

square bracket in Eq. (3.1) was chosen so that H; would have the
simple form of Eq. (3.7).
Next, we calculate the energy in the transverse fields. Letting

¢ = 0, we write

U, = L % < 8% 4 B¢ >
T 8x
2 2
! 3 1 22\?\ . ‘ .
= = (dx< 5 P Y x A > (3.9)
o _
Substituting Eq. (3.2) into Eq. (3.9) gives
en
? ke’ + .,
= L O
Uy R Aﬂ%’ A?d” (5.10)

X

)

——
L ged lTO)l-kaf;“
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Applying the correction factor for transverse waves gives
. . "
Hp = ; So Bilp  Ap A __ (3.11)

for the total energy in transverse waves. Again S?gr’ is the sign

of the energy of the wave.

So far in the discussion of this chapter ngf and Agﬂyf have
been considered to be complex numbers and B%g, and A—a have been
& kKo

taken to be thelr complex conjugates. The transition from classical

to quantum mechanics is made by reinterpreting Bff/ and AE? as
"/ ./

destruction operators for longitudinal and transverse quasi-particles
of momentum h X, type 7 and energy S— 1/l g BY and AL
’ Ko ko’ kKoo ko

are the corresponding creation operators. These operators are

assumed to obey the commutation relations for Bosons

[k"” aj;] :Lk~" k', c"] (5.12)
o s 5, o] = e o (539
where [A,Q]w = AB - BA. The operators.Aﬁ and A%c" obey similar
relations. The operator E%i;, Iﬁgcy is the number operator for
longitudinal quasi-particles of momentum h ¥ and type o7 . It is a

.2 .
well known consequence 5 of the Boson commutation relations that its
eigenvalues are chr(Ej =0, 1,2,3, ... 00 . H andl,are the

o]
Hamiltonians for longitudinal and transverse quasi-particles. The

state of the system is specified when the number of guasi-particles

of each type is given. That is, the state vectors are of the form

...\]o“(fi))...No,,(fg')...> (3.14)

These are eigenvectors of HL and HT'
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We shall need to know the effect of operatoring on these state

. + . . o R -
vectors with Einf‘ and BEcr’ . Again, it follows from the commuta-

tion relations thatzu

B}—grl....NG,/(.@...>=\,NGJ(§_)) I C e e, N (B) -1, .

(3.15)
+ =,
Bzg,l .No,(f)...>:'VNO“«(R)+J.|...,NO,,(E))nLl,
... > (3.16)
The operators A— and Ai> have similar effects.

G- ka”

This completes the guantum mechanical theory of plasma guasi-
particles.

3.2 The Particle~Quasi-Particle Interaction

In Eq. (2.12) we expanded u/g (¥,t) in a set of eigenfunctions

destruction and creation operators for particles of species s in the

. (§3 and interpreted the expansion coefficients CSa and C;a as
state a. The zeroth order Hamiltonian for the particles was given by
Eq. (2.14). The state vectors of the particle system have the form
l....Ns(a)...> (3.17)
where Ns(a) is the number of particles of species s in the state a.
Since the particles are all assumed to be Fermions the only possible
values of Ns(a) are zero and one. The Ns(a) are eigenvalues of the

-1
number operator C;a Csa' It follows from the commutation relations
o

2
" 3

tha
.{_.
Csal....,NS,(a)...>:~ Nsa|...,1~NS(a),..>
(3.18)
C+l N (a) >:t1’1-N(a5\ 1 - W (a) >
S P O I ] . C e Ja), ..

(3.19)
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For our purposes the I signs in the above equations can be ignored.

The state vectors of the system of non~interacting particles
and quasi-particles 1s of the form

ceeam(a) .. N (B) ... L > (3.20)
(The index ©~ ranges over all types of quasi-particles including
both longitudinal and transverse.)

From Eq. (2.8) we see that the term_es¢ is responsible for the
interaction of particles of species s with longitudinal fields. We
shall use this in the second quantization formalism to write the
interaction Hamiltonian between particles and longitudinal guasi-
particles as

iy = S VED g @D Y, @ (5.21)

Using Eqs. (2.12) and (3.1) we can carry out the integrations and

obtain
_ Z g ' +
Her, = Zi~ ;i% {S%Ius“(ﬁ’a’a ) Csa Csa PR
a a' k,o7
* = ot o
+ MSLcr'(k’a’a') C.. CSa,.%gOJ }' (3.22)
where
. e g M ww
Mor o (k,a,a") = 5 = 3 ;’ <ale t al > &
A L Cz_,z [ |
(3.23)

The interaction Hamiltonian between particles of species s and
(1)
transverse quasl-particles will be divided into two parts HéT
(2) ’

and HST where



(1) .
- 3 .+ 1 - N . )
Hp=-e dx{k(?) g (]@—C AO) 1 d’s()
(1 )
= 1
) Z Z Z_; Msrom (K,a,a") Con Cant Ao
a a' Ko
(1)* .
4 MSTc;“(k;a;a') Csa sa! AI?OJ (5.24)
and
(2) ei FE )z/+ o (_)) . _))
far - 2 a * s () A x L:ls (x
2mg ¢
=) A A ¢t o,
- = Y sa  sa
a a' k, Kot
(2) L
ey o (BE 280 g i,
(2) i )
" MST o ! (k,-k',a,2a") AK»—/ AR’: o'
2 = =
{ &S%O"G’” (-K,X',2,a") Ai{r Ak>, 1
(2) o, I A,
gy geger (RN B8 B B, o (3.25)
ln the above interaction Hamiltonians the vertex parts are given by
(l) 47(62 Nl 1/2
(E);a,a’> = S
sT o V,/Ll—{a | 1 a wp .
ST e pw 117 |y
R
<a| ﬁ_}y . '{/‘_) elk X Ia' S 5 (3.26>
and
(2) 2 ,
i’ 1 3 4% B ¢
MSTC—’M' (k,k ,a’a ) —_ 2 V
2mg ¢
1
p7) 2 1/2 7
[9&) W “Ito” N \ 9 o) € 7/'|
’[Lkg" aC)J " oot
LT —>

la' - (3.27)
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The necessary matrix elements for the evaluation of Egs. (3.23),
(3.26) and (3.27) are given in Egs. (2.38) and (2.39) when the
particles are free and in Eqgs. (2.58), (2.59), (2.60) and (2.61) when
the particles are in a uniform magnetic field.

It is convenient to represent each term in an interaction
Hamiltonian by a Feymmann diagram. ¥For instance the term containing
C:a Cov B, in Eq. (3.22) describes the process in which a particle
of species s in the state a' is destroyed, one 1s created in the state
a, and a gquasi-particle of type ¢ and momentum & K 1s destroyed. The

+ +

B> describes the inverse process. These
ga! P

term containing CSa C R, o

are represented by the diagrams inyFig. 3.1.

o
r

=4

o—/

[

Fig., 3.1 Feynmann diagrams for the processes described by

H and él)
gL, 0% Fgre

1)
The interaction Hamiltonian ésT contains the same type of terms but
with transverse quasi-particles replacing longitudinal ones. The

(2)

interaction Hamiltonilan HST contains terms describing processes in
which two transverse quasi-particles are destroyed, two are created

or one 18 created and one is destroyed.
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Now that the interaction Hamiltonians are known the transition
probability between initial state li > and final state |f > may be
calculated from the well known formula (the "Fermi Golden Rule'").

Transition probability per unit time

s 2 N, .
- __;m ul® o’ (x, - E) (5.28)

where Eﬁ and Ef are the initial and final energies and M is the matrix

element for the transition. It is given by

nl ] - t s
M:<le'li>+Z Qil_éleF>fJi:iII!n.>
T S

. ;7“ ZE; <flutli><rjurlmr><aojuali>
+ . . .
- (
II

1, - E_ o+ i E, ~E__ + 1

- E, ~ B+ in) (B, - B+ in)
(3.29)

Here, 1 is a positive infinitesimal, H' is the interaction Hamiltonian

and the summations are over intermediate states.

We now have all of the necessary machinery to discuss quasi-

linear theory and wave wave coupling.
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CHAPIER 4. QUASI~LINFAR THEORY
As we shall use the term, quasi-linear theory deals with first

order processes’, that is, those transitions for which the matrix ele-

ment is approximated by the first term in Eq. (3.29).

4.1 Quasi-Linear Theory of Longitudinal Waves with BO = 0

We shall consider a plasma with no external magnetic field. The
dielectric function is given by Eg. (2.48) or in the classical limit
vy Bq. (2.49). It may be divided into its real and imaginary parts

by using the Plemelj formula

1 L1 . :
T ma—r > P - i o (%) (4.1)

where the P indicates that a principal wvalue i1s to be taken in subsequent

integrations. Using this in Eq. (2.48) we find

~ - ) - )
(4, Q) = ¢ (4, 0) + i ¢,(q,0) (2.2)

z - - -

4ﬂ e : f (v) ~-f (v -8 qg/m
el(q’ , 1+ Z S P [dév so()> 'so( l/ s) <4 .5)
2 2 o
8
-5 -7+ E.l.é_.a.._
g
- 4n2e 2
€ = - 8 3 DN . (D ‘]
o (d, ©) Z ___.z..m(dv [fso(v’) £ (v -7 a/mg)
8 T g
S(O-3-7+1 qZ/ZInS) (4.4)
In the classical limit € and €, are given vy
- -
4ﬂes g 97, /97
e P av = (2.5)
e (g, @) =1 + / .
1 Mg q @ - E_) . :‘?
8

and

e, (4, &) (4.6)
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The frequencies of longitudinal waves are to be found by solving

51(516)) = 0, For a plasma consisting of electrons and ions there are
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two solutions of this equations one of these is the high freguency
plasma oscillation and the other is the low frequency ion sound
wave. To obtain the first of these we assume that the phase
velocity of the wave is much greater than thermal velocities and

expand (GJ -Ef- 53~l in Eq. (4.5) to obtain

2 f - —

4t e ? PR

c (q> ﬁ)) = 1 + S P/dsvg. ASOW J-l+ 2 -
1 n o 6) 7 - w2

— g d 27
2
(- ey P L2 oo B
+ 02 + . -] -}. - QZ [ + w < q V>. @2
AT D> .. _] (4.7)

where we have neglected the ions and integrated by parts. Setting

€ = 0 and solving for the frequency gives approximately
n 2 <4 - v 5<(q - N> >1/2 (1.8)
fa N - 2 5 -
R “oe (l Wope ' G e

The angular brackets denote averages with respect to the electron dis-
tribution function. We shall use the symbol ;k to denote plasma
oscillations (plasmons).

It is well known that ion sound waves are strongly damped unless
the ion temperature is much less than the electron temperature. We
shall assume that this is the case. To obtain the frequency of ion
sound. waves we shall assume that the phase velocily of the wave is
much less than the electron thermal velocity but much greater Cthan

the ion thermal velocity. With these approximations Eq. (4.5) be-

comes >
- o~ 1 a)pi
S (q,ﬁ)) — 1 + - (4:.9)
1 2 .2 2
a L @

where Le = (Te/47tne2)l/2 is the electron Debye length. Solving Eq.

(4.9) for the frequency gives
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. T /M,
S ~ Dot %o = e (4.10)
Q:V 5 55
v 1+ q Le .V 1+ g Le
We shall use the symbol b; to denote ion sound waves (phonons).
We find

(% a)gl = 2 (4.11)
and
(——%)—we:L) 2> 2 (1 + -—-—-2-—]-'——2-) (4.12)

9 quj? q Le
Using these together with Eq. (2.38) in Eq. (3.23) gives

B — —‘2:”:82?1'!11&?\ 1/2
Mo (&p,p") = ] . DO e T (4.13)
and
- 2 1/2
2ne” B AL
- > - s k

I\dﬁ (k)p)p') = 7 V 1 d.f") '—>| + '}z (4;'143)

DV V k (l + —5— PP

k Le

for the vertex functions for the particle~plasmon and particle~
phonon interactions. We have replaced the particle guantum numbers

a and a'

by the free particle wave vectors 5 and ;‘. These veritex
functions agree with those found by Pines and fp‘cm*:'w:ffer9 and by
Rosle using quite different methods.

To simplify the discussion which follows we shall consider only

electrons and plasmons and neglect the ions and phonons. Eg. (4.13)

may be used to write the electron-plasmon interaction Hamiltonian as
1/2

z
or - L L[]

-p—> % VvV k

+ 5 Ny ‘(+ + 5 f ooy
{C;_{_ B RYG . O BI{)} (4.15)

£
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where we have used the Kronecker-Delta in Eq. (4.13) to eliminate
one summation and have dropped some superfluous subscripts. Note
that momentum is conserved at each vertex.

Now, we shall write equations for the rate of change of Ne(ib,
the number of electrons of momentum h §>and N‘a (EB, the number of

plasmons of momentum T ﬁi Schematically we may write

. —[\ [S4 Y
e ® ¥ \ - %k
2t 7 / Mdj\
—> = : k IS
- P+
. (4.186)

k A

<

What we mean by this is that we add all of the processes in which a
plasmon of momentum M X is emitted and subtract all of those in which
one 1is absorbed. This difference gives the increase in N}K (?3. The
schematic equation can be converted into a mathematical equation by

replacing each diagram by the Transition probability per unit time

for the process. Using Eq. (3.28) and the first term in Eg. (3.29)

gives
. = 2 -2 2
N 5 (k) 2re” N ¥ 2 ®° 2
g L Zﬁ[J al pl 3w -
t b 2 o n
9 -; V k

-h/L D+ K - +
LR N (5 + K |1 Ne(;) N (¥) + 1
= .
—[:L - (o + ?)] N (3) N ®} (4.17)
e e
Note that the square of the matrix element has two factors. One of
these is just the square of the vertex part in Eq. (4.15). The other
comes from the square of the malrix element of the creation and
.{_
destruction operators. For instance, consider the term Q;

PR R

in Eq. (4.15) and the corresponding diagram in Eq. (4.16). From Eq.
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(3.18) we see that the destruction of an electron of momentum h S
gives a factor Ne(;). From Eq. (3.19) we see that creation of an
electron of momentum h (£?+<i3 gives a factor 1 - Nng + K). From
Bq. (3.15) we see that destruction of a plasmon of momentum h i
gives a factor N (’13) The product of these factors gives the

last term in Eq. (4.17).

In a simllar way we can write a schematic equation for the

rate of change of Ne@))'
- —>
—) P 3 —-)
2 e(P)) K

atZ/
k D+ K - )Véggvl/;* N\\if

' N el

The corresponding ma,thematical equation 1s

aNe(E 2t Zﬂfe Tl.kaA —92 [4 Z
"-*-9—‘:6-—'-"‘ = Z:; Y [ ] J\ P 1‘4 T
X

JEJLAI;] [N @+ 0L - NE(S)] [NA(R’) T R (3 + K v_(v)
2

Nﬂ(_ﬂ J[ Ip—k’, +r1fl- -—%-1—15—2]

7, G-RD -0 @@ - [1-0,6 - B @ry @+ ij]}

(4.19)

Some consequences of Egs. (4.17) and (4.19) may be secen immedi-

ately.
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2. ¥ u(®-=o0 (4.20)
P

gt {Zﬁ}?Ne(§3+ ZE'ENA(Q)}ZO (4.21)
D

.
z 2
gt Z; «-—El—z—n-lp—-m Ne(;) + Z_: 'ﬁ'ﬂ"aﬁ N (f)} =0 (4.22)
1Y k

These equations show that particles (but not quasi-particles),
momentum and energy are conserved. This is not too surprising
since they are conserved at each vertex.
We can define the entropy of the electron-plasmon system as
= -8 4.
SSeLA (4.23)

where

s, = - K Z_ iL:L - Ne(p)] 1log [1 - Ne(p)] +1_(p) log Ne(p)} (4.24)
=

and

8y - K {I_—Na(ﬁ) + 1] 1og [N;\ ® +1] - N/;\('}?f) 1og Na(f)}(él».?.@

where K iskBoltzmann's constant. SP is the entropy of a system of

~
Fermions and S;\ is the entropy of a system of Bosons.50 By taking
the time derivative of S and using Eqgs. (4.17) and (4.19) it is not
difficult to show that

a2 9

— .2
=T (4.26)
Furthermore, the equality holds when
N (D) = = (2.27)
e h? 4
C exp (___ilm) + 1
2mT

and
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Nh(i?): “ﬁ_/i- —e>
-1

exp(-~ﬁf~———

since a brief calculation shows that these are equilibrium solutions

(4.28)

of Bgs. (4.17) and (4.19). This seems to indicate that Ne(ib
approaches the Fermi-Dirac distribution and N ;\(Eﬁ approaches the
Planck distribution as time increases. What is missing from the
proof is a proof that £ has only one maximum.

We now pass bo the classical limit by the prescription

T =0 (£.29a)
Ap-mv (4.290)
Ne(i’) <« 1 (4.29¢)
¥ (K) > oo (4.294)
'h.fLAk N (%) = Px (K) = finite (4.29¢)
A —av{ dsl; (4.297)
4 on

ba NG(E’) ~>V{d5V £ (V) (4.29g)
- e

P
Eq. (4.29c) means that the electron gas 1is far from degeneracy.

P.K (E3 is the energy spectrum of plasma oscillations--a classically
nmeaningful quantity. We let the volume of the box in which the system
is quantized become Iinfinite so that sums go over into integrals, hence

Egs. (4.29f) and (4.29¢g). In this limit Egs. (4.17) and (4.19) become

-—?E—a-?—‘ﬁ—ﬁ}?‘ (B) px (B) + 5 (¥) (£.30)
£ (V) f (V)
a etV _ 8_5 . (ﬁ*(;;) . 2 e% )+ E@ . (K}(?\)fe) (4.31)
2 2v ' Ki v

where
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Zn e
- Ak 3 o 2L =
]A(k = mkz fdvk’-———-—;f;@-ﬂdﬁ(ﬂ-v—ﬂ;{ﬁ) (4.32)
22 2
4r"e” N
85 (8) = - s [af’v £ (D) KV -5 (4.53)
&) - P [ a’k P 3 (¥ e d &7 -5 (4.34)
n” (21{)3 K- Ak
~>—3 4nzez d3k L ¥ dﬂ = .
R (2m) | A2 (e v - M) (4-35)

These are the classical guasi-linear equations.

The first term on the right hand side of Eq. (4.30) comes from
the stimulated emission terms in £q. (4.17). The second term comes
from the spontaneous emission terms.

Eq. (4.32) agrees with the imaginary part of the freguency given
by Eq. (2.110) when Egs. (4.6) and (4.11) are used. In the zeroth
order approximation where the particle-plasmon interaction is neglected
the imaginary part of E(EZQJ) is neglected and the plasmons nave
infinite lifetimes. The imaginary part of ¢ is a conseguence of the
processes of absorption and emigsion of plasmons by particles.

In the present derivation it is clear that Eq. (4.17) for the
rate of change of]ﬂ;\(is must be accompanied by Eg. (4.19) for the
rate of change of Ne(53. Also, the terms due to spontaneous emis-
sion appear quite naturally in this derivation although they are often
omitted in classical derivations.

It is easy to show that time-independent solutions of Egs. (4.30)
and (4.31) are
'P;\(ib = T (Rayleigh-Jeans) (4.36)

2
fe(;3 =0 e™ /2T (Maxwell-Boltzmann) (4.37)



However, it is not possible to show
approached asymptotically. Indeed,
there are initial P 5 (K) and fe(;?)

Egs. (4.368) and (4.37). An example

L5

that these solutions are
it is possible to show that
which can never evolve into

will be given presently.

Before discussing Egs. (4.30) and (4.51) further it is con-

venient to write them in dimensionless units. To do so we define

a = "}%’" :—{f:;?/d,)f:wpet

Le = d—/fdpe; H: LDT{)

p(¥) = TCP(Q)

£(v) = ‘:5 P(W) (4.38)

In dimensionless form Egs. (4.30) and (4.31) are

006 _ = (Sud@ -0 [P@ 3 2 :@)] (a.59

T q u

9v(v) _ 2 .f_da° RS _q

2T 2% / (2m)° ¢

P 7 - -——g—i— + (W] (4.40)
where

1
¢- T (st

is the so-called plasma parameter. In deriving these we have made
AN

simple form in one dimension; namely

aai@ 2w (-0 [P s
q

LS t 1 n 1
e [1F () & () + ¥ (2]

fd

K These equations take a particularly

the approximation L A

or

aU.

7]

+

(4.42)
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u dg 1 3F
a;é) - ﬂaf 5= " (au - 1) T [oa(q) 125+ F(uﬂ

= ; é g@u { |3; [(p(i/u) gi(u) +F(u)} (4.43)

where the prime denotes a derivative with respect to the argument. A
further simplification can be made by making the change of variable
q = 1/u and writing & (u) instead of ¢~ (1/u). Then

96‘;};,’?«’) L {_% (o, T) i%%flﬁ + F(u, Z")-j (4.44)

2:wT) 1 £ _2 { O ICK ST
9? 2 pu [ u gu
‘Fﬂ%fﬂ} (4.45)

We have now explicitly included 'Zf as an argument of 0:) (u, Tf} and

F(u,f). In dimensionless units the Rayleigh-Jeans and Maxwell-
Boltzmann solutlons are
¢-1 (4.46)

2
F-C e—l/Z ol

(4.47)
which clearly satisfy Egs. (4.44) and (4.45).

An integral of Egs. (4.44) and (4.45) can be obtained by combin-
ing them to give

N u 1 203
R ST »

from which

7(s,7) - 5— & z?u [15 6’@;2:{] - alw) (4.49)

u

where g(u) is constant in time. Now, if at any time P and ¥ are

given by Eqs. (4.46) and (4.47) then

2

~1/2

g(u) = C e 1/2 u + —zéﬁw— —§~4-~ (4.50)
u



)_;T

But clearly one can choose the initial conditions for F and 0; s0
that g(u) is some other function; with such a choice of initial
conditions the equilibrium solutions, Eqs. (4.46) and (4.47) are
never approached.*

As we have previously remarked, in classlcal derivations the
terms due to spontaneous emission are often omitted, These are the
terms S;\ and A?fe in Egs. (4.50) and (4.31) and the corresponding
terms in Egs. (4.44) and (4.45). We shall now examine the quasi-~
linear equations with the spontaneous emission terms neglected.

We write

3
00 T) 1kl e gy BT oy 2 e (0,7

ejr u e
(4.51)
97(wZ) 1 2 1 N 9 7 (u,7)
az’ T2 6 au []u| @( T Pu ]
.9 oy 25T
2 [, 2H ] (4.52)

Again, it is found that g(u) is a constant of the motion. It may be

used to write

#(u,T) - Fu,0) = Zi gu 15 [(P (v, T) -@(u,o{! (4.53)

from which

Fu,T) - P (y,0) = 2{ uB[du [F(u,’[’) - F(u,o)] (4.54)

Now, to be specific let us assume that the initial distribution has

the form of a Maxwellian with a bump on the tail as shown in Fig. 4.1.

*¥T am indebted to Owen C. Eldridge for this observation.
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Fig. 4.1 Initial and final F(u,f) and &7 (v, 7)) for an un-
stable plasma.

We shall assume that at Z = 0 (P (u,0) is very small. Where F(u,o0)

has a negative slope, )J(u,0) will be negative and (P (u,T) will decay.

Where F(u,0) has a positive slope, )(u,o0) will be positive and there

o]
will be initially an exponential growth of e (u,6¢). This will
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cause D(u,T’) to grow rapidly for those values of u for which
J(u, T) is positive. This will lead to a rapid change of F(u,T)
for those values of u.

From Eq. (4.51) we see that when the steady state is achieved,
J(u,oe) = O except when oj(u,ao) = 0. Also J = 0 implies g F/gu =
0. It follows that at T = oo, F(u,oe) will consist of constant
sections and sections with negative slope for u > 0 and positive
slope for u < O. Cp(uvco) will be non-vanishing where g F(u,ge)/
g4 = 0 and it will vanish elsewhere. The final form of F(u, o) and
(P(u, o0) must be as shown in Fig. 4.1.

The position of the horizontal line in Fig. 4.1 can be determined
as follows. BSince the number of particles is conserved, the area
under the horizontal line must be the same as the area under the

original curve; that is

u 112
Flu,ee) du = F(u,0) du (4.55)

u u

1 1
If one imagines lowering a horizontal line until the two areas are

equal, it is clear that u, and U, will be determined in this manner.

1
One can then calculate (P (u,00) from Eq. (4.54) obtaining

Fu,00) = Zn. 40 du' [F(u',ao) - F(u,o)] (2.56)

é

Y

. ~1
Note that O (u,oe) is of order E
One cannot say as much about the asymptotic solution when the
spontaneous emission terms are retained, but one can still say some-

thing. 8q. (4.54) is still valid but F(u,oe) cannot be determined
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so easily. If Egs. (4.44) and (4.45) have stationary solutions at
7?::0% then
ukb'
P (u,00) = - (u, <o) (4.57)

9 F(u,o0)

gu

Now, (P (u,o0) must be positive (since it is an energy density) and
finite (since energy 1is conserved), so 1t follows that F(u,(xQ must
be a monotonically decreasing function. The general picture one
forms of the development of an instability due to a bump-on~the-tail
type of distribution is that F(u,?f) and GP (u,??) rapidly change
approximately into the forms shown in Fig. 4.1 under the influence
of the stimulated emission terms. When these forms are approached,
the spontaneous emission terms become important and F(u,l{) evolves
into a form which decreases monotonically with increasing lu|. This
is accompanied by a spreading of (P (u, 7).

We shall next use the gquasi-linear equations to discuss the
absorption of the energy of a wave packet by a stable plasma.
We refer to Fig. 4.2. We suppose that initially there 1s a wave
packet with og(u,o) non-vanishing in the range Uy <u < Uy - in
this range @ F/ 3 u <0, so J(u) is negative and > (w,T) wild
decay. The diffusion caused by OP (u,Z") will cause F(u,T) to
flatten out thus reducing J(u). If the amplitude of the packet is
sufficiently large and if spontaneous emission terms are neglected,
then F(u,qr) may develop a plateau and )(u) would become zero in
the plateau. If the amplitude of the packet was insufficiently
large, the wave packet would disappear before the plateau developed.

The spontaneous emission terms should keep the plateau from ever
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completely developing.

F(u, T)

1

Fig. 4.2 Absorption of the energy of a wave packet by a
stable plasma.

If a monochromatic wave is launched in the plasma, then the
gquasi-linear equatlions would not be applicable. They are based on
the Fermi Golden Rule; the ¢f -function in Eq. (3.28) implies that
one has a continuous spectrum to integrate over. What happens to a
monochromatic wave is very interesting. Ibts main features can be

understood by a simple physical argument. Suppose that by some
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magical process a wave with phase velocity vp 1s imposed on the
plasma at the time t = 0 without altering the electron distribution
f(v). (We are considering a one-dimensional plaswa.) This is shown

in Fig. 4.3.

e \@/\W/\ x

(x)

£(v,t)

(v, AtL)

|
|
I
t
l
!
!
r
l
!

v
Fig. 4.3 Oscillatory damping of a monochromatic wave.

Consider the motion of the particles in a frame of reference moving

with the phase velocity of the wave. Some of the particles will be

trapped in the troughs of the waves; others with greater epnergy will

not be trapped. After a time At egual to a half period of oscilla-

tion of the particles in the bottom of the troughs, the particles

which were moving to the left will be moving to the right and those
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that were moving to the right will be moving to the left so the dis-
tribution function must look like the curve labeled f(v,Afﬁ. Since
the kinetic energy of the particles whose distribution function is
f(V,Afﬂ 1s greater than it was when the distribution function was
£(v,0), the energy of the wave has decreased. The wave has been
damped during this time interval. In the next interval Bt the
velocities of trapped particles will again reverse, f(v,241) is
approximately the same as f(v,o0), the kinetic energy has decreased
and so the amplitude of the wave has grown. Now, all of the trapped
particles do not oscillate with the same period so as time goes on
£(v,t) develops more wiggles and eventually flattens out when the
trapped particles have become randomized. While this is going on
the amplitude of the waves alternately decays and grows, finally
zettling down to some smaller amplitude. This oscillatory Landau
damping was predicted theoretically by O'Neilg7 and by Al'"Tschul
and KarpmanZB and has been observed experimentally by Malmberg and
Wharton.26 It has also been observed in numerical experiments by

oz

()
Armstrong.

Uniform Magnetic Fileld

Much of the arguments which led to Egs. (4.17) and (4.19) can be
taken over intact. The wave vector iafor the particles must be re-
placed by the quantum numvers n, v, D, (see Bg. (2.52)). The matrix

element which is necessary for Eg. (3.23) has been given in Eg.

Writing out the equation corresponding to the schematic Eg.

(4.16) we find
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_[1 -N(n+d,p +k, D + kz)] N (a, p, p,) Ng (ﬁ)} (4.58)
We have written Eq. (4.58) without reduction in order to make clear
the origin of all the terms. The transitions which are considered
are those in which particles of species s and quantum numbers n +-Af;
b+ kx, p, * kz emit a quasi-particle of type & with wave vector
¥ and the inverse of this transition. We have not restricted our-
selves to a single species of particle or guasi-particle.

In taking the classical limit
Ns(n v £ P+ k, b+ kZ) ~ Ns(n, D pZ)

ZE.QJCS 7 Tk

m 7 g m Z

8 8 cS

2
- fS(YL +

2
- fS(Vl; V., yc)

h [ L s 9%s bk 2 %s _ Ky 9 %s ] (4.59)
Mg M1 2vL Lo, G g ?Y¢
Here Yag is the y-coordinate of the guiding center of the gyrating

particle., It is related to the x-component of the particles

momentum by Eg. (2.53). In the classical limit Eg. (4.53) becomes
?Pq (K)
ot

= 2)g (B) Pge (B) + S g (%) (4.60)
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where

+ g0 2
dne. ML .
8 ok
Jor ® = 7 a - kzl ..
S j:' - S :36.) "1 |
/dsvczé( >(f'(,/l.a.k—,€£) -k, V)
L s ? ? Ky e}
b - f s P
l: i 2 T 27, Wes CRR S(V 'z yc)
(4.61)
2 + oo
4ye JL ,
R e 2
s msk’-——é—a—)—&)elﬂvk £ = oo
[dVJg a)y) d Moo -L@ -5, V) (4.62)

Equations similar to Egs. (4.18) and (4.19) may be written for
the rate of change of Ns(n,px,pz). We shall refer the reader to

Walters et al.lb for the details and give the results in the classi-

cal limit
+ o0 22
ai ( ) Z ( 81 es
L’ Vo, ¥ =
o L- T | —2— We..
A [ 2@ lL]’n"a”k
£ 3 ? ka2 /¥ivy
[ Vi aV.L -+ kz aVZ - a.)cs ech] '{ef ( a)cs >J‘ (—{LaJk
¥) [Lwcs 2 __ . k 2
v 8V_L Z 9"\/5
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Eq. (4.81) agrees with the growth rate calculated from Eg.
(2.110). It should be noted that the dependence of f,oony, gives
the possibility of wave growth due lo spatial gradients of gulding
centers. This is the drift cyclotron instability of Mikhailovski
and Timofeev.58 It may be seen from Eg. (4.63) that this is accom-

panied by a diffusion of particles in the y-direction.
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CHAPTER 5. SCATTERING OF PARTICLES AND PHOTONS BY PLASMAS
The scattering of particles and the scattering of light may be
treated in much the same way. It is convenient to begin with the
scattering of particles.

5.1 The Scattering of Particles39

We consider a test particle of charge e, and mass m. interacting

with a plasma. The interaction Hamiltonian may be written as
y :
3 e
oo 3 .
A= Z Z lg - "er¢(;g> (5.1)
s i=l - Xsil

where X is the poslition of the test particle, §;i is the position of

. th : : : . . ' ,
the 1 particle of specles s in the plasma and ¢(§3 is the electro-
static potential at the position of the test particle. Unly coulomb
interactions are taken into account. As in Chapter 2 we expand the

potential in a Fourier series in a box of volume V. Thus,
-3 =3

$(3) Z #(3) LI
q

it

a®x  -ig-x
P = | = e T AR
Are R
= T L e (5.5)
s i Vg

Eq. (5.1) may be written

Hse, 2 @ X (5.4)
q

We wish to calculate Wr(a —a'), the transition probability per

unit time that a test particle of specles r initially in the state ja >

makes a transition to the state |a' >, We will denote initial and
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final states of the plasma by |db > and IaL' >. We calculate

Wr(a —a') by swming

e D SN ) P P O Y Y R

over final states of the plasma and averaging over initial states.

In the above Ea and C;L denote energies of the test particle and the
plaswma respectively. We will let B, be the probability that the

initial state of the plasma is |@l >. We define &) by

h&)=E -~ E_, (5.5)
a a
Then
i G
W(a=al) =] By Z L (- el
oL o+ &b B
<dt|<atfit]a>la > <ealr]<ar|]a S > (5.6)
We now use
(f v'é
+ on . e ol )
St "G dt pl“‘-’" i )t (5.7)
o (G - 5 )~ 2w :
e

and Eq. (5.3) to write

z - + oo

e .

oo L L (T e

r 5 -2, —
q a

- oo
—>

i;f; ig'-x
< a',e I a > < a"e ’ a >%

L 2 vy <ale/B8at puq Al s
o4 !

<t | H(Qfol>
2

~ Sr Z Z 4 LGt
= — b e
3, —>
q qd
i_>-;(> i.—>'°;g — —
< a" ed ,a > < a'!e 4 Ia >*< g% (q',t) B(q,0) > (5.8)

where ¢*(§',t) is the time dependent operator with matrix elements
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<o BERT gy HEOL 1
and the angular brackets in the last factor are defined by
<A>= P PoL<a(,\A\ob> (5.9)
o
(The same average was used in Eq. (2.20).)
We now specialize to the case that’ a > and la' > are plane wave

states of a free particle; that is

,a>:|1§>
> =

SE|E> =Y p() = —— ¥ (5.19)
V v
Then
-
< ') elq'x] o> - df%"? .3 (5.11)
and Eq. (5.8) becomes
e2 + oo
= 3, T ot =, - =, - )
Wr(k > K') = > dt e < Pe(kt -k, t) f(k' - ¥, 0) > (5.12)
h
- o
HNow we will let
T X = mr?? +E g (5.13)
TR = mr?r’ (5.14)

and use @*(-q,t) = $(q,t) (which follows from the reality of #(Z,t))

to obtain
N z + oo
W (T 4+ 29 L) . —E at TP < §(T ) B (3.0) > (5.15)
r m 2
T h
- oo

for the transition probability for: unit time that the indicated
transition will occur with transfer of momentum h 3 and transfer of
energy hé&). We may use

H(q,1) = -1 q (4, ) (5.16)

To write this in the form
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+ o
= 8re . e T =
W (V? + M" —> V)> iz ——-»-——-{——--« dt elé)t < E?(th) E*(qﬁo) >
r mr .,hZ q2 81

~oo (5.17)

N Bﬂer o

7 P.(d,a) (5.18)
h g g
where
oo F? - N
PF‘((T;(‘)) = dt ela)t < -‘(Q?t) éﬁE?(q,O) > (5.19)
- x>

is the spectral density of the electric field fluctuations. Note that

4 o

= )
d E(q,0) - E¥{qg,0
_.é..]:f.(",:?__ PE<Q_>,G)) - < (d;0) (‘i} )

8x

> (5.20)

SO

3
d g dé) -3
') e /"’ L

may be interpreted as the energy per unit volume in electric field

fluctuations.

In a plasma in which the field fluctuations are in equilibrium
with the particles, PE(a:6J) may be calculated by the dressed test
particle modelzg’so which we shall now briefly describe.

In such an equilibrium plasma we expect
< B(d,t) pr(g,t') > = < Pla,t - t*) $(q,0) > (5.21)

Taking the Fourier transform with respect to both t and t' gives

+ oo + oo

< ¢(€)a)) ¢*(a>,6.)') > = at ela")t at?* e"‘i(i)t'

< $(q,t) p*(q,t")

- and (W - @) a(t - 1) H@E - )
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< #(q,t - ') $*(q,0) >

2
16x .
q
By Poisson's equation

4ye .
L) - - ) —n(Gw) (5.23)

S q

where nh(Eia)) is the Fourler transform of the particle density.

(4ﬁ)2eﬁer
7 7 A
T s 4

Then

il

< #(q, Q) gx(q,L) >

\//

<n (d,w) n*(q,w")
Now, the essence of the dressed test particle model is that the

particles may be regarded as uncorrelated, but that the contributlon
of each particle to the potential must be modified by the shielding

factor e‘l(q, ). That is
N2
(4n) eser

< Pla,) (g, @) > = Z Z ) an
T S = =T\

<0 (d,6) »_*(q,0") >, (5.25)

where the subscript on < . . . >y indicates that the average 1s to be
calculated for uncorrelated (free) particles. This is easily cal-
culated using the second quantization formalism introduced in Chapter

2. The density operator is

n (%,t) = YIE Y _(x1)

For free particles the same time dependence of ng{t) is given. By
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iT® pz
z
(t) = C_ (o) ¢ “Ms
SO
AR :-l—Z ] (o) e, Aoy &TTF - Vs
sV v — sp sp + q
P
where

062 - I (3 - )

Taking the Fourier transform of Eq. (5.28) gives

n (@) - 25— ] o) o

sp Sp + 4
b

Then

< nr(E,GJ) nS*(E,w') > = (Zn Z Z—

(G- VG (- V(5,D)

+- +
—{ —{ >
< Orptol O o) Sy o) Epnle) >

The last factor in Eq. (5.31) is just

.{,

({rs Cf'*“ Z 0(4<0{"'!C_p>c_)cs;+qcs§+?fidl,>

ST Lo i @ - @)

() (@ - VB

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

s
where Ni )(ib is the number of particles of species s wiith momentum

pal £>when the state of the plasma 1is fbb >. For a classical plasma we

may set [l - NQOb)(E?+ aj] 221 and write
_ : (L),
<N (B) > = é; B W)

Eq. (5.31) now becomes

<n (06 0 (0,0 5 - o

rs 2

<
Tl

(5.33)
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(- ) (w- V(5,D) <u (P>

2

oS- @ L /dﬁvfs@vof‘(@-zz-v-f_%w)

Zm
8
5.54)
In the last step we have applied the prescription of Eg. (4.29).

Eg. (5.25) beconmes
( (4n)gea
Z ey %M% ' -__%.E....... A —
< #(q,@) pr(q,@') > = d (@ - a:)zh RENSIE

X

4

j/d v f Oﬁ I (D-9-7- ;§Eg~“) (5.35)
s

Comparison with Eq. (5.22) gives the result

2 2 o

41 e
P (3,0) = T [dvf(*)ﬂwnq-v——l?—i——-)
¢ ‘2: v e (T,0[° s

(5.326)
Putting this result into BEg. (5.18) we find that the result can

be put into the form

wr(?+ —>7) Z / vt T (v
o éﬂeser
T 2 -
V g e((bw)
m — |2 m m - m el
d‘[r ?+ﬁ3 + sv'z—,.r VL-PS'V'+TI“
z mr 2 2 m_

(5.37)
In this form the transition probability has an obvious interpretation.
W (V+E a/m_ ~ V) is obtained by adding the transition probabilities
calculated by first order perturbation theory for the collisions of the

test particle with the particles of the plasma. Such collisions may be
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represented by the diagram of Fig. 5.1.

Fig, 5.1 Particle collision.
In each collision the matrix element for the transition is the

shielded coulomb matrix element

4neres
: (5.38)

P —
Vg e(q,a))
_> .
where B q is the momentum transfer and h&J)is the energy transfer.
We shall next examine PF(E,&D in somewhat greater detail.

It is useful to multiply by the correction factor 36..)61/36,) and

interpret
— 7 — >
CAOI B ST C2)) EXCAZ) (5.39)

as the spectral density of total energy including both electric field
energy and kinetic energy. P(E:&J) will have peaks near the fre-
quencies of electrostatic oscillations since e(a;éJ) - 0. We shall

use Fq. (4.4) for e?(s;a)) to write

B TR S el 2 2 3 :
P(q,)) = — IE(?f,GJ)lz [94’ wel(q,co)] R(q,4)) (5.40)

where
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2
2 < ﬁ’vfs(?r’)d’(@-a*-?—ii—)

= = ans
2 3 - - -
7 [n@ s B - @0 (@- - B
s (5.41)
In the € - 0 limit (that is, the limit of small damping) we have
IQZi -
5 > e 50 > ﬂ({‘(el(%w)>
€ + & 2
e 2 o (-1 ]
N R 5 (5.42)
L qew

where the—flug’s are the solutions of el(a:GJ) = 0. DNow, from an exam-
ination of the symmetry of el(qjdj) as given by Eq. (4.3) it may be
shown that if.fl-z satisfies el(az_flaa = O then - _/l.;z is also a
solution. For simplicity let us consider a single species plasma

and suppose that there is only one weakly damped mode. Then using

Eq. (5.42) in Eq. (5.40) gives

P(3,6) = =~ 1 o (W-1) s Ep k()

+ 07 (+ M =) 5 T/ >R, -LL ) o (5.43)
-4 -4 -q -q

where 83 - T 1 is the sign of the energy of the wave defined in

Eg. (5.8).

The significance of the factors R(E;Jﬁ.a% and R(q, —.fL“aﬁ be-

comes apparent 1f one takes fs(vv‘to be the Maxwell-~Boltzmann distri-
bution function. Then Eq. (5.41) gives

R(q,4q) = }e4E”fL57T _ l‘ B e#h,ﬂLayT

+ 1= (q) + 1
-1

(5.44)
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where N(Q) is the Planck distribution, Eq. (4.28). Similarly
—> > . -
R(q, -/2) = N(-9) (5.45)

and Eq. (5.43) becomes

P(3,6) - ”_\T_;m d (G - quj) SEEJLCT I:N(Tl)) + 1]

+ of (WJ+N ») s >hSL > N(—Tf)} (5.48)
-3 -q -4

When Eq. (5.46) is used in the expression for Wr(—\? + ‘h?f/ms - ¥)
one finds one term proportional to N(ﬁ} + 1 which may be interpreted
as the stimulated plus spontaneous emission of a guasi-particle of
momentum"ﬁ_g and energy*leiran The test particle may also lose
momcntume'Q by absorbing a quasi-particle of momentum - h S in
which case the change in its energy is hd4J = :ﬁJlﬂJ? This absorp-
tion process contributes the term proportional to N(Qg).

When the state of the plasma departs from thermal equilibrium,
the quasi-particle number N(E) departs from its equilibrium value.
In particular 1f the plasma approaches an unstable state N(ay may
become very large since the denominator in Eqg. (5.41) approaches zero.

Returning to Eq. (5.8) we shall remark that a similar analysis
can be made when ‘a > and la' > are the states of a particle in a
uniform magnetic field. We shall just quote the result. It is
Wn+ L, k +q,k +aq >n k, k)

2

8rne q, v

r 1 s 11 e .

: ""“':2‘ Z 5 Jn (’"""——""—w > PE(Q, CL)) (5.4:7)
n qy q er

The summation over qy in this equation is a consequence of the non-

congervation of the y-component of momentum because of the magnetic

field.
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5.2  The Beattering of fPhotonsgl’59

The initial and final states of the system are taken to be
|i>=|E+ T > o> (5.48)
|t =% o > e > (5.49)
Here, il?, o > denotes the state of the radiation field when there is
one photon of momentum T K and polarization direction ¢~ present,

ld- > 1s the state of the plasma before the scattering and Id, 't >
is the state after the gcattering. The term in the Hamiltonian

responsible for the scattering is the A® term; namely
2 ;
‘s z
= ) Z —S A% (2) (5.50)
si
. Zm_ ¢
s i s

where K(SQ is given by BEg. (3.2).

Ags in the last section, we calculate W(E> + -cf, o - P:, o-') by

summing
2 <o fu |4 >12<f(Ei - B,) (5.51)

over final states and averaging over initial states. The term in

z . +
A7 containing A A

ot AT a> o are responsible for the transition.
-2 >4

In a derivation which parallels that of the last section we obtain

L . s @, o dp )
Wk +d, 00 =K, o) = (20)7 ———h
v JL'
kKoot K+ gq,07
Z 2 + o0
°rs it -3 - e
Z Z L - dt e <n (q,t) n *(q,0) > (5.52)
m_m r s
r s T s
- o

where we have introduced the abbreviation

N . [_J:.._?___ -»]
o 5 A @ &l,r(ké)) f)—EoJ (5.53)
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In Eg. (5.52)

= =

- -1qrXg3
n (g,0) = Z e (5.54)

i
i1s the Fourier transform of the density operator for species s

n_(%,0) - Z S E -7 (5.55)

The time dependent operators are introduced as they were in Eq.
(5.8).
For a single species plasma one can use Poisson's equation to

write

2
2
<a(@0) 2:(do) > = (5E—) <#@0) g0 >
2
= A <E(q,t) © B¥(J,0) > (5.56)
(4re)
SO
+ oo >
atr T4t o n(q,t) n*(q,0) > = »—iémm PE(Ef,[,,)) (5.57)
on Zie
Using Eq. (5.36) one obtains
+oe
at 'O < n(d0) wr(do) > - B
. le(q,&))l
3 - - = B3l 2
v £(V) (- q - ¥ - —5) (5.58)

This may be substituted into Eq. (5.52) to obtain
4 - 2
E) o g o " Begm)
5../)..' Nt — 2
AL UL E CA)

WE+ g, -k, o) -
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= dvf(?}d’(w-Q°V—-——§-§;-) (5.59)
m

Just as in the last section the peaks in W which occur at fre-
quencies for which e(q,w) = O may be interpreted in terms of
emission and absorption of quasi-particles. As the plasma approaches
an unstable state the number of quasi-particles increases and the peaks
in W grow because of the increaSed stimulated emission and absorp-
tion.51

For an electron~ion plasma the expression for W is somewhat more
complicated than Eq. (5.59). It has been discussed elsewhere and will

. . . 31
not be given further counsideration here.
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CHAPTER 6. NON-DIVERGENT KINETIC EQUATIONS
A variety of egquations have been proposed for describing the
evolution in time of f(?ﬁ the particle velocity distribution function
in a plasma. None of them are completely satisfactory. The earliest

of these was the Boltzmann equation.4o’4l

It is unsatisfactory because
it neglects collective effects, and also it diverges for small momentum
transfers in particle collisions. On the other hand, the Balescu-
Lenard equationls’ does include collective effects but is divergent
for large momentum transfers. Wyld and Pines12 have derived an equa-
tion which is not divergent for either small or large momentum
transfers and reduces to the Boltzmann equation in one 1limit and the
Balescu-Lenard equation in another limit. We review this derivation
in section 6.1. If the plasma is unstable the Wyld-Pines and Balescu-
Lenard equations are divergent. The quasi-linear equations discussed
in Chapter 3 describe the evolution of an unstable plasma but ignore
particle collisjons.

In recent years a number of equations have been proposed to
deal with both stable and unstable plasma,s.4‘"2_4:7 We will add one
more set of equations to the list. The equations we derive in section
6.2 have the attractive features that they conserve particles, energy
and momentum, satisfy an H-theorem and reduce to Wyld-Pines, Balescu-

Lenard, Boltzmann and guasi-linear equatioms in various limits.

6.1 The Wyld-Pines Eguation

Consider the rate of change of NS(ES, the number of particles of

. = - . .
species s and momentum h p, due to collisions with the other particles

of the plasma. Schematically we may write



(6.1)

As we did in Chapter 3, we replace each diagram by the corresponding

transition probability per unit time which is calculated from first

order perturbation theory. The matrix element is taken to be the

shielded coulomb matrix element given in Egq. (5.38). We obtain

i2
9NS o énere
(¥) =
fat T
S v eGw)
S 72 L ¥ 2 % 2 % iv;JrH
st p+q Zmr b= st b~ Zmr p ai .

{1» (p+ Q) N (p ) [1 - W n’)]b - N (p + q‘)]
Sn D @ [-w @] - @ a’ﬂ}

where Q) in the argument of ¢(g,&)) is understood to be given by

B = ~9Z'I;] -p'z]

Using Eqs. (4.29b) (4.29¢), (4.291“) and (4.29g) we obtain

__?_f_fi..(vz 1”8/ /
at

o (d-F-q- 7 + qu~

S Zmr

q)

Z STz 2
(@, T+ ¥+ 1% /2m )]

(6.2)

(6.3)
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This is the Wyld-Pines equation. The classical 1limit of this equa-
tion may be taken in two different ways. First, we let™h ?1) = ; be
the momentum transferred in the collision. This will be kept

finite when the classical limit is belng taken. In the classical

limit
- =
—; d 2
e(p/h, —-—E—-ﬁ—x—— + p /st) We(o@, oa) = 1 (6.5)

and. one obtains

3T .
mgtb (v) = Z: 4eiei a’p v
r

1 ms - - E mr 2 ms 2 mr — j ]
r—— 1 - - | T -
D/L J 2 v p/msl * 2 v 2 v 2 vt m '
= = e -3 =,
{fs(v + p/ms) fr(v ) - fs(v) fr(v + p/ms)} (6.8)

This is Jjust the Boltzmann equation.
If one lets & approach zero in Eq. (6.4), expands the ¢ ~function,
e(q, @) and the distribution functions, then Wyld and Pines have shown

that one obtains

2 2
2f 2e e =
O - L e e
T s v
99 d(-V-9-3)
q4: IE(H: a.) ° 7>|2
| . .
: {i ,2_,;_ (@) £ (¥) - —=— £ (V) j—-;-r- (7')} (6.7)
'y 9V r mr s 7!

which is the Balescu-Lenard equation.
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Because of the paé in Eq. (6.8) the Boltzmann equation diverges
for small momentum transfers. This is because by Eq. (6.5) the di-
electric function has been set equal to unity, so the screening
effect which is important at large impact parameters has been
neglected.

(6.7) is divergent for large momentum transfers. This
should not surprise us; when we let T approach zero, the momentum
transfer h E’approached zero so collisions with large momentum
transfers are not properly treated.

Both Egs. (6.4) and (6.7) are divergent for an unstable plasma
for then le(ﬁi&))iz will vanish for the &J corresponding to a
marginally stable wave. It is this divergence which we now want to
investigate further and find a cure for.

The Balescu-Lenard equation may be written in the form

71, £ .
@ - @ 05y @@ e, @) (s9)

ot v v
where
e 8nd ei 460 = > N o
B@) = ——s> (2 s P (L) (O- T - V)
n) q
(6.9)
- E') - €, (Ef) 63) :
A(:\}? = 83{ e gnw o J‘ (w - q - % L—’M> o
(2ﬂ> q J(q, @)
(6.10)

2z
dn e .
BE0) = ) t [ D @-F D)
: Q Vlﬁs(q,(o)lL r

(6.11)
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as may easily be verified. In obtaining Eqg. (6.10) we have used
Eq. (4.8) for 62(6369)» Eq. (6.11) is just the classical limit of
Eg. (5.36). We have written the Balescu-Lenard equation in this
form in order to point out the similsrities with the gquasi-~linear
equations, Egs. (4.31), (4.34) and (4.35).

In the guasi-linear expressions for D(v) and A(V) there is no
integration over&). This is essentially because guasi-linear theory
treats the lifetime of the quasi-particles as infinite. In the
Balescu-Lenard equation the quasi-particles are virtual particles
which are interchanged in a collision as is shown in Fig. 5.1.

In the Balescu-Lenard eqguation the function PE(E;éj) is
given its equilibrium value. In the gquasi-linear equations the
corresponding function P(aﬁ must satisfy the differential equation,
Eq. (4.30). This is the origin of the divergence of the Balescu-
Lenard equation; PE(EZGJ) is assumed to he fixed at the value given
by Eq. (6.11) which is infinite for an unstable plasuwa. Really,
P(q, &) should evolve in time as P(q) does in the quasi-linear
theory.

There is also a factor of two difference between the guasi-
linear D and the Balescu-Lenard D. This is because ?(q) includes
the kinetic energy of the particles while PE(éléj) does not. The
factor of two came from FEg. (4.11).

it seems clear that to find equations which preserve the best
features of the Balescu-Lenard equation and the quasi-linear equa-
tions, one should find an eguation which describes the evolution

of PE(a:Cd». This we shall proceed to do.
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6.2 Non-Divergent Kinetic Theory48

We shall write Egq. (5.18) as

a
- 8rne ~ -1
wr (P T : r -~ D ) -
NI‘(V + -—I-I-l‘;l‘g‘-— s —’) = m P(q_)&-)) [Ti w&l(q,m>] (().12)

where P(a;a)) is given by Eq. (5.39). It will be more convenient to
work with P(q,&0) rather than PE(aZGJ). The transition probability

for the inverse transition is given by

z
—> 8me

r
) = .z 2
nog

- =
Wr(v -V -+

(-3, -0) [—9%— Oe ()™ (s.19)

T
This is found by changing the sign of the momentum and energy transfers
and then shifting the velocity by T a7mr. Thé relation
e (30) = o) (-F,-0) (6.14)
may be seen from inspection of Eg. (4.5); 1t is used in restoring the
last factor in Eg. (6.13) to the form it has in BEg. (6.12). It will
be shown later that the difference between Egs. (6.12) and (6.13) is
related to spontaneous transition probabilities.

We can now write an equation for the rate of change of fS(Qﬁ.

By an obvious line of reasoning it is

ot . . —> . o -
B () Z ws(v>+ T g -7 fs(v*' .leQ)

EE .
4
= = T Ez
- WS(V -V + m ) fs(?f‘?}
a .
Bne d5 L 1 >
- ZS v Cl:5 da)(f(a_)_q.v___é_i__)
Tl (2n> ms
-1 g g h .)9 - -
J(;"‘g“”‘ [996) C\) Ql(ajo)] [P(Q;Q) Zfs(V + ms ) - P(-—q,«a)) fs(\;)}

(6.15)
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where Egs. (6.12) and (6.13) have been used. Eqg. (4.29f) has been
used to convert a sum to an integral. It is convenient to introduce
the integral over 6D and the c{w—function in order to give h & its
value of the particles energy loss.

We shall assume that each time a particle makes a transition
the energy it loses (or gains) goes into (or comes out of) the
energy of fluctuations. It follows that the rate of change of

p(q,6)) is given by

PG - ) 2 BE-Sw-T T  pt

- b —9> - — ha g - = T _>9
WS(V + - %’\?) fs(v + - ) - WS(V v o - ) fs(;fv

S S S

2 2

8rn e 6LJ 2

. Z —= & (w-7- 7 )
S hq

- -1 -3 - Tq -
(-2 wqGw) {P(q,é)) 7By - e(g-0) ¢ m}
L s s
(6.16)
where Eq. (4.29g) has been used.

The physical content of Egs. (6.15) may be made more apparent by

writing them schematically

9r /rﬁ
s A, m,
(;ﬁ: Z} % .M//‘/q
q

<l

ais

2l




<

- ‘ —~>
- k(j-/,ﬂ
v + R &7ms

(6.17)
9P
(4,&) ;Zi: ;Z: N\\\ //////2‘
9t -
- T g/m
S v < ,/vﬂfégf;ﬂ - q/ 5
v +h q/m_ JJﬁjf/Jﬂ‘ R.\\\\\\
(6.18

In this form they resemble the schematic equations of guasi-linear
theory, Egs. (4.18) and (4.16). We showed in Chapter 5 that
—> —> . .
Ws(v + 'ﬁq/mS “953 contained terms which could be interpreted as due
—>
to emission of a quasi-particle of momentum h g and absorption of a
...)
gquasi-particle of momentum - R q, so both terms appear in Eqg. (8.17).
We shall now examine some consequences of Egs. (6.15) and (6.16).

We define the particle density by

no= v fs(§3 , (6.19)

8

the total momentum by

5 - 4’ 10 g P(3,6) (6.20)
zz:, d"v m v fq(gs + v (2n>3 2 & 9 '

and total energy by
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m 3
Z:/%%$;W?g®+v/1d%d(gfrumn (6.21)
i 21

A straishtforward calculation yields the gratifying result that

Wy A _a (6.22)
at 4t — at :

Next, we shall prove an H-theorem. The entropy of the particles

of specles s is defined by

S = K /dsv fs(?) log fs(?) (6.23)

]

(This is the classical definition. We have already omitted terms
like 1 - fs(?f’) in Egs. (6.15) and (6.16) which should appear in a
Fermion gas, so Eq. (6.23) is the appropriate definition rather than

. The entropy of the field fluctuations is defined to be

5, ZKV[ [;ﬂw N(q,6)) log iN(?{,aJ)! (6.24)

where

N(q,®) = P(q, &) (6.25)

S
Tl
This is a definition which we have not found in the literature.

It is motivated by the analogy with Eq. (6.23). Also, it permits us

to prove an H-theorem. Also, in the limit of weak damping or growti

it reduces to Eq. (4.25) for the entropy of a gas of Bosons. Now

,%.%,_ 5, = K [dsv [1og Fs(v>) + ]]

- h Q?/st)

v
2
q

8ﬂ€2 Ofn
= LK e Jr A (W - q
B (Erc)
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-1 —
[ ;a; coel@,o}] {P(?f,w) £ (V ?ﬂsq) - B(~q,-4) fs(ir?}
[log fs(x"?) + 1] (6.26)

where Eq. (6.15) has been used. This equation may be written in a
different form by making the change of variables Eﬁ @, v -

.‘% ’”9 —-> I3 i . 0 . .

~d, ~6J), v+ 1h q/ms. Adding the two equations and dividing by two

gives

2
- N
. ey @=Ll
IR a6
dt 3 2 (27{ 5 [ qé
9 ol e o, B3 S )
[96) wﬁl(q,&))] [P(q;ﬁ)) fS<V + o q) -~ P(-q;a)) fs("\/?)
S
[iog 2, - £, + L4)] (6.2
S

A similar calculation using Eq. (6. 16) gives

S - fi V-m B

dS Bﬂe V
at :'""KZ [ /(Eﬂ) /

Fa weyGe)] {P(%’@ £7 r 24 - p(3w) fs(?;“)}
(7

s
- ' - |

[108 | £(5,0) | - 205 [2(-3,-6)]] (6.28)

Summing Eq. (6.27) over s and adding to Egq. (6.28) gives the rate of

change of the total entropy

) - = Thg
4 8re’y , a°g oS- g v - 2m )
S 1 ? 5 3
. h ‘ (2n) q

[ oG]

0]

B(3,0) £,(F + 24) - p(-7,-w) fsﬁr’)}

5

P

—

{mg | B(F,0) £, (7 + =) | - 102 | P(-3,-0) £,() l} (6.29)

m
s
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The product of the last two factors is of the form
{x - ?} {log |x‘-log !y‘}
which 1s always positive if x and y are positive. It can be negative

. —% - . 3 .
if P(q,Q» is negative, but this can only happen if

[25%3" CUeafgaé)i]

1s negative., ©BSince the same factor occurs in the integrand of Iq.
(6.29), the integrand will in any case be positive and we can con-
clude that

as
< >0 (6.30)

It is easily seen that equality holds when fS(QB is the Maxwell-
Boltzmann distribution and P(E;GJ) is the equilibrium spectral density
given by Bgs. (5.39) and (5.36). When these are substituted into
Egs. (6.15) and (6.16) the right-hand sides vanish showing that they
are stationary distributions. It is tempting to conclude from this
that the system evolves toward thermal equilibrium. What is missing
from the proof is a proof that S has a single maximum.

Another consequence of Egs. (6.15) and (6.16) is that

2 2@ w) - 23] =0 (5.51)

If the system approaches thermal equilibrium it follows that

P(?f)w) - P(""EJ: "'6-)) = Po(a(‘)) - PO( “&,“(&))

(q, &)

1 2 - Ca0N D ,
= =L e () (6.32)
" [ @] e G anf

where the subscript o indicates that PO and €, = € + ie?o are to be

calculated using the Maxwell-Boltzmann distributions which the plasma

approaches asymptotically. These distribution functions are
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characterized by number densities, o and a temperature T and mean
velocity V. The temperature and mean velocity are determined by W
and G which we have already been shown to be constants of the
motion. Therefore, it is possible 1n principle to determine the
asymptotic state of the plasma from its state at any time.

Eg. (6.%2) may be used to eliminate P(-g,-4£J)) from Egs. (6.15)

and (6.16) which then become

2 3 2
?fS e V dgr dwo(-(w_aa. =3 'flq_) 1
5t ) - T (250)° my T
- =1 -
? — -3 —> T
[—é-éj— b)el(q,&))] {P(Q)O) fs(v + ""‘ms—q“> - fs(;))‘:]
7 2 - EZO(E;D)
= 2= we (T,0) £ (V) (6.33)
7 [gw 100% J - (Bw) Z s
and
g%; (4,4) = 2)(q,6) 2(d,&) + 5(3,6) (6.32)
where 8;12 e2 o 1
VGw) - ] ——5— [y 04 Gw)
S aq
7~ 5 o - 2 + —> i
[CRTCR TR 2 PO SIS R
) 8
2 2 | N
o(* ) - Z 8n eSGJ —%%—3— G.Jclo] Ezo(q,w)
P T LT E L2 e - (Gw)|?
s q [9&) al} | ol
3 S s T —
v (-9 V- —-Z—m—‘l——-) fs(ﬂ (6.36)
)

Egs. (6.33) and (6.34) are the kinetic equations which we have
veen working toward. We will now inguire into their plausibility.

First, note that when Eq. (4.4) is used for €, We see that ](E,CJ) is
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given by
. @ e, (4,w)
J(a,6) = - (6.37)
?w wel(QJ(‘))

which is just the linear growth rate expected from the arguments of
section 2.3.

A stationary solution of Eq. (6.34) is

P(a:@) = = i@*@”zw"

2)(d,60)
DA RN
E v Le® 0 (dw)
2
F (& (0O -T V- ) 2 (D) (6.38)
| < (2.0 .

This agrees with the equilibrium_P(alégﬁ given by BEgs. (5.39) and
(5.36) if the difference between ¢(q,L)) ana eo(a:Q)) is negligible.
It may be argued that it is only when this difference is negligible
that one is Justified in neglecting the time derivative of P(QZAJ)
in Eq. (6.34). If this equilibrium P(q,4)) is substituted into Eq.
(6.33) one obtains the Wyld~-Pines equation. As we have already re-
marked, the Wyld-Pines equation reduces to the Boltzmann and Balescu-
Lenard equations in the appropriate limits.

To see how the quasi-linear equations emerge from Egs. (6.33)
and (6.34) we shall assume that the waves are so weakly damped or so
weskly growing that the form of P(g,&)) is given by Eq. (5.43);
namely

P(E;GJ) = “\:7{— {d- (@ mjL—cf) [P((D +Tlfl.,a> SE]

+d" (@ + N ) B(-9) (6.39)
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where we have used

H@:Sqﬁﬂgma : (6.40)

For the moment we shall neglect the spontaneous emission terms.
They will be discussed later. When Eq. (6.39) is substituted into

%y. (6.34) one obtains

= 2)(Q) P(q) (6.41)
and a similar equation for P(-g). Here
e, (q,0)
3 a D
= - " (8.42)
J(Q 7 ;

YA wel(a’,am _/}__'a>
in ‘agreement with the guasi-linear result. We have neglected the term
)5 S-(Z _n-af in Eq. (6. 39) since it vanishes in the classical llmlt
When Eq. (6.39) is substituted into Eq. (6.33), the integration over

(D carried out and the change of variable af - - Zf made in the terms

.. —> .
containing P(-q) one obtains

g fS ) - Bﬁzei d;sq 1 P(?{)
t - 2 W3 2 P - -
? gl (2n) q [ YA w el( q,(i_))J e
r -
iof(—n-a)'a)?* 2 [f( >~f v]
z .
R [fsm 53, Vﬂ} .

Expanding f_ v -h ?f/ms) and the ¢ ~functions and taking the T — 0
limit gives
(W 2t
— (@) - B —2) (6.42)
ot 2 Al

where
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5 - s d g '&f;-f P(q)

i (211)5 q t-b%)—- &)61(3_,6))]

d (N -35-7) (6.45)

in agreement with quasi-linear theory. (Note that in Eq. (4.35) we
used 9 GJ el/aw = 2 which 1s appropriate for plasmons.)
We shall now discuss the spontaneous emission terms. A particle
. . . - - s .
can change its velocity from v + T q/an to v by emitting a quasi-
particle of momentum h 5 or by absorbing a gquasi-particle of momentum
- o . . =
~h g. Similarly, a particle can change its momentum from v to
v+ h ?f/ms by absorbing a quasi-particle of momentum A cf or by emitting
a wave of momentum -h E) Since the transitlion probabilities for
stimilated emission and absorption are equal, it follows that
— ho - > g
W (v + ) W (¥ 7+ 4.
s m s

m
S S

is equal to the difference between the transition probabilities per
unit time for spontaneous emission of a wave of momentum h ?qj and
spontaneous emission of a wave of momentum - g. By Egs. (6.12)

and (6.32) this is
2
8]’[es 1

(23,0 - 2(-3-0) ]
T waGe] q

2 2 — -~
. 8ﬂes . [”’5’33" W elo(an))] 520(Q; w)z (6_46)
R Vq f%%_,—— wel(?i,w)] |eo(q,w>|

We may use Eq. (5.43) to write this as

5%3“ @ y4(0,49) }

—5%‘3“ () El( Q;ﬁ-))

o [ 4rtei A (7®) ‘J[
5Ly o 7’0‘&—5—- e o(d,6)]
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[0/(63 -y - d (W + ] (8.47)

Except for the factor

Y] —>
Y C'-)Elo( d, 6-))

202
N (6.48)
""9'%)" 6“)61( Q.;@)

Eq. (6.47) is just what we would calculate for the difference in the
spontaneous emission probabilities if we use the Fermi Golden Rule and
Eq. (3.23) for the vertex part. It should be noted that the fre-
quencies ~j1“2§ are to be calculated from elo(a;CL» = O rather than
el(a:é)) = 0, This difference in the charactefistic frequencies is
probably not significant in those problems for which gquasi-linear
theory is applicable. Also, in those problems the factor in Eq.
(6.48) probably does not differ significantly from unity. Neglecting
these discrepancies the spontaneous emisgion terms give the expected

contributions to Eq. (6.41) and (6.44).
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CHAPTER 7. HIGHER ORDER PROCESSES
The wave-particle interaction vertex functions which we found in
(3.23), (3.26) and (3.27) can be used to construct the vertex
functions for higher order processes by using the higher order terms
in Eq. (3.29). As the first illustration of this, we shall calculate
the vertex function for the interaction of three waves in an unmag-
netized plasma.

7.1 Three-Wave Interaction

We shall consider the case in which a wave of type 1 with momentum
il a; and energy h ”/Ll combines with a wave of type 2 and h a% and
B.Jq,? to give a wave of type 3 with h @; and h J1m5a Schematically

we can write

3
.ﬁ
q5,1L5 ) Z
s, ¥
qz,n
q ;
1 1
- - 7
k < k + a1 >
4 7
rs
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WAV

What we mean by this is that we shall use the third order term in

s
L

Eq. (3.29)

oyl T N
" Z Z <rlulr><1latlz > < axjetli > (1.2)
(E. - E_+ in) (B, - E__ + in)
I T i I 1 1T

to calculate M, the vertex function for the three wave interaction.
The waves interact with one another through the wave-particle inter-
actions as illustrated by the diagrams. The sum over intermediate
states in Eq. (7.2) is a sum over all of the particles which can take
part in the process; hence the sums over s and X in Eq. (7.1). The
sum over intermediate states also includes a sum over the six time
orders shown in Eq. (7.1). The particle which enters the process
with momentunfﬁ.i?leaves with the same momentum so there is no change
in the particle distribution functions. The only change is that waves
1 and 2 disappear and wave 3 appears. At each vertex momentum (but
not energy) is conserved. We have shown this explicitly in the first
diagram of Eq. (7.1). There is overall conservation of energy and
momentum so

W+, -1 (1.5)

N AL, = AL (7.0)
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A straightforward calculation gives

P [d% . @
h s

M, (X, 4,) (K + q), q,) 1 (K, q))

- - Nl 2 . - - h P Oy
['n"'l TR T T, T ”‘] [“‘ Ly -dlg+vV - aq, - 2 ”‘)]
g (2 e = -
[(1_, e S 2+i][JL. o TS - 2+i]
° 9% Zm_ dp T 1 2 3 9 Zm_ R
= —> B I T =3
- M
= = T 2 117N —_— i 2
[JL] -V ql - st q_l + lT]]~[ l +-{L2 -V q3 - ‘st q_5 -+ J.T]]
MRy v (R 2 2 = -
. M (K, q,) M (K + qy, ap) My(k,a)
- - - b;l 2 .1 - R 2 .
[ILz*V'qa"'zms 92+1“][f"1+“‘2"2'v'qs'2ms qS*”‘J
-3 —> > — - — —
- )
—JLV—a.——a_LZ ][ _ o= T 2 ]
[ 3TV dy 2 g + | Sy - Sy + V- g Zm_ 4 + 30
- > = — 3 —3 >
Y i -
) M (e q)) Mo (K -y, q,) Mo(K,q)
T) . — Tl 2 . :[ : —> . —3 E 2 . ”’
[-_/1.5 tVoeogp - a, + 1ﬂ ’fLZ - f}_.s TV oeqy - st q; + Iy

2m
s

(7.5)
In this equation Ml’ MZ and MS are the appropriate wave-particle vertex
functions taken from Egs. (3.23) and (3.26). Their arguments are the
wave vectors of the particles and guasi-particles involved in the
process. We have used h f{ = ms’ﬁ\? aixd have simplified the energy denom-

inators. Eqg. (4.29g) has been used to replace the sum over i by an

. >
integral over v.
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Before considering some special cases of Eq. 7.5 we shall re-
mark that diagrams such as the first one in Eq. (7.1) are sometimes

drawn as

In this diagram the incoming particle lines are not drawn but a line

is drawn from the last vertex to the first indicating that the particle
of momentum B K which was removed from this state at the first vertex
has now been restored. This may be thought of as the creation at the
first vertex of a particle and a "hole" (that is, a hole in the
original particle distribution). At the final vertex a particle and

a hole recombine.

a. Three-plasmon interaction. If all three of the waves are

plasma oscillations with frequencies given by

oo O (1 + - 168 (7.6)
q pe 2 ?

then it is not possible to satisfy Egs. (7.3) and (7.4). Therefore

we need not concern ourselves with this case.

b. Plasmon-plasmon-phonon interaction. We shall suppose that

guasi-particles 1 and 3 are plasmons and that 2 is a phonon with fre-

quency given by Hq. (4.10). Then, Egs. (7.3) and (7.4) can be
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satisfied. The plasmon-particle and phonon-particle vertex functions
are given in Egs. (4.13) and (4.14). They are functions of the quasi-
particle wave vector only, so they can be taken outside of the
velocity space integral in Eq. (7.5). We are interested in classical
limits so we shall keep only the lowest order terms in h. After some
tedious algebra we find

MMM,V
M = ;Zi: -—33%%51- &y £ (V)

m

1
- - = — e
(,/1_1 - ql) (~/1.2 -V . qz) (__/7..5 - e qg)
>y 2 5w 2 S oy 2
(a; * qy) ag ) (9 + ag) 9] X (g7 * ag) ap
- - - - - =
(./1.5 -V - qs) (_/1.1 -V ql) (,/1.2 - qz)

(7.7)

With further approximations this can be put into an interesting and
useful form. Since the plasmon frequencies are much greater than the
phonon frequency, we neglect all but the last term in Eq. (7.7). Also,

we make the approximation

(fLy =7 =) (g -7 -7 =L WF (7.8)

In the integral

£ (V)
3 S
2 -7 9

We assume that the phase velocity of the phonon is much greater than
the thermal veloclty of the ions and obtain

£.(¥) n, n, m,
. 1 ~J 1 —~ 14
(—JLZ - * @ N 2‘2 q2 T

(7.9)

<
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for the ion term. We assume that the phase velocity of the phonon

is much less than the thermzal velocity of the electrons and obtain

}/ 3 fe(;3 ne me
a"v =~ (7.10)

e A 2
(,flz -V - q§ 95 Te
for the electron contribution. FPFinally, we assume
4, 9z 7 7 9 (7.11)
50
= = a7 )
dz = 9 + 9 9 (7.12)

With these approximations Eq. (7.7) can be reduced to the form

M = pe 2 (7.13)
8v m, n.flz

This 1s essentially the result obtained by Vedenov and Rudakov by
4
another method. 9 It has also been obtained by a more elementary

method by Harris.so

¢. Plasmon-plasmon-photon interaction. We shall suppose that

quasi-particles 1 and 2 are plasmons and that 3 is a photon. The
plasmon-particle vertex function is again given by Eq. (4.13). The
photon-particle vertex function is given by Eq. (3.26). In evaluating

Eq. (3.26) we use

e —_
= | = ig e x |2 R o ,
<k fugcve ky > = —7/— U K f?ﬂ%,q (7.14)
s
and
C&Jz
1 (] 2 1 ) 2 Y e
9 - e e Y O] . —B) =2 7.15
o 60 YT 6 (-5 (7.15)

where we have used the cold plasma dielectric function. We obtain
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o 41/2
s % 27 h € . .
Mo (K, q5) = — A w, + K (7.18)
5 3
where B k is the particle momentum and T 2133 is the photon momentum.
Eg. (7.5) takes a simple form if the plasma is cold; that is
fs(??) - nscf’(?) (7.17)

q
3
Eq. (7.16) the only terms in Eq. (7.5) that are non-zero are the terms

Then, K = me/ﬁ will be zero, and because of the factor - ¥ in

containing MZ)(E9 + ffl, TJ%) and. MS(TS + ?192, ?{3) . We obtain

: 1/2 1/2 2 \1/z
- Znei Yl_/)_l / Znez'ﬁ.ﬂ.z / T 2n B €q /
Mz“{z"z T Tz m VAL,
5 ql q2 S
—> -
ug ¢ qy
ja) 2 yal 2
(./Ll i ql)(~ﬂ-2 - Ea qg)
9 S
A‘L_la ._9
* “?1 qg e = (7.18)
("n'l N ZmS ql)('n"E - st qZ)

—>

Using 35 -4y = Ifé . (—{l + ajz) = 0 and keeping only the lowest order

terms in T gives

N /2 2. ~qa
T 2ne &) 2l 2 2
M= - —— ( ) T (aqy - a) (7.19)
> V.JI_.5 i

We have approximated .fL.l and L o by [Jpe and neglected the ion con-

tribution.



7.2 Wave~Particle Scattering

We now consider the process in which a wave is scattered by a
particle. This may be calculated as a second order process which

may be written schematically as

1 é 1
R 2
a;-ny /é o,
s ,x — =8 N
Py

— - -

2 1
A
o /
—_—3
1 I o,

(7.20)
It is not necessary that the quasi-particle labeled 2 be of the same
type as the quasi-particle labeled 1. For instance, a plasmon may be
converted to a phonon in the scattering process. Overall counservation

of momentum and energy is assumed SO

— —> — —

By + 4 = Py + 9 (7.21)
and

-0 2

h Z i) 2 -

2 Py + T ./Ll " T o, + h_/L2 (7.22)

Applying second order perturbation theory gives the matrix element

for the process of Eg. (7.20) as

M- Z < flalr > < 1lu'li >

N Ej. - EI + in
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m,(5,,4,) (5,9

- 22
- Rp 2 2
1 N ‘h - —el .
( Zn_ + DAL - 2u P17 4l T

(3,3, %23,

z7
Tp z
1 Bl - - .
(2% +BSe)) - (RSl + B, - msl%ﬁ'%ﬁ+lﬂ

(7.23)

+

To be specific we shall restrict ourselves to plasmons and phonons;

then M, and M, are given by Eg. (3.23)

= 1/2
N 45[62 T f).l o /
M (B = p, = ~ (7.24)
2 2 —3
v s weGo)|
Y 1 ,(11’2
Letting V = h pl/ms we can write
éﬁei h . '“0"1 "Q'Z 11/
M= — ~
Jql Gy Mg —2 (e —ﬁ-* I19)3
ao 1 94) 1
.13 T YR I ,
1 2
Y -
4 " %
' — - T 2 . - ~3 R 2 .
[111"q1 Voo TEm ‘%.+'”J [Jle TR VT TEm % T in]
(7.25)

It is not sufficient to stop with Eq. (7.25). As we shall see there
is a third order matrix element which makes a contribution of the same

order. This is the process shown schematically in Eq. (7.26).

1
iy
ql-n-l Qo = Z
2 2 'E)
S}
§ >
P

LN
>

.‘é
Pa
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1
\‘xﬁbi”bq,L“_NEA /Mﬁ/
s' S, oL

N
k
—> < \\ =
Py
g
s Py
+ five other time orderings (7.26)

In this process a particle of momentum B K absorbs and emits the quasi-
particles and collides with another particle. The other particle has
its momentum changed from h El to h 5; while the original particle

has its momentum restored to'ﬁ.ﬂi There are six time orderings as
there were for Eq. (7.1). The vertex functions for the quasi-particle
emission and absorption are again given by Eq. (7.24). The vertex
function for the particle-particle scattering may be taken to be the
screened Coulomb vertex

dne e ,
S8

— — |2 —> -
v 5y - Pz' e(p; - Byps Aby-A15)

- = .

The matrix element for this third order process may be written as

w= ) (@, ) 105, 1L,) w(B5,)

3 - Z E 1 .
v v e () G -5 7 (B, = B 7 1in) (7.28)
A 175 i 7

where the last sum is over the six time orderings. We shall spare the
reader the tedious details of collecting the terms and expressing the

results in a convenient form. When only the lowest order terms in
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are kept we find

. Z(én)ee,

Ve | (G @a)a (G @) g

1 v £(V)
- - |2 - ~5
‘ql - G| oG - G STy - ALy) /

j1/2
’rLl_ JQ'Z /

2 2 —> - 2 — -3 ‘2 - - a
% % ho%® {‘ |4 - % ! %
AZAZ (A - AP LAl A A T A
(7.29)
where
J\..l = £, - 31 -7 (7.30)
-> -3
-/\-2 :._()-.2 -4y vV (7.31)
If both quasi-particles are plasmons and we make the approxima-
tions
2 [’ ~
o == = — 2 7'52
(9 ) Qe (s @ (1.52)
Q. Q.
Il =
_/\.l _/'\.2 AN (7.33)

and neglect the motion of the ions, then Eg. (7.29) reduces to

T, 9 %
M= 2m V - 2 ._[l
‘ql - qz‘ C(ql - qz) n )
AR
. { s 1} (7.34)
94 4 e(ql - Qo> ,ﬂ_l - ,O..Z)

When the same approximations are made in Eg. (7.25) and the results are

added to Eq. (7.34), the last term cancels and one obtains



- -
. Boo,, 4 % L % 1
- 2m V | — - {2 a7 9o - — .
ENRE? Lo e(q) - ap, Ly - L1))
(7.35)
From Eqgs. (7.21) and (7.22)
a . B __j_{___ 2 2y oo

In the classical limit this is to be used in the argument of

— Y
e(ql - qZ"(ll - ,CLZ).

7.5 Bxtension of the Quasi-Linear Equations

We shall now discuss the corrections which must be made to the
quasi-~linear equations because of these higher order processes,

a. The unmagnetized plasma. We have already remarked that if

ﬁ; = 0 there are no three-plasmon interactions which conserve momentum
and energy. For the moment we restrict ourselves to a single species
plasma so interactions involving phonons are ignored. We shall con-
sider the corrections to the quasi-linear equatiaons given in Egs.
(4.17) and (4.19). The non-linear processes of interest here are

the wave-particle scattering processes of tThe last section. These

are often referred to as non-linear Landau damping terms. We must

add to the right hand side of Fq (4.16) \
__>
/' ’K
N — —3
ONA (®) p+aq . K+ g
7R - '
NLID  p,q /\ S
— - kK

Al
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\ 2 2
217 i2 ' hil 2 T - =2
) 12:; el |Ml o [E J]'k +q T2m P -B jl'k T i B+l ]
P4

{NA (% + Q) Ne(i?) [1 - (p + q):l [NA (®) + l]
-[N?\ (¥ +q) + 1] [:L . NE(E’)] N (B + E’)]N A(I{)} | (7.37)

where M is the matrix element discussed in section 7.2 and we have

dropped some superfluous subscripts. A similar equation for~Ne(p) is

N -
._g__%i. (D) = - 2 %“ 'Mlzo’l_'z.m] {7.37} (7.38)
NLL

where we have emphasized that the arguments of the dp ~-functions and
the quantity in curly brackets are the same in Egs. (7.37) and (7.38).
It should be noted that in the classical unit the argument of

the dﬁ—function becomes
Ly, 3 -flo) V- d=0 (7.39)

The particles which give the damping are those moving with the velocity
of a wave whose frequency is the difference frequency and whose wave
vector is the difference wave number. This may provide an effective
damping mechanism for waves which are linearly weakly damped.

It is easily seen that the right hand sides of Egs. (7.37) and
(7.38) wvanish when N, and I3 are the equilibrium distributions of
Egs. (4.27) and (4.28). Furthermore, it is not difficult to show that
the entropy defined by Eq. (4.23) increases monotonically. The proof
is quite similar to that which precedes Eq. (6.30).

Non-linear Landau has been discussed by Kadomtsev.l



100

Although three plasmon interactions cannot conserve energy and

momentum, four plasmon processes can. For plasmon-plasmon scattering

we have

- - — -

Kk, 4k =K+ kK, (7.40)

O N O N 4
L L _(15 + _(14 (7.41)

where 1 and 2 refer to the plasmons before scattering and 3 and 4
refer to the plasmons after scattering. Using Eq. (7.8 ) for the
frequencies gives

2 2 2 z

ey + . 2
k| + Ky o=k 4k (7.42)
The scattering is just like that for particles of equal mass with
Eqg. (7.43) playing the role of the energy conservation equation

2 2 2

2
Vgt Vy = Vg Y (7.43)

3 4
This four-wave interaction gives a correction to the right hand side

of Eq. (4.17); namely

N A N
P+ q
<}Z§%fl_.(§§> = ZZ:
d & p,q ﬂg/fﬂ Fﬁ\\\\g’ fffﬂjﬂ ﬁlhx§f
2t D+ a

» ,;;‘ P [0, 0, - - 0]

5,4
A RN NGRS PG
-@A(£+€)+ﬂ[ﬁa(ﬁ+J]Nhﬁamﬁj§+®} (7.44)

where M is the matrix element for the four-wave interaction. Once

WV

again it may be shown that the equilibrium distribution (Eq. 4.28),
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causes the right hand side to vanish and that the entropy defined by
Eq. (4.25) increases monotonically.

Zakharovzo has calculated the matrix element for the four plasmon
interaction from the fluid equations for d cold plasma and derived the
classical 1limit of Eq. (7.44). He found that the Rayleigh-Jeans dis-
tribution 1s an equilibrium solution. Rather curiously he found

another equilibrium solution with

1
~7 £
NA (%) ————7-1{13 % (7.45)
This 1s analogous to the Kolmogorov spectrum of hydrodynamic turbulence.

b. The magnetiied plasma. The interaction of three-plasmons in
15,16

a cold plasma in a strong magnetic field hasg been treated by Walters
using the fluld equations,by Aamodt and Drummond17 using theleasov
eguations and by Rosle using methods eguivalent to those of section
7.1. In a strong magnetic field the motion of the electrons is essen-
tially one dimensional. If the electrons are cold the dielectric

function is

z 2
- pe 4y ‘ -
(@) =1 - ——= 5 (7.46)
q

where the z~direction is the direction of the magnetic field. The

frequency of a plasma oscillation is given by

N oo, -l (7.47)
Also
965-’ el>ﬂ = 2 (7.48)
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Eqg. (7.7) is easily adapted to this case. Since the motion
of the electrons is one dimensional, the integration over velocity
. . . - =
space 1s replaced by an integration over v, The vectors 4, 9
and E% are to be replaced by their z-components except in M1 M?
and M3 where inspection of Eq. (3.23) shows that qi, q; and qi

should appear. Eg. (7.7) becomes

2 3/z2 q1/2
2ne h / '[ll JQ“Z .113 / v
M = v 2 2 2 Z dv £ _(v)
9 9 93 Mg
1
() -0 v) (g - g v) (L2, - ayv)
4 4, Q? q. a. Q? g q. Q?
1z 2z *3z + 27 3717 + 1z 3z 2=z (7.49>

(L5 - ag,v) (L1 - ay,v) (L, - q,v)

We have neglected the ions and have used Eq. (7.48) in Eg. (3.23).
If the electrons are cold so that the electron distribution function

is given by Eq. (7.17), then Eq. (7.49) gives

. 3/2
M- <~2ﬂe 'hA> nv 1
N v 2 [ 11/2
m_ 4 9 9z _()»1 ,_0.2 “‘()"o]
2 2 2
Az 9y 92y %y q5z qlz ql_z q5z 9y .
7 + ol + o (7.50)
3 1 2

Fq. (7.49) agrees with the result of Ross,21 and. Eq. (7.50) agrees
with the result of Walters.l5’16

This three-wave interaction should add a term to the right hand

side of Eq. (4.58). The term is
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-
=3 k+ g
0N K
) i
3-W —> - -
q

= 5 K

k+ q 4
\

L [Eeear et oy, g ng-ng
q

{N(’f+ D @ + 1] (D + 1] - [:N(-l—ng 3+ 1] n(E) N(a’)}

a5 5 - = x| 2
P2 |uE T R-DF (- )

{N(ED NX - Q) [N(i?) + 1] - [N(c—f) + 1] [_-N('f:’ -YED + 1] N (%) (7.51)
The matrix elements are given by Egs. (7.49) or (7.50).

Once again it may be shown that the equilibrium distribution, Eg.
(4.28), causes the three-wave interaction to vanish, and also that the
entropy defined by Eq. (4.25) increases monotonically.

There should also be wave-particle scattering contributions similar
to Egs. (7.37) and (7.38). RosstT has calculated the vertex functions
for these by methods equivalent to those of section 7.1. The
classical calculation using the Vliasov equations was given by Aamodt and

Drumm.ond.17
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7.4 A Wave-Vector Space Instability

We shall now discuss plasmon-plasmon-phonon interaction for
which we derived the vertex function in section 7.1 a. We will denote
plasmons by the symbol ;\ and a wavy line (}\»vvv*mm&) and phonons by
the symbol V and a broken line (\7-"- - —-%)_ We shall neglect all

interactions but this three-wave interaction. We now write kinetic

equations for N A (X) and NV (q).

i-g
7 j-f{‘ -
Ny n\k/’?f SR &
%—(q); % / - //y
K4 g '/if i )
on 2

% F S g s Sy

SNA (K + q) [NA (¥) + 1J [NV () + 1] -[:NA (X + Q) 1] A (%) NV('?@}
(7.52)

This is almost the same as Egs. (4.16) and (4.17). Here the plasmons
play the role of the electrons and the phonons play the role pre-
viously played by the plasmons. The matrix element, of course, is
different; here M is given by Eq. (7.7) or Eq. (7.13). An equation
quite similar to Eg. (4.19) can be written for]ﬂ;\(ﬂs. Because it is
so similar we shall not write it down. The similarity can be made

more striking if we assume the approximations which led to Eg. (7.13).

We write
¢ M=
aves A T Ty w (7.53)

—

where vy is the group velocity of a plasmon
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We introduce spectral densities P 3 (¥) =% ..f'\...A e YA (X) and

Na(k+q) -NA X *q- (¥) (7.54)

PV (@ = BILVq N Vv (q) and use Eq. (4.29f) to obtain

—%P[B’— (@ =2)y (@ 2y (@ +8p (@ (7.55)

where
o @ = e (e A
o (7 - 7; - . V?E? (7.56)

(7.57)
which are to be compared with Egs. (4.30), (4.32) and (4.33).

{f the plasmon distribution function is such that more ‘plasmons
emit than absorb then }~7 (ED will be positive and the energy in the
phonons will grow at the expense of the energy in the plasmons. We
may call this a wave-vector-space instability in analogy with
velocity space instabilities.

Eq. (7.56) without the spontaneous emission term was first de-
rived by Vedenov and Rudakov.49 Vedenov and Rudakov have also in-
vestigated the non~linear interaction between plasmons which occur
through the exchange of a virtuasl phonon; that is, the process de-

scribed by diagrams like
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/ E/é\.
They find the interaction gives rise to an attractive force between
plasmons causing plasma oscillations to tend to "bunch." This has

also been discussed by Chang and Drummonddl and by Harris.bO

7.5 Negative Energy Waves and Explosive Instabilities

Until now the discussion in this chapter has been restricted to
positive energy waves. We remarked in section 2.3 that some of the
instabilities predicted by the linear equations could be viewed as
the coupling of a negative energy wave to a positive energy wave as
illustrated by the diagram in Fig. 7.la. There are also non-linear
interactions involving negative energy waves which give rise to in-

stabilities. These are illustrated by the diagrams of Figs. 7.1b

and 7.1c.
- —
. q._]_ +q.l
T AANNAAAAN A AN L AANAN AN
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Fig. 7.1 Negative energy wave interactions which give rise
to instabilities.

In each of the diagrams of Fig. 7.1 one of the waves is assumed
to have negative energy. In Fig. 7.la we shall suppose that it is
wave 35 which has negative energy. Then conservation of energy and

momentum require

- -3 - -
Q@ *t A+ 9y =0 (7.58)
O+ Ll (- ) =0 (7.59)

Similarly, for Fig. 7.1c

>

— - -3
Py =Pyt Q) + q (7.80)
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p e

pa 2 T 2
~§E;—val - 7 p, + X Jﬂ_l + (B Jﬁmz) (7.61)

where we have assumed that wave 2 has negative energy.
Kinetic equations similar to Egs. (7.51) and (7.37) can be
written down for the processes of Fig. 7.1b and 7.lc. This has been

53,54 and

done by Dikasov, Rudakov and Ryutov,52 by Aamodt and Sloan
by Coppi, Rosenbluth and Sudan,55 These interactions give rise to
explosive instabilities. They are called that because the wave
amplitude grows to an infinite amplitude in a finite time. We shall

discuss them further in the next chaoter.

7.6 Radiation from Plasma Oscillations

In section 7.1 c we derived the vertex function for the process
in which two plasmons are destroyed and a photon is created. The

conservation of momentum and energy for this process require

- — —
ql + q‘Z = q3 (7‘62)
N. +4L_ =1L '
L . 5 (7.63)
s 2 2 2.1/2
. ad \i M
Approximating _(1—1 an _(12 by‘éJ%e and_17.5 by (C;)pe +tqg C )
gives
- 2 2 2y1/2 .
_(L5 = (C;)pe + g, c ) =2 0356 (7.64)

The frequency of the emitted photons is twice the plasma frequency.

Solving Eq. (7.64) for ag gives

_ ngpe

U = 9z = c (7.65)

for the wave number of the emitted photon. The energy emitted per

unit time due to this process is
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_energy v d q3 M d %l T (L
tlme (ZI() (2 ) 3

2 2 . o
—{%—‘M‘ 0/’(“0'5"0'1"[1'2)’1\73(%)N,\(qs*ql) : (7.66)

where M is given by Egq. (7.19). To get this we have summed over the
polarizations and integrated over:the wave vectors of the emitted
photons and have integrated over wave vectors of one of the plasmons.
The wave vector of the other plasmon is fixed by Eq. (7.62). We

can write

Ay -y -0 = (Tl e - 200
26.)
o (a0 - agp) (7.67)
C q_:.)
and

3 2
d7q, = q, da, a6 (7.68)
where dQJ) is the element of solid angle into which the photon is
emitted. The sum over polarization can be carried out with the reault

9 > 90\°
Z 2 . i
(E; . E%) = qi sin® o = qi [; - (}.2;...521) .J (7.69)

i 9 930

3
where © 1s the angle between a; and a;o the wave vector of the emitted
photon. Carrying out the sum over ﬁ% and the integration over dq3 in
Eq. (7.66) and then dividing by d &) gives the energy emitted per unit

time per unit solid angle. The result is
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- — -

aw N 3 f v 3 A (q1> P (a5 - qp)

T 7} z 3 d 5T

dt d (27) m c ‘q5 - ql|
@ 2 \° 2
1 30 2 - - 02

1 - (—~—-——q~——-——> 4G - | - 9| (7.70)
%4 439

We have expressed the result in terms of classical guantities.
Classical calculations of this process have been published by
) 56 N 57 o8 .o .
Sturrock, = Aamodt and Drummond, Boyd, Birmingham, Dawson and
- ;
Oberman,bJ and Tidman and Dupree.GO Tidma,lr16'L has discussed the
relevance of this process to burst of radio emission from the sun

which seem to occur at twice the plasma frequency.
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CHAPTER 8. INTERACTION OF MONOCHROMATIC WAVES
In previous chapters we have been concerned with a continuous
spectrum of waves. If there are only a few monochromatic waves in the
plasma, then use of the Fermi Golden Rule to calculate transition
probabilities is no longer Justified and other techniques must be
used.
If there are a large number of quasi-particles in the same state

then one is Jjustified as treating the wave as a classical wave. The

. . . ! S ) +
creation and destruction operators, BEG, P Bzo” Aiir/’ and Afo”

introduced in Chapter 3 may be treated as classical wave amplitudes
and their complex conjugates (which they were before we guantized
the system). For simplicity we shall restrict our discussion to the
interaction of three waves. We shall keep in the Hamiltonian only
terms involving these three waves and shall discard all of the rest.

Then the Hamiltonian can be written as

Ho=H_+ H (8.1)
W= 8, B, ci C, + 8, B ML, CZ C, + 8, R [, c;vc3 (8.2)
H' =& c; cg cg + B MG,

+ R CZ cg c, + Bmc C, c;

+h oM, €] C, c + B Cloc,

+ oM, ci C, Cy + BN C c; Cg ' (8.3)

Here Cl’ C2 and C5 are the amplitudes of the waves and C+, C2 and Cg

are their complex conjugates. The frequencies of the three waves
are .fl.l, _O..-Z and '()'3 in the absence of interaction. The signs of

the energies of the three waves are denoted by S., S, and 8. In B

1’ 2
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have been included all of the three-wave interactions. The vertex
q . Y . . - W* e
functions Ml’ MZ’ M3 and M4 and thelr complex conjugates Ll etc. hav
supposedly been calculated by the methods of Chapter 7. We have
written H' so that it is real.
The equations of motion for the Ci's are obtained from the

Heisenberg equations of motion

"%T €1 = - "%“ [©; Hl (8.4)

using the Boson commutation relations, HEgs. (3.12) and (3.13). After
the equations of motion are obtained they are interpreted as ordinary
differential equations for the wave amplitudes rather than operator

equations. We find

élz-islﬂlclwiMlC;fC-g—iMZCJBFCS
- M C, C_,g-iMéc C, C, (8.5)
szmlszﬂ_zcz-iMlc’icg—iMzc”icS
nip/gclcs-iMchcg (8.6)
O, = - 18 ILSCS-iMlCiCE~iM;§ClCZ
ulMBC;CZ—iMZClC; (8.7)

where the dot denotes a derivative with respect to time. Some special
cases will now be considered.

8.1 Resonant Interaction of Positive Energy Waves

We shall assume that Sl = 52 = 85 = +1, so all three are positive

energy waves. It is convenient to let

it

Cl(t) = al(t) (8.8)
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c,(t) = a,(t) -idl ot (8.9)
0 () = ag(t) e tdtst (8.10)
Eq. (8.5) becomes

s =i anr an ei(ﬂ-l + Ly - LL)t

- i, a',: a ei(ﬂ-l # bz - ﬂs)t

i a; a ei(fl-l -l + SL)t

- i M, a, e, ei('n'l - ALy - gt (8.11)

There are similar equations for éz and és. Now we shall suppose that

L+ .f)-z = _().3 (8.12)

so that the diagrams of Fig. 8.1 are the dominant processes.

1 23
Fig. 8.1

All of the terms in Eq. (8.11) except one will contain as factors
rapldly oscillating exponentials. If 815 8o and g vary slower
then these terms will approximately average to zero and we will be

justified in keeping only the term containing M2 a; aS. Assuming

that this is the case, we write
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. . +
2 = - 1My e, a, (8.13)
Similarly, when the same approximation is made in the equations for

a,. and és we obtain

2

5. = -1iM, a a (8.14)
2 Mé 173 .
by = - 1 M; a, a, (8.15)

Now, we see from Fig. 8.1 that whenever a quasi-particle of type 2 is

destroyed, one of type 3 is created. This leads us to expect that

+8. +a+a
g & 3 Pz

Indeed, using Egs. (8.14) and (8.15) we easily find that

= constant (8.18)

d + +
-—a’_Eb‘- (a.z 8..2 + 8.5 a3) = 0 (8.l7>
Similarly, conservation of energy would imply that

+ + +
4151 By By +-_f12 8, a, + .ﬂls a, &, = constant (8.18)

Again, the equations of motion may be used to show that this is indeed
true.

Next we write

a, (t) = b, (%) () 1, 2, 3 (8.19)

where bi(t) and ¢j(t) are real functions. Eg. (8.13) gives

éi -1 él b = - 1M, b, b, L+ 2 - Ps)
S l

1, I bz b3 ei(¢l + e - s -0") (8.20)

where we have let

-ig"

My = |, | e (8.21)
The real and imaginary parts of Eqg. (8.20) yield
b, = ,Mél b, b, sin P (8.22)

(SN

By - M, | —— cos § (8.23)

b2 b,
1
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Y=t vty -8 -0 (8.24)
In a simlilar manner we obtain

by = |1g] by by sin § (8.25)
by = - |¥|py by sin § (8.26)
The three equations like Eg. (8.23) can be combined to give

bl (o e - ) e 27

The constants of the moti

show that

by = bi " bZo - bio

b = by + b5, - o
where blO’ b20 and b50 ar

relations may be used to

Bg. (8.22) gives

on, Egs. (8.16) and (8.17), may be used to

(8.28)

(8.29)
¢ the values of bl’ b2 and b5 at t = 0. These
eliminate b, and b,. Dividing Eq. (8.27) by

ad 1 by b, cos § (5.50)
. - \o T - T3 sin § ’
1 1 b, by
from which
sin b b
____;i_ a3+ .- ) o (8.31)
cos @ bl bz b2 1
2 %

Using Egs. (8.28) and (8.
grated to obtain

bl b2 b

3 cos & = constant =f’

29), both sides of this equation can be inte-

(8.32)

Instead of giving the general solution we shall consider a simple

speclal case.

Suppose that at t =0, b

= 0. Then f’ = 0. At later

1
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times when b., bz and b5 are all non-zero, Bg. (8.32) can be satisfied

only by cos Q = 0. Then sin Q - T 1 ana Eq. (8.22) becomes

do
1+
at 7 ‘Mé' bz b3
" z Z 2 7z o
_t lM2] wd SR Wd by, - B (8.33)
Then
b
1 av,
+ = = |M2| bt (8.34)
b
o) 1 2 L2
1 + bz bSO - Dl
20

2
The result can be expressed in terms of the Jacobl eliptic function6

t) = 1 .35
b, (t) = b, sn (‘Mél b, t) (8.35)
The other quantities of interest b2 and b5 are obtained from Eqg.

(8.28) and (8.29) with b, . = 0. The intensity of wave number 1 is

10
b?(t); it oscillates between its initial value of zero and bgo. The
intensity of wave number 2 oscillates between bgo and bgo + bgo. The

. . . 2
intensity of wave number 3 oscillates between bSO and zero.

The general solution has been given by‘DanilkinES5 and by Sugiha.ra.64

The interaction of transverse electromagnetic waves with longitudinal

plasma oscillations and ion sound waves has been discussed by

Montgomery,65 Danilkin,65 Sugiharao4 and Dolinsky and Goldman.66

8.2 Parametric Excitation of Wave367-69

Some simplification of the equations of the last section is obtained
if it is assumed that the amplitude of one of the waves is held fixed
by some means. Let us suppose that

2 2 .
|Cl| = Iall = constant (8.386)
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We shall assume that Eq. (8.12) is almost but not quite satisfied and

write

.(\.l+_0-2 —_Q5=A C (8.37)

where A is a small quantity. Then, Egs. (8.14) and (8.15) are re-

placed by

. . + iAt

b, = - 1M, &) a, e | (8.38)

. ok -idt

d, = - 11 8 a, e (8.39)

There is no equation for aq since 1t is assumed to be given. We let
| -iet

a, = ’al’ e (8.40)

ézz-iIMZ altaS fBt - o) (8.41)

. -i(At +ob -¢)

as“'lle allaze (8.42)

These are coupled linear equations with variable coefficients. A solu-

tion is easily obtained. If we assume that

i1V

as(t) =D, e , | (8.43)
then inspection of Eg. (8.41) shows that a, must have the form

i[(\? + D)t +o(.-f.]

a,(t) = b, e (8.44)
Substituting Eqs. (8.43) and (8.44) into Egs. (8.41) and (8.42) gives
the linear algebraic equations

(V+A)b2+]MZalIb3=O o (8.45)
|, al,bl+ Vb5=o  (8.48)
Setting the determinant of the coefficients equal to zero and solving

the quadratic equation for Ly gives the two roots

Vtz-——%—Af\[ (%‘)ZJ“iMaal‘z (8.47)
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These frequencies are always real.

The general solution for az(t) will have the form

i(V, +4)t i(V_ +A)t
e + A

a,(t) = A, e (8.48)

i
where A, and A_ are constants which must be determined by the initial

conditions. As an example let us suppose that at t = O

a?(o) =0 (8.50)
as(o) = Ay (8.51)
A simple calculation gives
INE:
|2, (0)]
2
e |4, 2 | 2
= ‘aSO' 5 sin AN 2 (8.52)
(A 1 of (8 by o s
2 |M2 &

From Eq. (8.16) we find

i2 P i 2 .
|a,5(t)| = laso‘ - |a2(t)l (S.bé)

Note that in the case of exact resonance, A - 0, these equations
reduce to
lz

|a, ()% = ]asolz sin’ | %, = | (8.54)

|a5(t)|2

A quite different result is obtained if it is supposed that wave

|a30|2 cos” |M2 2 |t (8.55)

number 3 has a fixed intensity and let

—iGQ

a, = |a5[ e (8.56)
Then the eguations become

. . + it - o - -
By o= -1 'Mé a5| o el( ) (8.57)
a . + i t - ~

R L N AL - - (8.58)

If we assume that
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iVt
€ b

a, = b, (8.59)
then inspection of Eq. (8.57) shows that a, must have the form
a. = b el[<A - V) t - -O’j (8.60)

1 1
Substituting Egs. (8.59) and (8.60) into Egs. (8.57) and (8.58) gives

(A-\P)bl+]Mza5]b2=o (8.61)

‘Mé a33 bl + V?bz = 0 (8.62)
Setting the determinant of the coefficients eqgual to zero and solving

the quadratic equation for gives the two roots
y =4t (A )2 ' . (5.63)
+ 7] M

If we assume the initial conditions

1t

&1(0) 0 (8.64)
a2(0) =a_ (8.65)

then we find

ct

(1, as)z 2
‘al(t)'z = ‘a,2012 5 sin .
L) - ey V(—%—) S R
(8.66)
laz(t)‘z = lazolz + Ial(t)]g (8.67)

If lMé a5|2 > (Z&/Z)z then the frequencies given by Eq. (8.63)
are complex. The sine function in Eq. (8.66) is replaced by a hyper-
bolic sine and both lallz and ‘azlz grow exponentially. Energy is
continuously fed from wave number 3 to waves 1 and 2.

8.3 Explosive Ins*cabilitiessz"'55

Finally, we consider the case that one of the waves, say wave

number 3, has a negative energy. The terms in Eq. (8.3) which we wish
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to consider are those containing C: C; C, and Cl C? CS' The corre-~

Wk

sponding diagrams are shown in Fig. 8.2.

3
2 1
& /
k",

1 2 5

Fig. 8.2
Conservation of energy requires
sl_()_l+sz.ﬂ,2+ss.0,5=o (8.68)
We assume Sl = 82 = +1 and S5 = -1 so this is just

_(1_1 + 0, - 17,5 =0 (8.69)

Let cl(t) and Cz(t) be given by Egs. (8.8) and (8.9) and let

C,(t) = a,(t) e”‘”iﬂ'St (8.70)

As before we neglect terms in the equations of motion which have

rapidly oscillating factors. Now the equations of motion become

b= - 1M e, ag (8.71)
o . t +
By = - 1M a ag (8.72)
- . + +
a, = - 1M a a (8.73)

Inspection of Fig. 8.2 suggests that

d +- +
. MM T T %2 % T T %3 %3 (8.74)

and this is easily shown to be the case.
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The analysis of the equation of motion is very similar to that of

section 8.1. We use Eq. (8.19) and find

%l =| Mll bz bS sin § (8.75)
5 b, b b. b, b, b -

Bo (it L) oo (a9
where

Topvp,+p - (8.77)

Note that Eqs. (8.76) and (8.77) differ from Egs. (8.27) and (8.24) by

the sign of one term., From Eq. (8.74)

2 2 2 2
b - by = constant = b, - by, (8.78)
2 2 . 2 2
b, - by = constant = b, - b, (8.79)
When Eq. (8.76) is divided by Eg. (8.75) one obtains
sin @ b b
af=an, (v 34 —d)
Ccos @ 1 b2 b5
db db db ~
=(bl+b2+b5> (8.80)
1 2 3
S0
by b, b, cos @ =17 = constant (8.81)
as before. Let us suppose that bl =0 at t = 0; then f’ = 0 and
cos & = 0 at future times. Eq. (8.75) gives
- 2 2 2 2
by = ,Mi\‘v b + P W] by + by | (8.82)

from which

b dbo
1 } L lml!t (8.83)
b2 + b2 b2 + b2
5 20 TPy s0 * Py

i
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Note that bl

et db,
. = Finite
2 2 2 2
-W by * b] 'V byt b]
0

The integral in Eq. (8.83) becomes elementary if b

by

0
so

bl(t) = b, tan b

20 lMl lt

The amplitude becomes infinite when

Zop0 M |

20 © Pso°

grows to an infinite amplitude in a finite time since

(8.84)

The
30 en

(8.85)

(8.86)

(8.87)

Such instabilities which grow to an infinite amplitude in finite

times are called explosive.

They are probably stabilized by the in-

stability changing the distribution function so that the frequencies

change so that Eq. (8.69) is not satisfied or by changing the sign of

the energy.

tion of these instabilities.

Very little is known quantitatively about the stabiliza-
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